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ABSTRACT
Word segmentation in documents is a critical stage towards
word and character recognition, as well as word spotting. De-
spite recent advancements in word segmentation and object
detection, detecting instances of words in a cluttered hand-
written document remains a non-trivial task that requires a
large amount of labeled documents for training. We present
a flexible and general framework for word segmentation in
handwritten documents, which incorporates techniques from
the recent object detection literature as well as document anal-
ysis tools. Our method utilizes information that is relevant for
word segmentation and ignores other highly variable informa-
tion contained in a handwritten text, thus allowing for efficient
transfer learning between datasets and alleviating the need for
labeled training data. Our approach efficiently detects words
in a variety of scanned document images, including histori-
cal handwritten documents and modern day handwritten doc-
uments, presenting excellent results on existing benchmarks.
In addition, we demonstrate the usefulness of our approach by
achieving state-of-the-art results for segmentation-free word
spotting tasks.

Index Terms— Object Detection, Document Analysis,
Transfer Learning

1. INTRODUCTION
Segmentation of individual words in a document image is a
crucial task for performing word spotting, full text transcrip-
tion and document clustering. Many of the recent word spot-
ting and word recognition techniques assume access to seg-
mented documents. This constitutes a limiting factor, since
the word segmentation problem remains challenging in the
case of unconstrained handwritten documents. This is due
to large variations in writing styles and languages, overlap-
ping and touching text parts, existence of accents, punctua-
tion marks and decorative letters, local text skew and slant.
The challenge is particularly striking in historical documents,
where document and text degradation is common.

Classical word segmentation methods are based on con-
nected components, where segmentation is performed by
classifying gaps between connected components as being an
inter-word or an intra-word gap [1]. Gap classification meth-
ods suffer from several drawbacks, including the need for
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Fig. 1: (a) A sample document from the ICDAR dataset
and (b) A heatmap generated by the heatmap network.(c) A
smooth heatmap generated by the smoother network.

preprocessing and limited utilization of the available infor-
mation [2]. These issues severely limit the usability of such
methods to cluttered or corrupt handwritten documents. See
also [3, 4, 5, 6, 7]

Segmentation methods based on deep learning were re-
cently introduced. These methods treat word segmentation
as a special case of object detection. Although deep learning
based methods allow a much better utilization of available in-
formation and added versatility in the types of documents that
can be segmented, bounding box proposal generation still re-
mains a bottleneck and some sort of connected component
method must be used to augment the box proposal genera-
tion process. This is due to imperfect suitability of existing
bounding box proposal generation processes to handwritten
text documents [8, 9]. Moreover, deep learning based meth-
ods depend on training data availability, which in a setting of
historical manuscripts might be a limiting factor.

To address the above issues, we propose a fully convolu-
tional neural network based method that implicitly incorpo-
rates gap classification into the proposal generation process,
and produces a box proposal generation process that is com-
patible with the structure of text documents.
This is achieved by predicting a heatmap (probability mask)
that indicates whether an image pixel belongs inside a word
bounding box or is a background pixel. Gap classification
problem is solved implicitly, since, in order to classify a non-
word pixel, a decision must be made as to whether a pixel
belongs to an inter-word gap or an intra-word gap. To pro-
duce high quality, language- and style-agnostic word bound-
ing boxes we propose a dynamic bounding box regression
mechanism. The mechanism uses the heatmap and utilizes the



Fig. 2: Our architecture consists of a Heatmap Network that translates document image into a heatmap. The heatmap is fed
into a Proposal Generation Network and to a Filter Network. The Proposal Generation Network learns to generate proposal
bounding boxes based on a document’s heatmap while the Filter Network learns to estimate how well the proposed bounding
box envelopes a word (measured as an IoU with a ground truth bounding box), based on the heatmap as well as the proposed
bounding box dimensions. Finally, non-maximal suppression is performed to produce word bounding box predictions.

relatively low overlapping among words and the linear struc-
ture common in most documents. Box proposals are then fil-
tered to identify those that tightly envelope words. Heatmap
production, bounding box regression and box filtering are im-
plemented using a set of fully convolutional neural networks
with specific losses and architectures that suit text document
structure. Also, use of heatmaps is conductive for preserv-
ing information relevant for word segmentation and discard-
ing other highly variable information contained in a handwrit-
ten text, thus allowing for efficient transfer learning between
datasets and alleviating the need for labeled training data.

Our method can easily be trained for different kinds of
documents, including cluttered historical documents, does
not require preprocessing and generalizes well to a variety
of languages. We evaluate its performance using estab-
lished error metrics, previously used in competitions for
word segmentation. The method achieves state of the art
results with a large margin on ICDAR 2013 handwriting seg-
mentation database of Latin-based and Indian languages. We
also demonstrate the usefulness of our method by applying
it to a segmentation-free word spotting task and achieve a
state-of-the-art result. We make our source code available at:
https://github.com/gaxler/dataset agnostic segmentation

2. PROPOSED METHOD

Given a document image, we want to identify rectangle
bounding boxes that tightly envelope each of the document’s
words. To solve this problem, we propose a network archi-
tecture that consists of three parts: (i) A heatmap network
that transforms a document image into a per-pixel “written vs
background” probability map; (ii) A bounding box proposals
generation network and (iii) Proposal filtering network. The
architecture is depicted schematically in Fig. 2.

The heatmap network is formulated as a three class clas-
sification problem with positive (well inside a bounding box),
periphery (near the edge) and negative (background) classes
(See Fig.1). Using a heatmap implicitly incorporates gap clas-
sification into the proposal generation process and helps to
”declutter” the document by reducing word overlaps. The net-
work is implemented via encoder-decoder CNN architecture
based on ResNet [10] that encodes an image into a feature
map with size reduced by a factor of 8 and decodes the fea-
ture map into a heatmap with same size as the original doc-
ument (See Fig.3). To increase generalization and transfer-

Fig. 3: The Encoder-Decoder architecture of the heatmap net.

ability between datasets, we apply a ”smoother” network that
learns to correct the mistakes of the heatmap network based
on the noisy heatmap and the input image. The Smoother
Network is based on U-NET architecture [11] with five down
and five up layers. For each document, a ground truth mask is
produced based on word bounding box locations and used as
training labels for the Heatmap network. Outer 20% of a box
are defined as periphery. The network is trained with the cross
entropy loss. Since documents contain an order of magnitude
more background pixels than foreground pixels, we introduce
class weighting and assign a larger weight to the foreground
and periphery pixels. For further details please refer to the
source code.

Proposal Generation Network uses a heatmap to pro-
duce bounding box coordinates. The coordinates are paramet-
rized as the left-top and right-bottom image locations of the
bounding box (LTRB).
With the heatmap as an input and since our objects of interest
are words, we can expect very low overlapping among ob-
jects. Unlike general objects, where, e.g., a bounding box of
a sofa might fully contain a bounding box of a person. This al-
lows us to incorporate an inductive bias that reduces the need
to tune hyper-parameters and makes the learning task easier.
We propose a dynamic mechanism: instead of anchors with
predefined shapes (i.e. [12, 13]), we use uniformly spread
center points along an image and learn a location invariant
parametrization of a bounding box relative to each of the cen-
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Fig. 4: (a) The center points are equally distributed in 8 pixel
gaps. (b) Box parametrization relative to a center point. Red
arrows represent shifts to be predicted.

Fig. 5: The architecture of the proposal generation network

ter points. This way, the need to tune hyper-parameters for an-
chor size, aspect-ratio and ground truth comparability thresh-
old is reduced. This adds robustness, since these factors often
vary between different documents due to writing style, lan-
guage, and preservation status. If a center point (ic, jc) is con-
tained inside a bounding box b = [iL, jT , iR, jB], we have the
following parametrization: T (ic, jc) = [ic− iL, iR− ic, jc−
jT , jB − jc]. We assign a zero-sized box for center points
outside of a bounding box. In case a center point is inside the
intersection of multiple bounding boxes, we ignore it during
model fitting. See Fig.4 for illustration.
The Proposal Generation Network is modeled as a fully con-
volutional network that maps a heatmap to a regression fea-
ture map with size reduced by a factor of 8 and a regression
function that maps each feature of the feature map to a lo-
cation invariant box parametrization T (See Fig.5). Center
points are spread on a grid such that each point is 8 pixels
apart and each regression feature is assigned to a center point.
The proposal generation network is trained with a smooth L1
loss, as defined in [14], weighted to adjust for the abundance
of zero-size boxes.

The Filter network is used to identify box proposals that
contain words and ignore proposals that cover no words or
partial words. The filter network is implemented in the spirit
of RPN’s [12] anchor classification branch. We use a classi-
fier to gauge the objectness (wordness in our case) of a pro-
posal and extend the binary classifier used in [12] to an n-way
classification to predict a discretized Jaccard index of the pro-
posal with the closest (in terms of Jaccard index) ground truth
box (See Fig.6).
Jaccard index discretization takes place by dividing the range
[0, 1] into n = 5 bins, where the first bin includes all boxes
below 0.45 IoU with ground truth and the rest are uniformly
spread in [0.45, 1.0]. The filter network is trained with a cross-
entropy loss between the predicted probabilities on the IoU
bins and the ground truth discretized IoU.

Fig. 6: The architecture of the filter network, which classifies
each proposal as a word or a background

Word Embedding network is used to assess the perfor-
mance of our segmentation method in a segmentation free
word spotting task. We embed word images into a Pyramidal
Histogram Of Characters (PHOC) [15] representation. We
follow [9] and use 540-dimensional PHOC embedding (26
English characters, 10 digits and five levels in the PHOC).
The embedding network is a CNN that takes the feature map
of the heatmap generation network as an input. Training of
the embedding network is cast as a multi-label classification
problem and the training is done with a sigmoid cross-entropy
loss (see [16, 9, 17] for further discussion)

3. EXPERIMENTS

We evaluate our pipeline on a handwriting segmentation task
and perform a generalization analysis of our method to unseen
or partially seen data. We also evaluate the usefulness of our
method in a segmentation free word spotting scenario.

For handwriting segmentation we evaluate our pipeline
on the ICDAR 2013 handwriting segmentation contest dataset
[18] (ICDAR). Generalization analysis is performed by
evaluation of segmentation performance measures on previ-
ously unseen or partially seen data. Our system is trained
on four data regimes: (1) a source dataset; (2) a source
dataset with 20 documents of the target dataset; (3) a source
dataset with 10% of the target dataset; (4) a source and
target datasets combined. Performance is evaluated on the
validation set of the target dataset. For generalization anal-
ysis, we utilize two additional datasets, IAM Handwritten
Database (IAMDB) [19] and pages from the Transcribe Ben-
tham project (BENTHAM) [20]. For segmentation free
word spotting, we use two of the biggest and most challeng-
ing datasets,IAMDB and Botany in British India (BOTANY)
[21].

Implementation Details: The full architecture is trained
in two stages. In the first stage the Heatmap Network is
trained (along with word embedding network for word spot-
ting task) followed by smoother network training (keeping
the rest fixed). In the second stage the box proposal gen-
eration and the filter networks are trained (keeping the rest
fixed). During training box proposals are randomly sampled
and augmentations are randomly applied. For further imple-



M o2o DR (%) RA (%) FM (%)

ILSP [23] 23,409 20,686 87.93 88.37 88.15
Students-t [7] 23,150 20,791 88.38 89.81 89.09
NCSR [4] 22,834 20,774 88.31 90.98 89.62
Golestan [18] 23,322 21,093 89.66 90.44 90.05
DTP [8] - - 87.09 93.82 90.33
Ryu et al. [2] - - 90.50 91.55 91.03

Our Method 23,551 22,043 93.70 94.40 94.05

Table 1: ICDAR benchmark results: M is the total proposals
generated, o2o is the number of correct proposals, DR repre-
sents recall, RA accuracy and FM the F1 score.

mentation and architecture details, please refer to the source
code at:
https://github.com/gaxler/dataset agnostic segmentation

Performance Measures: To be comparable with previ-
ous results, we follow the word segmentation performance
measure introduced in [22, 18]. The performance is evaluated
by precision (RA), recall (DR), and F1 (FM) scores. A pro-
posal is considered a match for ground truth if IoU is greater
than 0.9 for ICDAR dataset (see [22]). For IAMDB and BEN-
THAM we set the IoU threshold to 0.6 following [8] (due
to differing definitions of IoU - see [8]). In word spotting,
our protocol follows the usual segmentation-free Querby by
String (QbS) word spotting protocols [9, 17]. A detection is
considered as relevant if its IoU with a ground truth regions
exceeds a threshold (0.25 or 0.5) and the retrieved proposal
contains a word relevant to the query. Following [9], we re-
move stopwords from the set of queries, queries that come
from lines that are marked as containing segmentation errors
are removed and ground truth boxes that are so small that they
collapse to a width or height of zero when downsampled by a
factor of 8 are also removed.

Results: Segmentation task results on the ICDAR dataset
are reported in Tab. 1. As can be seen, our method outper-
forms all literature baselines by a significant margin. We note
that the previous state of the art on ICDAR was not obtained
by the previous attempt [8] to employ an adaptation of FR-
CNN, but with a classical method [2]. Thus, the novelties we
have introduced play an important role.

As evident from table 2, using a heatmap as an input
instead of document image greatly improves segmentation
performance when using only a small fraction of the target
dataset for training. In all examined cases, training on a full
target dataset, using raw document images as inputs, provides
significantly lower segmentation performance than utilizing
heatmaps as inputs and using a small fraction of the target
dataset for training.
Word spotting task results are presented in Tab.3. As can be
seen, our method outperforms IAMDB literature benchmarks
by significant margin and performs comparably on BOTANY.

Heatmap Inputs Image Inputs
DR RA FM DR RA FM

IAMDB
Source Only 65.77 29.15 40.40 53.53 38.15 44.55
Source + 20 Doc. 83.72 91.26 87.33 80.17 65.00 71.79
Source + 10% 85.22 92.54 88.73 81.14 72.87 76.78

Source + Target 85.75 93.73 89.56 80.40 71.12 75.47
BENTHAM
Source Only 29.83 34.75 31.10 17.03 27.06 20.90
Source + 20 Doc. 66.62 73.58 69.93 60.83 60.83 60.83
Source + 10% 67.27 73.94 70.40 63.62 62.84 63.23
Source + Target 72.63 79.29 75.82 65.00 64.76 64.88

Table 2: Word segmentation results on the IAMDB and BEN-
THAM datasets when, using the ICDAR as the source train-
ing data, and when performing adaptation using a subset of
the target dataset.

IAMDB BOTANY
25% 50% 25% 50%

BG-INDEX - 48.6 - -
Ctrl-F-Net (PHOC) [9] 80.8 78.8 - -
Ctrl-F-Net (DCToW) [9] 82.5 80.3 - -
Rothacker et al. [17] - - 85.3 78.8
Ours 85.6 85.4 78.7 79.0

Table 3: IAMDB & BOTANY word spotting results.

4. DISCUSSION

We introduced a novel fully convolutional neural network
based method for word segmentation of a document image.
Our architecture was designed to address the drawback of
existing word segmentation methods by utilizing text im-
age structure as a prior for the architecture and implicitly
incorporating gap classification information as part of the ar-
chitecture. Furthermore our method is designed to utilize in-
formation that is relevant for word segmentation and abstracts
away other highly variable information contained in a hand-
written text, thus increasing similarity among datasets and
alleviating the need for segmented training data. Our method
outperforms previous state of the art results on word segmen-
tation benchmarks by a significant margin. Additionally, we
demonstrate our method’s usefulness in segmentation-free
word spotting task and achieve a state-of-the-art or compara-
ble result for word spotting benchmarks.
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A. ARCHITECTURE DETAILS

Fig. 7: Residual Unit architecture (sizes compatible with first
residual block).

Fig. 8: The Smoother Network Architecture: U-NET with
five down blocks and five up blocks

Fig. 9: U-NET Blocks: with five down layers and five up
layers

(a) (b)

Fig. 10: (a) Full bounding box and ground truth heatmap. (b)
Trimmed (10%) bounding boxes and ground truth heatmap.

B. DETAILED EXPERIMENTAL SETUP

B.1. Datasets

The ICDAR 2013 dataset contains images of handwritten
documents that were produced by several writers in English,
Greek and Bangla. The training data consists of 200 docu-
ment images (total of 29,423 annotated word instances) while
the test data consists of 150 document images (total of 23,525
annotated word instances). The document images are binary
and do not include any non-text elements such as lines, draw-
ings, etc.
IAMDB [24] contains pages of handwritten English text.
657 writers contributed samples of their handwriting that are
available as 1,539 scanned pages. The pages contain 115,320
annotated word instances. We use the documents proposed
for the Large Writer Independent Text Line Recognition Task
for the train, validation and test splits.
The BENTHAM dataset consists of original scanned color
page images of manuscripts by Jeremy Bentham, an 17th
century English philosopher. The page images were divided
into three sets: a training set of 363 pages, a development set
containing 433 pages, and a test set of size 200. The train-
ing set contains 75,132 annotated word instances. No word
annotations are available for the development and test sets.
To produce an annotated validation and test set, we created a
random split of the 363 train pages into a 217 page training
set, two validation sets of 36 pages each, and a test set of 74
pages. For exact split details and page ids, please refer to
the source code. Botany in British India or BOTANY is from
the India Office Records and provided by the British Library.
The dataset is partitioned into three parts. Each partition
contains 10, 29 and 112 documents and 1684, 3611, 16686
English word instances (respectively). For word spotting task
we follow [17] and use the last partition as a training set. For
test BOTANY features 20 test document images containing
3,318 annotated word regions.

B.2. Implementation Details

The full architecture is trained in two stages dubbed below
as Heatmap Training and Box Training. First, we perform
Heatmap Training for 50K iterations, that is split into two
stages. In the first stage we train the feature map and the
heatmap for 30K iterations followed by 20K iteration of
smoother network training. The Heatmap Training is fol-
lowed by 50K iterations of Box Training.

For the Heatmap Training, the loss is as follows:

Lheatmap = η1 × Lhmap + η2 × Lphoc (1)

with Lhmap and Lphoc being the average losses for the
heatmap and the embedding network respectively. We set
η1 = 50, η2 = 150 in word spotting setting.

For the Box Training, the loss is follows:



Lbox = η1 × Lproposal + η2 × Lfilter (2)

with Lproposal and Lfilter being the average losses for
the proposal generation network and the filter network re-
spectively. We set η1 = 1, η2 = 1

For Heatmap Training and Box Training, we use the
ADAM optimization algorithm with an initial learning rate of
10−4 and β1 = 0.5, and β2 = 0.999. Learning rate is divided
by 10 after 10K iterations.

Training is done in mini-batches, using a single document
image per mini-batch. All document images are resized to a
uniform size of (900, 1200) pixels, preserving the aspect ratio
of the original image and using border replication padding,
where necessary.

The Lhmap loss class weights for negative class and pos-
itive class are set to 0.33 and 0.67 respectively, Lproposal

weights for the positive and negative classes are set to 100
and 2 respectively. Furthermore, the training regression pre-
dictions and targets are scaled as s(x) = Cx where C ∈ R,
and we use C = 1500.

Box proposals for training the filter network are randomly
sampled. The random sampling is done in two stages. First,
we sample U random boxes around each of the W words in a
document. Next, we sample W × U boxes uniformly across
the image. For each random box, the IoU is calculated with
ground truth boxes and to each random box, a label is as-
signed according to its maximal IoU with the ground truth
boxes. Filter network loss is calculated on a uniform subsam-
ple (with replacement) of 400 boxes (50 for the first two IoU
classes and a 100 for the last three IoU classes, where we set
n=5 for n-way box classification).

Following data augmentation techniques were applied: (i)
a multiplicative Gaussian noise; (ii) random resize of an im-
age; (iii) dilation and slant correction for randomly selected
words. These augmentations were applied at random and not
for every training sample: the Gaussian noise was applied
with an application probability of 0.1, random resize was ap-
plied for half of the training samples, dilation and slant cor-
rection were applied on a page with probability 0.2 and within
a page, a word was augmented with probability 0.5.

In addition, L2 regularization was applied on all model
weights, except for the ResNet encoder of the Heatmap Gen-
eration Network, with a regularization rate of 0.01.

At test time, prediction is performed as follows: (i) The
”Wordness” score is calculated for each proposal by summing
over predicted probabilities of the proposal network, for IoU
values of larger than 0.6; (ii) Proposals are sorted according
to the score of the filtering network score and non-maximal
suppression is applied with IoU threshold of 0.1; (iii) Propos-
als with filtering score lower than 0.5 are discarded. When in
word spotting setting, in addition to the above, we predict a
PHOC embedding for each of the proposals.

The evaluation is performed in the following fashion: (i)
IoU is calculated for each prediction with each ground truth
box; (ii) Per ground truth box, maximal IoU prediction is as-
signed as a prediction for ground truth box (Skipping previ-
ously used predictions); (iii) If a prediction is above a thresh-
old α (0.9 for ICDAR and 0.6 for IAMDB and BENTHAM),
we count it as a correct prediction.

Hyper-parameters settings for loss weighting, learning
rate and box prediction targets transformation function were
based on the training set. The architecture selection, weight
regularization rate, IoU threshold for non-maximal suppres-
sion and probability detection for box filtering was based
on the ICDAR 2013 validation set, were obtained by IID
sampling 20% of the ICDAR 2013 training set.

For further implementation and architecture details,
please refer to the source code at:
https://github.com/gaxler/dataset agnostic segmentation

B.3. Performance Measures

To be comparable with previous results, we follow the word
segmentation performance measure introduced in [22, 18].
The measure is based on counting the number of matches be-
tween words detected by an algorithm and the words in the
ground truth. Detection of words is based on a measure, based
on the Jaccard Index of word foreground pixels. For a ground
truth regionGi and foreground pixels of a region proposed by
the algorithm Rj the measure is defined as Sij =

|Gi∩Rj |
|Gi∪Rj | .

A region j is considered a match for ground truth region
i if Sij ≥ α. Where α = 0.9. Detection Rate (Recall) and
Recognition Accuracy (Accuracy) are given by DR = o2o

N
and RA = o2o

M .
Where N is number of ground truth words in a document

and M is the number of regions detected by the algorithm,
o2o is the number of matched regions. A performance met-
ric FM = 2DR×RA

DR+RA . The document performance metric is
defined as the average FM value over all documents.

For the more challenging datasets (IAMDB, BENTHAM),
we calculate the IoU for instance detection based on fore-
ground and background box pixels as opposed to foreground
only. Following [8] we set a lower threshold for detection
(α = 0.6) when all pixels are counted.

In word spotting, our protocol follows the usual segmentation-
free Querby by String (QbS) word spotting protocols: Each
query string is used to retrieve a list of regions The list is
sorted according to a cosine distance between proposal and
query PHOC embedding. The retrieval lists for all queries
are scored by mean average precision (mAP), where average
precision is defined as AP =

∑N
k P (k)×r(k)
|R| , and

P (k) is the precision on the first k regions retrieved and
r(k) is and indicator function of whether the region on rank k
is relevant. R is the set of all relevant queries. A detection is
considered as relevant, if the IoU of a retrieved proposal with



a ground truth region is greater than a given overlap thresh-
old (0.25 or 0.5) and the retrieved proposal contains a word
relevant to the query. Following [9], we remove stopwords
from the set of queries, queries that come from lines that are
marked as containing segmentation errors are removed and
ground truth boxes that are so small that they collapse to a
width or height of zero when downsampled by a factor of 8
are also removed. mAP =

∑
q∈Q AP (q)

|Q| , where Q is the set
of all queries.

C. DOCUMENT & HEATMAP SAMPLES

(a) (b) (c)

Fig. 11: (a) A document from the BENTHAM dataset. (b)
Raw heatmap generated by the heatmap network. (c) Smooth
heatmap generated by the smoother network. Red, green
and blue colors represent the negative, periphery and positive
classes of the heatmap
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