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Abstract

We consider the problem of learning to map between two
vector spaces given pairs of matching vectors, one from
each space. This problem naturally arises in numerous vi-
sion problems, for example, when mapping between the im-
ages of two cameras, or when the annotations of each image
is multidimensional. We focus on the common asymmetric
case, where one vector space X is more informative than
the other Y , and find a transformation from Y to X . We
present a new optimization problem that aims to replicate
in the transformed Y the margins that dominate the struc-
ture ofX . This optimization problem is convex, and efficient
algorithms are presented. Links to various existing methods
such as CCA and SVM are drawn, and the effectiveness of
the method is demonstrated in several visual domains.

1. Introduction
A great deal of attention is devoted to recognition tasks

in which the prediction value is a single label. Such prob-
lems are straightforward to benchmark, and they fit well
within conventional learning techniques. Some attention
was given, however, to the type of tasks that require the
prediction of a multidimensional outcome. In [13], efforts
to produce a textual descriptors of a video are presented,
and in [3] images are mapped to tags and vice versa. In [7]
one view of a road scene is compared to another, and in [24]
biological data is mapped to images.

Typically, in learning from visual data, the images are
converted to vectors for reasons of mathematical and algo-
rithmic convenience. Similarly, for example, textural de-
scriptions, collections of tags, and biological data are of-
ten transformed into vectors. Multidimensional perceptual
problems, involving images on one side and other forms
of structured data on the other, are therefore most read-
ily treated by either recovering a mapping from one vector
space X to another vector space Y (multidimensional re-
gression), or by mapping the two vector spaces X ,Y onto
one common vector space (as in CCA, see Section. 2). Of-
ten, these mappings are recovered based on a set of match-

ing training pairs {(xi, yi)} such that xi ∈ X and yi ∈ Y .
In this work we consider a margin-based solution for the

asymmetric mapping problem. Maximum margin methods
have proven to be effective for classification, regression,
and recently also in metric learning [23]. Here, we recover a
mapping T : Y → X that replicates or mimics in the space
of the transformed points TY the margins that exist in X .
Note that we do not maximize the margins, since this might
distort the space TY .

By definition, margins require the division of the sam-
ples into two groups. When computing the map, we con-
sider many such divisions and resulting margins. Many
previous attempts to extend vector-to-vector mappings to
use discriminative techniques have assumed that a pair of
{(xi, yj)} such that i 6= j (i.e., the points are not paired in
the training set), form an example of an incompatible pair.
In many applications we found this assumption to be harm-
ful. The reason might be that since the data is distributed
unevenly, some of the presumably non-matching pairs are
very similar in nature to the matching pairs.

Since non-matching pairs are typically not provided, and
since they cannot be deduced from the data, we seek an-
other source of discriminative information. To compute the
transformation T we rely on the existence of a group of
hyperplanes that separate the samples in the space of X .
These hyperplanes are obtained in various ways in accor-
dance with the application at hand. If such hyperplanes are
not available, random hyperplanes are used successfully.

2. Previous work
The problem of learning statistical connection between

matching vectors from two vector spaces is well studied.
The vectors are often combined to form two matricesX and
Y with the same order of columns. Once the model linking
the two matrices is learned, several tasks can be performed.
For example, decide, given two new vectors xnew and ynew
whether they are matching according to the model. A sec-
ond task is the multidimensional regression problem, where
the vector xnew is to be predicted given a vector ynew. This
second task is a harder one in the sense that by solving it,
the first task can be solved, but not the other way around.
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Multidimensional regression problems are often solved
by extending one dimensional problems such as linear ridge
regression [10], Support Vector Regression [20, 14], or Ker-
nel Regression [9]. Sometimes such solutions are applied
one coordinate at a time, and sometimes the entire output is
predicted at once [19].

While our method is an asymmetric method, and there-
fore belongs to the family of regression methods, we do not
try to find a transformation that maps y to x. Instead, we
aim to replicate a specific aspect of the distribution of the
points in X in the transformed points of the space Y . This
structure is defined by a set of hyperplanes in X and multi-
ple labels for each training sample. Often, we take the set
of hyperplanes to be uniformly sampled, and the labels to
be the projections of the datapoint in X by these random
hyperplanes. In this case, our method can be shown to be
related to symmetrical methods such as Canonical Correla-
tion Analysis (CCA).

In CCA [8], two transformations are found that cast sam-
ples from X and Y to a common target vector-space such
that the matching vectors from the two spaces are trans-
formed to similar vectors in the sense of maximal corre-
lation coefficient. Additional constraints enfore the com-
ponents of the resulting vectors to be pairwise uncorrelated
and of unit variance. The CCA formulation is, therefore:

Problem 1. non-regularized CCA

max
UX ,UY

n∑
i=1

x>i UXU
>
Y yi , subject to

n∑
i=1

U>Xxix
>
i UX =

n∑
i=1

U>Y yiy
>
i UY = I

The dimension of the target vector space is typically the
minimum of the two dimensions dM and dP and shall be
denoted by l. Thus UX is a matrix of dimensions dM × l
and UY is of dimensions dP × l. For the matching task
above, the vectors xnew and ynew are considered a match if
the distance ||(U>Xxnew − U>Y ynewj

)|| is small.
Since oftenly the feature vectors for both vector spaces

are of dimensions significantly higher than the number of
training samples, statistical regularization must be used to
avoid overfitting. A regularized version of CCA suggested
by [22] can then be used. Two regularization parameters
need to be determined ηX and ηY , to regularize the compu-
tations in each of the vector spaces. Another modification
of CCA is kernel CCA (e.g. [2, 27]), which uses the “kernel
trick” for capturing non-linear transformations.

CCA minimizes the distances between matching vectors
in X and Y , while disregarding the distances between non-
matching vectors. An alternative optimization goal com-
bines the minimization of distances between matching pairs
with the maximization of distances between non-matching

pairs, thus attempting to achieve maximal discriminative
ability. This approach has been developed in [12]. We have
extensively tested this approach, and have come to the con-
clusion that the combined energy (including the maximiza-
tion of the distances for non-matching pairs) does not out-
perform CCA when the non-matching pairs are obtained by
mixing the matching pairs.

The reason for the lack of improvement is that by us-
ing such a procedure many samples that are very similar to
matching samples are obtained and labeled non-matching.
One solution we have tried is to deliberately sample pairs
(xi, yj) that are unlike the matching pairs, i.e., we ex-
clude from the sampling of non-matching pairs those pairs
(xi, yj) for which xi is similar to xj or yi is similar to yj .
This does not seem to help – if the threshold for exclusion
is too high, the obtained non-matching pairs are not very
informative. If, however, the threshold is set low, the pairs
are too similar to matching pairs.

Previous attempts to formulate a max-margin CCA-like
problem include the Maximal Margin Robot [16]. Rather
than maximizing the sum of correlations, Maximal Margin
Robot maximizes the minimal correlation. Robustness to
outliers is maintained through the inclusion of slack vari-
ables. This formalization produces the following quadratic
programming

Problem 2 (Maximal Margin Robot).

min
T,ξ

1
2
‖T‖2F + C1>ξ , subject to

∀1 ≤ i ≤ n y>i Txi ≥ 1− ξi ξi ≥ 0

Similarly to our method, a transformation T is recovered.
However, it is assumed that both X and Y are of the same
dimension.

The Nearest Neighbor Transfer [24] is a simple alterna-
tive that does not require optimization. Given a new vector
xnew, this simple method chooses out of the training vectors
of X the closest one

arg
n

min
i=1
‖xi − xnew‖

and predicts the vector yi in Y . For the task of selecting a
matching vector for xnew out of a set of vectors {ynewk

∈
Y}k, the methods selects the vector most similar to the yi:
arg min

k
‖ynewk

− yi‖ .

Many of the above vector to vector mapping techniques
are symmetric, i.e., replacing the roles of the two vector
spaces does not change the outcome. This is in contrast
to the nature of many applications, where often one vector
space is much more reliable than the other. Our method,
presented in Section 3 maps from the less reliable vector
space Y to the more reliable space X such that strong dis-
tinctions in X are presented in the mapped data from Y .



3. Problem formulation
We are given n pairs of matching vectors (xi, yi)ni=1. For

example, xi ∈ X might depict the encoding of an image in-
dexed i in one camera, while yi ∈ Y depicts the a matching
frame from another view of the same scene. As mentioned
above, our framework is asymmetric and transforms data
from the less informative space to the more reliable one.
Assume that X is the reliable vector space and Y is the less
reliable one. For example, wide field of view may be better
suited for identifying the scene than a narrow field of view.

Moreover, assume that we have an additional set of k
hyperplanes in the space X each known to provide a good
separation of the n samples x1, . . . , xn into two classes, as-
sociated with labels Lij ∈ {−1, 1, 0} for the i − th hy-
perplane and the j − th sample (each hyperplane separates
the samples differently). The source of these hyperplanes
and labels is application dependent, and in [26] we provide
several examples on how to obtain them.

Denote the set of hyperplanes as w1, .., wk. We look for
a transformation T : Y → X , and scalars b1, .., bk such
that for each i, the hyperplane wi separates the n samples
Ty1, .., T yn around bi similarly to the labels Lij , i.e., we
encourage similarity between Lij and the sign of the pro-
jections w>i Tyj−bi for all i = 1..k and j = 1..n for which
Lij 6= 0. Typically, the hyperplanes and the labels are such
thatLij = sign(w>i xj−b0i ) for some scalars b01, .., b

0
k, how-

ever, b0i and bi often differ, and are not part of the input.
Defining the similarity between labels and the projec-

tions using correlations one would obtain an extension of
CCA, in which an extra set of hyperplanes is used. Alter-
natively, inspired by the success of large-margin methods
such as SVM [4], and LMNN [23], our method minimizes
the hinge-loss. In contrast to SVM and LMNN, the mar-
gins are not maximized in our framework; Instead, they are
replicated, i.e., and we seek to have the same margins in the
space of transformed samples TY as exist in the space X .

For each of the k separators wi, i = 1..k, we compute or
otherwise obtain a goal marginmi. Typically, this margin is
computed in the vector space X on the training samples xj
as mi = minj:Lij>0 w

>
i xj − maxj:Lij<0 w

>
i xj . Alterna-

tively, any definition of soft margins can be employed, e.g.,
in the non-separable case.

Using the above definitions, we define the following op-
timization problem, which yields a mapping T : Y → X
that replicates the margins in X .

Problem 3. (MRM: Margin Replicating Mapping)

min
T,
−→
b

∑
ij

[mi − Lij(w>i Tyj − bi)]+

This is an unconstrained piecewise linear convex opti-
mization problem that can be rewritten as linear program-
ming by adding slack hinges:

Problem 4. (MRM as linear programming)

min
T,
−→
b

∑
ij

ξij , subject to

ξij ≥ mi − Lij(w>i Tyj − bi)
ξij ≥ 0

In Sec. 4 we develop a gradient descent algorithm for
MRM. Its first iteration (when starting at zero) is in the lin-
ear regions of the objective function, and no hinges are ac-
tive. We show that in this case, there is a deep relation to
CCA (see Section 5), therefore, in a sense, the first iteration
follows CCA and then evolves.

4. Optimization
For such convex cost functions, the gradient descend

method is guaranteed to converge to the global minima,
however, this convergence is slow for a large number of
separators. To speed up the convergence, we have devel-
oped a suitable sample and backtrack method depicted in
Figure 1. The method is modeled after the dagging and
backtracking modules of boosting methods [18, 5]. In the
future, to further speed up the computation, we plan to in-
corporate within the procedure a column-generation linear-
programming module [6].

The reason that the gradient descent methods would con-
verge slowly on Problem 3 is that for every combination
of a separator and a sample, there is a term of the form
of max(∗, 0), thus, there are many non-differentiability
“break” points. During the gradient decent procedure (or
more precisely sub-gradient), we cannot have a step size
which is larger than the distance to the next break point (to
avoid the risk of ’overshooting’), and the progress is there-
fore slow. In order to reduce the effective number of break
points we sample a random subsets of hinge terms - thereby
making the gradient step both longer and faster to compute.
Each iteration samples a different subset ensuring diversity
of search directions and a faster convergence.

5. Connection to other methods
In this section we show that both CCA and SVM are

special cases of MRM. Also SVR and MMR are closely
related. First, note that unlike most learning algorithms,
MRM objective is bounded, thus does not intrinsically re-
quire regulation. Yet, regularized MRM can be defined:

Problem 5. (bounded MRM)
min
T,b

∑
ij

[mi − Lij(w>i Tyj − bi)]+ w.r.t.∑
ij

(w>i Tyj)
2 ≤ 1

This is exactly the problem of 3, where the solution is
bounded. Since the range of projections T is convex, a



function [T,b]=MRM({−→yj}, {−→wi}, {mi}, {lij})
Initialize T:=0 and b:=0
Repeat c times

Select at random for i = 1..p:
j+i ,k

+
i s.t. l

j+i k
+
i
> 0

j−i ,k
−
i s.t. l

j−i k
−
i
< 0

Set T ∗ := T //to allow backtracking
Set dT :=

∑
i[(wk−i

y>
j−i

)− (w
k+i
y>
j+i

)]

Set ξi := m
k+i
− w>

k+i
Ty

j+i
− b

k+i

Set ψi := m
k−i

+ w>
k−i
Ty

j−i
+ b

k−i

Set dξi := m
k+i
− w>

k+i
dTy

j+i
− b

k+i

Set dψi := m
k−i

+ w>
k−i

dTy
j−i

+ b
k−i

Let r be a random number in [0,3]
Repeat 10r times //try both long and short loops

Minimize λ := mini[min( ξi
dξi

, ψi
dψi

)]

Save argmin: index i0.
Put s0 := +1 if ξ, -1 if ψ

Set T := T − λ dT
Set ξ := ξ − λ dξ and ψ := ψ − λ dψ
if s0 = +1

w := w
k+i0

y := y
j+i0

if s0 = −1
w := w

k−i0
y := y

j−i0
Set dT := dT + s0wy>

∀ i Set dξi := dξi + s0(w>w
k+i

)(y>y
j+i

)

∀ i Set dψi := dψi − s0(w>w
k−i

)(y>y
j−i

)

End inner loop
∀ i rebalance bi via convex 1D optimization.
If global objective function evaluated on T
is worse than that of T ∗ then backtrack by:

Set T := T ∗

End main loop
Return T and b

Figure 1. Pseudocode of a method for computing the transforma-
tion T and biases b in the Margin Replicating Mapping mehtod.

global solution can be found by using a gradient decent al-
gorithm similar to the one of Sec. 4. In our experience the
bound is superfluous, however, since the linking to other
methods is done asymptotically, such bounding simplifies
the arguments.

Unlike MRM, the methods we compare to, namely, CCA
(Problem 1), Maximaum Margin Robot (Problem 2) and
SVR, do not employ hyperplanes as input. The linking
is therefore performed for the case where random hyper-
planes are used. The margins are set with accordance to the
desired reduction. Specifically, for the random hyperplane
case, Problem 5 would reduce to CCA if all mi approach
infinity and would reduce to an algorithm which closely re-
sembles MMR if we set mi = 1. Lastly, MRM reduces to
SVM, for a unidimensional X taking the role of labels.

5.1. connection to SVM and SVR

In the 1D case, where the dimension of X is 1, w be-
comes a scalar, and the MRM problem reduces to:

Problem 6. 1D MRM:
min
t,b

∑
j

[m− Lj(t>yj − b)]+

Problem 6 is equivalent to problem 7 below when γ = 0,
as can be seen by dividing objective above by the positive
(exhaugenic) constant m and substitute u := t

m .

Problem 7. SVM as unconstrained minimization:
min
u,b

(γ‖u‖2 +
∑
j

[1− Lj(u>yj − b)]+)

Problem 7 is exactly the optimization problem of SVM,
formulated via the hinge loss.

Note that both problems, SVM and MRM, are often
bounded even without regularization. Yet, SVM is typi-
cally regularized, to make sure the largest margin is selected
among all classifiers for which the penalty is minimized.
Similarly, MRM can be also be regularized. However, ex-
perimentally, we found out that it results in little gain for
high dimensional X . In such cases, the penalties for mis-
classified Tyj are strong enough even for low norm of T
to stabilize the solution. Since we disregard the regulariza-
tion term of MRM, we obtain an algorithm which has no
parameters other than the input data and set of hyperplanes
on X . Even in the case of random hyperplanes, T is forced
to match the desired structure as occur in Co-Kiring based
solutions to SVR [21]. In contrast to semi-parametric meth-
ods such as [15], MRM assumes no prior on bias terms b
and learn them from input. Of course, such priors, when-
ever available, might improve the algorithm’s performance.

5.2. Connection to CCA

Links between MRM and the non-regularized CCA
(problem 1) are presented in [26]. Similarly to CCA, the
proposed variant receives zero mean inputs (centralized
data). Then, given large mi’s (forcing the hinge terms to
become loose), MRM will behave similarly to CCA. Note
that the first iteration of MRM ignores all hinges, since the
hinge functions are linear near the origin. Thus, the first
iteration of MRM acts similarly to the case of mi = ∞.
Further iterations refine the produced transformation. This
observation was verified on synthetic data [26].

6. MRM modifications

The MRM framework is flexible, allowing for several
adaptations. The first two modifications below have been
implemented and tested. The weighted MRM typically pro-
duces results that are similar to those of the vanilla MRM.



Kernel MRM is often used to speed up experiments involv-
ing high dimensional data. The implementation of the third,
sparse MRM, is left for future work.

6.1. Weighted MRM

This variant specifies a confidence level for each label
Lij . One natural choice of confidence is to use, for a hyper-
plane wi and example j the value Lij = w>i xj − b0i as the
signed confidence value (recall that b0i is the bias for hyper-
plane wi in the space X ). The sign of this value sign(Lij)
is the label, and its absolute value |Lij | a measure of con-
fidence (in practice it is beneficial to trim high confidence
values). The following problem is optimized:

Problem 8. Weighted MRM:
min
T,b

∑
ij

|Lij |[mi − sign(Lij)(w>i Tyj − bi)]+

6.2. kernelized MRM

This variant uses the kernel trick to allow for non-linear
mappings, and to reduce computational time for high di-
mensional vector spaces. Let φ : X → HX and ψ : Y →
HY be two transformations that embed the input samples in
dimensional Hilbert spaces. We implicitly recover a trans-
formation τ : HY → HX , without performing operations
in HX or in HY . Since the recovered T is a linear combi-
nation of outer products, it can be represented as products
of the form wiψ(yj)>. During the algorithm run, the trans-
formation T is applied to the datapoints in HY , and the
results is correlated with wl, thus obtaining scalars of the
form Kφ(wl, wi)Kψ(yj , yi).

We used this kernalization to speed up the linear case
when the dimensionality is much larger than the number of
examples. While the complexity of each iteration in the Al-
gorithm of Figure 1 (dominated by re-calculations of the ob-
jective function) isO(nkd), the complexity of each iteration
in the kernelized algorithm is O(kn) if W>W and Y >Y
are precomputed (this precomputation takesO(dn2+dk2)).

6.3. sparse MRM

To achieve an intrinsic feature selection, the columns of
T might be encouraged to become zero, by binding appro-
priate cost terms (as suggested by [17]). We wish to elimi-
nate entire columns, and therefore apply these terms to the
maximal absolute value of each column:

Problem 9. minimize over T ,β,ξ,ψ of∑
ij

|Lij |ξij + C
∑
r
ψr w.r.t.

∀cr ψr ≥ Tcr , ∀cr ψr ≥ −Tcr
∀ij ξij ≥ mi − sign(Lij)[

∑
rc
Trcyrjwci −

∑
r
βryrjwri]

∀ij ξij ≥ 0

Figure 2. Precision/Recall statistics for matching car images be-
tween two cameras. We overlay our results on top of the results
of Figure 5 in [7]. MRM performs similarly to the best image-
matching technique of [7] eventhough a simple representatoin is
used. Regularized CCA (best parameter found) yields poor results
with this poorly discriminative data and Linear Ridge-Regression
performed even worse (not shown).

7. Results

We present results for the MRM algorithm for various
applications. These include camera to camera mapping, and
mimicking the performance of face recognition techniques.
Other examples are provided in [26]. Below, 2000 random
hyperplanes were used in all examples.

7.1. Matching between cameras

In several applications it is useful to compare the the out-
put of multiple cameras. We employ two such datasets. The
first was presented in [7] and contains the output of detected
cars in two traffic cameras. The other is collected by us. In
the first dataset, the task is to identify car based on a sin-
gle view from the other camera, while training is on such
matched pairs, but of different cars. The training set con-
tains about 120 cars, and the test set contains 50 different car
types. This yields a training set with 2922 samples, each is
a 1200 dimensional vector, describing the three channels of
rescaled 20x20 pixel images. Training time was 17 minutes
on a standard PC. Results are comparable to [7], which em-
ploys a sophisticated image matching technique. See Fig. 2.

We also received 4 minutes of two synchronized video
sequences with partly overlapping fields of view. We used
half of the video to apply MRM with random hyperplanes.
To test, we randomly picked from the second half of the
video one frame from one camera, and 10 frames from
the other camera, out of which 9 are random distractors.



(a) (b)
Figure 3. Sample frames from two synchronized videos. Frames
from view (b) are mapped to view (a). The views overlap only
partly, and are taken at very different angles. The red crosses mark
the most prominent location in the view of (a) are pixels in range
(i.e. columns in mapping matrix T ) that their norm is > 10% of
the strongest. These turn out to be at the expected locations within
the region viewed by both cameras. We run also the opposite di-
rection and got analog marks in (b). Here algorithm have chosen
to focus on the area when vast majority of motion occurs. Note
that the two frames here are not matched in time.

Figure 3 depicts two sample frames. In this experiment,
both feature spaces were simply 1200 dimentional vectors
obtained by resizing the images to 40x30 pixels. Train-
ing MRM with 290 frames has taken 2 minutes. On the
frame from the camera we used to map from, we mark red
crosses to sign the output coordinates whose weight (norm
of relevant column in mapping matrix) if at least 10% the
maximum (most important pixel in spatial domain). Note
that marks are spatially continuous, as desirable, although
we did not employ such constraints. Figure 4(a,b) shows
the performance of the various algorithms: Nearest Neigh-
bor Transfer (Section 2), regularized CCA, and our MRM
method. MRM considerably outperforms all other methods.
We have also tried to analyze the opposite (less plausible)
direction: map from the wide field of view into the narrow
one. Analogous graphs appear in Fig. 4(c,d). As expected
results are less impressive, however MRM still outperforms
the two other methods.

7.2. Mimicking algorithm performance

One task that is framed naturally in the vector-to-vector
learning framework is the task of mimicking an unknown
algorithm. We test this application in the context of face
recognition, using the LFW database [11]. We wish to rec-
ognize face images based on the well-proven LBP feature
set [1]. LBP represents each face image as a vector. For the
task of comparing two face images and deciding whether
they belong to the same person, we consider the vector v12
of absolute differences |v1 − v2|, where v1 and v2 are the
LBP encodings of these images.

Training linear SVM on this vector, using 9 splits of the
LFW benchmark for training and one for testing, and re-
peating ten times, yields an average performance of 69.5%,

(a) (b)

(c) (d)
Figure 4. Performance charts for the video to video matching task.
(a) histogram of the ranking of the true frame within the list of
distractors as given by each algorithm. As can be seen, MRM
typically ranks the highest the correct frame. (b) ROC curves for
same vs not-same queries in the same settings, i.e., the accuracy in
which each method is able to distinguish between matching pairs
and non-matching pairs of frames. (c,d) Performance charts for
the video to video matching task, now mapping in the opposite
direction.

which is slightly higher than applying a simple threshold to
the Euclidean distance (67.2%) between v1 and v2.

To further improve performance, we employ the output
of more advance algorithms. We employ the raw outputs
of the 16 different classifiers employed in [25] to obtain a
results of 78.5%. Out of these 16 methods, only one can be
directly computed from the vector of absolute LBP differ-
ences vij (the Euclidean distance of LBP descriptors). Us-
ing MRM, we map these vectors of absolute differences to
the 16D output obtained by the methods of [25]. Thus, the
input to MRM contains 4800 samples (pairs of faces, only 8
training splits, since one is used as the background sample
set of [25]), each consisting of a vector of 3717 absolute dif-
ference and a vector of 16 classifier outputs. Training takes
26 minutes.

We then train SVM on the values of Tvij and obtain an
average performance level of 74.6%, which is not as high
as the 16 classifiers together, but is much easier to compute:
since both T and the learned SVM are linear, the final clas-
sifier is linear as well. CCA and linear ridge regression,
applied in a similar setting, both produce results lower than
what is obtained with SVM itself (69.5%), for a wide range
of regularization parameters.

We have mimicked the performance of the face recog-
nition algorithm based on the raw output of the classifiers



(real numbers). If the algorithms are give as a black box,
and only the final prediction is given, a confidence level can
be estimated empirically, by adding noise to the input data.
This is left for future research.

8. Conclusions

The problem of perceptual inference based on pairs of
matching vectors is applicable to a wide range of computer
vision problems. Despite some effort, the classical regular-
ized CCA algorithm seems to performs better than many of
the more recent contributions. This might stem from the ad-
dition of discriminative information of non-matching pairs
that is either much less relevant than the information ob-
tained by matching pairs, or is obtained using assumptions
that are often false.

Here we employ margins, however, unlike previous work
this is done by using discriminative information provided
in the feature space itself. Another contribution is that we
refrain from maximizing the margins in the transformed
space, and instead aim to replicate the input margins. Since
the input margins are given in one of the two spaces, and
replicated in the other, the problem is asymmetric by nature.
We note that many of the applications in vector-to-vector
learning are indeed asymmetric.

While our method maps one space to the other, we do
not perform classical regression analysis. Our optimization
framework allows the mapped points to considerably differ
from the matching points in the other space. The emphasis
is put on similar margins, not similar coordinates, and the
optimization computes a new set of bias terms.
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