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Abstract. A novel technique for extracting texture edges is introduce d.
It is based on the combination of two ideas: the patch-based approach,
and non-parametric tests of distributions.
Our method can reliably detect texture edges using only local informa-
tion. Therefore, it can be computed as a preprocessing step prior to seg-
mentation, and can be very easily combined with parametric d eformable
models. These models furnish our system with smooth boundaries and
globally salient structures.

1 Introduction

The detection of image edges has been one of the most exploreddomains in
computer vision. While most of the e�ort has been aimed at the detection of
intensity edges, the study of color edges and the study of texture edges are also
well developed �elds.

The dominant approach in texture edge analysis is to construct a description
of the local neighborhood around each pixel, and then to compare this descriptor
to the descriptors of nearby points. This approach is often referred to as \patch-
based" since a fragment around each pixel is used in order to compute the
outputs of the �lters. In this work, however, the term \patch -based" is quite
distinguishable from the above: it means that the gray values of the patch are
used as-is, and that the basic operation on patches is the comparison of two
patches using image correlation measures, such as normalized cross correlation
between the gray values, or their Euclidean distance.

What makes this approach novel for texture edge detection isthat since
texture is a stochastic property, this kind of descriptor would traditionally be
considered un�t. In other words, since the gray values of twoneighboring patches
from the same texture could be very di�erent, most methods rely on more elab-
orate descriptors. This is in contrast to the dominant trend in current texture
synthesis research, where patches of the original texture are stitched together in
order to generate a new texture image { a trend that seems to bemuch more
successful than the best descriptor based methods.

The main idea of this work is simple to grasp: if a point lies onthe left-hand
side of a texture edge, the distribution of similarities of the patch centered at this



point to the patches on its left is di�erent from the distribu tion of similarities to
the patches on its right. Detection of the texture edges can therefore be achieved
by examining these di�erences in the similarity distributi ons.

As this paper will show, sampling from the distributions of similarities can
be done very e�ciently. In order to estimate whether the dist ributions are the
same, we use a non-parametric test called the Wilcoxon Mann-Whitney Test
[38]. It is similar to the t-test but performs well even for small sample sizes with
unknown distributions.

In contrast to intensity edges, which have many uses in computer vision,
texture edges have been used primarily for image segmentation. In order to
make this work complete, we couple it with a segmentation scheme. Since texture
edges are often gapped, we use a hybrid deformable model to capture the image
contour. This hybrid deformable model is an adaptation of the general class of
Metamorphs Deformable models [19]. This type of deformablemodel borrows
the best features from traditional parametric deformable models [20, 35] and
geometric level-set based deformable models [7, 22], and enjoys the advantage
of bridging over gaps in contours, topology freedom during evolution, and fast
convergence. In particular, the model shape is implicitly represented in a higher
dimensional space of distance transforms as a distance map \image", and model
deformations are e�ciently parameterized using a space warping technique: the
Free Form Deformations (FFD) [1, 3] based on cubic B-splines.

2 Previous Work

Below we discuss traditional texture segmentation approaches, the emerging
patch-based techniques, and explain the background for ourstatistical test.

Feature-Based Texture Edge Detection and Segmentation.Traditional meth-
ods for texture analysis are often grouped into three major categories: statistical,
structural and spectral. In the statistical approach, text ure statistics (e.g., mo-
ments of the gray-value histogram, or co-occurrence matrices) serve as texture
descriptors. In structural approaches, the structure is analyzed by constructing
a set of rules that generates the texture. In spectral approaches, the texture
is analyzed in the frequency domain. In contrast to the wealth of approaches
suggested in the past, the last decade has been dominated by the �lter bank
approach, to which we will suggest an alternative.

\There is an emerging consensus that for texture analysis, an image
should �rst be convolved with a bank of �lters tuned to variou s orienta-
tions and spatial frequencies."[11]

Of the many studies that employ banks of �lters, the most common set of
�lters used seems to be the Gabor �lters [10, 16, 17, 11, 23, 32]. We would like to
speci�cally mention the work of [32] which, like our work, emphasizes the detec-
tion of texture edges, not texture segmentation. In relation to our work, we would
also like to point out that non-parametric tests have been used in the past for
texture segmentation, [16, 17], where nearby blocks of the image were grouped



together if the distributions of �lter outputs in those bloc ks were not statisti-
cally distinguishable. Similar to our work, the statistica l distinguishability has
been measured using non parametric tests: [16] used the Kolmogorov-Smirnov
distance and [17] used the� 2 statistic.

On a more abstract level, we �nd relation to the work of [14] in which char-
acteristics of small segments in the image are used as part ofthe texture de-
scription in addition to �lter banks. We conjecture that, si milar to the move in
object recognition from semantic-object-parts to patchesat random locations
[36], patches from textured areas may be similar in strengthto identi�ed sub-
segments for texture segmentation.

Patch Based Methods.The �lter bank approach was popular in the �eld of
texture synthesis as well (e.g., [15, 28]), up until the advent of the patch based
methods. In the few years since its publication [9, 21], the patch-based method
has dominated the �eld of texture synthesis.

The basic use of the patch for texture synthesis consists of stitching together
small overlapping patches of the input texture, such that their boundaries over-
lap (i.e., the gray value di�erences at the boundaries are minimal). This results
in a new texture image, which seems to match the original texture in appear-
ance, and has similar statistical properties. A similar approach was used for
super-resolution [13] and for class-based edge detection [5]. The success of the
patch-based methods has been extended to image completion [8] and to image
denoising [2]. Patch-based methods were also shown to be extremely successful
in object recognition [36].

Non-Parametric Statistical Tests. Non-parametric statistical tests are pre-
ferred over their parametric counterparts, when certain assumptions about the
data cannot be made. For example, the t-test assumes that thedi�erence be-
tween the two independent samples it is applied to is normally distributed, while
its non-parametric analog, the Wilcoxon Mann-Whitney Test [38], does not.

The WMW Test is one of the most powerful of the non-parametric tests for
comparing two samples. It is used to test the null hypothesisthat two samples
have identical distribution functions against the alternative hypothesis that the
two distribution functions di�er only with respect to locat ion (median), if at all.

This test has several advantages that make it especially suitable for our
application. First, it is valid for data from any distributi on and is robust to
outliers. Second, it reacts to di�erences both in the location of the distributions
(i.e., to the di�erence of their median), and to the shape of the distributions. The
test is well known, however, since it is uncommon in ComputerVision circles,
and in order to keep this paper self-contained, we describe it in Fig. 1.

Deformable Models for Segmentation.Deformable models or Active Contours
are curves and surfaces that move toward edges under the in
uence of internal
smoothness forces and external image forces. In traditional deformable models,
the external image forces come from image gradient or intensity edge informa-
tion, which are not reliable guides for texture segmentation. Region Competition
[41] performs texture segmentation by combining region growing and active con-
tours using multi-band input after applying a set of gabor �l ters. The method



Given two vectors of samples va and vb, of lengths na and nb we wish to �nd
a measure for the similarity of the underlying distribution s.
1. Combine the samples into one vector of length na + nb and sort this vector.
2. Each observation in the combined vector has a rank. The �rst o bservation has a
rank of 1, the second has a rank of 2, etc.
3. Let wa be the sum of all of the ranks of elements originating from the vector va ,
and let wb be a similar sum for vb.
4. Use the statistic w = min (wa ; wb) to determine if the two distributions are di�erent.
Very low values of w suggest they are.

Fig. 1. The Wilcoxon Mann-Whitney Test.

assumes multivariate Gaussian distributions on the �lter-response vector inputs.
Geodesic Active Regions [27] deals with supervised texturesegmentation in a
frame partition framework using level-set deformable model implementation;
the assumptions of the method are that the number of regions in an image are
known beforehand and statistics of each region are learned o�ine. The active
unsupervised texture segmentation approach proposed in [31] uses feature chan-
nels extracted based on structure tensor and nonlinear di�usion to discriminate
di�erent texture regions, the statistics of these featuresare then incorporated in
a level set based deformable model segmentation process to partition the image
into a foreground and a background region. Another level-set based algorithm
proposed in [33] detects texture edges by applying multiplegabor transforms and
an vector valued active contour model; the method supports both supervised and
unsupervised forms of the model, although it is limited by the selection of proper
gabor �lter parameters and the Gaussian assumption on �lter responses within
each region. Our unsupervised segmentation method overcomes the di�culties
faced by these methods by decomposing the problem into the two stages of an
initial local texture edge detection and a follow-up segmentation using a hybrid
deformable model that smoothly bridges over the missing gaps.

Work related on an abstract level. In this work we detect discontinuities
(edges) by comparing distributions to the left and to the right of each point.
This idea can be tracked back to [40]. Comparing gray values of adjusted curves
was used in [39] in order to classify hand marked edges into the occluding contour
or the cast shadow types, in a manner that has faint similarities to our method.

3 Patch Based Texture Edge Detection
Our method is straightforward and is illustrated in Fig. 2(a ). In essence, it tests
whether a point (x; y) in the image is near a texture edge. Assume a situation
where (x; y) is not near a texture edge. Then the similarities between the patch
surrounding (x; y) and the nearby patches to its left and right are drawn from
the same distribution. In our experiments we measure similarities by simply
computing the Euclidean distance between the patch at (x; y) and the nearby
patches. Our use of the actual image patch as a template, instead of a prede�ned
�lter bank, has the potential to be very sensitive to changesin the local texture.

Let D right ,D lef t be the distributions of similarities between the patch sur-
rounding (x; y) and the nearby patches. If there is a texture edge on the leftside



of (x; y), it is natural to expect the distributions D right and D lef t to be di�erent.
For example, it might be reasonable to assume larger similarities within D right .

In order to determine whether the two distributions are the same, we sample
patches slightly to the left and to the right of the point ( x; y). In the experiments
we used a maximum distance of 15 pixels, and sampled at each pixel, therefore
sampling 15 similarities from each distribution.

As mentioned above, we use the Wilcoxon Mann-Whitney Test, which excels
for samples small in size, and assumes very little about the nature of the distri-
butions. The horizontal texture edge points are those points for which the test
determines that the two distributions D right and D lef t are di�erent. The same
process is then applied vertically, and two similar distributions Dup and Ddown

are compared. For our application we combine the two edge directions by taking
the minimum value returned from the two tests.

Note, that since measurements from patches as far as 15 pixels away a�ect
the distribution, we can expect the test score to change gradually. Moreover,
when (x; y) lies exactly on a texture edge, the patch around it is a hybrid patch,
composed of two textures, and we expect the di�erence between the distributions
to be lower exactly at the edge, this could create a double edge. It turns out that
for the small patch size we used in the experiments (5� 5 pixels), these concerns
did not a�ect the texture edges dramatically. This is demonstrated in Fig. 3
with plots of several edge pro�les (See also Fig. 2(c), for anbrief illustration of
a method developed to solve the double edge problem).

Another important implementation detail is the way ties are handled inside
the non-parametric test [29]. While, in general, this question has a critical ef-
fect on the results, and should be addressed with caution, exact ties in patch
similarity scores obtained from images are rare. An exception is when applying
our method to areas where the gray value is exactly �xed. Adding a negligi-
ble amount of random noise to the Euclidean distances solvesthis problem by
producing a random order in such cases.

3.1 E�cient computation
Every pixel in the image contributes to many patches, which are in turn com-
pared with many overlapping patches. A na•�ve implementation might compute
the di�erence of the same two pixels multiple times. Another important facet of
e�ciency is that in some programming environments or hardware con�gurations
(e.g., Matlab, designated graphics hardware) vector computations are done more
e�ciently than the repeated index-by-index computation.

The implementation we suggest is illustrated in Fig. 2(b), and is based on
computing all of the patch comparisons to patches at a distance of �x in either
the vertical or horizontal direction at once. In order to do so, one only needs to
translate the image �x pixels in either the horizontal or vertical direction, and
subtract the resulting image from the original image. Sincewe are interested
in the Euclidean distance, we square each value in the di�erence image, and we
then sum across all patches in the di�erence image. Since thesumming operation
is separable (can be done �rst horizontally, and then vertically), the procedure
can be made extremely e�cient.



(a) (b) (c)

Fig. 2. (a) An illustration of the grid method, in which the patches n ear the center
patch are used in order to compute the similarity distributi ons. Four distributions are
sampled: D up , D down , D lef t and D right . The pixel at the center would be considered to
lie on a texture edge if, according to the Wilcoxon Mann Whitn ey test, the distribution
D up is determined to be di�erent from the distribution D down , or if D lef t is determined
to be di�erent from D right . (b) An illustration of the e�cient method to sample the four
distributions, using vector operations. To simultaneousl y sample all of the di�erences
between all of the patches in the image, and all of the patches which are �x pixels
to the right or to the left, a copy of the image is translated �x pixels left, and then
subtracted from the original image. The di�erence is square d, and then summed at each
5x5 patch in the image, which is a separable operation. (c) An alternative architecture
using the 
ux idea. A pixel would not be on a texture edge if the similarity of points
along a circle around it are as likely to be similar to points i nside the circle, as they
are to points outside the circle. For each point on the circle of radius r , the similarity
of the patch around it is compared to patches along the line of length 2l , which passes
through the center point, the point on the circle, and outsid e of the circle.

4 Segmentation using Hybrid Deformable Models

The detected texture edges can be coupled with a hybrid deformable model that
moves in the manner of free form deformations to achieve segmentation over
the entire image domain. The Euclidean distance transform is used to implicitly
embed an evolving model as the zero level set of a higher dimensional distance
function [25]. If we denote the model asM , and the implicit model representation
as a distance map� M , then the shape de�nes a partition of the image domain:
the region enclosed byM , [R M ]; the background region [
 � R M ]; and the
model itself, [@R M ], which corresponds to the zero level set. Such a model shape
representation provides a feature space in which objectivefunctions that are
optimized using a gradient descent method are stable enoughto use.

The deformations that a model can undergo are de�ned using a space warping
technique: the Free Form Deformations (FFD) [34]. In essence, FFD deforms an
object by manipulating a regular control lattice F = f (F x

m;n ; F y
m;n )g of M �

N control points overlaid on top of a region � in the volumetric embedding
space that contains the object (below we use� = f (x; y)j1 � x � X; 1 � y �
Y g in the object-centered coordinate system). In the Incremental Free Form
Deformations (IFFD) formulation used in [19], the deformation parameters,q,
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Fig. 3. Pro�le of the edges we obtain by using our method. Left of each triplet: the
original part of the image. Middle: the texture edge we get. R ight: the pro�le as a 2D
plot. Note that the pro�le has a double edge e�ect, but it is ra ther minimal.

are the deformations of the control points in both x and y directions:

q = f (�F x
m;n ; �F y

m;n )g; (m; n) 2 [1; M ] � [1; N ]:

When the control lattice deforms from F 0 to F = F 0 + �F , the deformed
position of a pixel x = ( x; y) is given by D(q; x), which is de�ned in terms of a
tensor product of Cubic B-spline polynomials:

D (q; x ) =
3

X

k =0

3
X

l =0

B k (u)B l (v)(F 0
i + k;j + l + �F i + k;j + l ) (1)

where i = b x
X � (M � 1)c + 1 ; j = b y

Y � (N � 1)c + 1.
To �nd texture region boundaries given a simple-shape modelinitialized

around a seed point, the dynamics of the free-form deformable model are derived
from edge energy terms. Instead of intensity edges, which fail to separate tex-
tured regions, we use the texture edges computed using our patch-based method
above. The result of our patch-based �ltering is a texture edge map (e.g., Fig. 3,
middle columns), on which true edges between di�erent texture regions corre-
spond to low values. Denote the texture edge map asI t , the boundary data term
Eb below encourages model deformations that map the model boundary to the
pixel locations with the smallest values onI t .

Eb =
1

V (@R M )

Z Z

@R M

�

I t (D (q; x ))
� 2dx ;

whereV (R) represents the volume of a regionR. The above boundary termEb
can help the model to converge to the exact edge location where the di�erence
between two neighboring texture patches is maximized. However, it may cause
the model to get stuck in local minima when the model is initialized far-away
from the true boundary. To address this problem, we compute abinary edge
map by thresholding on the texture edge mapI t . The threshold is computed
automatically using Otsu's method [26]; the method selectsthe threshold that
minimizes the weighted sum of within-group variances on thehistogram of the
texture edge map. Given the binary edge map, we encode information from this
binary edge map by computing its un-signed distance transform. The resulting
distance map image is denoted by� e. The data term Ee below aims to minimize
the sum-of-squared-di�erences between the implicit shaperepresentation values



both on the model and inside the model and the underlying distance values on
� e at corresponding deformed positions.

Ee =
1

V (R )

Z Z

R

�

� M (x ) � � e(D (q; x ))
� 2dx ;

where R = R M [ @R M . During optimization, when the model is still far-away
from the true edges, this term serves as a two-way ballooningforce that expands
or shrinks the model along the gradient direction of� e. At an edge with small
gaps, this term also constrains the model to follow the \geodesic" path (i.e., the
shortest smooth path connecting the two open ends of a gap).

Combining the two data terms { the boundary term Eb and the thresh-
olded edge termEe, the overall energy functional is: E = Eb + kEe, where
k is a constant balancing the contributions from the two terms 3. Both terms
are di�erentiable with respect to the free-form-deformation parametersq, and
a gradient-descent based method is used to derive the model evolution equation
for each elementqi in q:

@E
@q i

=
@Eb
@q i

+ k
@Ee
@q i

; (2)

where

@Eb
@q i

=
1

V (@R M )

Z Z

@R M

2I t (D (q; x )) �
�

r I t (D (q; x )) �
@

@q i
D (q; x )

�

dx

@Ee
@q i

=

R R

R M [ @R M
2

�

� M (x ) � � e(D (q; x ))
�

�
�

� r � e(D (q; x )) � @
@q i

D (q; x )
�

dx

V (R M [ @R M )
:

In the above formulas, the partial derivatives @
@q i

D(q; x) can be easily derived
from the model deformation formula in Eq. 1.

The whole image is processed in the following manner: the �rst region is
segmented by starting a deformable model at the center of theimage. Another
point well outside the �rst region is then used to initialize a second model, and a
second region is segmented. The process continues until almost all of the points
in the image are segmented. In the case where a new region grows into an old
region, the two regions are joined together.

5 Experiments

Comparing methods for texture edge detection.The main purpose of these ex-
periments is to demonstrate that Gabor based �lter bank methods cannot be
used directly in local methods of deriving texture edges. Indeed, in [16, 17] a
global clustering method was used to combine regions based on the �lter bank
descriptors; in [32] a method based on anisotropic di�usionin the direction of
the global principle direction was suggested; in [14] the �lter bank output was
integrated along a region and was modi�ed with statistics on the shape of small

3 We are able to omit an explicit model smoothness term here because of the strong
implicit smoothness constraints imposed by FFD.



(a) (b) (c) (d)

Fig. 4. Comparison of edge detection performed
on the original gray images (a), using the Canny
edge detector (b), using the �lter bank dissimilar-
ity based on [17](c), and using our method (d).

(original) (texture edges) (segmentation)

Fig. 5. Results of our edge de-
tection and texture segmentation
methods on several mosaics con-
structed by the authors of [17].

segments. One can also refer to the text of [32, 14], where thelimitations of the
local �lter bank measurements are discussed.

In Fig. 4, we compare our method, Canny edge detection, and a method
based on [17], in which, for each pixel we plot the maximum di�erence (using
the original parameters and distance measure) of the block around it to the
nearest four blocks (the results are similar if using Wilcoxon Mann Whitney
instead of � 2). As can be seen, this \alternative" is not doing well. A veri�cation
of this can be found in Fig. 4(a) of [32].
Experiments on Texture Mosaics.In Fig. 5, we show examples results on the tex-
ture mosaic images of [17], available online athttp://www-dbv.cs.uni-bonn.
de/image/mixture.tar.gz . This data set contains mosaics generated from a
set of 86 micro-patterns from the Brodatz album [6].
Real image experiments.In Fig. 6 we present experiments on images taken from
the �rst 25 gray level testing images of theBerkeley Segmentation Dataset(http:
//www.cs.berkeley.edu/projects/vision/grouping/segb ench/ ) . We did not
use any dedicated intensity edges method, but as can be seen in the image of the
bird, edges between regions of uniform but di�erent intensities, are detected.

6 Summary and Conclusions

The patch based technologies, which are based on local gray value representations
and correlations between gray values, have proven to be successful in many
computer vision domains, and suggest an appealing alternative to �lter bank
approaches. While there is no doubt that their recent proliferation is partly



Fig. 6. Results of our edge detection and texture segmentation methods on several real
images taken from the Berkeley Segmentation Dataset, including the original images,
the recovered texture edges, and the resulting segmentation. The images in the lower
right demonstrate the detection of texture edges that also c onstitute intensity edges.

due to the increasing computational power available, the representation itself
seems inherently powerful. In this work, we use patches in order to compute
texture edges. The edge representation (as opposed to a representation of regions
using some form of descriptor) is powerful in that it can be readily combined
with global optimization based-segmentation (e.g., \snakes"). Most energy-based
methods do not deal with texture edges. Attempts that have been made in the
past to incorporate texture into these methods used simple texture descriptors
such as mean intensity of a region or the variance of the intensity in that region
[27, 30], and were computationally expensive.

By using our patch based texture edge detection technique, combined with
Free-Form Deformations, we are able to suggest a tractable solution, which en-
joys both rich texture information, and the advantages of a global solution.
These advantages include the detection of a smooth boundary, which is globally
salient. In this work we focused solely on texture edges, butit had not escaped
us that in our framework one can easily add the traditional energy terms for
intensity edges and color edges, thus making our framework complete for image



segmentation. This completeness was available in the a�nity based approaches,
but not in the energy based methods.
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