Searchlight Based Feature Extraction for Brain Imaging

NCSP Research Seminar

Shahar Jamshy

Supervisors:
Prof. Nathan Intrator & Prof. Talma Hendler

In collaboration with the Functional Brain Center,
Tel Aviv Sourasky Medical Center
Brain Imaging Modalities

- MRI, fMRI, PET, SPECT, EEG, ECoG, MEG
- Many features
 - 3D images
 - High resolution (spatial or temporal)
- Few observations
 - Subject/patient availability
 - Limited experiment time
- Noise
 - Measuring equipment
 - Individual differences

[Beutel et al. 2000]
Computer Science and Brain Imaging

- Image reconstruction
- Noise reduction
- Registration
- Normalization
- Inference
 - Quantify and interpret pathologies and anomalies
 - Quantify and interpret brain states
 - From statistical inference to prediction

[Friston, 2006]
Machine Learning in Brain Imaging

- Difficult – many features, few observations
- Challenge – find only the relevant features
- My proposal
 - Utilize domain specific knowledge to select features
 - Combine local and global modeling

- Preliminary work
 - Feature extraction using spherical searchlights and local SVM modeling.
 - Holistic fMRI classification framework
 - Improvement over state-of-the-art methods
Can we predict?

- Is the subject seeing a sentence or a picture?
- Which of several categories of words or pictures is a subject seeing?
- Is the subject reading an ambiguous sentence?
- Will the subject answer correctly?
- What is the orientation of a stimulus visual grating?
- Is there a face/music/tools/… in a film clip being seen?
- What is the subject perceiving?
- Is the subject concealing information?

Questions asked

- **Where** in the brain is the information represented?
- **When** does the brain represent the information?
- **How** is the information represented in the brain?

- For a single subject
- For a group of subjects
- Between groups of subjects
 - Patients vs. Healthy
 - Trained vs. Untrained
 - Different prior condition
Electroencephalography (EEG)

- Hans Berger, 1924
- Electric activity measured on scalp
 - Amplitude ~100 μV
 - Frequencies: 0.5-1 kHz
- Different frequencies believed to represent underlying neural states

Advantages
- Cheap (~50K$ research, ~500$ consumer)
- High temporal acuity (1 kHz)

Disadvantages
- Low spatial acuity (~cm)
- Very noisy
Electrocorticography (ECoG)

- Electric activity measured on the cortex
- Epileptic patients undergoing pre-surgical evaluation

Advantages
- High temporal acuity (1kHz)
- Medium spatial acuity (~10mm)
- Low noise

Disadvantages
- Invasive - low availability
- Electrode location based on clinical considerations
Magnetic Resonance Imaging (MRI)

- Raymond Damadian, 1977
- Resonate hydrogen atoms in the body
- Reveals soft tissue structures
- Signal depends on organization of hydrogen
- In the brain – CSF, gray matter, white matter
- Very high spatial acuity (~mm)
Functional MRI (fMRI)

- John Belliveau, 1991
- Small changes in MR signal caused by blood oxygenation level (BOLD)

Advantages
- High spatial acuity (~3mm)

Disadvantages
- Low temporal resolution (~2 sec.)
- Expensive (~3M$)
- Very Noisy (3% of MR signal strength)
General Linear Model (GLM)

GLM: separate model fitting for each voxel mass-univariate analysis!
Limitations of GLM

- Multiple comparisons (60k comparisons)
 - FDR or other FWER eliminate most results
- Individual differences
- Cognitive/Sensori-motor states can be expressed in the brain as *distributed patterns of brain activity*
Multivariate pattern analysis (MVPA)

- Take advantage of the information contained in activity patterns from multiple features
- Increase in sensitivity: weak information in single voxels is accumulated
- Multiple regions/voxels may only carry info when jointly analyzed
- Can prevent information loss due to spatial smoothing
- Can preserve temporal resolution and prevent averaging

Processing Stream

- Acquire data
- Preprocess data
- Select features
- Generate patterns
- Label patterns
- Train the classifier
- Validate/Cross-validate
- Statistical inference

[Heynes & Rees 2005]
Feature Reduction – The Problem

- Data is typically sparse, high-dimensional and noisy
- Number of observations is low
- Classification is sensitive to information content in all voxels
- Many uninformative voxels = poor classification (due to over fitting)
Feature Reduction – Solutions

- **Solution 1: Feature selection**
 - Select subset from all available features
 - Original features remain unchanged

- **Solution 2: Feature extraction**
 - Create new features as a function of existing features
 - Linear functions (PCA, ICA,…)
 - Nonlinear functions (hidden units in a neural network)
 - Domain specific methods

[Guyon & Elisseeff, 2003]
Feature Selection in Brain Imaging

- **‘External‘ Solutions**
 - Anatomical regions of interest
 - Independent functional localizer
- **‘Internal‘ univariate solutions**
 - Activation vs. baseline (t-Test)
 - Mean difference between conditions (ANOVA)
 - Single voxel classification accuracy
- **‘Internal’ multivariate solutions**
 - Searchlight classification

[Norman et al. 2006, Pereira et al. 2009]
Feature Selection in Brain Imaging

<table>
<thead>
<tr>
<th>method</th>
<th>number of voxels</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>200</td>
<td>400</td>
<td>800</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>accuracy</td>
<td>0.81</td>
<td>0.81</td>
<td>0.75</td>
<td>0.73</td>
<td>0.74</td>
<td>0.65</td>
</tr>
<tr>
<td>searchlight</td>
<td>0.81</td>
<td>0.82</td>
<td>0.82</td>
<td>0.77</td>
<td>0.79</td>
<td>0.65</td>
</tr>
<tr>
<td>activity</td>
<td>0.79</td>
<td>0.80</td>
<td>0.77</td>
<td>0.73</td>
<td>0.74</td>
<td>0.65</td>
</tr>
<tr>
<td>ANOVA</td>
<td>0.77</td>
<td>0.75</td>
<td>0.75</td>
<td>0.73</td>
<td>0.71</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Pereira et al. (2009)
Contribution

- Formalize the MVPA framework
- Select features based on local modeling when number of observations is low
- Introduce a feature extraction method based on local modeling
- Improved whole-brain classification results on challenging fMRI data
Suggested Framework

Given the set of features \(F = \{v_i\} \) we consider the supervised learning task \(\{\bar{x}_k, y_k\} \) where \(\bar{x}_k = \{x_{k,v} \mid v \in F\} \)

1. Create \(S = \{S_j \subseteq F\} \), a set of subsets and the observation vectors \(\bar{x}_{k,S_j} = \{x_{k,v} \mid v \in S_j\} \)

2. Find a function \(r : \|S\| \rightarrow \mathcal{R} \) based on the classification performance of \(\{\bar{x}_{k,S}, y_k\} \) and select the best subsets \(\hat{S} = \{S_j \mid r(j) > \hat{r}\} \)

3. For each \(S_j \) create a feature extraction operator \(f_j : S_j \rightarrow \mathcal{R}^{\hat{n}} \) where \(\hat{n} \ll \|S_j\| \)

4. Create a new learning problem \(\{\hat{x}_k, y_k\} \) where \(\hat{x}_k = \{f_j(\bar{x}_{k,S_j}) \mid S_j \in \hat{S}\} \)
Extract searchlight feature subsets

Train and test classifier for each searchlight

Select best performing searchlights

Train classifier for selected searchlights

Extract DDF

Train whole-brain classifier
Create Subsets – Searchlight Analysis

- Classification is performed on a voxel and its (spherical) neighborhood
- Classification accuracy is assigned to centre voxel
- Searchlight is moved across entire dataset to obtain accuracy estimates for each voxel
- Is used for feature selection or to generate a brain map of p-values
- Given a distance on the features we define $S^{SL}_j = \{ v \in F \mid d(v, v_j) < \hat{d} \}$

[Kriegeskorte et al. 2006]
Subset Ranking

- Use local modeling with an inner cross-validation tier
- Use a balanced leave-k-out scheme
- In each round:
 1. Randomly divide dataset into groups of k, each group contains an equal number of observations from each label
 2. For each group: train on all other groups, test with remaining group
- Use overall performance of several rounds to rank each subset
Support Vector Machine (SVM)

If classes have overlapping distributions, SVM's account for misclassification errors by introducing additional slack variables [Vapnik, 1998]
Extract Features – Discriminating Distance Features (DDF)

- Given \(\{\mathbf{x}_{k,S_j}, y_k\} \) many classifiers find a discriminating hyper-plane:
 \[
 \mathbf{w}_j \cdot \phi(\mathbf{x}) - b_j = 0
 \]

- For a new observation \(\mathbf{x}_N \) the model will classify:
 \[
 y_N = \text{sign}(\mathbf{w}_j \cdot \phi(\mathbf{x}_N) - b_j)
 \]

- DDF operator is defined by:
 \[
 \text{DDF}_j(\mathbf{x}_N) = \mathbf{w}_j \cdot \phi(\mathbf{x}_N) - b_j
 \]
Related methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Realization</th>
<th>Pros/Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single voxel accuracy feature selection</td>
<td>Searchlight with radius of 0</td>
<td>Low features/Not multivariate</td>
</tr>
<tr>
<td>Searchlight center feature selection</td>
<td>Extraction operator selects central voxel</td>
<td>Low features/No use of all searchlight data</td>
</tr>
<tr>
<td>Searchlight full feature selection</td>
<td>Extraction operator selects all voxels</td>
<td>Use of all searchlight data/High features</td>
</tr>
</tbody>
</table>
Experimental setup

- In collaboration with Omri Perez
- Aim – to identify the neural trace of recently performed actions
- A neural trace of our prior recent experience is necessary for the sense of reality and continuity in our life.
- Ongoing debate whether neural marking of prior experience is mediated by action perception or cognitive-memory systems.
- Means – fMRI study that shows subjects clips of recently performed actions
36 movies
- 18 for each action type, 6 for each of the 3 sub actions
- 9 seconds each with short fixation screen periods of 6-9 seconds
- Due to inattention/adaptation only the first two clips of each type are included in analysis.

26 subjects participated, 1 removed due to excessive movement
Preprocessing

- Preprocessing (Brain Voyager QX)
 - Time and motion correction
 - Detrending
 - Talairach normalization
 - Gaussian smoothing

- Calculate difference in response between viewing a clip of task A and a clip of task B
 - Correlate the data with the appropriate regressors
 - Take into account the hemodynamic response
Experimental Setup - Summary

- For each subject
 - One brain map
 - Average difference in response between tasks
- Task
 - Classify subjects by performed action
- Dataset
 - 60k features
 - 25 observations
GLM Results

- No results when applying a multiple comparisons correction

8 mm smoothing, motion correction in preprocessing and GLM
Shortened ANCOVA interaction results actionXmovies
Searchlight Map Results

8 mm smoothing, motion correction in preprocessing and GLM shortened MVPA Searchlight (Action group prediction) Acc > 0.75

100% CV classification accuracy
Outer CV Fold

Extract searchlight feature subsets

Train and test classifier for each searchlight

Select best performing searchlights

Train classifier for selected searchlights

Extract DDF

Train whole-brain classifier
Results – Whole-brain

(a) Performance Relative to Selection Threshold

- SL Extract
- SL Full Select
- SL Center Select
- Accuracy Select
Results – Features Number

Performance Compared With Average Number of Features

- SL Extract
- SL Full Select
- SL Center Select

Performance (%)

Number of Searchlight Subsets

Step Two Performance Threshold (%)

Values:
- 100
- 98.6
- 97.2
- 95.8
- 94.4
- 93.1
- 91.7
Results – Searchlight Location

A

x = 10

B
z = 20
Results – Inner Cross-validation

(a) Performance Relative to Selection Threshold
One inner CV round

(b) Performance Relative to Selection Threshold
Two inner CV rounds

(c) Performance Relative to Selection Threshold
Three inner CV rounds

(d) Performance Relative to Selection Threshold
Four inner CV rounds
Results – Whole-brain Classifier

(a) Ridge Regression vs SVM

(b) Logistic Regression vs SVM
Summary of Results

- High whole-brain classification accuracy on challenging fMRI classification task

<table>
<thead>
<tr>
<th>Method</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Searchlight center selection</td>
<td>Low performance due to inappropriate features</td>
</tr>
<tr>
<td>Searchlight full selection</td>
<td>Performance drops as number of features grow</td>
</tr>
<tr>
<td>Searchlight-DDF</td>
<td>Best results with a lower number of whole-brain features.</td>
</tr>
</tbody>
</table>

- Importance of choosing enough inner-CV folds
- Improvement independent of whole-brain classifier
Thank You

Questions?