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Robust Object Recognition
with Cortex-like Mechanisms

Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, and Tomaso Pddember, IEEE

Abstract—We introduce a new general framework for the in the approach is a new set of scale and position-tolerant
recognition of complex visual scenes, which is motivated by feature detectors, which agree quantitatively with the tuning
biology: we describe a hierarchical system which follows closely properties of cells along the ventral stream of visual cortex.
the organization of visual cortex and builds an increasingly . -
complex and invariant feature representation by alternating These feature_s are adaptive to the training set, though we also
between a template matching and a maximum pooling operation. Show that auniversalfeature set, learned from a set of natural

We demonstrate the strength of the approach on a range images unrelated to any categorization task likewise achieves
of recognition tasks: from invariant single object recognition good performance. To exemplify the strength of this feature-
in clutter to multi-class categorization problems and complex 556 representation we demonstrate classification results with

scene understanding tasks that rely on the recognition of both . le li lassifi We show that th h f
shape-based as well as texture-based objects. Given the bioIogicaFImp € linear classmers. vve snow thal the approach periorms

constraints that the system had to satisfy, the approach performs Well on the recognition of isolated objects in clutter for both
surprisingly well: It has the capability of learning from only a  binary and multi-class classification problems on publicly

few training examples and competes with state-of-the-art systems. available datasets. Our approach also demonstrates good clas-
We also discuss the existence ofuniversal redundant dictionary  gification results on a challenging (street) scene understanding

of features that could handle the recognition of most object lication that . h i f both sh based
categories. In addition to its relevance for computer vision, the aPPlication that requires the recognition ot both shape-base

success of this approach suggests a plausibility proof for a class@s Well as texture-based objects.
of feed-forward models of object recognition in cortex. Both the source code of our system and SteeetScenes

Index Terms—object recognition, model, visual cortex, scene dataset used in our experiments are readily available [16].

understanding, neural network.
A. Related Work

|. INTRODUCTION Hierarchical architectures have been shown to outperform
nderstanding how visual cortex recognizes objects issingle-template (flat) object recognition systems on a variety
U critical question for neuroscience. Because humans adidobject recognition taskse(g., face detection [17] and car
primates outperform the best machine vision systems widgtection [18]). In particular, constellation models [19]-[21]
respect to almost any measure, building a system that emuldigge been shown to be able to learn to recognize many objects
object recognition in cortex has always been an attractive {gne at a time) using an unsegmented training set from just a
elusive goal. For the most part, the use of visual neuroscierfeer examples [20], [21]. Multi-layered convolutional networks
in computer vision has been limited to early vision for deriving/ere shown to perform extremely well in the domain of
stereo algorithmse(g., [1]) and to justify the use of DoG digit recognition [4], [5] and more recently generic object
(derivative-of-Gaussian) filters and more recently of Gab#gcognition [10] and face identification [22].
filters [2], [3]. No real attention has been given to biologically The simplest and one of the most popular appearance-
plausible features of higher complexity. While mainstreafpased feature descriptors corresponds to a small gray value
computer vision has always been inspired and challenged fgtch [23] of an image, also called component [17], [24], part
human vision, it seems to never have advanced past the vBi§], [25], or fragment [26]. Such patch-based descriptors are
first stages of processing in the simple (and binocular) cellowever limited in their ability to capture variations in the
in V1 and V2. Although some of the systems inspired — t@bject appearance: they are very selective for a target shape
various degrees — by neuroscience [4]-[10] have been tesied lack invariance with respect to object transformations.
on at least some natural images, neurobiological models ofAt the other extreme, histogram-based descriptors [27]-
object recognition in cortex have not yet been extended [@9] have been shown to be very robust with respect to
deal with real-world image databases [11]-[14]. object transformations. Perhaps the most popular features are
We present a system that is based on a quantitative theoryifeg SIFT features [27], which excel in the re-detection of
the ventral stream of visual cortex [14], [15]. A key elemera previously seen object under new image transformations
and have been shown to outperform other descriptors [30].
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filters. Here we see position and scale. seen patches {Pi | i=1..N}. These are computed by
filtration at 8 scales and patches are in C1 format. Each taking a max
4 orientations (color orientation in the patch is matched |overall S2
indicates orientation). to the corresponding orientation in | associated with
The full model uses 16 C1. The result is one image per C1 | a given patch.
scales. band per patch. Thus, the C2

response has
length N.

\

Four S1 scale bands
are shown here.

The levels in these
images have been
scaled for illustrative
purposes. Color
indicates orientation,
as above.

_
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Only one S2 scale is shown for
each patch.

Fig. 1. System overview: A gray value input image is first analyzed by an arr&j efnits at 4 different orientations and 16 scales. At the riéxtlayer,

the image is subsampled through a lomaix (M) pooling operation over a neighborhood $f units in both space and scale but with the same preferred
orientation. In the next stagés units are essentiallRsF units, each having a different preferred stimulus. Note #iaunits are tiled across all positions
and scales. AvAX pooling operation is performed ovéh units with the same selectivity to yield th& unit responses.
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The new appearance-based feature descriptors described Il. DETAILED IMPLEMENTATION
here exhibit a balanced trade-off between invariance and a) S; units: Our system is summarized in Fig. 1. A gray-
selectivity. They are more flexible than image patches agg|ye input image is first analyzed by a multi-dimensional
more selective than local histogram-based descriptors. Thoqghay of simpleS; units which correspond to the classical
they are not strictly invariant to rotation, invariance to rotatiogimme cells of Hubel & Wiesel found in primary visual cortex
could, in principle, be introduced via the training sefof,by  (v1) [11]. S; units take the form of Gabor functions [2], which

introducing rotated versions of the original input). have been shown to provide a good model of cortical simple
cell receptive fields [3] and are described by the following
B. The Standard Model of Visual Cortex equation:

Our system follows a recent theory of the feedforward ) 5 5
path of obqut recognition in cortex that accounts for the firsp(%y) — exp (_(l‘o +72 yo)) % COS (2”%)7 st. ()
100-200 milliseconds of processing in the ventral stream of 20 A
primate visual cortex [14], [15]. The model itself attempts x, = xcosf +ysinf andy, = —rsinf + ycosf. (2)
to summarize — in a quantitative way — a core of well- All filter parameters,i.e., the aspect ratioy = 0.3, the
accepted facts about the ventral stream in visual cortex (see . . :
o oo . .. “grientation 6, the effective widtho, the wavelength\ as
[15] for a review): a) Visual processing is hierarchical, aiming, ' . : .
o ; o ) ell as the filter sizess were adjusted so that the tuning
to build invariance to position and scale first and then to

viewpoint and other transformations; b) Along the hierarch ?p?ﬁzvz;f hS?mcolgecsgfsn%lel dur;|rt]s dztaatcfk: Ot:]etvsglk rc())fu S
the receptive fields of the neuronise(, the part of the visual P b group

field that could potentially elicit a response from the neurorL /] [.40]' This was don_e b)_/ samplm_g th_e parameter space,
: . . R pplying the corresponding filters to stimuli commonly used to
as well as the complexity of their optimal stimuli€(, the . . - .
o - ) robe cortical cellsi(e., gratings, bars and edges) and selecting
set of stimuli that elicit a response of the neuron) increas : :
o : : S b parameter values that capture the tuning properties of the
¢) The initial processing of information is feedforward (for

. . o : : . bulk of V1 simple cells (see Table | and [41] for details).
immediate recognitiotasks,i.e., when the image presentatlon}N . .
fSe arranged theS; filters to form a pyramid of scales,

is rapid and there is no time for eye movements or shi . f si P els i
of attention); d) plasticity and learning probably occurs as[f)annlng a range or sizes rom>x 7 to 37 x ??7 PIXEIS 1N
’ eps of 2 pixels. To keep the number of units tractable we

all stages and certainly at the level of inferotemporal (|T§onsidered4orientation§0(7 45°. 90° and135°) thus leading

cprtex and prefrontal cortex (PFC), the top-most layers of t%a 64 differentS; receptive field types total (16 scales 4
hierarchy. . .
orientations).

In its sim.plest form, the n_10de| consjsts of four Ia_yers b) C; units: The next,C;, stage corresponds to cortical
of computational units whereimple S units alternate with complex cells which show some tolerance to shift and size:

complexC units. The S units combine their inputs with a beII-C mplex cells tend to have larger receptive fields (twice as

shaped tuning function to increase selectivity. The C units PqQ ge as simple cells), respond to oriented bars or edges

their inputs through a maximurmvx) operation, thereby anywhere within their receptive fields (tolerance to position)

increasing invariancé.Evidence for the two key operatlons_and tend to be more broadly tuned than simple cells (tolerance

as well as bioph_ysically p.lausible circuit; can be f°“!"d 'fh size) [11]. C; units pool over retinotopically organized
[15]. The model is qualitatively and quantitatively ConS'Stergfferent S, units from the previous layer with the same

with (and in some cases actually pred_lcts) several propertl entation and from the sanseale band(see Table 1). Each
of cells along the ventral stream of visual cortex (see [1

for an overview). Eor instance. the model predicts. at@he ale band contains two adjacent filter sizes (there are 8 scale
verview). ! ' preaicts, ™™ Ppands for a total of 165; filter sizes). For instance, scale

andCs levels (see Fig. 1), respectively, the max-like behavi and 1 containsS; filters with sizes7 x 7 and 9 x 9. The

of a subclass of complex cells in V1 [31] and cells in v cale band index of th&; units also determines the size of

[32]0'|. Ijegd—out ftrom gn'ti similar to tthéy? unltskm FI'_? 1 tthe 51 neighborhoodVg x Ng over which theC; units pool.
pgrg 'Cﬁ recent rea 'f)lu exlpe?_mten S ('jn. monkey ¢ C?L ain this process is done for each of the four orientations
[33], showing very similar selectivity and invariance for €nd each scale band independently.

Sa?‘he set zf ISt.'mL.JtI" iniial . 14 q ol This pooling increases the tolerance to 2D transformations
e model in its initial version [14] used a very simp Srom layer S, to C;. The corresponding pooling operation is

staticdictionary of handcrafted features. It was suggested t?ﬁvmx operation. That is, the responseof a complex unit

f(ahatulrc(jag frto m dw;)terlmedla'ga fand hllghelr Iayerg n thfi mo (%rresponds to the response of the strongest ofitfferents
should instead be learned from visual experience. Here, ﬁ/%eh .., x,,) from the previousS, layer such that:

extend the model by showing how to learn a vocabulary

visual features from images and applying it to the recognition r = max 2. 3)
of real-world object-categories. Preliminary results previously j=lom "7
appeared in several conference proceedings [34]-{36]. Consider, for instance, the first band: = 1. For each

P _ _ _ , orientation, it contains tw; maps: the one obtained using a
In this paper, we used a Gaussian function but as discussed in [15

bell-shaped tuning function could also be approximated via a normalized d]g{?er of size7 x 7, and the one obtained using a f”ter OT Siz?
product. 9 x 9 (see Table I). The maps have the same dimensionality
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C; layer S1 layer .
Scale | Spatial pooling | Overlap filter Gabor | Gabor The result is a vector aV C, values, Whe.reN corresponds to
bandS | grid (Ng x Ng) Ag size s o A the number of prototypes extracted during the learning stage.
TX7 2.8 3.5 e) The learning stageThe learning process corresponds
Band 1 8x8 4 9%9 3.6 4.6 .
a : : to selecting a set olV prototypesP; (or features) for the5,

Band 2 10 x 10 5 txdl as 00 units. This is done using a simple sampling process such that
13x13 | 54 6.8 LS. ThIS g p pling p _ ,
15x15 | 6.3 7.9 during training, a large pool girototypesof various sizes and

Band 3 12 x 12 6 " .

}7 X 17 7-2 19-1 at random positions are extracted from a target set of images.

Band 4 14 x 14 7 2‘1’ i 251) 3‘2 1(1)'2’ These prototypes are extracted at the level of helayer

Band 5 16 % 16 8 23 %23 | 10.2 2.7 across all 4 orientationgg., a patchP, of sizen x n contains
25x25 | 113 | 141 n x n x 4 elements. In the following we extracted patches

Band 6 18 x 18 9 oAl a3 | qog | of four different sizes# = 4, 8, 12, 16). An important

Band 7 20 % 20 0 3Tx3l [ 1i6 | 132 guestion for both neuroscience and computer vision regards

an x 33x33 | 158 | 19.7 | the choice of the unlabeled target set from which to learn — in

Band 8 22 x 22 11 el gg 212 | an unsupervised way — this vocabulary of visual features. In

: : the following, features are learned from the positive training
TABLE I.  Summary of theS; andC; SMF's parameters. set for each object independently, but in Section Ill-A.2 we

show how auniversal dictionary of features can be learned
from a random set of natural images and shared between
but they are the outputs of different filters. THe unit multiple object classes.
responses are computed by subsampling these maps using af) The classification stage:At run-time, each image
cell grid of size Ns x Ns = 8 x 8. From each grid cell is propagated through the architecture described in Fig. 1.
one single measurement is obtained by taking the maximurhe C; and C; standard model featureSNMF9 are then
of all 64 elements. As a last stage we take a max over thgtracted and further passed to a simple linear classifier (we
two scales from within the same spatial neighborhood, lexperimented with both aavm and boosting).
recording only the maximum value from the two maps. Note
thatCy responses are not computed at every possible locations m
and thatC; units only overlap by an amourfs. This makes
the computations at the next stage more efficient. Again,We evaluate the performance of tB&Fsin several object
parameters (see Table 1) governing this pooling operation wdlgtection tasks. In Section IlI-A, we show results for detection
adjusted such that the tuning of thg units match the tuning in clutter (sometimes refer to as weakly-supervised) for which

of complex cells as measured experimentally (see [41] fiie target object in both the training and test sets appears at
details). variable scales and positions within an unsegmented image,

c) S, units: In the S, layer, units pool over afferent such as in theCalTechl01object database [21]. For such
C: units from a local spatial neighborhood across all foudPplications, because 1) the size of the image to be classified
orientations.S» units behave as radial basis functiorsg) May vary and 2) because of the large variations in appearance,
units?2 Each S, unit response depends in a Gaussian-likée use the scale- and position- invariait SMFs(the number
way on the Euclidean distance between a new input andaof which is independent of the image size and only depends
stored prototype. That is, for an image pat®hfrom the ©N the number of prototypes learned during training) that we
previousC, layer at a particular scal§, the response of Pass to a linear classifier trained to perform a simple object

. EMPIRICAL EVALUATION

In Section 11I-B, we evaluate the performance of BEIFs
r = exp(—6||X - Pi[?), (4) in conjunction with avindowingapproach. That is, we extract

a large number of fixed-size image windows from an input
where/3 defines the sharpness of theNING andP; is one of jmage at various scales and positions, which each have to be
the N features (center of thesF units) learned during training c|assified for a target object to be present or absent. In this task,
(see below). At run-timeS; maps are computed across althe target object in both the training and test images exhibits
positions for each of th& scale bands. One such multipley |imited variability to scale and position (lighting and within-
scale map is computed for each one of thé ¢ 1,000) class appearance variability remain) which is accounted for
prototypesP;. by the scanning process. For this task the presence of clutter

d) C units: Our final set of shift- and scale-invaria@it  wjithin each image window to be classified is also limited.
responses is computed by taking a global maximum (see gcause the size of the image windows is fixed, Gthand
3) over all scales and positions for eaghtype over the entire ¢, SMFscan be used for classification. We show that for such
Sy lattice, i.e., the S; measures the match between a storeghpjication, due to the limited variability of the target object in

prototypeP; and the input image at every position and scal@gsition and scale and the absence of cluftelSMFsappear
we only keep the value of the best match and discard the regiite competitive.

o _ _ _ . In Section IlI-C, we show results using ttf&MFsfor the
This is consistent with well-known response properties of neurons in

primate inferotemporal cortex and seems to be the key property for Iearnﬁ%.COQnitipn theXture'based)bjeCtS like trees_ and roads. For
to generalize in the visual and motor systems [42]. this application the performance of ti8MFsis evaluated at
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every pixel locations from images containing the target object ‘*‘”
which is appropriate for detecting amorphous objects in a ﬂ_,
scene, where drawing a closely-cropped bounding box is often
impossible. For this task, thé’; SMFs outperform theC,
SMFs

Pl s

A. Object Recognition in Clutter

.. . . Fig. 2. Sample images from the MIT-CBCL multi-view car [18] and face
Because of their invariance to scale and position, @he [17] datasets.

SMFscan be used for weakly supervised learning tasks for
which a labeled training set is available but for which the
training set is not normalized or segmented. That is, the ¢) MIT-CBCL: This includes a near-frontak30 © ) face
target object is presented in clutter and may undergo largataset [17] and a multi-view car dataset from [18] (see
changes in position and scales. Importantly, the number Bify. 2). The face dataset contains about 6,900 positive and
C, features depends only on the number of patches extracte3}700 negative images for training and 427 positive and 5,000
during training and is independent of the size of the inpuiegative images for testing. The car dataset contains 4,000
image. Here, to perform different categorization tasks,dhe positive and 1,600 negative training examples and 1,700 test
responses computed over a new input image are simply passgamples (both positive and negative). Although Hesch-
to a linear classifier (lineagvm or boosting) mark algorithms were trained on the full sets and the results
Below we compare the performance of the scale- amdported accordingly, our system only used a subset of the
translation-invariant’; features when used as inputs to simtraining sets (500 examples of each class only).
ple linear classifiers with other benchmark systems for theThese two MIT-CBCL datasets are challenging: The face
recognition of objects in clutteii.g., both training and testing patterns used for testing are a subset of the CMU PIE
are performed on unsegmented images). We consider thdegabase [44] which contains a large variety of faces under
datasets, denote@alTech% CalTechl0land MIT-CBCL, to extreme illumination conditions (see [17]). The test non-face
evaluate our system performance. patterns were selected by a low-resolutioma classifier as
1) Image Datasets: the most similar to faces (thenDA classifier was trained on
a) CalTech5: We consider five of the databades an independent9 x 19 low-resolution training set). The car
i.e., frontal-face, motorcycle, rear-car and airplane datasdtgtabase includes a wide variety of vehicles, including SUVs,
from [20], as well as the leaf dataset from [19]. On thedigucks, busesgetc, under wide pose and lighting variations.
datasets, we used the same fixed splits as in the correspondiagdom image patterns at various scales that were not labeled
studies whenever applicable and otherwise generated rand¥irvehicles were extracted and used as a negative test set.
splits. All images were rescaled to be 140 pixels in height 2) Results:
(width was rescaled accordingly so that the image aspect ratio a) Comparison with benchmark systen®able Il sum-
was preserved) and converted to grayscale. marizes the performance of tii& SMFscompared with other
b) CalTech101: It contains 101 object classes plus @ublished results from benchmark systems: the constellation
background class (see [21] for details). All results reportgtdodels by Perona and colleagues [19], [20], the hierarchical
were generated with 10 random splits. In the binary expefvM-based face-detection system by Heiselial. [17] and a
ments we used 50 negative training examples and a variagl@ndard system [18] that uses Ullman’s fragments [26] and
number of positive training examples (1, 3, 15, 30 and 4@entleBoost as in [45]. The performance measure reported
For testing, we selected 50 negative examples and 50 posiifyethe accuracy at the equilibrium poirite., the accuracy
examples from the remaining images (or as many left if lepoint such that the false positive rate equals the miss rate.
than 50 were available). In the multi-class experiment, wesults obtained with thé’, SMFsare superior to previous
used 15 or 30 training images per class. This includes tApproaches [17], [18] on the MIT-CBCL datasets and compa-
background class and the “faces” and “faces-easy” as threg@ple to the best systems [46], [47] on tBalTech5datasets.
the classes. We used as many as 50 testing examples per class,b) Comparison with SIFT featuresiVe also compared
less if there were not enough examples left after training. tfie C>; SMFsto a system based on LowessFT features [27].
less than 50 examples were used the results were normalizedaoperform this comparison at the feature level and ensure
reflect equal contributions for each class. We report the meanfair comparison between the two systems, we neglected
and standard deviation of the performance across all classib.position information recovered by Lowe's algorithm. It
All images were rescaled to be 140 pixels in height (widtivas recently suggested in [47] that structural information
was rescaled accordingly so that the image aspect ratio vimes not seem to help improve recognition performance. We
preserved) and converted to grayscale. selectedl, 000 random reference key-points from the training
set. Given a new image, we measured the minimum distance

3More biologically-plausible classifiers are described in [43]. Such classi-
fiers are likely to correspond to the task-specific circuits in cortex from IT to SExperimental procedures may vary from one group to anothgr, éplits
PFC (see [15], [43]). used, pre-processing, scale normalizatin). Comparisons should therefore
4available athttp://www.robots.ox.ac.uk/vgg/data3.html be taken cautiously.



6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, AUGUST 2006

Datasets Benchmark| C-, features even for one example).

boost svm However, sincesvm does noselectthe relevant features, its
Leaves [19] 84.0 97.0 959 performance tends to be lower than gentleBoost as the number
Cars [20] 84.8 99.7 99.8 of training examples increases. Fig. 5 shows the performance
Faces [20] 96.4 98.2 98.1 of the gentleBoost andvm classifiers used with th€, SMFs
Airplanes [20] 94.0 96.7 94.9 on all categories and for various numbers of training examples
Motorcycles [20] 95.0 98.0 97.4 (each result is an average of 10 different random splits). Each
Faces [17] 90.4 95.9 953 plot is a single histogram of all01 scores, obtained using
Cars [18] 75.4 95.1 933 a fixed number of training examples.g., with 40 examples,

TABLE II. Results obtained withl, 000 C, features combined witsvm  the gentleBoost-based system gets around 95% ROC area for
or gentleBoost foos) classifiers, and comparison with existing systemg 204 of the object categories.
(Benchmark d) Towards a universal dictionary of feature¥ve here
describe experiments that suggest that it is possible to per-
between all its key-points and tHe000 reference key-points, form robust object recognition witld', SMFs qurned from .

a separate set of randomly selected natural images. In Fig.

thus obtaining a feature vector of size000.%
: : 6,, we compare the performance of two sets of features on
Fig. 3 shows a comparison between the performance gf

the sIFT and theCy; SMFs (both with gentleBoost; similar the CalTechl0ldatabase: (1) a standard setafiect-specific

. . . . features that were learned from a trainin t of im from
results were obtained with a lineavm). Fig. 3 (left) shows eatures that were leamed from a g set of images Tro

a comparison on th€alTech5database for different numbersthe target object categor(() features per training image);

. . and (2) auniversalset of 10,000 features learned indepen-
of features (obtained by selecting a random number of thedTéntI from a set of random natural images (downloaded from
from the 1,000 available) and Fig. 3 (right) on GalTech101 y g

ne web). While theobject-specificset performs significantly

database for different number of training examples. In bo / L .
...~ better with enough training examples, the universal set appears
cases theC; features outperform theIrFT features signifi- o L
et8 be competitive for smaller training sets.

cantly. SIFT features excel in the re-detection of a transform . . -
Indeed theuniversalfeature set is less prone to overfitting

version of a previously seen e>§ample but may Iagk seIchw\t{yith few training examples (both the learning of the features
for a more general categorization task at the basic level.

. : and the training of the final classifier are performed on the
.C) Number of_fea_tures and fraining example$o in- same set with thebject-specificset). In addition, contrary to
vestigate the co_ntnbunon of the number of features on P&he object-specifiset, the size of theniversalset is constant
formance, we first created a set M)’O.OO Cz. SMFs and r? ardless of the number of training exampl&s, 000). As
then randomly selected subsets_of various sizes. The re.sﬂiesult, with small training datasets, less features can be
reported are avgraged over 10 independent runs. As Figuded with the object-specific set (we found that extracting
_(Ieft) ShOWS.' while the performance of the system can ore than 200 features per training image had very little
improved with more featurese(g., the whole set OﬂO’O.OO effect on performance). This may constitute a relevant and
features), reasonable performance can already be obtained Wﬂﬁguing result on its own. Our results also suggest that it

50 — 100 features. features needed to reach the plateau (at%%f&uld be possible for biological organisms to acquitmsic

1,000 — 5,000 features) is much larger than the number us . : .
’ ’ cabulary of features early in development while refining
by current systems (on the order of 10-100 for [17], [261t with more specific features later oThe latter point is

[45] and 4-8 for constellation approaches [19]-{21]). This M&onsistent with reports of plasticity in inferotemporal cortex

come from the fact that we only sample the space of featurﬁgm adult monkey (the complexity and sizes of the larg@st
and do not perform any clustering step like other approac

Atures are consistent with the receptive fields of posterior IT
(including an earlier version of this system [34]). We foun taurons) P P
.C'P_S‘e_””g to be sensitive to the choice of parameters an e) Multiclass results on the CalTechl10Einally, we
initializations, leading to poorer results.

report results on multi-class classification on tbalTech101

We also studied the influence of the number of trainin@atabase To conduct this experiment we use uhiersal
examples on the performance of the system orGalech101 dictionary of 1,000 features similar to the one described

database. For each object category, we generated differgglt“er' This offers a significant gain in speed in a multi-

positive training sets of size 1, 3, 6, 15 and 30 as in [2{:]ass setting compared to the standabject-specificset. The

(see_z Section llI-A.1). As shown in Fig. 4 (right) the.s.ysterEIassifier is a multi-class lineavm that applied the all-pairs
achieves error rates comp_arable to [21] on .fe\./v training e ethod, and is trained on 102 labels (101 categories plus the
amples (less than 15) but its performance still improves wi

| h h by Feidtail b ckground category). The performance of the system reaches
more examples (where the system by Feidiail. seems to be ;0 44 4 1.14% correct classification rate when using 15

reachmg a plateau, see [21]). Results witrsam (not shqvvn) training examples per class averaged over 10 repetitions (see
are similar, although the performance tended to be higher 80 i, Ill-A.1). Using only5 training images per class, the
very few training examples (a®s/M seems to avoid overfitting performance degrades to 30%

5Lowe recommends using the ratio of the distances between the nearest
and the second closest key-point as a similarity measure. We found instead
that the minimum distance leads to better performance than the ratio.
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100 ; ; ; ; ; ; : ——r Type shape-based texture-based
o ) 1* {ff‘ﬂ’ N Object car ped. bic.| bldg. tree road sky
[ P et 4
N el t’& [ # labeled ex.[ 5799 1449 209[ 5067 4932 3400 2562}
90 v $ e phx

Ep® | TABLE lll. The StreetSceneBatabase.
851 W ]

%0 classifier. TheC; representation was built like in Section IlI-
o . A for the recognition in clutter. Classifiers for these objects
were trained using gentleBoost.

3) Benchmark systemdsFor comparison, we also imple-
mented four other benchmark systems. Our most simple
baseline detector is a single-templ&@&eayscalesystem: Each

75

70 -

v

Specific C2 performance (equilibrium point)

1
o 3
55 i image is normalized in size and histogram equalized before
50 ‘ ‘ ‘ ‘ ‘ L[ 30 the gray-values are passed to a linear classifier (gentleBoost).
5 55 60 65 70 75 80 85 90 95 100 Another baseline detectotocal Patch Correlation is built
Universal C2 features performance (equilibrium point) . .
using patch-based features similar to [45]. Each featfyre
Fig. 6. Object-specifiws. universalC, features. is associated with a particular image patph extracted

randomly from the training set. Each featufgis calculated
in a test image as the maximum normalized cross correlation
By consideringgestaltlike features €.g., good-continuity of p; within a sub-window of the image. This window of

detectors, circularity detectors and symmetry detectors) withdopport is equal to a rectangle three times the sizey;of
the same framework in addition to th€, SMFs Wolf & and centered in the image at the same relative location from
Bileschi obtained1.2%+1.2% correct [48], [49], and recently which p; was originally extracted. The advantage of the patch-
incorporated some changes with Sharat Chikkerur to dedsed features over the single-template approach is that local
55.0% £+ 0.9% (all these results are for5 training images). patches can be highly selective while maintaining a degree
At press time, some of the best systems include the systenofnposition invariance. The system was implemented with

[50] (= 44% correct) and in [51]45% correct). N = 1,024 features and with patches of sid€ x 12 in
images of sizel28 x 128. The third benchmark system is a
B. Object Recognition without Clutter Part-based systemas described in [25]. Briefly, both object

parts and a geometric model are learned via image patch

1) Thﬁ ”StregtScenels daltgbaag: c;r(?jert tot.test theSMFs clustering. The detection stage is performed by re-detecting
on a challenging real-world object detection problem, W qq parts and allowing them to vote for objects-at-poses in a
have built training and test data from tBtreetScenescene-

derstanding dataset. This datab ists of tﬁj’r—;\lneralized Hough transform framework. Finally, we compare
understanding dataset. 1his database consists ot more n implementation of the Histogram of Gradients (HoG)
3,000 labeled images of the streets around Boston and C

bridae. S o d their hand labeli ust ABature of [52], which has shown excellent performance on
pridge. sample images and their hand 1abetlings are Hiustraigd oo types of objects. All benchmark systems were trained
in Fig. 10; some statistics of the content of the dataset are giv;

in Table IIl. Th te detecti f fth bi &hd tested on the same datasets asSh#sbased system.
In lavle Til. 1he accurate detection of many of these obje ey all use gentleBoost except [25].
categories is made difficult by the wide internal variability in

thei F le. the obiect includ 4) Results: The ROC results of this experiment are illus-
€Ir appearance. =or example, the object ¢ INCIUCES  4rated in Fig. 7. For the two({; andC5) SMFsbased systems,
examples of many diverse models, at many poses, and

. ¢ ¢ lusi d lighti the Grayscaleas well as thd.ocal Patch Correlatiorsystem,
various types ot occiusion and 1ig Ingiees appear Ve the classifier is gentleBoost but we found very similar results
different in summer and winter, and the class kafildings

. with both a linear- and a polynomial-kerngVm. Overall, for
includes skyscrapers as well as suburban houses. Capt“%ﬁ%he three object categories tested, 8fdFsbased system

”}'Sﬂ:’v'dehvﬁnab'“tythT]”e malntalnlgg htlghdgccuracgl IS pa_lr_gerforms best on cars and bicycles and second behind HoG
ol the challenge of Ihe scene-understanding problem. 15 pedestrians (the HoG system was parameter-tuned in [52]

da;ab_?sg IS a\;ﬁllag:alzonltl)ne ac} [16]t. mdsing dat tracted to achieve maximal performance on this one class). Finally,
) Training the s-based systemssing data extracted ¢, ;g recognition taski.e., with a windowing framework,

from our StreetScenedatabase, we trained object detectorﬁ]e C, SMFsseem to be superior to th@& SMFs Indeed the
for the classescar, pedestrianand bicycle This data was C]E SMFsare adept at representing the object boundaries of

extracted by cropping out labeled examples of these Obj?ﬁ seshape-basedbjects, which have strong inter-example
classes. Negative examples were extracted similarly by findi %’respondence '
i .

locations and scales which matched the positive data, but
not overlap the labeled positives. Each example, positive and N ]

negative, was resized tt28 x 128 pixels and converted to C- Object Recognition of Texture-based Objects

grayscale. This image was then converted ifitfospace using  Here we demonstrate the utility of tt&MFsin a texture-

the method of Section Il. For @28 x 128 grayscale image based object recognition task. Performance is measured by
and our parameter values, this resulted in a feature vectmnsidering each pixel, rather than each instance of an object,
of 13,362 features that provided the input to tli¢,-based to be a separate example. We consider four texture-based
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Fig. 7. ROC curves illustrating the performance of the standard-model object-detectors compared to four baseline systems (see accompanying text). Note that
in this test the amount of clutter is limited by the windowing process, creating better inter-example correspondence and thereby allowing the direct application

of the C; SMFs

objects which tend not to have point-wise correspondence?) Benchmark systemdiMe implemented four benchmark
texture classification systems. Thdobworld (BW) system

between examples: buildings, trees, roads and skies.
o o was constructed as described in [53]. Briefly, the Blobworld

1) Training the SMFs-based systents:building a database g a1 re, originally designed for image segmentation, is a six
of labeled texture examples, we were careful to avoid errQfgnensional vector at each pixel locatidndimensions encode
due to overlap and loose polygonal labeling in BteeetScenes c|5r in the well-known Lab color space, asddimensions
database. Because of object occlusions, some pixels in i6.,ge texture using the local spectrum of gradient responses.
database are labeled as one obje€t, building but their \ye giq not include the color information for a fair comparison
actual appearance is due to another objeet, tree We onyeen all the various texture detection methods.
addressed this by removing pixels with either multiple labels The systems labele@il and T2 are based on [29]. In these
or no label, from the_ te_st. A_dditionally, trai_ning samples Wergystems, the test image is first processed with a number of
never dr?W.” from withirL5 p|?(els of any object's border. The predefined filtersT1 uses36 oriented edge-filters arranged
same training and test locations were used for botfSiés 5° increments from0° to 180°. T2 follows [29] exactly by
based and the benchmark systems. using36 Gabor filters abt orientations3 scales, an@ phases.

To build the C; SMFsbased system;; maps were com- For both systems independently, a large number of random
puted for each image, and for each sample point, feature vectamples of the36 dimensional edge response images were
elements were collected by sampling the resultihgmaps at taken and subsequently clustered using k-means tolfigd
the same relative location in all orientations and scale-bandfister centroidsi., the texton3. Thetexton imagevas then
A (O, SMFsbased system was also built as in Section Ill-&alculated by finding the index of the nearest texton to the filter
except for the maximum over position at the level that was response vector at each pixel in the response imagds$l0A
taken over a local neighborhood instead of the whole imag#imensional texton feature vector was then built by calculating

This local area corresponded td@x 60 pixel window in the the locall0 x 10 histogram of nearest texton indexes.
original 960 x 1280 image. Finally, the Histogram of edge$10E) system was built by
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Fig. 8. Performance (ROC curves) of five texture classification algorithms for the detection of buildings, trees, skies, and roads. This texture classification
task requires reliable recognition of texture classes with wide intra-class variability. This difficult test may in part explain the inferior performance of the
benchmark algorithms, which have been used previously to detect object boundaries and classify materials, but not for object recognition.

simply using the same type of histogram framework, but ov€ig. 9 illustrates the architecture of the data flow diagram,
the local36 dimensional directional filter responses (using thepecifically highlighting the two pathways for the detection of
filters of T1) rather than the texton identity. Here as wellthe texture-based and shape-based objects.

learning was done using the gentleBoost algorithm (again al) Shape-based object detection in StreetSceiimape-
linear svMm produced very similar results). The within-clasbased objects are those objects for which there exists a
variability of the texture-objects in this test is considerablgtrong part-to-part correspondence between examples, includ-
larger than that of the texture classes usually used to té®j pedestrians, cars, and bicycles. In order to detect shape-
texture-detection systems, making this task somewhat difféxased objects, a standard windowing technique is used. This
ent. This may explain the relatively poor performance of sono@ntrasts with the approach presented in Section IlI-A, wherein
of these systems on certain objects. objects in clutter are detected using scale- and translation-

3) Results: As shown in Fig. 8, the SMFs-based texturénvariantC; SMFs rather than testing for object presence at
system seems to consistently outperform the benchmBiké ( each position and scale independently. While @heapproach
T1, T2 and HoE). C; compared toC; SMFsmay be better is appropriate for fast decisions of object presence or absence,
suited to this task because of their increased invariance pritpwould be impractical for this scene-understanding applica-
erties and complexity. tion as the locations of individual objects would be lost.

In conjunction with this windowing approach, we use the
C1 SMFs. Since the window crops away much of the clutter,
leaving the potential object nearly centered, the additional

The SMFsbased object detection systems described prievariance from the&’; features is not necessary. It is important
viously were combined into a complete system for sceie note that the good performance of tfie SMFsis dependent
understanding. The objects to be detected are divided into twgon training data with accurate descriptions of the position
distinct categoriegexture-basedabjects andshape-basedb- and scale of the target object. Performance metrics for both
jects, which are handled using different recognition strategigs, and Co SMFs were shown in Section IlI-B, as well

D. Towards a Full System for Scene Understanding
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Fig. 9. Data flow diagram of the scene-understanding system (see text for details).

as those for a number of benchmark systems. In the final IV. DISCUSSION
system, _the classifiers outpu? is thresholdeq and a.stanq%!dA Computer Vision Perspective on the Model
local neighborhood suppression technique is used in whic o ) ) )

the maximum detection is recorded and the response withinTh€ computer vision system described in this work was
a neighborhood in scale space is suppressed. In Fig. 10 g@@structed from a neuroscience model of the primate visual

present some sample results obtained with the system. ~ cortex which is a rather unusual approach. The model itself
is based on a consensus among neuroscientists, and on fitting

available experimental data. Still, one may wonder about the

2) Pixel-wise detection of Texture-based objecIsxture- relationships between th8MFs and other computer vision
based objects are those objects for which, unlike shapggorithms: Because of the hierarchical and non-linear nature
based objects, there is no obvious visible inter-object pagf the architecture described in Fig. 1, there is little hope in
wise correspondence. These objects are better describedfitiing a simple general cost function that the system would
their texture rather than the geometric structure of reliabhiinimize. These types of functions are seldom available for
detectable parts. For tHstreetScenedatabase these currentlyhierarchical systems which are not probabilistic in nature, or
include buildings, roads, trees, and skies. explicitly set out to minimize an energy function. Instead we

next study each layer of the system separately.

Using the models trained in Section 1lI-C, and applying The first layer ;) consists in applying Gabor filters to
them to each pixel within the image, one obtains a detectitime input image, which mimics the processing by simple cells
confidence map of the size of the original image for eadh the primary visual cortex (V1). Gabor filters have been
object. This map is used to judge which pixel belongs taround in computer vision for decades, starting with Gabor’s
which texture-object category. Simply taking the value witdemonstration [2] that these elementary functions minimize
maximum response strength results in unsatisfactory resuttse uncertainty of their product, and Daugman’s extension [55]
as it was found that when the receptive field of a unit overlaps 2D. They are also very similar to DoG filters used since
a texture-boundary, the response becomes unreliable. Tthis 1960's to model receptive fields in the retina and primary
was addressed by smoothing the anomalous responsesvisyal cortex and to perform edge detection in computer vision
segmenting the input image and averaging the responses of(dee [56], [57]). Boviket al. [58] used Gabor filters for
detectors over each segment. As a result, uncertain responsésxditire segmentation and Sanger [59] for the computation of
the object borders are compensated for by the more numerdigparity in stereovision. In biometrics it has been used for face
responses within the object boundaries. This was accomplisliedognition (e.g., [60]), iris recognition as well as finger print
using the segmentation softwakelison[54]. Sample results recognition. Olshausen & Fields demonstrated that optimizing
of our texture recognition system can be seen in the bottarsparse coding scheme over a set of natural images produces
row of Fig. 10. a set of edge filters similar to Gabor filters [61]. Hence, it was
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Fig. 10. Top Row: Sampl&treetScenesxamples. Middle Row: True hand-labeling; color overlay indicates texture-based objects and bounding rectangles
indicate shape-based objects. Note that pixels may have multiple labels due to overlapping objects, or no label at all (indicated in white). Bottom Row: Results
obtained with a system trained on examples like (but not including) those in the second row.

expected that the output of Gabor filters on natural imagksal extrema are being created. This can be seen in the top
would be sparse. This result comes from the fact that Galrow of Fig. 11, where applying the max scale space to the
filters, as edge detecting filters, are activated only near imalgena image creates block like structures, which are new level
edges. Any further analysis step done on top of Gabor filtessts, and where the corners are new local maxima.
should take this sparseness property into account. However, our application of the local maximum operator is
The next layer ;) does something which is unorthodox foron the Gabor filtered image, which is a sparse representation of
computer vision systems — it maximizes the output of the filtetise original image. For such an input, the Gaussian scale space
locally. EachC'; unit computes the maximum over a small poalesults in a diluted image (see bottom row of Fig. 12). The
of S; outputs. While many systems maximize the output ahax scale space, on the other hand, is successful in keeping the
a detector over the entire image, local maximization has ordparse inputs through the consecutive applications of the max
been done recently. For part-based object detection [17], [2Blter. Put differently, for the analysis of gray level images, it is
[45], local detectors of each part are learned independentipportant not to create new structures while moving to coarser
and are then applied to local regions where the parts a&ales: in this, a Gaussian scale space is appropriate and a local
expected to appeatr. maximum type of analysis is not. For the analysis of sparse
Our work seems novel in that general purpose filters ateding, it is important to conserve the local maxima, which
being maximized over uniformly distributed local regions ifis precisely what the maximum operator does (the Gaussian
the image. In order to understand this stage, we can invakeale space on the other hand flattens the input).
some scale space terminology (see [62] for an overview). ScaleThe next two levels in our system involve the combination
space theory was mostly concerned at first with the Gaussi@nC; outputs using a template matching approach. Prototype
scale space. This scale space has many desirable propetéawplatesifatche} are extracted from the training images, and
such as separability, linearity, shift invariance, isotropy, homthe best match with these serve as an image representation.
geneity, and causality. The last property is an important onghe first template-based staggJ measures the “correlation”
causality means that no new level sets are created by go{Bgiclidean distance) of th€’; maps with many small crops
into coarser scales. A related property is to demand the nafptained from such maps.
creation of local extrema in coarser scales. In our applicationThe correlation is measured for the four orientations to-
a local maximization (instead of Gaussian blurring) is used trether, thus making our algorithm sensitive to large rotations
go from a fine to a coarser scale, in order to make @dhe of the image. Small rotations can be approximated by small
layer invariant to small local translations. As a pseudo scdlanslations, which are handled by the maximization atGhe
space, local maximization has some desirable propertiesieitel. Note that this stage is done at multiple scales, such that
is separable (one can apply it over the rows and then owegiven template taken from@,; map at a certain scale during
the columns), it is shift invariant, and it is homogeneous (ihe prototype templates collection stage of training, is matched
can be applied in the same way to each scale; applyingaitross allC; maps when constructing th@, feature vector.
repeatedly corresponds to moving into coarser and coar3ée last stage of our syster') is a standard maximization
scales). However, in general it is not an appropriate scale spawer the entire image (in principle and more biologically this
— among other problems, when applying it to an image nemould be over an area of the size of the fovea but not the whole
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Fig. 11. Max scale space images of Lena (top row) and of the Gabor filtered version of Lena (bottom row). While the gray-value image gets distorted, the
information in the sparse edge image is enhanced.

Fig. 12. Gaussian scale space images of Lena (top row) and of the Gabor filtered version of Lena (bottom row). While the gray-value image degrades
gracefully, revealing structures at different scales, the sparse edge image fades away.

visual field, see [15]). This is equivalent to scanning over adixcel at the recognition of texture-based objects which lack a
locations and scales for the maximum correlation with eagfeometric structure of reliably detectable parts in comparison
C, template selected in training. to theC;, SMFsas well as other benchmark systems.

B. What SMFs to Use for which Tasks? C. Object Recognition in Cortex: Remarks

To summarize our main results: in Section llI-A, we have Our system belongs to a family of feed-forward models
shown an application to th€s SMFsto the semi-supervised of object recognition in cortex that have been shown to be
recognition of objects in clutter. For such tasks, the trainiraple to duplicate the tuning properties of neurons in several
images are unsegmented: The target object is embedded/igual cortical areas [14]. In particular, Riesenhuber & Poggio
clutter and undergo changes in scale and position. Additionasiifowed that such a class of models accounts quantitatively for
because the training images come in different sizes ortye tuning properties of view-tuned units in IT cortex which
a global representation based on a fixed-length scale- aedpond to images of the learned object more strongly than
position- invariant feature vector such as thg SMFsis to distractor objects, despite significant changes in position
suitable. and size [63]. Model performance was so far only reported

As described in Section IlI-B for the recognition of shapefor simple artificial stimuli such as paperclips on a uniform
based objects in conjunction with a scanning approach (thackground [14], with no real-world image degradations such
images to be classified are segmented and normalized), a magechange in illumination, clutteetc. The success of our
“holistic” representation based afi;, SMFswhich are adept extension of the original model on a variety of large-scale
at detecting object boundaries tend to be superior. For sueal-worlds object recognition databases provides a compelling
tasks, the variations in scale and position are limited amdausibility proof for this class of feed-forward models.
clutter is almost completely absent. As a result, the scale- andA long-time goal for computer vision has been to build
position-invariance of th&’s SMFsdoes not bring any extra a system that achieves human-level recognition performance.
computational benefit. Until now, biology had not suggested a good solution. In fact,

Finally, in Section 1lI-C, we showed that th€s SMFs the superiority of human performance over the best artificial
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recognition systems has continuously lacked a satisfactorySecond, the sampling procedure we used here to learn
explanation. The computer vision approaches had also thatures is very simple. It is likely that not all features are
verged from biology: for instance, some of the best existingseful for recognition. Applying a standard feature selection
computer vision systems use geometrical information abdethnique may give further improvement in performance.
objects’ constitutive parts (the constellation approaches [19khdeed a very recent study showed that selecting the subset of
[21] rely on a probabilistic shape model; in [17] the positiothe C; SMFsthat are highly weighted by thevm classifier
of the facial components is passed to a combination classifgovide a substantial increase in performance [68].
(along with their associated detection values) whereas biologyThird, for all the tests reported here, we did not tune a
is unlikely to be able to use it — at least in the corticadingle parameter to get optimal performance. Instead, model
stream dedicated to shape processing and object recognitimerameters were set to match what is known about the primate
The system described in this paper may be the first counteisual system. Further improvements could likely be obtained
example to this situation: it is based on a model of objebly tuning some of the model parameters [69] (see Table I) —
recognition in cortex [14], [15], it respects the propertieperhaps through learning.
of cortical processing (including the absence of geometrical2) Beyond feedforward architecturesAs a feedforward
information) while showing performance at least comparabteodel of the ventral stream pathway, the architecture of
to the best computer vision systems. Fig. 1 cannot account for all aspects of our everyday vi-

It has been suggested that “immediate recognition” durirgon which involve eye movements and top-down effects,
scene categorization tasks may rely on partial processing Wiiich are mediated by higher brain centers and the extensive
the visual system based on a rapid and parallel detectionapfatomical back-projections found throughout visual cortex
disjunctive sets of unbound features of the target category [64hd not implemented in the present feedforward model. While
[65]. Interestingly a recent psychophysical experiment [6GJur system exhibits competitive performance compared to
suggested that spatial information about the objects locatigther benchmark systems, it remains limited compared to
may be absent during “immediate recognition”. That is, evesiological visual systems: the model seems to be able to
though human observers correctly detect a target object witkidcount for the level of performance of human observers on a
a frame embedded in a rapid sequence of images, they gigid categorization task [67] when the stimulus presentation
however not able to recover even its approximate location [6Gnes are short and back-projections are inactive [43]. Yet the
Such observation is in good agreement with the experimgsdrformance of the model remains far behind the performance
described in Section IlI-A in which the recognition of object®f human observers for long presentation times.
in clutter is based on hag of translation- and scale- invariant |t is important to point out that this recognition with a
C; features computed over the entire image for which spatigimpseonly constitutes the initial processing step in natural
information is lost. Indeed we recently showed that an eyision. In particular the model — in its present form — does
tension of the model described in this paper accounts for thet capture Gestalt-like properties such as continuity and
level and the pattern of performance of human observers [4rallelism or figure-ground segmentation, which probably
on a rapid animaVs.non-animal categorization task [67]. Thisinvolves lateral and feedback connections, yet to be inserted in
may be the first time that a neurobiological model, faithful tthe model. A feedforward system (like the one we presented
the physiology and the anatomy of visual cortex, providestire) could in principle be used as the front-end of a visual
realistic alternative to engineered artificial vision systems. system, as part of a prediction-verification loop [70]. The

. L . feedforward path would provide an initial hypothesis about

D. Open Questions, Limitations and Possible Improvementgha; opject is presented in the visual field, yet to be verified

1) Have we reached the limit of what a/this feedforwarthrough feedback loops.
architecture can achieve in terms of performancefhere  3) Future work: Perhaps the major limitation of our system
seem to be at least three directions that could be followeditp a real-world applications setting remains its processing
further improve the performance of the architecture describggeed (limited by thes; and C; stages) — typically tens of
here: First, very recent experiments [43] suggests that theconds depending on the size of the input image — which
addition of extra layerse(g., 53, Cs, Sy, etc), in agreement s too slow for a real-time application. Another important
with the anatomy and physiology of the visual cortex, maguestion, yet to be addressed, is whether the recognition results
provide a significant gain in performance. Additionally we alsgbtained with bags of’, features could be extended to other
found that loosening the hierarchy described in Fig. 1 may alggsks, such as face and gesture recognition or the analysis of
provide some significant computational benefits. As alreagjdeo.
suggested by the results of our experimental simulations in
Section 1, not all tasks are equal. Depending on the amount
of clutter and 2D transformations involved, it is sometime§-
beneficial to use the fine information from low-lev@1Fsand In the present paper we have described a new framework
some other times to use more invariant high-leS8édFs We for robust object recognition, which we have applied to
found that passing different types 8MFsto the final classifier two different recognition scenarios: First we have shown an
and letting the classifier choose for the optimal features mapplication to the problem of semi-supervised recognition of
further improve performance (for instance passing ligttand objects in clutter that does not involve image scanning. The
Cs SMF9 [43], [48]. system first computes a set of scale- and translation-invariant

Conclusion
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Cs, features from a training set of images, which is then passgd]
to a standard classifier on the vector of features obtained from
the input image. The system was tested on several obj G4
databases and shown to outperform several more complex
benchmark systeme.@.,the systems in [19]-[21] involve the

estimation of probability distributions; [17] uses a hierarchy 2l
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Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic
object recognition with invariance to pose and lighting,”"Aroc. IEEE
Conf. on Computer Vision and Pattern RecognitiolEEE Press, 2004.

D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction
and functional architecture in the cat's visual cortek,Phys, vol. 160,

pp. 106-154, 1962.

D. Perrett and M. Oram, “Neurophysiology of shape processing.”
Imaging Vis. Comp.vol. 11, pp. 317-33, 1993.

SvMs and requires accurate correspondences between positi¥e G. wallis and E. Rolls, “A model of invariant object recognition in the

training imagesj.e., 3D head models). Interestingly the ap-
proach was shown to be able to learn from few examples a
could compete with generative models that use prior categgry;
information [21].

Second we have described a new approach to scene un-
derstanding with an application toStreetScenedatabase in- [1]
volving different types of rigid objects as well as texture-based
objects. We found that the Standard Model features (SMF%
constitute a flexible framework that can be used in conjunction
with standard computer vision techniques,,image scanning
for the detection and localization of several target objects 8!
multiple scales and image segmentation for the recognition[g)g‘)]
non-rigid texture-based objects.
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