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Robust Object Recognition
with Cortex-like Mechanisms

Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, and Tomaso Poggio,Member, IEEE

Abstract— We introduce a new general framework for the
recognition of complex visual scenes, which is motivated by
biology: we describe a hierarchical system which follows closely
the organization of visual cortex and builds an increasingly
complex and invariant feature representation by alternating
between a template matching and a maximum pooling operation.

We demonstrate the strength of the approach on a range
of recognition tasks: from invariant single object recognition
in clutter to multi-class categorization problems and complex
scene understanding tasks that rely on the recognition of both
shape-based as well as texture-based objects. Given the biological
constraints that the system had to satisfy, the approach performs
surprisingly well: It has the capability of learning from only a
few training examples and competes with state-of-the-art systems.
We also discuss the existence of auniversal, redundant dictionary
of features that could handle the recognition of most object
categories. In addition to its relevance for computer vision, the
success of this approach suggests a plausibility proof for a class
of feed-forward models of object recognition in cortex.

Index Terms— object recognition, model, visual cortex, scene
understanding, neural network.

I. I NTRODUCTION

Understanding how visual cortex recognizes objects is a
critical question for neuroscience. Because humans and

primates outperform the best machine vision systems with
respect to almost any measure, building a system that emulates
object recognition in cortex has always been an attractive but
elusive goal. For the most part, the use of visual neuroscience
in computer vision has been limited to early vision for deriving
stereo algorithms (e.g., [1]) and to justify the use of DoG
(derivative-of-Gaussian) filters and more recently of Gabor
filters [2], [3]. No real attention has been given to biologically
plausible features of higher complexity. While mainstream
computer vision has always been inspired and challenged by
human vision, it seems to never have advanced past the very
first stages of processing in the simple (and binocular) cells
in V 1 and V 2. Although some of the systems inspired – to
various degrees – by neuroscience [4]–[10] have been tested
on at least some natural images, neurobiological models of
object recognition in cortex have not yet been extended to
deal with real-world image databases [11]–[14].

We present a system that is based on a quantitative theory of
the ventral stream of visual cortex [14], [15]. A key element
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in the approach is a new set of scale and position-tolerant
feature detectors, which agree quantitatively with the tuning
properties of cells along the ventral stream of visual cortex.
These features are adaptive to the training set, though we also
show that auniversalfeature set, learned from a set of natural
images unrelated to any categorization task likewise achieves
good performance. To exemplify the strength of this feature-
based representation we demonstrate classification results with
simple linear classifiers. We show that the approach performs
well on the recognition of isolated objects in clutter for both
binary and multi-class classification problems on publicly
available datasets. Our approach also demonstrates good clas-
sification results on a challenging (street) scene understanding
application that requires the recognition of both shape-based
as well as texture-based objects.

Both the source code of our system and theStreetScenes
dataset used in our experiments are readily available [16].

A. Related Work

Hierarchical architectures have been shown to outperform
single-template (flat) object recognition systems on a variety
of object recognition tasks (e.g., face detection [17] and car
detection [18]). In particular, constellation models [19]–[21]
have been shown to be able to learn to recognize many objects
(one at a time) using an unsegmented training set from just a
few examples [20], [21]. Multi-layered convolutional networks
were shown to perform extremely well in the domain of
digit recognition [4], [5] and more recently generic object
recognition [10] and face identification [22].

The simplest and one of the most popular appearance-
based feature descriptors corresponds to a small gray value
patch [23] of an image, also called component [17], [24], part
[19], [25], or fragment [26]. Such patch-based descriptors are
however limited in their ability to capture variations in the
object appearance: they are very selective for a target shape
but lack invariance with respect to object transformations.

At the other extreme, histogram-based descriptors [27]–
[29] have been shown to be very robust with respect to
object transformations. Perhaps the most popular features are
the SIFT features [27], which excel in the re-detection of
a previously seen object under new image transformations
and have been shown to outperform other descriptors [30].
However, as we confirmed experimentally (see Section III-
A.2), with such degree of invariance, it is very unlikely
that these features could perform well on a generic object
recognition task.
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Fig. 1. System overview: A gray value input image is first analyzed by an array ofS1 units at 4 different orientations and 16 scales. At the nextC1 layer,
the image is subsampled through a localMAX (M) pooling operation over a neighborhood ofS1 units in both space and scale but with the same preferred
orientation. In the next stage,S2 units are essentiallyRBF units, each having a different preferred stimulus. Note thatS2 units are tiled across all positions
and scales. AMAX pooling operation is performed overS2 units with the same selectivity to yield theC2 unit responses.
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The new appearance-based feature descriptors described
here exhibit a balanced trade-off between invariance and
selectivity. They are more flexible than image patches and
more selective than local histogram-based descriptors. Though
they are not strictly invariant to rotation, invariance to rotation
could, in principle, be introduced via the training set (e.g.,by
introducing rotated versions of the original input).

B. The Standard Model of Visual Cortex

Our system follows a recent theory of the feedforward
path of object recognition in cortex that accounts for the first
100-200 milliseconds of processing in the ventral stream of
primate visual cortex [14], [15]. The model itself attempts
to summarize – in a quantitative way – a core of well-
accepted facts about the ventral stream in visual cortex (see
[15] for a review): a) Visual processing is hierarchical, aiming
to build invariance to position and scale first and then to
viewpoint and other transformations; b) Along the hierarchy,
the receptive fields of the neurons (i.e., the part of the visual
field that could potentially elicit a response from the neuron)
as well as the complexity of their optimal stimuli (i.e., the
set of stimuli that elicit a response of the neuron) increases;
c) The initial processing of information is feedforward (for
immediate recognitiontasks,i.e., when the image presentation
is rapid and there is no time for eye movements or shifts
of attention); d) plasticity and learning probably occurs at
all stages and certainly at the level of inferotemporal (IT)
cortex and prefrontal cortex (PFC), the top-most layers of the
hierarchy.

In its simplest form, the model consists of four layers
of computational units wheresimple S units alternate with
complexC units. The S units combine their inputs with a bell-
shaped tuning function to increase selectivity. The C units pool
their inputs through a maximum (MAX ) operation, thereby
increasing invariance.1 Evidence for the two key operations
as well as biophysically plausible circuits can be found in
[15]. The model is qualitatively and quantitatively consistent
with (and in some cases actually predicts) several properties
of cells along the ventral stream of visual cortex (see [15]
for an overview). For instance, the model predicts, at theC1

andC2 levels (see Fig. 1), respectively, the max-like behavior
of a subclass of complex cells in V1 [31] and cells in V4
[32]. Read-out from units similar to theC2 units in Fig. 1
predicted recent read-out experiments in monkey IT cortex
[33], showing very similar selectivity and invariance for the
same set of stimuli.

The model in its initial version [14] used a very simple
staticdictionary of handcrafted features. It was suggested that
features from intermediate and higher layers in the model
should instead be learned from visual experience. Here, we
extend the model by showing how to learn a vocabulary of
visual features from images and applying it to the recognition
of real-world object-categories. Preliminary results previously
appeared in several conference proceedings [34]–[36].

1In this paper, we used a Gaussian function but as discussed in [15], a
bell-shaped tuning function could also be approximated via a normalized dot-
product.

II. D ETAILED IMPLEMENTATION

a) S1 units: Our system is summarized in Fig. 1. A gray-
value input image is first analyzed by a multi-dimensional
array of simpleS1 units which correspond to the classical
simple cells of Hubel & Wiesel found in primary visual cortex
(V1) [11]. S1 units take the form of Gabor functions [2], which
have been shown to provide a good model of cortical simple
cell receptive fields [3] and are described by the following
equation:

F (x, y) = exp
(
− (x2

o + γ2y2
o)

2σ2

)
× cos

(
2π

λ
xo

)
, s.t. (1)

xo = x cos θ + y sin θ andyo = −x sin θ + y cos θ. (2)

All filter parameters,i.e., the aspect ratio,γ = 0.3, the
orientation θ, the effective widthσ, the wavelengthλ as
well as the filter sizess were adjusted so that the tuning
properties of the correspondingS1 units match the bulk of
V1 parafoveal simple cells based on data from two groups
[37]–[40]. This was done by sampling the parameter space,
applying the corresponding filters to stimuli commonly used to
probe cortical cells (i.e.,gratings, bars and edges) and selecting
the parameter values that capture the tuning properties of the
bulk of V1 simple cells (see Table I and [41] for details).
We arranged theS1 filters to form a pyramid of scales,
spanning a range of sizes from7 × 7 to 37 × 37 pixels in
steps of 2 pixels. To keep the number of units tractable we
considered 4 orientations (0o, 45o, 90o and135o) thus leading
to 64 differentS1 receptive field types total (16 scales× 4
orientations).

b) C1 units: The next,C1, stage corresponds to cortical
complex cells which show some tolerance to shift and size:
complex cells tend to have larger receptive fields (twice as
large as simple cells), respond to oriented bars or edges
anywhere within their receptive fields (tolerance to position)
and tend to be more broadly tuned than simple cells (tolerance
to size) [11]. C1 units pool over retinotopically organized
afferent S1 units from the previous layer with the same
orientation and from the samescale band(see Table I). Each
scale band contains two adjacent filter sizes (there are 8 scale
bands for a total of 16S1 filter sizes). For instance, scale
band 1 containsS1 filters with sizes7 × 7 and 9 × 9. The
scale band index of theS1 units also determines the size of
the S1 neighborhoodNS ×NS over which theC1 units pool.
Again this process is done for each of the four orientations
and each scale band independently.

This pooling increases the tolerance to 2D transformations
from layerS1 to C1. The corresponding pooling operation is
a MAX operation. That is, the responser of a complex unit
corresponds to the response of the strongest of itsm afferents
(x1, . . . , xm) from the previousS1 layer such that:

r = max
j=1...m

xj . (3)

Consider, for instance, the first band:S = 1. For each
orientation, it contains twoS1 maps: the one obtained using a
filter of size7× 7, and the one obtained using a filter of size
9 × 9 (see Table I). The maps have the same dimensionality
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C1 layer S1 layer
Scale Spatial pooling Overlap filter Gabor Gabor

bandS grid (NS ×NS ) ∆S sizes σ λ

Band 1 8× 8 4
7× 7 2.8 3.5
9× 9 3.6 4.6

Band 2 10× 10 5
11× 11 4.5 5.6
13× 13 5.4 6.8

Band 3 12× 12 6
15× 15 6.3 7.9
17× 17 7.3 9.1

Band 4 14× 14 7
19× 19 8.2 10.3
21× 21 9.2 11.5

Band 5 16× 16 8
23× 23 10.2 12.7
25× 25 11.3 14.1

Band 6 18× 18 9
27× 27 12.3 15.4
29× 29 13.4 16.8

Band 7 20× 20 10
31× 31 14.6 18.2
33× 33 15.8 19.7

Band 8 22× 22 11
35× 35 17.0 21.2
37× 37 18.2 22.8

TABLE I. Summary of theS1 andC1 SMFs parameters.

but they are the outputs of different filters. TheC1 unit
responses are computed by subsampling these maps using a
cell grid of size NS × NS = 8 × 8. From each grid cell
one single measurement is obtained by taking the maximum
of all 64 elements. As a last stage we take a max over the
two scales from within the same spatial neighborhood, by
recording only the maximum value from the two maps. Note
thatC1 responses are not computed at every possible locations
and thatC1 units only overlap by an amount∆S . This makes
the computations at the next stage more efficient. Again,
parameters (see Table I) governing this pooling operation were
adjusted such that the tuning of theC1 units match the tuning
of complex cells as measured experimentally (see [41] for
details).

c) S2 units: In the S2 layer, units pool over afferent
C1 units from a local spatial neighborhood across all four
orientations.S2 units behave as radial basis function (RBF)
units.2 Each S2 unit response depends in a Gaussian-like
way on the Euclidean distance between a new input and a
stored prototype. That is, for an image patchX from the
previousC1 layer at a particular scaleS, the responser of
the correspondingS2 unit is given by:

r = exp
(−β||X−Pi||2

)
, (4)

whereβ defines the sharpness of theTUNING andPi is one of
theN features (center of theRBF units) learned during training
(see below). At run-time,S2 maps are computed across all
positions for each of the8 scale bands. One such multiple
scale map is computed for each one of the (N ∼ 1, 000)
prototypesPi.

d) C2 units: Our final set of shift- and scale-invariantC2

responses is computed by taking a global maximum (see Eq.
3) over all scales and positions for eachS2 type over the entire
S2 lattice, i.e., the S2 measures the match between a stored
prototypePi and the input image at every position and scale;
we only keep the value of the best match and discard the rest.

2This is consistent with well-known response properties of neurons in
primate inferotemporal cortex and seems to be the key property for learning
to generalize in the visual and motor systems [42].

The result is a vector ofN C2 values, whereN corresponds to
the number of prototypes extracted during the learning stage.

e) The learning stage:The learning process corresponds
to selecting a set ofN prototypesPi (or features) for theS2

units. This is done using a simple sampling process such that,
during training, a large pool ofprototypesof various sizes and
at random positions are extracted from a target set of images.
These prototypes are extracted at the level of theC1 layer
across all 4 orientations,i.e., a patchPo of sizen×n contains
n × n × 4 elements. In the following we extracted patches
of four different sizes (n = 4, 8, 12, 16). An important
question for both neuroscience and computer vision regards
the choice of the unlabeled target set from which to learn – in
an unsupervised way – this vocabulary of visual features. In
the following, features are learned from the positive training
set for each object independently, but in Section III-A.2 we
show how auniversal dictionary of features can be learned
from a random set of natural images and shared between
multiple object classes.

f) The classification stage:At run-time, each image
is propagated through the architecture described in Fig. 1.
The C1 and C2 standard model features (SMFs) are then
extracted and further passed to a simple linear classifier (we
experimented with both anSVM and boosting).

III. E MPIRICAL EVALUATION

We evaluate the performance of theSMFsin several object
detection tasks. In Section III-A, we show results for detection
in clutter (sometimes refer to as weakly-supervised) for which
the target object in both the training and test sets appears at
variable scales and positions within an unsegmented image,
such as in theCalTech101object database [21]. For such
applications, because 1) the size of the image to be classified
may vary and 2) because of the large variations in appearance,
we use the scale- and position- invariantC2 SMFs(the number
N of which is independent of the image size and only depends
on the number of prototypes learned during training) that we
pass to a linear classifier trained to perform a simple object
present/absent recognition task.

In Section III-B, we evaluate the performance of theSMFs
in conjunction with awindowingapproach. That is, we extract
a large number of fixed-size image windows from an input
image at various scales and positions, which each have to be
classified for a target object to be present or absent. In this task,
the target object in both the training and test images exhibits
a limited variability to scale and position (lighting and within-
class appearance variability remain) which is accounted for
by the scanning process. For this task the presence of clutter
within each image window to be classified is also limited.
Because the size of the image windows is fixed, bothC1 and
C2 SMFscan be used for classification. We show that for such
application, due to the limited variability of the target object in
position and scale and the absence of clutterC1 SMFsappear
quite competitive.

In Section III-C, we show results using theSMFs for the
recognition oftexture-basedobjects like trees and roads. For
this application the performance of theSMFs is evaluated at
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every pixel locations from images containing the target object
which is appropriate for detecting amorphous objects in a
scene, where drawing a closely-cropped bounding box is often
impossible. For this task, theC2 SMFs outperform theC1

SMFs.

A. Object Recognition in Clutter

Because of their invariance to scale and position, theC2

SMFs can be used for weakly supervised learning tasks for
which a labeled training set is available but for which the
training set is not normalized or segmented. That is, the
target object is presented in clutter and may undergo large
changes in position and scales. Importantly, the number of
C2 features depends only on the number of patches extracted
during training and is independent of the size of the input
image. Here, to perform different categorization tasks, theC2

responses computed over a new input image are simply passed
to a linear classifier (linearSVM or boosting).3

Below we compare the performance of the scale- and
translation-invariantC2 features when used as inputs to sim-
ple linear classifiers with other benchmark systems for the
recognition of objects in clutter (i.e., both training and testing
are performed on unsegmented images). We consider three
datasets, denotedCalTech5, CalTech101and MIT-CBCL, to
evaluate our system performance.

1) Image Datasets:
a) CalTech5: We consider five of the databases4,

i.e., frontal-face, motorcycle, rear-car and airplane datasets
from [20], as well as the leaf dataset from [19]. On these
datasets, we used the same fixed splits as in the corresponding
studies whenever applicable and otherwise generated random
splits. All images were rescaled to be 140 pixels in height
(width was rescaled accordingly so that the image aspect ratio
was preserved) and converted to grayscale.

b) CalTech101: It contains 101 object classes plus a
background class (see [21] for details). All results reported
were generated with 10 random splits. In the binary experi-
ments we used 50 negative training examples and a variable
number of positive training examples (1, 3, 15, 30 and 40).
For testing, we selected 50 negative examples and 50 positive
examples from the remaining images (or as many left if less
than 50 were available). In the multi-class experiment, we
used 15 or 30 training images per class. This includes the
background class and the “faces” and “faces-easy” as three of
the classes. We used as many as 50 testing examples per class,
less if there were not enough examples left after training. If
less than 50 examples were used the results were normalized to
reflect equal contributions for each class. We report the mean
and standard deviation of the performance across all classes.
All images were rescaled to be 140 pixels in height (width
was rescaled accordingly so that the image aspect ratio was
preserved) and converted to grayscale.

3More biologically-plausible classifiers are described in [43]. Such classi-
fiers are likely to correspond to the task-specific circuits in cortex from IT to
PFC (see [15], [43]).

4available athttp://www.robots.ox.ac.uk/vgg/data3.html

Fig. 2. Sample images from the MIT-CBCL multi-view car [18] and face
[17] datasets.

c) MIT-CBCL: This includes a near-frontal (±30 ◦ ) face
dataset [17] and a multi-view car dataset from [18] (see
Fig. 2). The face dataset contains about 6,900 positive and
13,700 negative images for training and 427 positive and 5,000
negative images for testing. The car dataset contains 4,000
positive and 1,600 negative training examples and 1,700 test
examples (both positive and negative). Although thebench-
mark algorithms were trained on the full sets and the results
reported accordingly, our system only used a subset of the
training sets (500 examples of each class only).

These two MIT-CBCL datasets are challenging: The face
patterns used for testing are a subset of the CMU PIE
database [44] which contains a large variety of faces under
extreme illumination conditions (see [17]). The test non-face
patterns were selected by a low-resolutionLDA classifier as
the most similar to faces (theLDA classifier was trained on
an independent19 × 19 low-resolution training set). The car
database includes a wide variety of vehicles, including SUVs,
trucks, buses,etc., under wide pose and lighting variations.
Random image patterns at various scales that were not labeled
as vehicles were extracted and used as a negative test set.

2) Results:
a) Comparison with benchmark systems:Table II sum-

marizes the performance of theC2 SMFscompared with other
published results from benchmark systems: the constellation
models by Perona and colleagues [19], [20], the hierarchical
SVM-based face-detection system by Heiseleet al. [17] and a
standard system [18] that uses Ullman’s fragments [26] and
gentleBoost as in [45]. The performance measure reported
is the accuracy at the equilibrium point,i.e., the accuracy
point such that the false positive rate equals the miss rate.
Results obtained with theC2 SMFsare superior to previous
approaches [17], [18] on the MIT-CBCL datasets and compa-
rable to the best systems [46], [47] on theCalTech5datasets.5

b) Comparison with SIFT features:We also compared
theC2 SMFsto a system based on Lowe’sSIFT features [27].
To perform this comparison at the feature level and ensure
a fair comparison between the two systems, we neglected
all position information recovered by Lowe’s algorithm. It
was recently suggested in [47] that structural information
does not seem to help improve recognition performance. We
selected1, 000 random reference key-points from the training
set. Given a new image, we measured the minimum distance

5Experimental procedures may vary from one group to another (e.g.,splits
used, pre-processing, scale normalization,etc.). Comparisons should therefore
be taken cautiously.
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Datasets Benchmark C2 features
boost SVM

Leaves [19] 84.0 97.0 95.9
Cars [20] 84.8 99.7 99.8
Faces [20] 96.4 98.2 98.1
Airplanes [20] 94.0 96.7 94.9
Motorcycles [20] 95.0 98.0 97.4
Faces [17] 90.4 95.9 95.3
Cars [18] 75.4 95.1 93.3

TABLE II. Results obtained with1, 000 C2 features combined withSVM

or gentleBoost (boost) classifiers, and comparison with existing systems
(Benchmark).

between all its key-points and the1, 000 reference key-points,
thus obtaining a feature vector of size1, 000.6

Fig. 3 shows a comparison between the performance of
the SIFT and theC2 SMFs (both with gentleBoost; similar
results were obtained with a linearSVM). Fig. 3 (left) shows
a comparison on theCalTech5database for different numbers
of features (obtained by selecting a random number of them
from the 1,000 available) and Fig. 3 (right) on theCalTech101
database for different number of training examples. In both
cases theC2 features outperform theSIFT features signifi-
cantly.SIFT features excel in the re-detection of a transformed
version of a previously seen example but may lack selectivity
for a more general categorization task at the basic level.

c) Number of features and training examples:To in-
vestigate the contribution of the number of features on per-
formance, we first created a set of10, 000 C2 SMFs and
then randomly selected subsets of various sizes. The results
reported are averaged over 10 independent runs. As Fig. 4
(left) shows, while the performance of the system can be
improved with more features (e.g., the whole set of10, 000
features), reasonable performance can already be obtained with
50− 100 features. features needed to reach the plateau (about
1, 000− 5, 000 features) is much larger than the number used
by current systems (on the order of 10-100 for [17], [26],
[45] and 4-8 for constellation approaches [19]–[21]). This may
come from the fact that we only sample the space of features
and do not perform any clustering step like other approaches
(including an earlier version of this system [34]). We found
clustering to be sensitive to the choice of parameters and
initializations, leading to poorer results.

We also studied the influence of the number of training
examples on the performance of the system on theCalTech101
database. For each object category, we generated different
positive training sets of size 1, 3, 6, 15 and 30 as in [21]
(see Section III-A.1). As shown in Fig. 4 (right) the system
achieves error rates comparable to [21] on few training ex-
amples (less than 15) but its performance still improves with
more examples (where the system by Fei-Feiet al.seems to be
reaching a plateau, see [21]). Results with anSVM (not shown)
are similar, although the performance tended to be higher on
very few training examples (asSVM seems to avoid overfitting

6Lowe recommends using the ratio of the distances between the nearest
and the second closest key-point as a similarity measure. We found instead
that the minimum distance leads to better performance than the ratio.

even for one example).
However, sinceSVM does notselectthe relevant features, its

performance tends to be lower than gentleBoost as the number
of training examples increases. Fig. 5 shows the performance
of the gentleBoost andSVM classifiers used with theC2 SMFs
on all categories and for various numbers of training examples
(each result is an average of 10 different random splits). Each
plot is a single histogram of all101 scores, obtained using
a fixed number of training examples,e.g.,with 40 examples,
the gentleBoost-based system gets around 95% ROC area for
42% of the object categories.

d) Towards a universal dictionary of features:We here
describe experiments that suggest that it is possible to per-
form robust object recognition withC2 SMFs learned from
a separate set of randomly selected natural images. In Fig.
6, we compare the performance of two sets of features on
the CalTech101database: (1) a standard set ofobject-specific
features that were learned from a training set of images from
the target object category (200 features per training image);
and (2) auniversal set of 10, 000 features learned indepen-
dently from a set of random natural images (downloaded from
the web). While theobject-specificset performs significantly
better with enough training examples, the universal set appears
to be competitive for smaller training sets.

Indeed theuniversal feature set is less prone to overfitting
with few training examples (both the learning of the features
and the training of the final classifier are performed on the
same set with theobject-specificset). In addition, contrary to
the object-specificset, the size of theuniversalset is constant
regardless of the number of training examples (10, 000). As
a result, with small training datasets, less features can be
used with the object-specific set (we found that extracting
more than 200 features per training image had very little
effect on performance). This may constitute a relevant and
intriguing result on its own. Our results also suggest that it
should be possible for biological organisms to acquire abasic
vocabulary of features early in development while refining
it with more specific features later on. The latter point is
consistent with reports of plasticity in inferotemporal cortex
from adult monkey (the complexity and sizes of the largestC2

features are consistent with the receptive fields of posterior IT
neurons).

e) Multiclass results on the CalTech101:Finally, we
report results on multi-class classification on theCalTech101
database. To conduct this experiment we use theuniversal
dictionary of 1, 000 features similar to the one described
earlier. This offers a significant gain in speed in a multi-
class setting compared to the standardobject-specificset. The
classifier is a multi-class linearSVM that applied the all-pairs
method, and is trained on 102 labels (101 categories plus the
background category). The performance of the system reaches
above44 ± 1.14% correct classification rate when using 15
training examples per class averaged over 10 repetitions (see
Section III-A.1). Using only5 training images per class, the
performance degrades to∼ 30%.
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Fig. 3. Comparison between theSIFT and theC2 features on theCalTech5for different numbers of features (left) and on theCalTech101for different
number of training examples (right).
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training examples.
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Fig. 6. Object-specificvs. universalC2 features.

By consideringgestalt-like features (e.g., good-continuity
detectors, circularity detectors and symmetry detectors) within
the same framework in addition to theC2 SMFs, Wolf &
Bileschi obtained51.2%±1.2% correct [48], [49], and recently
incorporated some changes with Sharat Chikkerur to get
55.0% ± 0.9% (all these results are for15 training images).
At press time, some of the best systems include the system in
[50] (≈ 44% correct) and in [51] (45% correct).

B. Object Recognition without Clutter

1) The StreetScenes database:In order to test theSMFs
on a challenging real-world object detection problem, we
have built training and test data from theStreetScenesscene-
understanding dataset. This database consists of more than
3, 000 labeled images of the streets around Boston and Cam-
bridge. Sample images and their hand labellings are illustrated
in Fig. 10; some statistics of the content of the dataset are given
in Table III. The accurate detection of many of these object
categories is made difficult by the wide internal variability in
their appearance. For example, the object classcars includes
examples of many diverse models, at many poses, and in
various types of occlusion and lighting,trees appear very
different in summer and winter, and the class ofbuildings
includes skyscrapers as well as suburban houses. Capturing
this wide variability while maintaining high accuracy is part
of the challenge of the scene-understanding problem. The
database is available online at [16].

2) Training the SMFs-based systems:Using data extracted
from our StreetScenesdatabase, we trained object detectors
for the classescar, pedestrianand bicycle. This data was
extracted by cropping out labeled examples of these object
classes. Negative examples were extracted similarly by finding
locations and scales which matched the positive data, but did
not overlap the labeled positives. Each example, positive and
negative, was resized to128 × 128 pixels and converted to
grayscale. This image was then converted intoC1 space using
the method of Section II. For a128 × 128 grayscale image
and our parameter values, this resulted in a feature vector
of 13, 362 features that provided the input to theC1-based

Type shape-based texture-based
Object car ped. bic. bldg. tree road sky

# labeled ex. 5799 1449 209 5067 4932 3400 2562

TABLE III. The StreetScenesDatabase.

classifier. TheC2 representation was built like in Section III-
A for the recognition in clutter. Classifiers for these objects
were trained using gentleBoost.

3) Benchmark systems:For comparison, we also imple-
mented four other benchmark systems. Our most simple
baseline detector is a single-templateGrayscalesystem: Each
image is normalized in size and histogram equalized before
the gray-values are passed to a linear classifier (gentleBoost).
Another baseline detector,Local Patch Correlation, is built
using patch-based features similar to [45]. Each featurefi

is associated with a particular image patchpi, extracted
randomly from the training set. Each featurefi is calculated
in a test image as the maximum normalized cross correlation
of pi within a sub-window of the image. This window of
support is equal to a rectangle three times the size ofpi

and centered in the image at the same relative location from
which pi was originally extracted. The advantage of the patch-
based features over the single-template approach is that local
patches can be highly selective while maintaining a degree
of position invariance. The system was implemented with
N = 1, 024 features and with patches of size12 × 12 in
images of size128 × 128. The third benchmark system is a
Part-based systemas described in [25]. Briefly, both object
parts and a geometric model are learned via image patch
clustering. The detection stage is performed by re-detecting
these parts and allowing them to vote for objects-at-poses in a
generalized Hough transform framework. Finally, we compare
to an implementation of the Histogram of Gradients (HoG)
feature of [52], which has shown excellent performance on
these types of objects. All benchmark systems were trained
and tested on the same datasets as theSMFs-based system.
They all use gentleBoost except [25].

4) Results:The ROC results of this experiment are illus-
trated in Fig. 7. For the two (C1 andC2) SMFs-based systems,
the Grayscaleas well as theLocal Patch Correlationsystem,
the classifier is gentleBoost but we found very similar results
with both a linear- and a polynomial-kernelSVM. Overall, for
all the three object categories tested, theSMFs-based system
performs best on cars and bicycles and second behind HoG
on pedestrians (the HoG system was parameter-tuned in [52]
to achieve maximal performance on this one class). Finally,
for this recognition task,i.e., with a windowing framework,
theC1 SMFsseem to be superior to theC2 SMFs. Indeed the
C1 SMFs are adept at representing the object boundaries of
theseshape-basedobjects, which have strong inter-example
correspondence.

C. Object Recognition of Texture-based Objects

Here we demonstrate the utility of theSMFs in a texture-
based object recognition task. Performance is measured by
considering each pixel, rather than each instance of an object,
to be a separate example. We consider four texture-based
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Fig. 7. ROC curves illustrating the performance of the standard-model object-detectors compared to four baseline systems (see accompanying text). Note that
in this test the amount of clutter is limited by the windowing process, creating better inter-example correspondence and thereby allowing the direct application
of the C1 SMFs.

objects which tend not to have point-wise correspondence
between examples: buildings, trees, roads and skies.

1) Training the SMFs-based systems:In building a database
of labeled texture examples, we were careful to avoid errors
due to overlap and loose polygonal labeling in theStreetScenes
database. Because of object occlusions, some pixels in the
database are labeled as one object,i.e., building, but their
actual appearance is due to another object,i.e., tree. We
addressed this by removing pixels with either multiple labels
or no label, from the test. Additionally, training samples were
never drawn from within15 pixels of any object’s border. The
same training and test locations were used for both theSMFs-
based and the benchmark systems.

To build theC1 SMFs-based system,C1 maps were com-
puted for each image, and for each sample point, feature vector
elements were collected by sampling the resultingC1 maps at
the same relative location in all orientations and scale-bands.
A C2 SMFs-based system was also built as in Section III-A
except for the maximum over position at theS2 level that was
taken over a local neighborhood instead of the whole image.
This local area corresponded to a60×60 pixel window in the
original 960× 1280 image.

2) Benchmark systems:We implemented four benchmark
texture classification systems. TheBlobworld (BW) system
was constructed as described in [53]. Briefly, the Blobworld
feature, originally designed for image segmentation, is a six
dimensional vector at each pixel location;3 dimensions encode
color in the well-known Lab color space, and3 dimensions
encode texture using the local spectrum of gradient responses.
We did not include the color information for a fair comparison
between all the various texture detection methods.

The systems labeledT1 andT2 are based on [29]. In these
systems, the test image is first processed with a number of
predefined filters.T1 uses36 oriented edge-filters arranged
in 5◦ increments from0◦ to 180◦. T2 follows [29] exactly by
using36 Gabor filters at6 orientations,3 scales, and2 phases.
For both systems independently, a large number of random
samples of the36 dimensional edge response images were
taken and subsequently clustered using k-means to find100
cluster centroids (i.e., the textons). The texton imagewas then
calculated by finding the index of the nearest texton to the filter
response vector at each pixel in the response images. A100-
dimensional texton feature vector was then built by calculating
the local10× 10 histogram of nearest texton indexes.

Finally, the Histogram of edges (HoE) system was built by
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Fig. 8. Performance (ROC curves) of five texture classification algorithms for the detection of buildings, trees, skies, and roads. This texture classification
task requires reliable recognition of texture classes with wide intra-class variability. This difficult test may in part explain the inferior performance of the
benchmark algorithms, which have been used previously to detect object boundaries and classify materials, but not for object recognition.

simply using the same type of histogram framework, but over
the local36 dimensional directional filter responses (using the
filters of T1) rather than the texton identity. Here as well,
learning was done using the gentleBoost algorithm (again a
linear SVM produced very similar results). The within-class
variability of the texture-objects in this test is considerably
larger than that of the texture classes usually used to test
texture-detection systems, making this task somewhat differ-
ent. This may explain the relatively poor performance of some
of these systems on certain objects.

3) Results: As shown in Fig. 8, the SMFs-based texture
system seems to consistently outperform the benchmarks (BW,
T1, T2 and HoE). C2 compared toC1 SMFs may be better
suited to this task because of their increased invariance prop-
erties and complexity.

D. Towards a Full System for Scene Understanding

The SMFs-based object detection systems described pre-
viously were combined into a complete system for scene
understanding. The objects to be detected are divided into two
distinct categories,texture-basedobjects andshape-basedob-
jects, which are handled using different recognition strategies.

Fig. 9 illustrates the architecture of the data flow diagram,
specifically highlighting the two pathways for the detection of
the texture-based and shape-based objects.

1) Shape-based object detection in StreetScenes:Shape-
based objects are those objects for which there exists a
strong part-to-part correspondence between examples, includ-
ing pedestrians, cars, and bicycles. In order to detect shape-
based objects, a standard windowing technique is used. This
contrasts with the approach presented in Section III-A, wherein
objects in clutter are detected using scale- and translation-
invariant C2 SMFs, rather than testing for object presence at
each position and scale independently. While theC2 approach
is appropriate for fast decisions of object presence or absence,
it would be impractical for this scene-understanding applica-
tion as the locations of individual objects would be lost.

In conjunction with this windowing approach, we use the
C1 SMFs. Since the window crops away much of the clutter,
leaving the potential object nearly centered, the additional
invariance from theC2 features is not necessary. It is important
to note that the good performance of theC1 SMFsis dependent
upon training data with accurate descriptions of the position
and scale of the target object. Performance metrics for both
C1 and C2 SMFs were shown in Section III-B, as well
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Fig. 9. Data flow diagram of the scene-understanding system (see text for details).

as those for a number of benchmark systems. In the final
system, the classifiers output is thresholded and a standard
local neighborhood suppression technique is used in which
the maximum detection is recorded and the response within
a neighborhood in scale space is suppressed. In Fig. 10 we
present some sample results obtained with the system.

2) Pixel-wise detection of Texture-based objects:Texture-
based objects are those objects for which, unlike shape-
based objects, there is no obvious visible inter-object part-
wise correspondence. These objects are better described by
their texture rather than the geometric structure of reliably
detectable parts. For theStreetScenesdatabase these currently
include buildings, roads, trees, and skies.

Using the models trained in Section III-C, and applying
them to each pixel within the image, one obtains a detection
confidence map of the size of the original image for each
object. This map is used to judge which pixel belongs to
which texture-object category. Simply taking the value with
maximum response strength results in unsatisfactory results,
as it was found that when the receptive field of a unit overlaps
a texture-boundary, the response becomes unreliable. This
was addressed by smoothing the anomalous responses by
segmenting the input image and averaging the responses of the
detectors over each segment. As a result, uncertain responses at
the object borders are compensated for by the more numerous
responses within the object boundaries. This was accomplished
using the segmentation softwareEdison [54]. Sample results
of our texture recognition system can be seen in the bottom
row of Fig. 10.

IV. D ISCUSSION

A. A Computer Vision Perspective on the Model

The computer vision system described in this work was
constructed from a neuroscience model of the primate visual
cortex which is a rather unusual approach. The model itself
is based on a consensus among neuroscientists, and on fitting
available experimental data. Still, one may wonder about the
relationships between theSMFs and other computer vision
algorithms: Because of the hierarchical and non-linear nature
of the architecture described in Fig. 1, there is little hope in
finding a simple general cost function that the system would
minimize. These types of functions are seldom available for
hierarchical systems which are not probabilistic in nature, or
explicitly set out to minimize an energy function. Instead we
next study each layer of the system separately.

The first layer (S1) consists in applying Gabor filters to
the input image, which mimics the processing by simple cells
in the primary visual cortex (V1). Gabor filters have been
around in computer vision for decades, starting with Gabor’s
demonstration [2] that these elementary functions minimize
the uncertainty of their product, and Daugman’s extension [55]
to 2D. They are also very similar to DoG filters used since
the 1960’s to model receptive fields in the retina and primary
visual cortex and to perform edge detection in computer vision
(see [56], [57]). Bovik et al. [58] used Gabor filters for
texture segmentation and Sanger [59] for the computation of
disparity in stereovision. In biometrics it has been used for face
recognition (e.g., [60]), iris recognition as well as finger print
recognition. Olshausen & Fields demonstrated that optimizing
a sparse coding scheme over a set of natural images produces
a set of edge filters similar to Gabor filters [61]. Hence, it was
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Fig. 10. Top Row: SampleStreetScenesexamples. Middle Row: True hand-labeling; color overlay indicates texture-based objects and bounding rectangles
indicate shape-based objects. Note that pixels may have multiple labels due to overlapping objects, or no label at all (indicated in white). Bottom Row: Results
obtained with a system trained on examples like (but not including) those in the second row.

expected that the output of Gabor filters on natural images
would be sparse. This result comes from the fact that Gabor
filters, as edge detecting filters, are activated only near image
edges. Any further analysis step done on top of Gabor filters
should take this sparseness property into account.

The next layer (C1) does something which is unorthodox for
computer vision systems – it maximizes the output of the filters
locally. EachC1 unit computes the maximum over a small pool
of S1 outputs. While many systems maximize the output of
a detector over the entire image, local maximization has only
been done recently. For part-based object detection [17], [26],
[45], local detectors of each part are learned independently,
and are then applied to local regions where the parts are
expected to appear.

Our work seems novel in that general purpose filters are
being maximized over uniformly distributed local regions in
the image. In order to understand this stage, we can invoke
some scale space terminology (see [62] for an overview). Scale
space theory was mostly concerned at first with the Gaussian
scale space. This scale space has many desirable properties
such as separability, linearity, shift invariance, isotropy, homo-
geneity, and causality. The last property is an important one:
causality means that no new level sets are created by going
into coarser scales. A related property is to demand the non-
creation of local extrema in coarser scales. In our application
a local maximization (instead of Gaussian blurring) is used to
go from a fine to a coarser scale, in order to make theC1

layer invariant to small local translations. As a pseudo scale
space, local maximization has some desirable properties: it
is separable (one can apply it over the rows and then over
the columns), it is shift invariant, and it is homogeneous (it
can be applied in the same way to each scale; applying it
repeatedly corresponds to moving into coarser and coarser
scales). However, in general it is not an appropriate scale space
– among other problems, when applying it to an image new

local extrema are being created. This can be seen in the top
row of Fig. 11, where applying the max scale space to the
Lena image creates block like structures, which are new level
sets, and where the corners are new local maxima.

However, our application of the local maximum operator is
on the Gabor filtered image, which is a sparse representation of
the original image. For such an input, the Gaussian scale space
results in a diluted image (see bottom row of Fig. 12). The
max scale space, on the other hand, is successful in keeping the
sparse inputs through the consecutive applications of the max
filter. Put differently, for the analysis of gray level images, it is
important not to create new structures while moving to coarser
scales: in this, a Gaussian scale space is appropriate and a local
maximum type of analysis is not. For the analysis of sparse
coding, it is important to conserve the local maxima, which
is precisely what the maximum operator does (the Gaussian
scale space on the other hand flattens the input).

The next two levels in our system involve the combination
of C1 outputs using a template matching approach. Prototype
templates (patches) are extracted from the training images, and
the best match with these serve as an image representation.
The first template-based stage (S2) measures the “correlation”
(Euclidean distance) of theC1 maps with many small crops
obtained from such maps.

The correlation is measured for the four orientations to-
gether, thus making our algorithm sensitive to large rotations
of the image. Small rotations can be approximated by small
translations, which are handled by the maximization at theC1

level. Note that this stage is done at multiple scales, such that
a given template taken from aC1 map at a certain scale during
the prototype templates collection stage of training, is matched
across allC1 maps when constructing theC2 feature vector.
The last stage of our system (C2) is a standard maximization
over the entire image (in principle and more biologically this
would be over an area of the size of the fovea but not the whole
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Fig. 11. Max scale space images of Lena (top row) and of the Gabor filtered version of Lena (bottom row). While the gray-value image gets distorted, the
information in the sparse edge image is enhanced.

Fig. 12. Gaussian scale space images of Lena (top row) and of the Gabor filtered version of Lena (bottom row). While the gray-value image degrades
gracefully, revealing structures at different scales, the sparse edge image fades away.

visual field, see [15]). This is equivalent to scanning over all
locations and scales for the maximum correlation with each
C1 template selected in training.

B. What SMFs to Use for which Tasks?

To summarize our main results: in Section III-A, we have
shown an application to theC2 SMFsto the semi-supervised
recognition of objects in clutter. For such tasks, the training
images are unsegmented: The target object is embedded in
clutter and undergo changes in scale and position. Additionally
because the training images come in different sizes only
a global representation based on a fixed-length scale- and
position- invariant feature vector such as theC2 SMFs is
suitable.

As described in Section III-B for the recognition of shape-
based objects in conjunction with a scanning approach (the
images to be classified are segmented and normalized), a more
“holistic” representation based onC1 SMFswhich are adept
at detecting object boundaries tend to be superior. For such
tasks, the variations in scale and position are limited and
clutter is almost completely absent. As a result, the scale- and
position-invariance of theC2 SMFsdoes not bring any extra
computational benefit.

Finally, in Section III-C, we showed that theC2 SMFs

excel at the recognition of texture-based objects which lack a
geometric structure of reliably detectable parts in comparison
to theC1 SMFsas well as other benchmark systems.

C. Object Recognition in Cortex: Remarks

Our system belongs to a family of feed-forward models
of object recognition in cortex that have been shown to be
able to duplicate the tuning properties of neurons in several
visual cortical areas [14]. In particular, Riesenhuber & Poggio
showed that such a class of models accounts quantitatively for
the tuning properties of view-tuned units in IT cortex which
respond to images of the learned object more strongly than
to distractor objects, despite significant changes in position
and size [63]. Model performance was so far only reported
for simple artificial stimuli such as paperclips on a uniform
background [14], with no real-world image degradations such
as change in illumination, clutter,etc.. The success of our
extension of the original model on a variety of large-scale
real-worlds object recognition databases provides a compelling
plausibility proof for this class of feed-forward models.

A long-time goal for computer vision has been to build
a system that achieves human-level recognition performance.
Until now, biology had not suggested a good solution. In fact,
the superiority of human performance over the best artificial
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recognition systems has continuously lacked a satisfactory
explanation. The computer vision approaches had also di-
verged from biology: for instance, some of the best existing
computer vision systems use geometrical information about
objects’ constitutive parts (the constellation approaches [19]–
[21] rely on a probabilistic shape model; in [17] the position
of the facial components is passed to a combination classifier
(along with their associated detection values) whereas biology
is unlikely to be able to use it – at least in the cortical
stream dedicated to shape processing and object recognition.
The system described in this paper may be the first counter-
example to this situation: it is based on a model of object
recognition in cortex [14], [15], it respects the properties
of cortical processing (including the absence of geometrical
information) while showing performance at least comparable
to the best computer vision systems.

It has been suggested that “immediate recognition” during
scene categorization tasks may rely on partial processing by
the visual system based on a rapid and parallel detection of
disjunctive sets of unbound features of the target category [64],
[65]. Interestingly a recent psychophysical experiment [66]
suggested that spatial information about the objects location
may be absent during “immediate recognition”. That is, even
though human observers correctly detect a target object within
a frame embedded in a rapid sequence of images, they are
however not able to recover even its approximate location [66].
Such observation is in good agreement with the experiment
described in Section III-A in which the recognition of objects
in clutter is based on abagof translation- and scale- invariant
C2 features computed over the entire image for which spatial
information is lost. Indeed we recently showed that an ex-
tension of the model described in this paper accounts for the
level and the pattern of performance of human observers [43]
on a rapid animalvs.non-animal categorization task [67]. This
may be the first time that a neurobiological model, faithful to
the physiology and the anatomy of visual cortex, provides a
realistic alternative to engineered artificial vision systems.

D. Open Questions, Limitations and Possible Improvements

1) Have we reached the limit of what a/this feedforward
architecture can achieve in terms of performance?:There
seem to be at least three directions that could be followed to
further improve the performance of the architecture described
here: First, very recent experiments [43] suggests that the
addition of extra layers (e.g.,S3, C3, S4, etc.), in agreement
with the anatomy and physiology of the visual cortex, may
provide a significant gain in performance. Additionally we also
found that loosening the hierarchy described in Fig. 1 may also
provide some significant computational benefits. As already
suggested by the results of our experimental simulations in
Section III, not all tasks are equal. Depending on the amount
of clutter and 2D transformations involved, it is sometimes
beneficial to use the fine information from low-levelSMFsand
some other times to use more invariant high-levelSMFs. We
found that passing different types ofSMFsto the final classifier
and letting the classifier choose for the optimal features may
further improve performance (for instance passing bothC1 and
C2 SMFs) [43], [48].

Second, the sampling procedure we used here to learn
features is very simple. It is likely that not all features are
useful for recognition. Applying a standard feature selection
technique may give further improvement in performance.
Indeed a very recent study showed that selecting the subset of
the C2 SMFs that are highly weighted by theSVM classifier
provide a substantial increase in performance [68].

Third, for all the tests reported here, we did not tune a
single parameter to get optimal performance. Instead, model
parameters were set to match what is known about the primate
visual system. Further improvements could likely be obtained
by tuning some of the model parameters [69] (see Table I) –
perhaps through learning.

2) Beyond feedforward architectures:As a feedforward
model of the ventral stream pathway, the architecture of
Fig. 1 cannot account for all aspects of our everyday vi-
sion which involve eye movements and top-down effects,
which are mediated by higher brain centers and the extensive
anatomical back-projections found throughout visual cortex
and not implemented in the present feedforward model. While
our system exhibits competitive performance compared to
other benchmark systems, it remains limited compared to
biological visual systems: the model seems to be able to
account for the level of performance of human observers on a
rapid categorization task [67] when the stimulus presentation
times are short and back-projections are inactive [43]. Yet the
performance of the model remains far behind the performance
of human observers for long presentation times.

It is important to point out that this recognition with a
glimpseonly constitutes the initial processing step in natural
vision. In particular the model – in its present form – does
not capture Gestalt-like properties such as continuity and
parallelism or figure-ground segmentation, which probably
involves lateral and feedback connections, yet to be inserted in
the model. A feedforward system (like the one we presented
here) could in principle be used as the front-end of a visual
system, as part of a prediction-verification loop [70]. The
feedforward path would provide an initial hypothesis about
what object is presented in the visual field, yet to be verified
through feedback loops.

3) Future work: Perhaps the major limitation of our system
in a real-world applications setting remains its processing
speed (limited by theS1 and C1 stages) – typically tens of
seconds depending on the size of the input image – which
is too slow for a real-time application. Another important
question, yet to be addressed, is whether the recognition results
obtained with bags ofC2 features could be extended to other
tasks, such as face and gesture recognition or the analysis of
video.

E. Conclusion

In the present paper we have described a new framework
for robust object recognition, which we have applied to
two different recognition scenarios: First we have shown an
application to the problem of semi-supervised recognition of
objects in clutter that does not involve image scanning. The
system first computes a set of scale- and translation-invariant
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C2 features from a training set of images, which is then passed
to a standard classifier on the vector of features obtained from
the input image. The system was tested on several object
databases and shown to outperform several more complex
benchmark systems (e.g.,the systems in [19]–[21] involve the
estimation of probability distributions; [17] uses a hierarchy of
SVMs and requires accurate correspondences between positive
training images,i.e., 3D head models). Interestingly the ap-
proach was shown to be able to learn from few examples and
could compete with generative models that use prior category
information [21].

Second we have described a new approach to scene un-
derstanding with an application to aStreetScenesdatabase in-
volving different types of rigid objects as well as texture-based
objects. We found that the Standard Model features (SMFs)
constitute a flexible framework that can be used in conjunction
with standard computer vision techniques,i.e., image scanning
for the detection and localization of several target objects at
multiple scales and image segmentation for the recognition of
non-rigid texture-based objects.

ACKNOWLEDGMENTS

We would like to thank Sharat Chikkerur and Timothee
Masquelier for useful comments on this manuscript. This
report describes research done at the Center for Biological &
Computational Learning, which is in the McGovern Institute
for Brain Research at MIT, the Dept. of Brain & Cognitive
Sciences, and the Computer Sciences & Artificial Intelligence
Laboratory (CSAIL). This research was sponsored by grants
from: DARPA (B. Yoon), Office of Naval Research (DARPA),
National Science Foundation-NIH (CRCNS). Additional sup-
port was provided by: Daimler-Chrysler AG, Eastman Kodak
Company, Honda Research Institute USA, Inc., Komatsu Ltd.,
Oxygen, Siemens Corporate Research, Inc., Sony, Sumitomo
Metal Industries, Toyota Motor Corporation, and the Eugene
McDermott Foundation.

REFERENCES

[1] D. Marr and T. Poggio, “A computational theory of human stereo vision,”
Proc. R. Soc. Lond. B, vol. 204, pp. 301–328, 1979.

[2] D. Gabor, “Theory of communication,”J. IEE, vol. 93, pp. 429–459,
1946.

[3] J. P. Jones and L. A. Palmer, “An evaluation of the two-dimensional
Gabor filter model of simple receptive fields in cat striate cortex,”
J. Neurophys., vol. 58, pp. 1233–1258, 1987.

[4] K. Fukushima, “Neocognitron: A self organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position.”
Biol. Cybern., vol. 36, pp. 193–201, 1980.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,”Proc. of the IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[6] B. W. Mel, “SEEMORE: combining color, shape, and texture histogram-
ming in a neurally inspired approach to visual object recognition,”
Neural Comp., vol. 9, pp. 777–804, 1997.

[7] S. Thorpe, “Ultra-rapid scene categorisation with a wave of spikes,” in
Proc. of Biologically Motivated Computer Vision, 2002, pp. 1–15.

[8] H. Wersing and E. Koerner, “Learning optimized features for hierarchi-
cal models of invariant recognition,”Neural Comp., vol. 15, no. 7, pp.
1559–1588, 2003.

[9] Y. Amit and M. Mascaro, “An integrated network for invariant visual
detection and recognition,”Vision Research, vol. 43, no. 19, pp. 2073–
2088, 2003.

[10] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic
object recognition with invariance to pose and lighting,” inProc. IEEE
Conf. on Computer Vision and Pattern Recognition. IEEE Press, 2004.

[11] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex,”J. Phys., vol. 160,
pp. 106–154, 1962.

[12] D. Perrett and M. Oram, “Neurophysiology of shape processing.”
Imaging Vis. Comp., vol. 11, pp. 317–33, 1993.

[13] G. Wallis and E. Rolls, “A model of invariant object recognition in the
visual system,”Prog. Neurobiol., vol. 51, pp. 167–94, 1997.

[14] M. Riesenhuber and T. Poggio, “Hierarchical models of object recogni-
tion in cortex,” Nat. Neurosci., vol. 2, no. 11, pp. 1019–25, 1999.

[15] T. Serre, M. Kouh., C. Cadieu, U. Knoblich, G. Kreiman, and T. Poggio,
“A theory of object recognition: computations and circuits in the
feedforward path of the ventral stream in primate visual cortex,” MIT,
Cambridge, MA, AI Memo 2005-036 / CBCL Memo 259, 2005.

[16] A software implementation of the system as well as the
StreetScenes dataset are vailable for download at: http:
//cbcl.mit.edu/software-datasets.

[17] B. Heisele, T. Serre, M. Pontil, T. Vetter, and T. Poggio, “Categoriza-
tion by learning and combining object parts,” inAdvances in Neural
Information Processing Systems, vol. 14, 2002.

[18] B. Leung, “Component-based car detection in street scene images,”
Master’s thesis, EECS, MIT, 2004.

[19] M. Weber, W. Welling, and P. Perona, “Unsupervised learning of models
of recognition,” in Proc. of the European Conference on Computer
Vision, vol. 2, 2000, pp. 1001–108.

[20] R. Fergus, P. Perona, and A. Zisserman, “Object class recognition by
unsupervised scale-invariant learning,” inProc. IEEE Conf. on Computer
Vision and Pattern Recognition, vol. 2, 2003, pp. 264–271.

[21] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models
from few training examples: An incremental bayesian approach tested
on 101 object categories,” inProc. IEEE Conf. on Computer Vision
and Pattern Recognition, Workshop on Generative-Model Based Vision,
2004.

[22] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” inProc. IEEE
Conf. on Computer Vision and Pattern Recognition, 2005.

[23] B. Leibe and B. Schiele, “Interleaved object categorization and
segmentation,” inBMVC, Norwich, UK, Sept. 2003, pp. 759–768.
[Online]. Available: citeseer.csail.mit.edu/leibe04interleaved.html

[24] A. Mohan, C. Papageorgiou, and T. Poggio, “Example-based object
detection in images by components,” inIEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 23, 2001, pp. 349–361.

[25] B. Leibe, A. Leonardis, and B. Schiele, “Combined object categorization
and segmentation with an implicit shape model,” inSLCP ’04 Workshop
on Statistical Learning in Computer Vision, 2004.

[26] S. Ullman, M. Vidal-Naquet, and E. Sali, “Visual features of interme-
diate complexity and their use in classification,”Nat. Neurosci., vol. 5,
no. 7, pp. 682–687, 2002.

[27] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proc. of the International Conference on Computer Vision 1999, 1999,
pp. 1150–1157.

[28] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recog-
nition using shape contexts,”IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2002.

[29] L. W. Renninger and J. Malik, “When is scene recognition just texture
recognition?” inVis. Res., vol. 44, 2002, pp. 2301–2311.

[30] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” inInternational Conference on Computer Vision & Pattern
Recognition, vol. 2, June 2003, pp. 257–263. [Online]. Available:
http://lear.inrialpes.fr/pubs/2003/MS03

[31] I. Lampl, D. Ferster, T. Poggio, and M. Riesenhuber, “Intracellular
measurements of spatial integration and the MAX operation in complex
cells of the cat primary visual cortex,”J. Neurophys., vol. 92, pp. 2704–
2713, 2004.

[32] T. J. Gawne and J. M. Martin, “Responses of primate visual cortical V4
neurons to simultaneously presented stimuli,”J. Neurophys., vol. 88, pp.
1128–1135, 2002.

[33] C. Hung, G. Kreiman, T. Poggio, and J. DiCarlo, “Fast read-out of object
identity from macaque inferior temporal cortex,”Science, vol. 310, pp.
863–866, Nov. 2005.

[34] T. Serre, J. Louie, M. Riesenhuber, and T. Poggio, “On the role of
object-specific features for real world recognition in biological vision,”
in Workshop on Biologically Motivated Computer Vision, Tuebingen,
Germany, 2002, pp. 387–397.



16 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, AUGUST 2006

[35] T. Serre, L. Wolf, and T. Poggio, “Object recognition with features
inspired by visual cortex,” inProc. IEEE Conf. on Computer Vision
and Pattern Recognition, I. C. S. Press, Ed., San Diego, 2005.

[36] S. Bileschi and L. Wolf, “A unified system for object detection, texture
recognition, and context analysis based on the standard model feature
set,” in BMVC, 2005.

[37] R. DeValois, D. Albrecht, and L. Thorell, “Spatial frequency selectivity
of cells in macaque visual cortex,”Vis. Res., vol. 22, pp. 545–559, 1982.

[38] R. DeValois, E. Yund, and N. Hepler, “The orientation and direction
selectivity of cells in macaque visual cortex,”Vis. Res., vol. 22, pp.
531–544, 1982.

[39] P. H. Schiller, B. L. Finlay, and S. F. Volman, “Quantitative studies of
single-cell properties in monkey striate cortex III. Spatial frequency,”J.
Neurophysiol., vol. 39, no. 6, pp. 1334–1351, 1976.

[40] ——, “Quantitative studies of single-cell properties in monkey striate
cortex II. Orientation specificity and ocular dominance,”J. Neurophys-
iol., vol. 39, no. 6, pp. 1334–51, 1976.

[41] T. Serre and M. Riesenhuber, “Realistic modeling of simple and complex
cell tuning in the HMAX model, and implications for invariant object
recognition in cortex,” MIT, Cambridge, MA, CBCL Paper 239 / AI
Memo 2004-017, 2004.

[42] T. Poggio and E. Bizzi, “Generalization in vision and motor control,”
Nature, vol. 431, pp. 768–774, 2004.

[43] T. Serre, “Learning a dictionary of shape-components in visual cortex:
Comparison with neurons, humans and machines,” Ph.D. dissertation,
Massachusetts Institute of Technology, Cambridge, MA, April 2006.

[44] T. Sim, S. Baker, and M. Bsat, “The CMU pose, illumination, and
expression (PIE) database of human faces,” CMU, Computer Science
Technical Report 01-02, 2001.

[45] A. Torralba, K. P. Murphy, and W. T. Freeman, “Sharing features:
efficient boosting procedures for multiclass object detection,” inProc.
IEEE Conf. on Computer Vision and Pattern Recognition, 2004.

[46] A. Opelt, M. Fussenegger, A. Pinz, and P. Auer, “Generic object
recognition with boosting,” TU Graz, Tech. Rep., 2004.

[47] S. Lazebnik, C. Schmid, and J. Ponce, “A maximum entropy framework
for part-based texture and object recognition,” inICCV, 2005.

[48] L. Wolf, S. Bileschi, and E. Meyers, “Perception strategies in hierar-
chical vision systems,” inProc. IEEE Conf. on Computer Vision and
Pattern Recognition, 2006.

[49] S. Bileschi, “Streetscenes: Towards scene understanding in still images,”
Ph.D. dissertation, MIT, 2006.

[50] A. Holub, M. Welling, and P. Perona, “Exploiting unlabelled data for
hybrid object classification,” inNeural Information Processing Systems,
Workshop in Inter-Class Transfer, 2005.

[51] A. Berg, T. Berg, and J. Malik, “Shape matching and object recognition
using low distortion correspondence,” inProc. IEEE Conf. on Computer
Vision and Pattern Recognition, 2005.

[52] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE Conf. on Computer Vision and Pattern
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