Supplementary materials: Linking Image and Text with 2-Way Nets

April 12, 2017
Contents

1 Appendix A - Image-Sentence matching examples 3
2 Appendix B - Lemma’s Proofs 9

List of Figures

1 COCO - Image Description . 3
2 COCO - Image Search . 4
3 Flickr30k - Image Description . 5
4 Flickr30k - Image Search . 6
5 Flickr8k - Image Description . 7
6 Flickr8k - Image Search . 8
Figure 1: Examples of results from the image description task on the COCO dataset. Five sentences are produced for each image. The sentences are chosen by matching their 2-Way Net representation with the produced image’s representations.

1 Appendix A - Image-Sentence matching examples

This section contains results from the image-sentence experiments. Examples of both the image query and image describe tasks are presented. For the image description task, each image is shown alongside five sentences with the highest matching score. Sentences which are correct, according to the specific dataset, are marked in green. For the image query task, for each sentence, five images with the best matching score are shown. Examples are shown for Flickr8k [2], Flickr30k [4] and COCO [3] datasets.
Figure 2: Examples of results from the image search task on the COCO dataset. Each sentence is matched against all images and the top five are presented.
• A man in tan capris, brown sandals, and a white t-shirt, crouches on the trunk of a tree.
• A man in a white shirt and khaki pants crouches on a fallen tree trunk.
• A man is crouched on top of a horizontal tree.
• A man crouched in the bare branches of a fallen tree.
• A man sitting in the middle of branches on a fallen tree.

• Black and white dog jumping up in the snow.
• Shaggy little dog jumps in the snow.
• Three dogs run in the snow.
• A black and white dog jumping in the air surrounded by snow.
• The white and black dog leaped into the air and off the snowy ground.

• An ice hockey goalkeeper in a red and blue strip is on his knees in front of the goal.
• A hockey player in blue and red guarding the goal.
• The ice hockey goal keeper is dressed in a red strip.
• A goalie is crouching in a defensive position in front of the goal.
• A goalie defending the goal in a hockey game.

• A group of various people stand outside of a store called Central Market.
• People stand outside of a market.
• People are strolling around a market.
• People gathered in front of a store named Central market.
• A group of shoppers walk near the produce section of Sunlight Farms store.

• A red dump truck is on scene beside some buildings.
• Four men are performing work in a dirt lot, near a building, using a dump truck.
• A picture of two workers next to a semi truck standing outside the fence of a refinery.
• Two men work next to a cement truck.
• A truck with an advertising billboard stuck in the middle of the road.

Figure 3: Examples of results from the image description task on the Flickr30k dataset. See Fig. 1 for details.
Four people are jumping from the top of a flight of stairs.

A woman scantily dressed in handsome homemade-looking clothing sits on a wooden step and reads Brazilian author Coelho.

A black and white bird standing on a hand.

A man practicing karate moves in the air.

Figure 4: Examples of results from the image search task on the Flickr30k dataset. See Fig. 2 for details.
Figure 5: Examples of results from the image search task on the Flickr8k dataset. See Fig. 2 for details.
Figure 6: Examples of results from the image search task on the Flickr8k dataset. See Fig. 2 for details.
2 Appendix B - Lemma’s Proofs

This section contains proofs for the lemmas described in the paper.

Lemma 1. Let \(x \in \mathbb{R}^n \) and \(y \in \mathbb{R}^n \) denote two paired lists of \(n \) matching samples from two random variables with zero mean and \(\sigma_x^2 \) and \(\sigma_y^2 \) variances. Then, the correlation between the two \(n \) dimensional samples \(x \) and \(y \) equals
\[
\frac{\sigma_x}{2\sigma_y} + \frac{\sigma_y}{2\sigma_x} - \frac{||x - y||^2}{2n\sigma_x \sigma_y}.
\]

Proof. Given two \(n \)-dimensional vectors \(x \) and \(y \) we consider the squared Euclidean distance
\[
||x - y||^2 = \sum_{j=1}^{n} (x_j^2) + \sum_{j=1}^{n} (y_j^2) - 2 \sum_{j=1}^{n} (x_j y_j)
\]

Thus:
\[
\sum_{j=1}^{n} (x_j y_j) = \frac{n\sigma_x^2}{2} + \frac{n\sigma_y^2}{2} - \frac{||x - y||^2}{2} \tag{1}
\]

For zero mean variables, the correlation between \(x \) and \(y \) is given by \(c = \frac{1}{n} \sum_{j=1}^{n} (x_j y_j) \).
Combining with [1] results in what had to be proven. \(\square \)

Lemma 2. Given two matching hidden layers, \(h_j \) and \(\hat{h}_j \) with \(m \) neurons each. \(a_k \) is the activation vector of neuron \(k \) from \(h_j \) with standard deviation \(\sigma_{a_k} \) and \(b_k \) is the activation vector of neuron \(k \) from \(\hat{h}_j \) with standard deviation \(\sigma_{b_k} \). Each vector is produced by feeding a batch of samples of size \(n \) from views \(x \) and \(y \) through channels \(H \) and \(\hat{H} \) respectively. The sum of correlations \(C \) is bounded by:
\[
\sum_{k=1}^{m} C_k \geq \frac{1}{2} \sum_{k=1}^{m} \left(\frac{\sigma_{a_k}^2 + \sigma_{b_k}^2}{\sigma_{a_k} \sigma_{b_k}} \right) - \frac{1}{2n} \sum_{k=1}^{m} ||a_k - b_k||^2 \sum_{k=1}^{m} \sigma_{a_k}^{-1} \sigma_{b_k}^{-1} \tag{2}
\]

Proof. From lemma [1] we get:
\[
\sum_{k=1}^{m} C_k = \frac{1}{2} \sum_{k=1}^{m} \left(\frac{\sigma_{a_k}^2 + \sigma_{b_k}^2}{\sigma_{a_k} \sigma_{b_k}} \right) - \frac{1}{2n} \sum_{k=1}^{m} \left(\frac{||a_k - b_k||^2}{\sigma_{a_k} \sigma_{b_k}} \right) \tag{3}
\]
We will define \(G_m = \sum_{k=1}^{m} \|a_k - b_k\|^2 \) and \(f_k = \sigma_{a_k}^{-1} \sigma_{b_k}^{-1} \). Using Abel transform:

\[
\sum_{k=1}^{m} \|a_k - b_k\|^2 = f_m G_m - \sum_{k=1}^{m-1} G_k f_{k+1} + \sum_{k=1}^{m-1} G_k f_k \\
\leq f_m G_m + \sum_{k=1}^{m-1} G_k f_k \\
\leq f_m G_m + G_m \sum_{k=1}^{m-1} f_k = G_m \sum_{k=1}^{m} f_k \\
= \sum_{k=1}^{m} \|a_k - b_k\|^2 \sum_{k=1}^{m} \sigma_{a_k}^{-1} \sigma_{b_k}^{-1} \tag{4}
\]

Note that both \(\sigma_{a_k} \sigma_{b_k} \) and \(\|a_k - b_k\|^2 \) are positive for all \(k \) which makes the above inequalities valid. Inserting \(4 \) in \(3 \) results in what had to be proven. \(\square \)

Lemma 3. Assume that \(u_i \) and \(v_i \) are drawn from a multivariate normal distribution with zero mean and the identity covariance matrix, such that the correlation between \(u_i(k) \) and \(v_i(k) \) for all \(k \) is \(\rho_k = \rho \). Then, \(E(|s_i \cap \hat{s}_i|) = d \left[\frac{1}{4} + \frac{\sin^{-1} \rho}{2\pi} \right] \).

Proof. To estimate the size of \(c \), let us look at the quadrant probability \(p \) of \(u_i(k) \) and \(v_i(k) \) which is given analytically by \(1 \),

\[
p = P(u_i(k) > 0, v_i(k) > 0) = \frac{1}{4} + \frac{\sin^{-1} \rho}{2\pi}
\]

Given that the variables in \(u_i(k) \) and \(v_i(k) \) are drawn independently, the probability of \(P(|c| = t) \) has a binomial distribution with probability \(p \), thus the mean of the size of \(c \) is equal to \(E(|c|) = dp = d \left[\frac{1}{4} + \frac{\sin^{-1} \rho}{2\pi} \right] \). \(\square \)

References

