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Abstract

Partially Disjunctive Shape Analysis

Roman Manevich
Doctor of Philosophy

The Blavatnik School of Computer Science
Tel-Aviv University

Modern programs rely significantly on the use of dynamically-allocated linked data struc-

tures. Shape analysis algorithms statically analyze a program to determine information about

these data structures, e.g, “does variable x point to an acyclic list?” and “is it possible to reach

an object via pointer traversals from two different variables?” These algorithms are conserva-

tive (sound), that is, the discovered information is true for every program input, and thus can

be applied for various uses, such as program verification, optimization, parallelization, etc.

Disjunctive shape analyses operate by abstracting the concrete memory stores into (bounded)

shape graphs. At control flow join points of the program, the shape graphs are merged by using

disjunction (set union), which often leads to an exponential explosion in the number of shape

graphs. In concurrent programs this problem is even more acute, due to the interleaving of

different threads.

We present new “partially disjunctive” shape analyses aimed at taming the size of the state

space by abstracting disjunctions, as well as soundly approximating program statements. We

implemented and applied these analyses to prove propertiesof sequential programs and fine-

grained concurrent programs. We were able to prove a varietyof challenging properties, in-

cluding cleanness properties, shape invariants, and linearizability of concurrent data structure

implementations. The new shape analyses scale better than the disjunctive shape analyses,

usually running faster by orders of magnitude, and still able to prove the desired properties.
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Chapter 1

Introduction

In this thesis, we are interested in statically inferring properties of programs manipulating
linked data structures, which is referred to asshape analysisand is a special case ofabstract
interpretation[CC77]. The main application of shape analysis in this thesis is verification
of safety properties, including absence of null dereferences, absence of memory leaks, data
structure invariants, absence of concurrent modification exceptions in Java, and checkinglin-
earizabilityof concurrent data structures.

Requisites and Theoretical Backgrounds. A requisite for understanding the material in this
thesis is familiarity with static program analysis via abstract interpretation (for an introduction
to abstract interpretation see Nielson et al. [NNH99]), including understanding of the following
concepts:abstraction, concretization, abstract domains, abstract transformers, and inference
of program invariants bychaotic iteration(fixed-point computation). We next include a brief
reminder to these concepts. We also include the necessary parts of the theory of parametric
shape analysis via3-valued logic [SRW02] in Chapter 2. In this framework, concrete states
and abstract states are represented by logical structures,which can be thought of as directed
graphs with multiple types of edges and Boolean properties associated with the vertices.

Abstract Interpretation Essentials. In this thesis, we will assume that an abstract domain
A is given by a complete latticeDA = 〈⊑A,⊔A,⊓A,⊥A,⊤A〉 whereA is the set of elements;
⊑A is a partial ordering on the elements;⊔A is the least upper bound, orjoin, operator;⊓A is
the greatest lower bound, ormeet, operator;⊥A is the least element of the lattice; and⊤A is
the greatest element of the lattice. We say that an elementc1 is moreprecisethan an element
c2 whenc1 ⊑ c2.

In abstract interpretation [CC77], an abstraction functionαC,A : C → A maps an element
of the concrete domainC to the most precise element that represents it in theabstract domain
A. The meaning of an abstract elementa ∈ A is given by aconcretizationfunctionγA,C : A →
C. That is, we say thata ∈ A represents any elementc ∈ C such thatcγA,C(a). Moreover, the
pair (γA,C, αC,A) forms aGalois Connection.

In the sequel, we will drop the subscripts and superscripts denoting the semantic domains
when no confusion is likely.

15



16 CHAPTER 1. INTRODUCTION

A semantic functionF ♯ : A → A is a soundover-approximation of a semantic function
F : C → C if the following holds:

F (γ(a)) ⊑ γ(F ♯(a)) .

We call the functionF the concrete transformer and the functionF ♯ the abstract transformer.
In this thesis, we will often be interested in over-approximating the meaning of a program
statement[[st]] over a finite abstract domainA.

The semantics of a program is given in terms of a least fixed point lfp(F ) and its abstract
semantics is given bylfp(F ♯)1. Properties of a program can be conservatively inferred by start-
ing from an initial elementa0 and then applying the functionF ♯ over and over until reaching
the fixed point. This process is guaranteed to end when the height of the latticeA is finite.

Finally, we note that two abstract domainsA1 andA2 may be equivalent, i.e., isomorphic,
offering different encodings of the same information. Thatis, for every concrete elementc ∈
C, we haveγA1,C(αC,A1(c)) = γA2,C(αC,A2(c)).

Disjunctive Abstractions vs. Partially Disjunctive Abstractions. An abstract domainA
(and the corresponding abstraction) is said to bedisjunctivewhen the following holds for every
two abstract elementsa1, a2 ∈ A:

γ(a1) ⊔C γ(a2) = γ(a1 ⊔A a2) .

Otherwise (whenγ(a1)⊔C γ(a2) ⊏ γ(a1 ⊔A a2) is possible), the domain is said to bepartially
disjunctive.

We now compare the two forms of abstraction:

• Disjunctive abstractions are popular in the model checkingcommunity, where an ab-
straction is defined by finitely partitioning the set of concrete states. Partially disjunctive
abstractions are more general, since they allow defining an abstraction in terms of over-
lapping sets of states (closed under join and meet).

• Disjunctive abstract domains are powersets of the set of equivalence classes of the con-
crete domain, with respect toA. Thus, they can be quite expensive for static analyses. For
instance, when a static analyzer interprets control flow join points, the size of the joined
element can be double the size of each of the elements in the branches. In contrast, a
partially disjunctive domain can over-approximate the elements from two branches in a
such a way that the size remains feasible (especially in terms of the computer represen-
tation) and the fixed point computation terminates faster. Of course, the abstract element
computed in this way might be less precise and thus less useful for, e.g., program verifica-
tion. Therefore, partially disjunctive abstractions haveto be chosen carefully to support
two opposite needs — taming the cost of the analysis and providing information that is
precise enough for the goals of the analysis.

1In actuality, the fixed-point is usually taken for the sequence of iterates defined byX0 = a0 and
Xn+1 = Xn ⊔ F#(Xn)
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Figure 1.1: Abstractions and transformers developed in thesis

Goals. Our goal in this thesis is to: (i) find precise new abstractions for linked data structures;
and (ii) find new partially disjunctive abstractions and efficient transformers that can be used
to analyze heap-manipulating programs with similar precision as analysis using disjunctive ab-
stractions, but with better performance. In particular, weseek partially disjunctive abstractions
that enable the analysis designer to intentionally abstract away information that he considers to
be irrelevant for proving a certain property (e.g., abstracting away the correlation between the
properties of disjoint lists to prove absence of null dereferences).

1.1 Overview

The material in this thesis is based on four conference papers [MSRF04,MYRS05,MBC+07,
MLAS+08], each one with its corresponding technical chapter. This chapter contains an infor-
mal overview of the thesis, describing the contributions ofeach of the papers, and the connec-
tions between them.

Figure1.1 illustrates the various abstractions and transformer algorithms developed in this
thesis. The concrete domain, which is not shown in the figure,is either a powerset of2-valued
structures (in chapters 3,4, and 6) or a powerset of shape graphs (in Chapter 5).

1.1.1 A Precise Abstraction for Singly-Linked Lists

In chapter 3, we introduce a rather precise disjunctive abstraction for programs containing a
finite number of (possibly cyclic) lists (of unbounded length). These ideas have been adapted
and extended in subsequent works of other researchers [APV06,APV08,LAIS06].

Abstract Domain Encoding. We show how to encode the abstract elements in Predicate Ab-
straction [GS97] and in Canonical Abstraction [SRW02] and prove these encodings are equiv-
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alent in the sense defined above. (In Chapter 5, we use a more direct, specialized, encoding of
the abstract elements by shape graphs.)

Application. We use this abstraction to prove basic safety properties anddata structure in-
variants in standard list-manipulating procedures.

Main Contributions: (i) We define an instance of Canonical Abstraction [SRW02] that ab-
stracts cyclic lists more precisely than existing instances based on Canonical Abstraction; (ii)
we compare Predicate Abstraction and Canonical Abstraction in terms of the number of pred-
icates needed to encode the same abstraction and show the equivalence of the two encodings
for the list abstraction; and (iii) we report on an empiricalevaluation of an analysis based on
the new abstraction on a suite of benchmarks.

1.1.2 Partial Isomorphism Abstraction

In Chapter 4, we introduce a partially disjunctive abstraction on top of Canonical Abstraction.
The idea is to use an equivalence relation on structures, using partial isomorphism, to define
a notion of similarity between them. We merge similar structures into a single structure, thus
reducing the number of structures after a join. We do not merge structures that are not similar,
since we consider them to be distinguished by properties that may be important for the analysis.

Abstract Domain Encoding. We build on top of the3-valued shape analysis theory and
encode the abstract elements by3-valued structures. This enables us to define a very general
abstraction and reuse the abstract transformers availablein that framework.

Application. We applied the analysis to a wide variety of benchmarks, which were defined
over the years by different users of the TVLA system [LAS00], including sequential and con-
current benchmarks, checking list- and tree-manipulatingprocedures, and checking concurrent
modification exception in Java.

Main Contributions: (i) A generic type of abstraction (variations of this idea were adapted
by other researchers [YLB+08]); (ii) a robust implementation in TVLA; and (iii) empirical
evaluation on a wide variety of benchmarks showing dramaticspeed-ups to the performance of
TVLA.

1.1.3 Disjoint Subgraph Decomposition

In Chapter 5, we define a partially disjunctive abstraction for exploiting loose coupling between
different, disjoint, data structures. This abstraction can reduce exponential factors in analysis
of programs manipulating multiple disjoint data structures.

Abstract Domain Encoding. We formulate the concrete states and the abstract states us-
ing specialized shape graphs. This is done for the simplicity of the presentation. However,
recasting the results in terms of logical structures is straightforward.
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Application. We have implemented and applied the analysis to programs manipulating mul-
tiple cyclic singly-linked lists, including programs modeled after windows device drivers.

Main Contributions: (i) We introduce a new type of shape abstraction that exploits disjoint-
ness of data structures to reduce the height of the abstract domain; (ii) we study the complexity
of the abstract transformers and show that the most precise transformers are NP-complete; (iii)
we propose polynomial, efficient, transformers (τGD) that are less precise than the most precise
transformer but are usually good in practice, that is, the resulting analysis is as precise as the
one based on disjunctive abstraction for most benchmarks; and (iv) we have implemented and
showed significant speed-ups of the analysis on a set of benchmarks manipulating lists.

1.1.4 Cartesian Subheap Decomposition

In Chapter 6, we introduce a framework for constructing partially disjunctive abstractions,
based on the idea of decomposing logical structures into sub-structures and using Cartesian ab-
straction. A user of the framework can specify different kinds of decompositions and different
kinds of transformers, ensured to result in a sound analysis.

Abstract Domain Encoding. We present the ideas using concrete stores. The algorithms are
incorporated into TVLA and use logical structures. This enables a very generic system.

Application. We applied the ideas to analyze concurrent fine-grained programs manipulating
list data structures to prove basic safety properties (e.g., absence of null dereferences) and
linearizability [HW90], by building on top of the analysis of Amit et al. [ARR+].

Main Contributions: (i) We define the concept of heap decomposition and show how it
can be utilized with Cartesian abstraction; (ii) we developtechniques for sound and efficient
transformers (τ1[TS], τ2[TS]) that can be parameterized by the analysis designer; (iii) the algo-
rithms are incorporated into TVLA where an analysis designer can specify a decomposition
parameterD and a transformer parameterTS and automatically obtain a sound analysis to
experiment with; and (iv) we show the usefulness of the framework for analyzing concurrent
fine-grained programs and checking linearizability. We have shown that using these techniques
is prudent for efficiently checking linearizability for program with an unbounded number of
threads [BLAM +08].

Cartesian decomposition abstraction can capture disjointsubgraph decomposition and the
efficient transformers developed in Chapter 5.

The partial isomorphism abstraction,αpi, and the Cartesian decomposition abstractions,
αd[D], can be easily combined. We use both of these abstractions toobtain the analyses and
the results reported in Chapter 6 and in a subsequent work [BLAM +08].
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1.2 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2 contains background materials for Canonical Abstraction [SRW02];

• Chapter 3 presents a finitary abstraction for stores containing a bounded number of
singly-linked lists (of unbounded length) and describes how to encode the abstraction
using different formalisms;

• Chapter 4 presents a partially disjunctive abstraction on top of Canonical Abstraction
based on merging similar abstract states and its application to a wide variety of analyses;

• Chapter 5 presents a partially disjunctive abstraction based on decomposing (abstract)
heaps into their sets of disjoint subheaps and its application to analyzing sequential pro-
grams;

• Chapter 6 presents a parametric framework for partially disjunctive abstractions based on
decomposing (abstract) heaps into sets of — not-necessarily disjoint — subheaps, and
its application to analyzing sequential and concurrent programs;

• Chapter 7 concludes the thesis and discusses possible future research directions.



Chapter 2

3-valued Shape Analysis Background

In this section, we provide a brief introduction into the theory of parametric shape analysis via
3-valued logic [SRW02] and, in particular, define Canonical Abstraction.

2.1 Concrete Program States

We represent the state of a program using a first-order logical structure in which each individual
corresponds to a heap-allocated object and predicates of the structure correspond to properties
of heap-allocated objects.

Definition 2.1.1 A 2-valued logical structure over a vocabulary (set of predicates)P is a pair
S = 〈US, ιS〉 whereUS is the universe of the2-valued structure, andιS is the interpretation
function mapping predicates to their truth-value in the structure: for every predicatep ∈ P of
arity k, ιS(p) : USk

→ {0, 1}.

In the following, we usepS(v) as alternative notation forιS(p)(v); we also omit the super-
scriptS, when no confusion is likely.

In the context of shape analysis, a logical structure is usedas a shape descriptor, with each
individual corresponding to a heap-allocated object and predicates of the structure correspond-
ing to properties of heap-allocated objects.

We denote the set of all2-valued logical structures over a set of predicatesP by
2-STRUCTP . In the sequel, we assume that the vocabularyP is fixed, and abbreviate
2-STRUCTP to 2-STRUCT.

Table4.1shows the predicates we typically use to record properties of individuals. A unary
predicatex(v) holds when the objectv is pointed-to by the reference variablex. We assume

Table 2.1: Typical predicates used for representing concrete program states

Predicates Intended Meaning
eq(v1, v2) v1 is equal tov2

{ x(v) : x ∈ PVar} reference variablex points to the objectv
n(v1, v2) next field of the objectv1 points to the objectv2

21
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Table 2.2: Predicate-update formulae that define the semantics of heap-manipulating state-
ments

Statement Update formulae
x = null x′(v) = 0
x = t x′(v) = t(v)
x = t.n x′(v) = ∃v1 : t(v1) ∧ n(v1, v)
x.n = null n′(v1, v2) = n(v1, v2) ∧ ¬x(v1)
x.n = t (assuming x.n == null) n′(v1, v2) = n(v1, v2) ∨ (x(v1) ∧ t(v2))

that the set of predicates includes a unary predicate for every reference variable in a program.
We usePVar to denote the set of all reference variables in a program. A binary predicate
n(v1, v2) records the value of the reference fieldn.

2.1.1 Concrete Semantics

Program statements are modelled byactionsthat specify how statements transform an incom-
ing logical structure into an outgoing logical structure. This is done primarily by defining the
values of the predicates in the outgoing structure using formulae of first-order logic with transi-
tive closure over the incoming structure [SRW02]. The update formulae for heap-manipulating
statements are shown in Table3.2. For brevity, we omit the treatment of the allocation state-
mentnew T(), the interested reader may find the details in [SRW02].

To simplify update formulae, we assume that every assignment to then field of an object is
preceded by first assigning null to it.

2.2 Canonical Abstraction

The goal of an abstraction is to create a finite representation of a potentially unbounded set of
2-valued structures (representing heaps) of potentially unbounded size. The abstractions we
use are based on3-valued logic [SRW02], which extends boolean logic by introducing a third
value1/2 denoting values that may be 0 or 1.

We represent an abstract state of a program using a3-valued first-order structure.

Definition 2.2.1 A 3-valued logical structure over a set of predicatesP is a pair S = 〈U, ι〉
whereU is the universe of the3-valued structure (an individual inU may represent multiple
heap-allocated objects), andι is the interpretation function mapping predicates to theirtruth-
value in the structure: for every predicatep ∈ P of arity k, ι(p) : Uk → {0, 1, 1/2}.

An abstract state may includesummary nodes, i.e., an individual which corresponds to one
or more individuals in a concrete state represented by that abstract state. A summary nodeu
haseq(u, u) = 1/2, indicating that it may represent more than a single individual. In the rest
of the thesis, we assume that the set of predicatesP includes a distinguished unary predicate
smto indicate if an individual is a summary individual.
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Table 2.3: Predicates used for the Canonical Abstraction ofsingly-linked lists in [SRW02], and
their meaning

Predicates Intended Meaning Defining formulae
{ x(v) : x ∈ PVar} reference variablex points tov
n(u, v) next field ofu points tov

{ rx(v) : x ∈ PVar} v is reachable fromx by ∃vx.x(vx) ∧ n∗(vx, v)
dereferencingn fields

cn(v) v resides on a cycle ofn fields n+(v, v)
is(v) v is heap-shared ∃v1, v2.n(v1, v) ∧ n(v2, v) ∧ (v1 6= v2)

2.2.1 Embedding

We now formally define how states are represented using abstract states. The idea is that each
individual from the (concrete) state is mapped into an individual in the abstract state. More
generally, it is possible to map individuals from an abstract state into an individual in another,
less precise, abstract state.

Formally, letS = 〈U, ι〉 andS ′ = 〈U ′, ι′〉 be abstract states. A functionf : U → U ′ such
that f is surjective is said toembedS into S ′ if for each predicatep of arity k, and for each
u1, . . . , uk ∈ U , one of the following holds:

ι(p(u1, . . . , uk)) = ι′(p(f(u1), . . . , f(uk))) or ι′(p(f(u1), . . . , f(uk))) = 1/2 .

We say thatS ′ representsS when there exists such an embeddingf .
One way of creating an embedding functionf is by usingCanonical Abstraction. Canon-

ical Abstraction maps concrete individuals to an abstract individual based on the values of
the individuals’ unary predicates. All individuals havingthe same values for unary predicate
symbols are mapped byf to the same abstract individual.

Table 3.3 presents the set of predicates used in [SRW02] to abstract singly-linked lists.
The predicatesrx(v), cn(v), andis(v), referred to in [SRW02] as instrumentation predicates,
record derived information and are used to refine the abstraction.
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Chapter 3

A Precise Abstraction for Singly-Linked
Lists

Predicate abstraction and canonical abstraction are two finitary abstractions used to prove prop-
erties of programs. We study the relationship between thesetwo abstractions by considering a
very limited case: abstraction of (potentially cyclic) singly-linked lists.

We provide a new and rather precise family of abstractions for potentially cyclic singly-
linked lists. The main observation behind this family of abstractions is that the number of
shared nodes in linked lists can be statically bounded. Therefore, the number of possible “heap
shapes” is also bounded. We present the new abstraction in both predicate abstraction form as
well as in canonical abstraction form.

As we illustrate in the chapter, given any canonical abstraction, it is possible to define a
predicate abstraction that is equivalent to the canonical abstraction. However, with this straight-
forward simulation, the number of predicates used for the predicate abstraction is exponential
in the number of predicates used by the canonical abstraction.

An important feature of the family of abstractions we present in this chapter is that the
predicate abstraction representation we define is far more practical as it uses a number of
predicates that is quadratic in the number of predicates used by the corresponding canonical
abstraction representation. In particular, for the most abstract abstraction in this family, the
number of predicates used by the canonical abstraction is linear in the number of program
variables, while the number of predicates used by the predicate abstraction is quadratic in the
number of program variables.

We have encoded this particular predicate abstraction and corresponding transformers in
TVLA, and used this implementation to successfully verify safety properties of several list
manipulating programs, including programs that were not previously verified using predicate
abstraction or canonical abstraction.

3.1 Introduction

Abstraction and abstract interpretation [CC79] are essential techniques for automatically prov-
ing properties of programs. The main challenge in abstract interpretation is to develop ab-
stractions that are precise enough to prove the required property and efficient enough to be
applicable to realistic applications.

25
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Predicate abstraction [GS97] abstracts the program into a Boolean program which conser-
vatively simulates all potential executions. Every safetyproperty which holds for the Boolean
program is guaranteed to hold for the original program. Furthermore, abstraction refine-
ment [CGJ+00,BR02] can be used to refine the abstraction when the analysis produces a “false
alarm”. When the process terminates, it yields a concrete error trace in which the property
is violated, or successfully verifies the property. In principle, the whole process can be fully
mechanized given a sufficiently powerful theorem prover. This process was successfully used
in SLAM [Mic01] and BLAST [HJMS02] to prove safety properties of device drivers.

Canonical abstraction [SRW02] is a finitary abstraction that was specially developed to
model properties of unbounded memory locations (inspired by [JM81b]). This abstraction has
been implemented in TVLA [LAS00], and successfully used to prove various properties of
heap-manipulating programs (e.g., [RWF+02,YR04,SYKS03]).

3.1.1 Main Results

In this chapter, we study the utility of predicate abstraction to prove properties of programs
operating on singly-linked lists. We also compare the expressive power of predicate abstraction
and canonical abstraction.

The results in this chapter can be summarized as follows:

• We show that current state-of-the-art iterative refinementtechniques fail to prove in-
teresting properties of singly-linked lists such as pointer equalities and absence of null
dereferences in a fully automatic manner. This means that onmany simple programs the
process of refinement will diverge when the program is correct. This result is inline with
the experience of Blanchet et al. [BCC+03].

• We show that predicate abstraction can simulate arbitrary finitary abstractions and, in
particular, canonical abstraction. This trivial result isnot immediately useful because of
the number of predicates used. The number of predicates required to simulate canonical
abstraction is, in the worst case, exponential in the numberof predicates used by the
canonical abstraction (usually, this means exponential inthe number of program vari-
ables).

• We develop a new family of abstractions for heaps containing(potentially cyclic) singly-
linked lists. The main idea is to summarize list elements on unshared list segments
not pointed-to by local variables. For programs manipulating singly-linked lists, this
abstraction is finitary since the number of shared list elements reachable from program
variables is bounded. Abstractions in this family vary in their level of precision, which
is controlled by the level of sharing-relationships recorded.

• We show that the abstraction recording only one-level sharing relationships (i.e., the
least precise member of the family that records sharing) is sufficient for successfully
verifying all our example programs, including programs that were not verified earlier
using predicate abstraction or canonical abstraction.

• We show how to code the one-level-sharing abstraction usingboth canonical abstraction
(with a linear number of unary predicates) and predicate abstraction (with a quadratic
number of nullary predicates).
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//head points to the first element of an acyclic list
//tail points to the last element of the same list

1 curr = head;
2 while (curr != tail) {
3 assert (curr != null);
4 curr = curr.n;
5 }

Figure 3.1: A simple program on which counterexample-guided refinement diverges

3.1.2 Motivating Examples

Figure3.1shows a program that traverses a singly-linked list with a head-pointerhead and a
tail-pointertail. This is a trivial program since it only uses an acyclic linked list, and does
not contain destructive pointer updates. When counterexample-guided iterative refinement is
applied to this program to assure that the assertion at line3 is never violated, it will diverge. At
the i-th iteration it will generate an assertion of the formcurr(.n)i! = null. However, no
finite value ofi will suffice. Indeed, the problem of proving the absence of null-dereferences
is undecidable even in programs manipulating singly-linked lists and even under the (non-
realistic) assumption that all control flow paths are executable [Cha03].

In contrast, the TVLA abstract interpreter [LAS00] proves the absence of null dererefer-
ences in this program in2 seconds, consuming0.6MB of memory. TVLA uses canonical
abstraction which generalizes predicate abstraction by allowing first-order predicates (relation
symbols) that can have arguments. Thus, nullary (0-arity) predicates correspond to predicates
in the program and in predicate abstractions. Unary predicates (1-arity) are used to denote sets
of unbounded locations and binary (2-arity) predicates are used to denote relationships between
unbounded locations.

A curious reader may ask herself:Are there program properties that can be verified with
canonical abstractions but not with predicate abstractions?

It is not hard to see that the answer is negative, since any finitary abstraction can be
simulated by a suitable predicate abstraction. For example, consider an abstraction map-
ping α : C → A, from a concrete domainC to a finite abstract domain of indexed
elementsA = {1, . . . , n}. Define the predicate BIT[j] to hold for the set of concrete
states{c | thejth bit of α(c), in its binary representation, is1}. Now, the set of predicates
{BIT[j]}

⌈log n⌉
j=1 yields a predicate abstraction that simulatesA. This simulation is usually not

realistic, since it contains too many predicates. The number of predicates required by predicate
abstraction to simulate canonical abstraction can be exponential in the number of predicates
used by the canonical abstraction.

Fortunately, the only nullary predicate crucial to prove the absence of null dereferences in
this program is the fact thattail is reachable fromcurr by a path ofn selectors (of some
length). Similar observations were suggested independently in [JJNS97,BRS99,IO01]. In this
chapter, we define a quadratic set of nullary predicates thatcaptures the invariants in many
programs manipulating (potentially cyclic) singly-linked lists.

Figure3.2 shows a simple program removing a contiguous segment from a cyclic singly-
linked list pointed-to byx. For this example program, we would like to verify that the resulting
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// x points to a cyclic singly-linked list
// low and high are two integer values, low < high

1 t = null;
2 y = x;
3 while (t != x && y.data < low) {
4 t = y.n; y = t;
5 }
6 z = y;
7 while (z != x && z.data < high) {
8 t = z.n; z = t;
9 }
10 t = null;
11 if (y != z) {
12 y.n = null;
13 y.n = z;
14 }

Figure 3.2: A simple program that removes the segment between low and high from a linked
list

structure pointed-to byx remains a cyclic singly-linked list. Unfortunately, usingTVLA’s
canonical abstraction with the standard set of predicates turns out to be insufficient. The prob-
lem stems from the fact that canonical abstraction with the standard set of predicates loses the
ordering between the3 reference variables that point to that cyclic singly-linked list (this is
further explained in the next section).

In this chapter, we provide two abstractions — a predicate abstraction, and a canonical
abstraction — that are able to correctly determine that the result of this program is indeed a
cyclic singly-linked list.

3.1.3 Outline

The rest of this chapter is organized as follows. Section3.2provides background on the basic
concrete semantics we are using, Canonical Abstraction, and Predicate Abstraction. Section
3.3 presents an instrumented concrete semantics that records list interruptions. Section3.4
shows a quite precise predicate abstraction for singly-linked lists. Section3.5 shows a quite
precise canonical abstraction of singly-linked lists. In Section3.6, we show that the predicate
abstraction of Section3.4and the canonical abstraction of Section3.5are equivalent. Section
3.7describes our experimental results.

3.2 Background

In this section, we provide basic definitions that we will usethroughout the chapter. In par-
ticular, we provide a reminder of Canonical Abstraction with some examples, and we define
Predicate Abstraction.
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Table 3.1: Predicates used for representing concrete program states

Predicates Intended Meaning
eq(v1, v2) v1 is equal tov2

{ x(v) : x ∈ PVar} reference variablex points to the objectv
n(v1, v2) next field of the objectv1 points to the objectv2
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Figure 3.3: The effect of the statementy.n=null in the concrete semantics. (a) a possible
state of the program of Figure3.2at line12; (b) the result of applyingy.n=null to (a)

3.2.1 Concrete Program States

In our setting, we represent the state of a program using a first-order logical structure in which
each individual corresponds to a heap-allocated object andpredicates of the structure corre-
spond to properties of heap-allocated objects.

Table4.1shows the predicates we use to record properties of individuals. A unary predicate
x(v) holds when the objectv is pointed-to by the reference variablex. We assume that the set
of predicates includes a unary predicate for every reference variable in a program. We usePVar
to denote the set of all reference variables in a program. A binary predicaten(v1, v2) records
the value of the reference fieldn.

Concrete Semantics

Recall that the semantics of program statements over2-valued structures is modelled byac-
tions that specify how statements transform an incoming logical structure into an outgoing
logical structure. This is done primarily by defining the values of the predicates in the out-
going structure using formulae of first-order logic with transitive closure over the incoming
structure [SRW02]. The update formulae for heap-manipulating statements are shown in Table
3.2. For brevity, we omit the treatment of the allocation statementnew T(), the interested
reader may find the details in [SRW02].

To simplify update formulae, we assume that every assignment to then field of an object
is preceded by first assigning null to it. Therefore, the statement at line12 of the example
program of Figure3.2assigns null toy.n before the next statement assigns it the new valuez.
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Table 3.2: Predicate-update formulae that define the semantics of heap-manipulating state-
ments

Statement Update formulae
x = null x′(v) = 0
x = t x′(v) = t(v)
x = t.n x′(v) = ∃v1 : t(v1) ∧ n(v1, v)
x.n = null n′(v1, v2) = n(v1, v2) ∧ ¬x(v1)
x.n = t (assuming x.n == null) n′(v1, v2) = n(v1, v2) ∨ (x(v1) ∧ t(v2))

Table 3.3: Predicates used for the Canonical Abstraction inFigure3.4, and their meaning

Predicates Intended Meaning Defining formulae
{ x(v) : x ∈ PVar} reference variablex points tov
n(u, v) next field ofu points tov

{ rx(v) : x ∈ PVar} v is reachable fromx by ∃vx.x(vx) ∧ n∗(vx, v)
dereferencingn fields

cn(v) v resides on a cycle ofn fields n+(v, v)
is(v) v is heap-shared ∃v1, v2.n(v1, v) ∧ n(v2, v) ∧ (v1 6= v2)

Example 3.2.1 Applying the actiony.n = null to the concrete structure of Figure3.3(a),
results with the concrete structure of Figure3.3(b). Throughout this chapter we assume that
all heaps are garbage-free, i.e., every element is reachable from some program variable, and
that the concrete program semantics reclaims garbage elements immediately after executing
program statements. Thus, the two objects betweeny andz are collected wheny.n is set to
null, as they become unreachable.

3.2.2 Canonical Abstraction

The goal of an abstraction is to create a finite representation of a potentially unbounded set of
2-valued structures (representing heaps) of potentially unbounded size. The abstractions we
use are based on3-valued logic [SRW02], which extends Boolean logic by introducing a third
value1/2 denoting values that may be 0 or 1.

We represent abstract states of a program using a3-valued first-order structures.
Table 3.3 presents the set of predicates used in [SRW02] to abstract singly-linked lists.

The predicatesrx(v), cn(v), andis(v), referred to in [SRW02] as instrumentation predicates,
record derived information and are used to refine the abstraction.

This set of predicates has been used for successfully verifying many programs manipulating
singly-linked lists, but is insufficient for verifying thatthe output of the example program of
Figure3.2is a cyclic singly-linked list pointed-to byx.

Example 3.2.2 Figure3.4(b) shows the Canonical Abstraction of the concrete state ofFigure
3.4(a), using the predicates of Table3.3. The node with double-line boundaries is asummary
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NotNull[x]
NotNull[y]
NotNull[z]

EqualsNext2[x, y]
EqualsNext3[y, z]
EqualsNext2[z, x]
. . .

(a) (b) (c)

Figure 3.4: (a) a concrete possible state of the program of Figure3.2at line12, (b) its canonical
abstraction in TVLA, (c) its predicate abstraction with theset of predicates in Table3.4

node, possibly representing more than a single concrete node. The dashed edges are1/2 edges,
a dashed edge exists betweenv1 and v2 whenn(v1, v2) = 1/2. The abstract state of Figure
3.4(b) records the fact thatx,y, andz point to a cyclic list (using thecn(v) predicate), and
that all list elements are reachable from all3 reference variables (using therx(v),ry(v), and
rz(v) predicates). This abstract state, however, does not recordthe order between the reference
variables. In particular, it does not record thatx does not reside betweeny andz (the segment
that is about to be removed by the program statement at line12). As a result, applying the
abstract effect ofy.n=z to this abstract state results with a possible abstract state in which
the cyclic list is broken.

3.2.3 Predicate Abstraction

Predicate Abstraction abstracts a concrete state into a truth-assignment for a finite set of propo-
sitional (nullary) predicates.

A Predicate Abstraction is defined by a vocabularyP A = {P1, . . . , Pm}, where eachPi is
associated with a defining formulaϕi that can be evaluated over concrete states. An abstract
state is a truth assignment to the predicates inP A. Given an abstract stateA, we denote the
value ofPi in A by Ai.

Let 2-STRUCT[P] denote the set of all2-valued logical structures over the set of predi-
catesP. A concrete stateS over a vocabularyP C , is mapped to an abstract stateA by an
abstraction mappingβ : 2-STRUCT[PC ] → 2-STRUCT[PA]. The abstraction mapping evalu-
ates the defining formulae of the predicates inPA overS and sets the appropriate values to the
respective predicates inA. Formally, for every1 ≤ i ≤ m, Ai = [[ϕi]]

S
2 .

Table3.4shows an example set of predicates similar to the ones used in[BMMR01,DN03].
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Table 3.4: Predicates used for the Predicate Abstraction inFigure3.4, and their meaning. Note
that the maximal tracked lengthK is fixed a priori

Predicates Intended meaning Defining formulae
{NotNull[x] : x ∈ PVar} x is not null ∃vx.x(vx)

{EqualsNextk[x, y] the node pointed-to byy ∃v0, . . . , vk.x(v0) ∧ y(vk)∧
: x, y ∈ PVar, is reachable byk n fields

∧
0≤i<k n(vi, vi+1)

0 ≤ k ≤ K } from the node pointed-to byx

Example 3.2.3 Figure 3.4(c) shows the Predicate Abstraction of the concrete state shown in
Figure3.4(a) using the predicates of Table3.4. A predicate of the form NotNull[x] records the
fact thatx is not null. In Figure3.4(c), all three variablesx,y,andz are not null. A predicate
of the form EqualsNextk[x, y] records that the node pointed-to byy is reachable byk steps over
then fields from the node pointed-to byx (Note thatK, the maximal tracked length, is fixed
a priori). For example, in Figure3.4(c), the list element pointed-to byy is reachable from the
list element pointed-to byx in 2 steps over then field, and therefore EqualsNext2[x, y] holds.

3.3 Recording List Interruptions

In this section, we instrument the concrete semantics to record a designated set of nodes, called
interruptions, in singly-linked lists. The instrumented concrete semantics presented in this
section serves as the basis for the predicate abstraction and the canonical abstraction presented
in the following sections.

3.3.1 The Intuition

The intuition behind our instrumented concrete is that a garbage-free heap, containing only
singly-linked lists, is characterized by two factors: (i) the “shape” of the heap, i.e., the con-
nectivity relations between a set of designated nodes (interruptions); and (ii) the length of
“simple” list segments connecting interruptions, but not containing interruptions themselves.
This intuition is similar to proofs of small model properties (e.g., [RSY04]).

Considering this characterization, we observe that the number of shapes that are equiva-
lent, up to lengths of simple list segments, is bounded. We therefore instrument our concrete
semantics to record interruptions, which are an essential ingredient of the sharing patterns.

The abstractions presented in the next sections, abstract the lengths of simple list segments
into a fixed set of abstract lengths (thereby obtaining a finite representation). These abstractions
retain the general shape of the heap but lose any correlations between the actual lengths of dif-
ferent simple list segments. Our experience indicates thatthe correctness of program properties
usually depends on the shape of heap, rather than on the lengths of simple list segments.

In the rest of this section, we formally define the notions of interruptions and simple list
segments, and formally define the information recorded by our instrumented concrete seman-
tics.



3.3. RECORDING L IST INTERRUPTIONS 33

y ///.-,()*+
n

((RRRRRRRRR

x ///.-,()*+ n ///.-,()*+ n ///.-,()*+ n ///.-,()*+ n ///.-,()*+ n ///.-,()*+
ECD@GF n

��

xs,1, ys,1

OO

xs,2, ys,2

OO

Figure 3.5: Two lists sharing the same tail, and their representation in the instrumented concrete
semantics

3.3.2 Basic Definitions

We say that a list nodev is an interrupting node, or simply aninterruption, if it is pointed-to
by a program variable or it is heap-shared. Figure3.5shows a heap with4 interruptions: (i) the
node pointed-to byx, (ii) the node pointed-to byy, (iii) the node pointed-to byxs,1 andys,1, and
(iv) the node pointed-to byxs,2 andys,2.

Definition 3.3.1 (Uninterrupted Lists) We say that there is anuninterrupted listbetween list
nodeu and list nodev, denoted by UList(u, v), when there is a non-empty path between them,
such that, every node on the path between them (i.e., not includingu andv) is non-interrupting.

We also say that there is an uninterrupted list between list nodev and null, denoted by
UListNULL(v), when there is a non-empty path fromv to null, such that, every node on the
path, except possiblyv, is non-interrupting.

Table3.5formulates UList(u, v) and UListNULL(v) as formulae inFOTC.

Given a heap, we are actually interested in a subset of its uninterrupted lists. We say that
an uninterrupted list ismaximalwhen it is not contained in a longer uninterrupted list.

The heap in Figure3.5contains4 maximal uninterrupted lists: (i) from the node pointed-to
by x and the node pointed-to byxs,1 andys,1, (ii) from the node pointed-to byy and the node
pointed-to byxs,1 andys,1, (iii) from the node pointed-to byxs,1 andys,1 to the node pointed-to
by xs,2 andys,2, and (iv) from the node pointed-to byxs,2 andys,2 to itself.

3.3.3 Statically Naming Heap-Shared Nodes

We now explain how to use a quadratic number of auxiliary variables to statically name all
heap-shared nodes. This will allow us to name all maximal uninterrupted lists using nullary
predicates for the predicate abstraction, and using unary predicates for the canonical abstrac-
tion.

Proposition 3.3.2 A garbage-free heap, consisting of only singly-linked lists withn program
variables, contains at mostn heap-shared nodes and at most2n interruptions.

Corollary 3.3.3 In a garbage-free heap, consisting of only singly-linked lists withn program
variables, list nodev is reachable from list nodeu if and only if it is reachable by a sequence
of k < n uninterrupted lists. Similarly, there is a path from nodev to null if and only if there is
a path fromv to null by a sequence ofk < n uninterrupted lists.
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Table 3.5: Shorthand notations used throughout this chapter

Shorthand Meaning Formula
HeapShared(v) v is heap-shared ∃a, b.n(a, v) ∧ n(b, v) ∧ (a 6= b)
PtByVar(v) v is pointed-to by some variable

∨
var∈PVar

var(v)

Interruption(v) v is an interrupting list node HeapShared(v) ∨ PtByVar(v)

UList1(u, v) there is an uninterrupted list of n(u, v)
length1 from u to v

UList2(u, v) there is an uninterrupted ∃m.¬Interruption(m)∧
list of length2 from u to v n(u, m) ∧ n(m, v)

UList>2(u, v) there is an uninterrupted ∃m1, m2 : n(u, m1) ∧ n(m2, v)∧
list of length> 2 from u to v (TC a, b : n(a, b) ∧ ¬Interruption(a)∧

¬Interruption(b))(m1, m2)
UList(u, v) there is an uninterrupted list of UList1(u, v) ∨ UList2(u, v)∨

some length fromu to v UList>2(u, v)

UListNULL1(v) there is an uninterrupted list of ∀w.¬n(v, w)
length1 from v to null

UListNULL2(v) there is an uninterrupted ∃m.n(v, m) ∧ ¬Interruption(m)∧
list of length2 from v to null UListNULL1(m)

UListNULL>2(v) there is an uninterrupted ∃m1, m2 : n(v, m1) ∧ UListNULL1(m2)
list of length> 2 from v (TC a, b : n(a, b) ∧ ¬Interruption(a)∧
to null ¬Interruption(b))(m1, m2)

UListNULL(v) there is a list of some length UListNULL1(v) ∨ UListNULL2(v)∨
from v to null UListNULL>2(v)
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Proof: By Proposition3.3.2, every simple path (fromu to v or fromv to null) contains at most
n interruptions, and, therefore, at mostn maximal uninterrupted lists.

For every program variablex, we define a set of auxiliary variables{xs,k|k = 1 . . . n −
1}. Auxiliary variablexs,k points to a heap-shared nodeu when there exists a simple path
consisting ofk maximal uninterrupted lists from the node pointed byx-to to u, such that all
of the interrupting nodes on the path are not pointed-to by program variables (i.e., they are
heap-shared). Formally, we define the set of auxiliary variables derived for program variablex
by using the following set of formulae inFOTC.

xs,1(v) ≡ ∃vx.x(vx) ∧ UList(vx, v) ∧ HeapShared(v) ∧ ¬PtByVar(v),
. . .
xs,k+1(v) ≡ ∃vk.xs,k(vk) ∧ UList(vk, v) ∧ HeapShared(v)∧

¬PtByVar(v) ∧ ¬(
∨

m=1...k xs,m(v)) .

We denote the set of auxiliary variables byAuxVarand the set of all (program and auxiliary)
variables byVar = PVar∪ AuxVar.

Proposition 3.3.4 Every heap-shared node is pointed-to by a variable in Var. Also, xs,k(v)
holds for at most one node, for every reference variablex andk.

3.3.4 Parameterizing the Concrete Semantics

Letn denote the number of (regular) program variables. Notice that |AuxV ar| = O(n2). In the
following sections, we will see that using the full set of auxiliary variables yields a canonical
abstraction with a quadratic (O(n2)) number of unary predicates, and a predicate abstraction
with a bi-quadratic (O(n4)) number of predicates.

We use a parameterk to define different subsets ofVar as follows: Vark = PVar ∪
{xs,i(v)|x ∈ PVar, i ≤ k}. By varying the “heap-shared depth” parameterk, we are able
to distinguish between different sets of heap-shared nodes. We discovered that, in practice,
heap-shared nodes with depth> 1 rarely exist (they never appear in our examples), and, there-
fore, restrictingk to 1 is usually enough to capture all maximal uninterrupted lists. UsingVar1
as the set of variables to record, we obtain a canonical abstraction with a linear number of unary
predicates(O(n)) and a predicate abstraction with a quadratic(O(n2)) number of variables.

Figure3.5shows a heap containing a heap-shared node of depth2 (pointed byxs,2 andys,2).
By setting the heap-shared depth parameterk to 1, we are able to record the following facts
about this heap: (i) there is a list of length1 from the node pointed-to byx to a heap-shared
node, (ii) there is a list of length1 from the node pointed-to byy to a heap-shared node, (iii) the
heap-shared node mentioned in (i) and (ii) is the same (we record aliasing between variables),
and (iv) there is a partially cyclic list (i.e., a non-cycliclist connected to a cyclic list) from
the heap-shared node mentioned in (iii). We know that the list from the first heap-shared node
does not reach null (since we record lists from interruptions to null) and it is not a cycle from
the first-heap shared node to itself (otherwise there would be no second heap-shared node and
the cycle would be recorded). The information lost, due to the fact thatxs,2 andys,2 are not
recorded, is that the list from the first heap-shared node to second has length2 and the cycle
from the second heap-shard node to itself is also of length2.
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Table 3.6: Predicates used for the Predicate Abstraction and their meaning

Predicates Defining formulae and intended meaning
{Aliased[x, y] : x, y ∈ Var} ∃v : x(v) ∧ y(v)

variablesx andy point to the same object
{UList1[x, y] : x, y ∈ Var} ∃vx, vy : x(vx) ∧ y(vy) ∧ n(vx, vy)

then field of the object pointed-to byx and the variabley
point to the same object

{UList2[x, y] : x, y ∈ Var} ∃vx, vy : x(vx) ∧ y(vy) ∧ UList2(vx, vy)
there is an uninterrupted list of length2 from the
object pointed-to byx to the object pointed-to byy

{UList[x, y] : x, y ∈ Var} ∃vx, vy : x(vx) ∧ y(vy) ∧ UList(vx, vy)
there is an uninterrupted list of length1 or more from the
object pointed-to byx to the object pointed-to byy

{UList1[x, null] : x ∈ Var} ∃vx : x(vx) ∧ UListNULL1(vx)
theren field of the object pointed-to byx points to null

{UList2[x, null] : x ∈ Var} ∃vx : x(vx) ∧ UListNULL2(vx)
there is an uninterrupted list of length2 from the
object pointed-to byx to null

{UList[x, null] : x ∈ Var} ∃vx : x(vx) ∧ UListNULL(vx)
there is an uninterrupted list of length1 or more from the
object pointed-to byx to null

The Instrumented Concrete Semantics

The instrumented concrete semantics operates by using the update formulae presented in Table
3.2and then using the defining formulae of the auxiliary variables to update their values.

3.4 A Predicate Abstraction for Singly-Linked Lists

We now describe the abstraction used to create a finite (bounded) representation of a potentially
unbounded set of2-valued structures (representing heaps) of potentially unbounded size.

3.4.1 The Abstraction

We start by defining a vocabularyP A of nullary predicates, which we use in our abstraction.
The predicates are shown in Table3.6.

Intuitively, the heap is partitioned into a linear number ofuninterrupted list segments and
each list segment is delimited by some variables. The predicates in Table3.6 abstract the
path length of list segments into one of the following abstract lengths:0 (via theAliased[x, y]
predicates),1 (via theUList1[x, y] predicates),2 (via theUList2[x, y] predicates), or any length
≥ 1 (via theUList[x, y] predicates), and infinity (i.e., there is no uninterrupted path and thus
all of the previously mentioned predicates are0).
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Aliased[x, x], Aliased[y, y], Aliased[z, z]
UList2[x, y], UList2[z, x]
UList[x, y], UList[y, z], UList[z, x]

Aliased[x, x], Aliased[y, y], Aliased[z, z]
UList1[y, null]
UList2[x, y], UList2[z, x]
UList[x, y], UList[z, x], UList[y, null]

(a) (b)

Figure 3.6: The abstract effect ofy.n=null under Predicate Abstraction. (a) Predicate
Abstraction of the state of Figure3.3(a); (b) result of applying the abstract transformer of
y.n=null to (a)

The abstraction functionβPredAbs : 2-STRUCT[P C ] → 2-STRUCT[P A] operates as de-
scribed Section3.2.3whereP A is the set of predicates in Table3.6.

Example 3.4.1 Figure 3.6(a) shows an abstract state abstracting the concrete state of Figure
3.3(a). The predicates Aliased[x, x],Aliased[y, y], Aliased[z, z] represent the fact that the refer-
ence variablesx, y, andz are not null. The predicate UList2[x, y] represents the fact that there
is an uninterrupted list of length exactly2 from the object pointed-to byx to the object pointed-
to byy. This adds on the information recorded by the predicate UList[x, y], which represents
the existence of a list of length1 or more. Similarly, the predicate UList2[z, x] records the fact
that a list of exactly length2 exists fromz to x. Note that the uninterrupted list betweeny and
z is of length3, a length that is abstracted away and recorded as a uninterrupted list of an
arbitrary length by UList[y, z].

3.4.2 Abstract Semantics

Rabin [Rab69] showed that monadic second-order logic of theories with one function sym-
bol is decidable. This immediately implies that first-orderlogic with transitive closure of
singly-linked lists is decidable, and thus the best transformer can be computed as suggested
in [RSY04]. Moreover, Rabin also proved that every satisfiable formula has a small model of
limited size, which can be employed by the abstraction. For simplicity and efficiency, we di-
rectly define the abstractions and the abstract transformer. The reader is referred to [IRR+04]
which shows that reasonable extensions of this logic becomeundecidable. We believe that
our techniques can be employed even for undecidable logics but the precision may vary. In
particular, the transformer we provide here is thebest transformerand operates in polynomial
time.

Example 3.4.2 In order to simplify the definition of the transformer fory.n = null, we
split it to 5 different cases (shown in AppendixA.1) based on classification of the next list inter-
ruption. The abstract state of Figure3.6(a) falls into the case in which the next list interruption
is a node pointed-to by some regular variable (z in this case) and not heap-shared (case3).
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Table 3.7: Predicates used for the Canonical Abstraction and their meaning. We use the short-
handUList(u, v) as defined in Definition3.3.1

Predicates Intended Meaning Defining Formulae
{ x(v) : x ∈ Var} objectv is pointed-to byx
{ cul[x](v) : x ∈ Var} there exists an uninterrupted list tov, ∃vx : x(vx) ∧ UList(vx, v)

starting from the node pointed-to byx

The update formulae for this case are the following:

UList1[z1, z2]
′ = UList1[z1, z2] ∧ ¬Aliased[z1, y]

UList1[z1, null]′ = UList1[z1, null] ∨ Aliased[z1, y]
UList2[z1, z2]

′ = UList2[z1, z2] ∧ ¬Aliased[z1, y]
UList[z1, z2]

′ = UList[z1, z2] ∧ ¬Aliased[z1, y]
UList[z1, null]′ = UList[z1, null] ∨ Aliased[z1, y]

Applying this update to the abstract state of Figure3.6(a) yields the abstract state of Figure
3.6(b).

In AppendixA.1, we show that these formulae are produced by manual construction of the
best transformer.

3.5 Canonical Abstraction for Singly-Linked Lists

In this section, we show how canonical abstraction, with an appropriate set of predicates, pro-
vides a rather precise abstraction for (potentially cyclic) singly-linked lists.

3.5.1 The Abstraction

As in Section3.4, the idea is to partition the heap into a linear number of uninterrupted list
segments, where each segment is delimited by a pair of variables (possibly including auxil-
iary variables). The predicates we use for canonical abstraction are shown in Table3.7. The
predicates of the formcul[x](v), for x ∈ Var, record uninterrupted lists starting from the node
pointed-to byx.

Example 3.5.1 Figure 3.7(a) shows an abstract state abstracting the concrete state of Figure
3.3(a). The predicates cul[x](v),cul[y](v), and cul[z](v) record uninterrupted list segments.
Note that, in contrast to the abstract state of Figure3.4(b) (which uses the standard TVLA
predicates), the abstract configuration of Figure3.7(a) records the order between the reference
variables, and is therefore able to observe thatx is not pointing to an object on the list fromy
to z.
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Figure 3.7: The abstract effect ofy.n=null under Canonical Abstraction. (a) Canonical
Abstraction of the state of Figure3.3(a); (b) result of applying the abstract transformer of
y.n=null to (a)

3.6 Discussion

Equivalence of the Canonical Abstraction and the PredicateAbstraction

We first show that the two abstractions — the Predicate Abstraction of Section3.4, and the
Canonical Abstraction of Section3.5 — are equivalent. That is, both observe the same set of
distinctions between concrete heaps.

Theorem 3.6.1 The abstractions presented in Section3.4and in Section3.5are equivalent.

Proof:See AppendixA.2.

The Number of Predicates Used by the Abstractions.

The next proposition shows that in fact only a logarithmic number of auxiliary variables is
required for every regular program variable, in order to name all heap-shared nodes.

Proposition 3.6.2 The heap-sharing depthin any heap is bounded from above bym =
⌊log n⌋ + 1. In other words, auxiliary variables xs,k wherek > m never point to nodes.

Proof: See AppendixA.3.�
Using Proposition3.6.2, we can reduce the number of unary predicates needed for the

Canonical Abstraction toO(n log n), and the number of predicates needed for the Predicate
Abstraction toO((n log n)2), without affecting precision.

In general, the number of predicates needed by a Predicate Abstraction to simulate a given
Canonical Abstraction is exponential in the number of unarypredicates used by the Canonical
Abstraction. It is interesting to note that, in this case, wewere able to simulate the Canonical
Abstraction using a sub-exponential number of nullary predicates.
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Recording Numerical Relationships

We believe that our abstractions can be generalized along the lines suggested by Deutsch in
[Deu94], by capturing numerical relationships between list lengths. This will allow us to prove
properties of programs which traverse correlated linked lists, while maintaining the ability
to conduct strong updates, which could not be handled by Deutsch. Indeed, in [GDN+04]
numerical and Canonical Abstractions were combined in order to handle such programs.

3.7 Experimental Results

We implemented in TVLA the analysis based on the predicates and abstract transformers de-
scribed in Section3.2.3. We applied it to verify various specifications of programs operating
on lists, described in Table5.3. For all examples, we checked the absence of null dereferences
and memory leaks. For the running example and reversecyclic we also verified that the output
list is cyclic and partially cyclic, respectively.

The experiments were conducted using TVLA version 2, running with SUN’s JRE 1.4, on
a laptop computer with a796 MHZ Intel Pentium Processor with256 MB RAM.

The results of the analysis are shown in Table5.3. In all of the examples, the analysis
produced no false alarms. In contrast, TVLA, with the abstraction predicates in Table4.1, is
unable to prove that the output of reversecyclic is a partially cyclic list and that the output of
removeSegment is a cyclic list.

The dominating factor in the running times and memory consumption is the loading phase,
in which the predicates and update formulae are created (andexplicitly represented). For ex-
ample, the time and space consumed during the chaotic iteration of themerge example is8
seconds and7.4 MB, respectively.
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Table 3.8: Time, space and number of errors measurements. Rep. Err. is the number of errors
reported by the analysis, and Act. Err. is the number of real errors

Benchmark Description Time Space Rep. Err./
(sec) (MB) Act. Err.

create Dynamically allocates a new linked list 3 1.8 0/0
delete Removes an element from a list 7 9.1 0/0
deleteAll Deallocates a list 3 2.7 0/0
getLast Retrieves the last element in a list 4 4 0/0
insert Inserts an element into a sorted list 9 13.5 0/0
merge Merges two sorted lists into a single list 15 29.6 0/0
removeSegment The running example 7 8.4 0/0
reverse Reverses an acyclic list in-place 5 6 0/0
reversecyclic reverse, applied to a partially cyclic list 2 7.1 0/0
rotate Moves the first element after the last element 6 7.9 0/0
search Searches for an element with a specified value3 2.1 0/0
searchnullderef Erroneous implementation of search that 3 2.4 1/1

dereferences a null pointer
swap Swaps the first two elements in a list 6 8.8 0/0
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Chapter 4

Partially Disjunctive Heap Abstraction

One of the continuing challenges in abstract interpretation is the creation of abstractions that
yield analyses that are bothtractableandprecise enoughto prove interesting properties about
real-world programs. One source of difficulty is the need to handle programs with different
behaviors along different execution paths. Disjunctive (powerset) abstractions capture such
distinctions in a natural way. However, in general, powerset abstractions increase space and
time costs by an exponential factor. Thus, powerset abstractions are generally perceived as
very costly.

In this chapter, we partially address this challenge by presenting and empirically evaluating
a new heap abstraction. The new heap abstraction works by merging shape descriptors accord-
ing to a partial isomorphism similarity criteria, resulting in a partially disjunctive abstraction.

We implemented this abstraction in TVLA—a generic system for implementing program
analyses.We conducted an empirical evaluation of the new abstraction and compared it with the
powerset heap abstraction. The experiments show that analyses based on the partially disjunc-
tive heap abstraction are as precise as the ones based on the powerset heap abstraction. In terms
of performance, analyses based on the partially disjunctive heap abstraction are often superior
to analyses based on the powerset heap abstraction. The empirical results show considerable
speedups, up to2 orders of magnitude, enabling previously non-terminatinganalyses, such as
verification of the Deutsch-Schorr-Waite scanning algorithm, to terminate with no negative ef-
fect on the overall precision. Indeed, experience indicates that the partially disjunctive shape
abstraction improves performance across all TVLA analysesuniformly, and in many cases is
essential for making precise shape analysis feasible.

4.1 Introduction

One of the continuing challenges in abstract interpretation [CC77] is the creation of ab-
stractions that yield analyses that are bothtractable and precise enoughto prove interest-
ing properties about real-world programs. In this chapter we partially address this chal-
lenge by presenting and empirically evaluating a new heap abstraction, i.e., an abstraction
for the (potentially unbounded) dynamically allocated storage manipulated by programs (e.g.,
see [JM81b,LH88,CWZ90,Lar89,Str92,SRW98,SRW02]). Heap abstractions are of funda-
mental importance to static analysis and verification of programs written in modern languages.
Heap abstractions have been used, for instance, in the context of shape analysis (e.g., for prov-

43
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ing that a program fragment preserves certain tree structure invariants), as well as in verifying
that a client program satisfies certain conformance constraints for the correct usage of a library.

We present our abstraction in the context of the parametric abstract interpretation frame-
work of [SRW02], which is based on the idea of representing program states using3-valued
logical structures. While it is very natural to view the abstraction we present as a heap abstrac-
tion, it can be used for abstracting other domains as well.

The TVLA framework presented in [SRW02] uses a disjunctive (powerset) heap abstrac-
tion: the abstract value at every program point is asetof shape descriptors (of bounded size)
and set union is used as the join operation. In particular, this abstraction does not attempt to
combine (or merge) different shape descriptors into one andrelies on the fact that there are
only finitely many shape descriptors (as they are of bounded size). This leads to powerful and
sophisticated analyses for proving interesting program properties but is usually too expensive
to be applied to real-world programs. (The number of distinct shape descriptors is doubly
exponential in the size of the program in the worst case.)

The heap abstractions most commonly used in practice, especially when scalability is im-
portant, tend to besingle-shapeheap abstractions, which use a single shape descriptor to de-
scribe all possible program states at a program point [LH88, CWZ90, SRW98]. The current
TVLA implementation provides options to utilize such single-shape heap abstractions. How-
ever, our experience has been that for the kind of applications that we have used TVLA for
(mostly verification problems), the single-shape abstraction tends to be imprecise and causes a
number of “false alarms” (i.e., verification fails for correct programs). Hence, this abstraction
is not widely used by TVLA users. (A detailed discussion of the single-shape abstractions
is beyond the scope of this thesis, because of the complexityof formalizing the single-shape
abstractions within the framework of3-valued-logic.)

This chapter presents apartially disjunctiveheap abstraction which, in our experience, is
significantly more efficient than the powerset heap abstraction, but has turned out to be precise
enough for all the applications we have experimented with. Indeed, this abstraction has turned
out to be the abstraction of choice for all TVLA users. The main idea behind this abstraction
is to reduce the set of shape descriptors arising at a programpoint by merging “similar” shape
descriptors but keeping “dissimilar” shape descriptors apart.

4.1.1 Running Example

Figure4.1 shows a method implementing the mark phase of a mark-and-sweep garbage col-
lector. The challenge here is to show that this procedure is partially correct, i.e., to establish
that “upon termination, an element is marked if and only if itis reachable from the root.” This
simple program serves as a running example in this chapter.

The partial correctness of this program was established using abstract interpretation
in [RSW01]. This abstract interpretation was created using TVLA—a generic system for im-
plementing program analyses [LAS00]. The default implementation of TVLA uses the pow-
erset heap abstraction. Verification of the above property using the powerset heap abstraction
took584 cpu seconds and generated189, 772 different shape descriptors—definitely too many
for such a simple program and simple property. The situationis worse for verifying a similar
property for an implementation of the Deutsch-Schorr-Waite scanning procedure [Lin73]. This
verification took4 hours when the powerset heap abstraction was used.

Powerset heap abstractions are costly since they may distinguish between too many shape
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// @Ensures marked == REACH(root)
void mark(Node root, NodeSet marked) {

Node x;
if (root != null) {

NodeSet pending = new NodeSet();
pending.add(root);
marked.clear();
while (!pending.isEmpty()) {

x = pending.selectAndRemove();
marked.add(x);
if (x.left != null)

if (!marked.contains(x.left))
pending.add(x.left);

if (x.right != null)
if (!marked.contains(x.right)

pending.add(x.right);
}

}
}

Figure 4.1: A simple Java-like implementation of the mark phase of a mark-and-sweep garbage
collector

descriptors, which may not be necessary in order to verify program properties. In this chap-
ter, we define a partially disjunctive heap abstraction, which is coarser than the powerset heap
abstraction. The main idea is to reduce the set of shape descriptors arising at a program point
by merging “similar” shape descriptors. In the mark example, verification using the partially
disjunctive heap abstraction took3 cpu seconds and generated1, 133 shape descriptors—a two
orders of magnitude improvement over verification using thepowerset heap abstraction—with
the same precision. Similarly, the verification of an implementation of the Deutsch-Schorr-
Waite scanning procedure terminated successfully in158 cpu seconds using the partially dis-
junctive heap abstraction.

4.1.2 Main Results

A New Abstraction.

We define a new heap abstraction, which we refer to as thepartial-isomorphismheap abstrac-
tion. The new abstraction is coarser than the powerset heap abstraction and yet keeps certain
shape descriptors apart. Our abstraction is parametric. Itallows the user to specify which heap
properties are of importance for a given analysis, and this guides the abstraction in determining
which shape descriptors are merged together.
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Table 4.1: Predicates used to verify the running example

Predicates Intended Meaning
x(v) Does reference variablex point to objectv?
root(v) Does reference variableroot point to objectv?
left(v1, v2) Does fieldleft of objectv1 point to objectv2?
right(v1, v2) Does fieldright of objectv1 point to objectv2?
r[root](v) Is objectv heap-reachable from reference variableroot?
set[marked](v) Is objectv a member of themarked set?
set[pending](v) Is objectv a member of thepending set?

Robust Implementation.

We implemented our abstraction in TVLA. This abstraction has turned out to be the abstraction
of choice for all TVLA users (e.g., see [YR04]). We believe that it is simple enough to be
implemented in other systems besides TVLA (e.g., [TKB02]).

Empirical Evaluation.

We empirically evaluated our abstraction by comparing it with the powerset heap abstraction.
In the largest benchmark,SQLExecuter, powerset heap abstraction did not terminate within
20, 000 cpu seconds. In contrast, the new abstraction took9, 673 cpu seconds and proved
correct usage of JDBC objects and absence of null-dereferences.

4.1.3 Outline

The rest of this chapter is organized as follows. In Section4.2, we give a reminder of3-
valued-logic based program analysis with some examples. InSection4.3, we describe the
partial-isomorphism heap abstraction. In Section4.4, we provide an empirical evaluation of
the partial-isomorphism heap abstraction and powerset heap abstraction. In Section4.5, we
outline several other heap abstractions that we are investigating as ongoing work. In Section
6.6, we discuss related work.

4.2 3-valued Shape Analysis Primer

We now present a short reminder of3-valued based shape analysis, providing examples and
additional details relevant for this chapter.

Concrete Program Configurations

Recall that in our setting, concrete program states are represented using2-valued logical struc-
tures over a fixed vocabulary of predicate symbols.

Table4.1 shows the predicates used to record properties of individuals for the analysis of
our running example. A unary predicateref(v) holds when the reference (or pointer) variable
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Figure 4.2: (a) A concrete program configuration arising at the exit label of the mark procedure,
where all non-garbage nodes have been marked; (b) An abstract program configuration that
approximates the concrete configuration in (a)

ref points to the objectv; in our exampleref ∈ {x, root}. Similarly, a binary predicate
fld(v1, v2) records the value of a reference (or pointer-valued) fieldfld; in our examplefld
∈ {left,right}. A unary predicateset[s](v) holds when the objectv belongs to the sets;
in our examples ∈ {marked, pending}.

In this thesis,2-valued logical structures are depicted as directed graphs. Each individual
of the universe is drawn as a node. A unary predicatep(u), which holds for a nodeu, is drawn
inside the nodeu. If a unary predicate represents a reference variables it isshown by having an
arrow drawn from its name to the node pointed by the variable.A binary predicatep(u1, u2)
which evaluates to1 is drawn as directed edge fromu1 to u2 labelled withp.

Figure4.2(a) shows a concrete configuration arising at the exit label of the mark procedure,
where all the individuals that are reachable fromroot are marked, as indicated by the value
of theset[marked] predicate. The individuals represented by the empty nodes correspond to
garbage objects.

Abstract Program Configurations

Recall that a3-valued logical structure can be used as an abstraction of a larger2-valued logical
structure. This is achieved by letting an abstract configuration (i.e., a3-valued logical structure)
includesummary individuals, i.e., an individual which corresponds to one or more individuals
in a concrete configuration represented by that abstract configuration.

In this thesis,3-valued logical structures are also depicted as directed graphs, where binary
predicates with1/2 values are shown as dotted edges and summary individuals areshown as
double-circled nodes.

We denote the set of all3-valued logical structures over a set of predicatesP by
3-STRUCTP , usually abbreviating it to 3-STRUCT.
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Bounded Program Configurations

Note that the size of a3-valued structure is potentially unbounded and that 3-STRUCT is
infinite. The abstractions studied in this thesis rely on a fundamental abstraction function for
converting a potentially unbounded structure (either2-valued or3-valued) into a bounded3-
valued structure, which we define now. This abstraction function βblur[A] is parameterized by a
special set of unary predicatesA referred to as theabstractionpredicates.

Let A be a set of unary predicates. An individualu1 in a structureS1 is said to be
A-compatible to an individualu2 in a structureS2 iff for every predicatep ∈ A, pS1(u1) ⊑
pS2(u2) or pS2(u2) ⊑ pS1(u1). (Recall that the partial order⊑ on {0, 1, 1/2} is defined by
x ⊑ y iff x = y or y = 1/2.)

A 3-valued structure is said to beA-bounded if no two different individuals in its universe
areA-compatible. A structure that isA-bounded can have at most2|A| individuals. We denote
the set of all3-valuedA-bounded structures over a set of predicates by B-STRUCTP,A, and, as
usual, omit the subscripts when no confusion is likely.

The abstraction functionβblur : 3-STRUCT→ B-STRUCT, which converts a (potentially
unbounded)3-valued structure into a bounded3-valued structure, is defined as follows: we
obtain anA-bounded structure from a given structure by merging all pairs of A-compatible
individuals.βblur(〈U1, I〉) = 〈U2, J〉, whereU2 is the set ofA-compatible equivalence classes
of U1, and the interpretationJ is defined by:

pJ(c1, . . . , ck) =
⊔

u1∈c1,...,uk∈ck

pI(u1, . . . , uk) .

Figure4.2(b) shows anA-bounded structure obtained from the structure in Figure4.2(a)
with A = {x, root, r[root], set[marked], set[pending]}.

The abstraction functionβblur serves as the basis for abstract interpretation in TVLA. In
particular, it serves as the basis for defining various different abstractions for the (potentially
unbounded)set of2-valued logical structuresthat arise at a program point.

4.2.1 Powerset Heap Abstraction

This abstraction is based on the fact that there can only be a finite number of bounded structures
that are notisomorphicto one another. (Two structures are isomorphic when there isa bijection
between their universes that preserves all predicate values.) The powerset abstraction function
operates by bounding2-valued structures with respect to a subset of the unary predicates, and
removing duplicates (isomorphic structures).

For the sake of simplicity we will work withcanonic bounded structures. Note that
the individuals of anA-bounded structure are uniquely identified by the set of values of
the predicates inA; we refer to such a set of predicate values as the individual’s canoni-
cal name. For example, the individual pointed byroot in Figure 4.2(b) has the canonical
nameu{x=0,root=1,r[root]=1,set[marked]=1,set[pending]=0}. A canonic bounded structure is a bounded
structure in which the individuals are identified by their canonical names. We refer to the
set of all canonic bounded structures by CB-STRUCTP,A. Note that for a givenP and
A, CB-STRUCTP,A is finite. Thecanonicabstraction functionβcanonic : 2-STRUCT →
CB-STRUCT is defined as follows:βcanonic(S) is obtained by renaming the individuals of
βblur(S), giving them canonic names.
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The powerset heap abstraction functionαpow : 22-STRUCT→ 2CB-STRUCT is defined by

αpow(XS) = {βcanonic(S) | S ∈ XS} .

4.3 The Partial-Isomorphism Heap Abstraction

The idea behind partial-isomorphism heap abstraction is fairly simple. The powerset heap ab-
straction keeps all the canonic bounded structures that arise at a program point separate. Single-
shape heap abstraction merges all canonic bounded structures arising at a program point into
one structure. The partial-isomorphism heap abstraction,in contrast, merges canonic bounded
structures into one structure only when they have the same universe.

We say that a pair of canonic bounded structures areuniverse congruentiff the two struc-
tures have the same universe. Universe congruence induces an equivalence relation over sets
of canonic bounded structures. This equivalence relation lets us define an abstraction func-
tion αpi : 22-STRUCT → 2CB-STRUCT that merges all universe congruent structures. Given a set
of canonic bounded structuresXSwith the same universeU , we define the merged structure⊔

XS= 〈U, I〉 that has the same universe as all structures inXSand the following interpretation
of predicates. For every predicatep of arity k and tuple of individuals〈u1, . . . , uk〉 ∈ Uk:

p
⊔

XS(u1, . . . , uk) =
⊔

S∈XS

pS(u1, . . . , uk) .

We are now ready to define the partial-isomorphism heap abstraction functionαpi:

αpi(XS) =
{⊔

C | C ⊆ αpow(XS) is a universe congruence equivalence class
}

.

Thus, partial-isomorphism heap abstraction is less precise than the powerset heap abstrac-
tion1. As the empirical results presented later show, the partial-isomorphism heap abstraction
seems to work as well as (i.e., is as precise as) the powerset heap abstraction,in practice. The
following propositions may help explain why.

Proposition 4.3.1 If a pair of bounded structuresS1 andS2 are universe congruent, then the
merged structureS1

⊔
S2 is the least bounded structure that approximates (embeds) both S1

andS2.

When partial-isomorphism abstraction is applied to a pair of structuresS1 andS2, there are
two possibilities:

• StructuresS1 and S2 are not universe congruent. In this case, the result of the ab-
straction isαpi({S1, S2}) = {S1, S2}, which is the least upper-bound of the powerset
abstraction—the most precise approximation of both structures.

• StructuresS1 andS2 are universe congruent. In this case, the result of the abstraction is
αpi({S1, S2}) = S1

⊔
S2, which is the most precise upper bound among all (singleton

sets of) bounded structures.

1Here, precision is used in the sense of a Galois Connection between a pair of abstract domains.
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Proposition 4.3.2 Partial-isomorphism heap abstraction preserves the values of abstraction
predicates.

In other words, partial-isomorphism heap abstraction onlyloses the same kind of distinctions
that can also be lost byβblur—values of non-abstraction predicates.

In terms of worst-case complexity, partial-isomorphism heap abstraction has the same com-
plexity as powerset heap abstraction—doubly-exponentialin the number of abstraction predi-
cates. This is due to the number of sets of canonical names, which is the dominant factor in the
worst-case complexity. However, partial-isomorphism heap abstraction can save an exponen-
tial factor due to binary predicates, which is the dominant factor in many cases, in practice.

4.3.1 Illustrating Example

To illustrate the operation of partial-isomorphism heap abstraction, consider the abstract pro-
gram configuration shown in Figure4.2(b) and the abstract program configuration shown in
Figure4.3(a). Both configurations represent cases where all of the non-garbage nodes have
been marked and non-garbage nodes have not been marked, i.e., the program property we want
to verify holds for those configurations. The difference between the configurations is in the
position of the node pointed byx in the part of the heap that has been marked. In this case, the
partial-isomorphism heap abstraction results in the structure shown in Figure4.3(b), which ig-
nores the precise position of the node pointed byx inside the part of the heap that was marked.

The mark program non-deterministically selects an object and removes it from the pend-
ing set. This non-determinism allows many different ways oftraversing the set of objects
reachable fromroot, which results in many different abstract program configurations that
sustain the program property we want to verify and only differ by values of binary predicates.
Partial-isomorphism heap abstraction ignores the values of the binary predicates, but keeps
precise the overall property for an abstract configuration of having sets of nodes with the same
garbage/non-garbage and mark/unmarked properties. This allows the analysis to merge many
similar structures without losing the information needed to prove the partial correctness of the
mark program.

4.4 Implementation and Empirical Evaluation

We implemented the partial-isomorphism abstraction described in the previous section in
TVLA, and the implementation is publicly available [LAS00]. We applied it to verify vari-
ous specifications for the Java programs described in Table4.2. To translate Java programs
and their specifications to TVP (TVLA’s input language), we used a front-end for Java, which
is based on the Soot framework [VRHS+99]. For all benchmarks, we checked the absence of
null dereferences in addition to the properties described in Table4.2. Our specifications in-
clude correct usage of JDBC objects, correct usage of Java I/O streams, correct usage of Java
collections and iterators, and additional small but interesting specifications.

The experiments were conducted using TVLA version 2, running with SUN’s JRE 1.4, on
a1 GHZ Intel Pentium Processor machine with1.5 GB RAM. We optimized for precision and
simplicity by using TVLA’s Focus and Coerce operations in all benchmarks. We compared
partial isomorphism to the full powerset abstraction in terms of time and space performance
and precision.
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Figure 4.3: (a) An abstract program configuration arising atthe exit label of the mark proce-
dure, where all non-garbage nodes have been marked andx points to a node adjacent toroot;
(b) The result of merging the structure in (a) and the structure in Figure4.2(b)

Table 4.2: Benchmarks and properties used for comparing theanalysis based on powerset heap
abstraction with the analysis based on partial-isomorphism heap abstraction. Treeness means
preservation of tree structure invariants

Benchmark Description Property
GC.mark Figure4.1 Partial correctness
DSW Deutsch-Schorr-Waite Partial correctness of tree scanning + Treeness
ISPath Input streams Correct usage of Java IOStreams
InputStream5 Input stream holders Correct usage of Java IOStreams
InputStream5b Input stream holders with error Correct usage of Java IOStreams
InputStream6 Input stream holders Correct usage of Java IOStreams
SQLExecutor A JDBC framework Correct usage of JDBC objects
KernelBench.1 CMP benchmark [RWF+02] Absence of concurrent modification exceptions
InsertSorted Insertion into sorted trees Tree sortedness +Treeness
DeleteSorted Deletion from sorted trees Tree sortedness
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Table 4.3: Time, space and number of errors measurements. Rep. Err. is the number of errors
reported by the analysis, and Act. Err. is the number of errors that indicate real problems.
Time and space measurements for non-terminating benchmarks are prefixed with> to indicate
the measurements taken when the analysis timed out. The number of reported errors is the
same for both the analysis based on the powerset heap abstraction and the analysis based on
partial-isomorphism heap abstraction on all (terminating) benchmarks. For benchmarks that
did not terminate with the powerset heap abstraction, the numbers are taken from the analysis
based on partial-isomorphism heap abstraction

Benchmark Time in seconds Space in Mb. Rep. Err. / Act. Err.
Powerset Partial iso. Powerset Partial iso.

GC.mark 584 3 56 1.4 0/0
DSW 14,364 157 116.3 5.6 0/0
ISPath 79 79 2.8 2.9 0/0
InputStream5 4,530 1,706 14.0 11.9 1/0
InputStream5b 3,492 1,394 9.8 9.1 1/0
InputStream6 15,558 3,929 23.6 15.9 1/0
SQLExecutor >20,000 9,673 >109.3 104.8 0/0
KernelBench.1 7,393 5,355 13.3 10.8 1/1
InsertSorted 264 37 4.5 2.4 0/0
DeleteSorted >20,000 3,271 >62.6 21.8 0/0

The results of the analyses are shown in Table5.3. In all the benchmarks the analysis
based on the partial-isomorphism heap abstraction achieved the same precision as the analysis
based on the powerset heap abstraction, and other TVLA usersreported the same phenomena.
In all but one example, the analysis based on partial-isomorphism heap abstraction achieved
significant performance improvements.

4.4.1 Implementation Independent Results

Although the results shown in Table5.3measure the time and space consumption of analyses
using different abstractions, they are also influenced by the various implementation details of
the abstractions.

In Table4.4, we supply implementation independent measurements. We measured the total
number of abstract configurations generated by the analysisand the maximal number of ab-
stract configurations that exist in the transition system atany given time during the analysis.
The total number of abstract configurations and the maximal number of abstract configurations
are always the same with the powerset heap abstraction, since structures are only accumulated
in the transition system. For the partial-isomorphism heapabstraction, the maximal number of
abstract configurations is often lower than the total numberof abstract configurations, indicat-
ing that structures discovered in different iterations were merged together.

The results show a consistency between the improvements in time and space performance
of the partial-isomorphism heap abstraction, relative to the powerset heap abstraction, and the
reduced number of abstract configurations.
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Table 4.4: Implementation-independent measurements. Total #structs is the total number of
abstract configurations that arose during the analysis, andMax #structs is the maximal number
of abstract configurations that existed in the transition system at any time during the analysis.
The results of non-terminating benchmarks are prefixed with> to indicate the measurements
taken when the analysis timed out

Benchmark Total #structs Max #structs
Powerset Partial iso. Powerset Partial iso.

GC.mark 189,772 1,133 189,772 748
DSW 320,387 6,480 320,387 2,986
ISPath 2,168 2,168 2,168 2,168
InputStream5 8,164 3,366 8,164 2,204
InputStream5b 5,973 2,598 5,973 1,729
InputStream6 24,461 6,678 24,461 4,411
SQLExecutor >8,824 4,107 >8,824 2,164
KernelBench.1 12,594 9,296 12,594 5,748
InsertSorted 7,487 1,318 7,487 905
DeleteSorted >158,780 30,386 >158,780 25,673

4.5 Extensions and Future Work

The partial-isomorphism heap abstraction has so far performed quite satisfactorily in our ex-
perience with TVLA. However, we cannot assume that this willalways be adequate. Analysis
and verification of larger programs may require more aggressive abstractions, while in some
cases we may require more precise abstractions. In this section we describe various other ab-
stractions that may be of value. We are currently in the process of evaluating the effectiveness
of some of the abstractions described below.

Parametric Partial Isomorphism

We now present a parametric abstraction that includes both the powerset heap abstraction and
the partial-isomorphism heap abstraction as special cases.

Definition 4.5.1 We say that a pair of bounded structuresS1 = 〈U1, I1〉 andS2 = 〈U2, I2〉 are
partially isomorphic with respect to a set of predicatesR, denoted byS1 ≡R S2, iff there exists
a bijectionf pi : U1 → U2, such that, for every predicatep ∈ R of arity k and tuple of nodes
〈u1, . . . , uk〉 ∈ Uk

1 , the following holds:

pS1(u1, . . . , uk) = pS2(f pi(u1), . . . , f
pi(uk)) .

Note that≡R is an equivalence relation among3-valued structures. Given any set of pred-
icatesR that includes the set of all abstraction predicatesA, we define an abstraction function
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αpi[R] : 22-STRUCT→ 2CB-STRUCT as follows:

αpi[R](XS) =
{⊔

C | C ⊆ αpow(XS) is a≡R equivalence class
}

.

This function defines a whole family of abstractions. Further, αpow = αpi[P ] (whereP is the set
of all predicates) is the most precise among this family of abstractions, andαpi = αpi[A] is the
least precise among this family of abstractions.

The reason we restrict ourselves to setsR that contain the set of all abstraction predicates
A is the following. If R includesA, then for any two≡R-equivalent bounded structures, the
bijection between the universes of the two structures that preserves the values of predicates in
R is uniquely determined, and this bijection is used to determine which individuals should be
“merged” together.

This parametric definition allows users to choose abstractions in a more fine-grained fash-
ion, by specifying the set of predicatesR. The parametric abstraction could also be used by
an appropriate iterative refinement technique, which starts with R = A and iteratively adds
predicates toR, until a sufficiently precise abstraction is obtained orR = P .

Deflating Reductions

Deflating reductions can potentially yield performance improvements without a loss of preci-
sion. A very simple deflating reduction is the following: consider a set of 3-valued structuresX
containing structuresS1 andS2, such thatS1 ⊑ S2. Clearly, the setX ′ = X − {S1} is seman-
tically equivalent toX, and removingS1 involves no loss of precision (even when the abstract
transformer that is used is not the best). This reduction is referred to as “non-redundancy”
in [BHZ03]. Making this reduction feasible requires testing for the partial order relation over
3-valued structures, which can be done in polynomial time for bounded 3-valued structures.
The key question with this reduction is whether the subsequent (performance) benefits of do-
ing the reduction outweigh extra cost of performing the reduction. Our initial experience shows
that this reduction is worth using. This reduction transforms TVLA’s preorder over sets of 3-
valued structures into a proper (Hoare powerdomain) partial ordering.

4.6 Related Work

A substantial body of literature exists on abstractions forvarious different domains and for
creating new abstractions from existing abstractions. Thedistinguishing aspect of our work is
its focus on heap abstractions and its focus on an empirical evaluation of the effectiveness of
the proposed heap abstraction.

Function Space Domain Construction.

Function space domain construction is one way of creating abstractions that are “partly disjunc-
tive”. Examples of previous work using such a domain construction include [Deu94], where the
abstraction is composed of two components—a lattice of symbolic access paths and a paramet-
ric numerical lattice. In this abstraction, abstract elements with the same symbolic access path
component are merged by joining the numerical lattice component. The ESP system [DLS02]
also utilizes a similar function space domain construction, but not for heap abstractions.



4.6. RELATED WORK 55

Least Disjunctive Basis.

In [GR98], a technique is defined for obtaining the “least disjunctive basis”, which is the most
abstract domain inducing the same disjunctive completion as another domain. Unfortunately,
this may result in larger sets of abstract elements, as abstract elements are substituted by sets
of other abstract elements, causing inflation.

Deflating Operators and Widening Operators.

In [BHZ03], different widening operators and congruence relations are considered for the pow-
erset polyhedra domain, and in more general settings.
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Chapter 5

Disjoint Subgraph Decomposition

Programs commonly maintain multiple linked data structures. Correlations between multiple
data structures may often benon-existent or irrelevant to verifying that the program satisfies
certain safety properties or invariants. In this chapter, we show how thisindependencebe-
tween different (singly-linked) data structures can be utilized to perform shape analysis and
verification more efficiently. We present a new abstraction based on decomposing graphs into
sets of subgraphs, and show that, in practice, this new abstraction leads to very little loss of
precision, while yielding substantial improvements to efficiency.

5.1 Introduction

We are interested in verifying that programs satisfy various safety properties (such as the ab-
sence of null dereferences, memory leaks, dangling pointerdereferences, etc.) and that they
preserve various data structure invariants.

Many programs, such as web-servers, operating systems, network routers, etc., commonly
maintain multiple linked data-structures in which data is added and removed throughout the
program’s execution. The Windows IEEE 1394 (firewire) device driver, for example, main-
tains separate cyclic linked lists that respectively storebus-reset request packets, data regard-
ing CROM calls, data regarding addresses, and data regarding ISOCH transfers. These lists
are updated throughout the driver’s execution based on events that occur in the machine. Cor-
relations between multiple data-structures in a program, such as those illustrated above, may
often benon-existent or irrelevant to the verification task of interest. In this chapter, we show
how thisindependencebetween different data-structures can be utilized to perform verification
more efficiently.

Many scalable heap abstractions typically maintain no correlation between differentpoints-
to facts (and can be loosely described asindependent attributeabstractions in the sense
of [JM81a]). Such abstractions are, however, not precise enough to prove that programs pre-
serve data structure invariants. More precise abstractions for the heap that use shape graphs to
representcompleteheaps [SRW02], however, lead to exponential blowups in the state space.

In this chapter, we focus on (possibly cyclic) singly-linked lists and introduce an approxi-
mation of thefull heap abstractionpresented in Chapter3. The newgraph decomposition ab-
stractionis based on a decomposition of (shape) graphs into sets of (shape) subgraphs (without
maintaining correlations between different shape subgraphs). In our initial empirical evalua-
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tion, this abstraction produced results almost as precise as the full heap abstraction (producing
just one false positive), while reducing the state space significantly, sometimes by exponen-
tial factors, leading to dramatic improvements to the performance of the analysis. We also
hope that this abstraction will be amenable to abstraction refinement techniques (to handle the
cases where correlations between subgraphs are necessary for verification), though that topic
is beyond the scope of this thesis.

One of the challenges in using a subgraph abstraction is the design of safe and precise
transformers for statements. We show in this chapter that the computation of the most precise
transformer for the graph decomposition abstraction is FNP-complete.

We derive efficient, polynomial-time, transformers for ourabstraction in several steps. We
first use an observation by Distefano et al. [DOY06] and show how the most precise trans-
former can be computed more efficiently (than the naive approach) by: (a) identifyingfeasible
combinations of subgraphs referred to by a statement, (b) composing only them, (c) transform-
ing the composed subgraphs, and (d) decomposing the resulting subgraphs. Next, we show that
the transformers can be computed in polynomial time by omitting the feasibility check (which
entails a possible loss in precision). Finally, we show thatthe resulting transformer can be
implemented in anincrementalfashion (i.e., in every iteration of the fixed point computation,
the transformer reuses the results of the previous iteration).

We have developed a prototype implementation of the algorithm and compared the preci-
sion and efficiency (in terms of both time and space) of our newabstraction with that of the full
heap abstraction over a standard suite of shape analysis benchmarks as well as on models of a
couple of Windows device drivers. Our results show that the new analysis produces results as
precise as the full heap-based analysis in almost all cases,but much more efficiently.

5.1.1 Outline

The rest of the chapter is organized as follows. Section5.2 gives a motivation for our analy-
sis. Section5.3 describes a concrete semantics for programs with linked lists and a full heap
abstraction. Section5.4 describes the graph decomposition abstraction. In Section5.5 we
develop efficient transformers for the graph decompositionabstraction. Section5.6 presents
experimental results and compares the full heap abstraction with the graph decomposition ab-
straction. Section5.5discusses related work.

5.2 Overview

In this section, we provide an informal overview of our approach. Later sections provide the
formal details.

Figure5.1shows a simple program that adds elements into independent lists: a list with a
head object referenced by a variableh1 and a tail object referenced by a variablet1, and a list
with a head object referenced by a variableh2 and a tail object referenced by a variablet2.
This example is used as the running example throughout the chapter. The goal of the analysis
is to prove that the data structure invariants are preservedin every iteration, i.e., at labelL1
variablesh1 andt1 and variablesh2 andt2 point to disjoint acyclic lists, and that the head
and tail pointers point to the first and last objects in every list, respectively.
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//@assume h1!=null && h1==t1 && h1.n==null &&
// h2!=null && h2==t2 && h2.n==null
//@invariant Reach(h1,t1) && Reach(h2,t2) &&
// DisjointLists(h1,h2)
EnqueueEvents() {
L1: while (...) {

List temp = new List(getEvent());
if (nondet()) {

L2: t1.n = temp;
L3: t1 = temp;

} else {
t2.n = temp;
t2 = temp;

} } }

Figure 5.1: A program that enqueues events into one of two lists. nondet() returns either
true or false non-deterministically

The shape analysis presented in Chapter3 is able to verify the invariants by generating,
at program labelL1, the9 abstract states shown in Figure5.2. These states represent the3
possible states that each list can have: a) a list with one element, b) a list with two elements;
and c) a list with more than two elements. This analysis uses afull heap abstraction: it does
not take advantage of the fact that there is no interaction between the lists, and explores a
state-space that contains all9 possible combinations of cases{a, b, c} for the two lists.

The shape analysis using agraph decomposition abstractionpresented in this chapter, rep-
resents the properties of each list separately and generates, at program labelL1, the6 abstract
states shown in Figure5.3. For a generalization of this program tok lists, the number of states
generated at labelL1 by using a graph decomposition abstraction is3 × k, compared to3k for
an analysis using a full heap abstraction, which tracks correlations between properties of allk
lists. In many programs, this exponential factor can be significant. Note that in cases where
there is nocorrelationbetween the different lists, the new abstraction of the set of states is as
precise as the full heap abstraction: e.g., Figure5.3 and Figure5.2 represent the same set of
concrete states.

We note that in the presence of pointers, it is not easy to decompose the verification problem
into a set of sub-problems to achieve similar benefits. For example, current (flow-insensitive)
alias analyses would not be able to identify that the two lists are disjoint.

5.3 A Full Heap Abstraction for Lists

In this section, we describe the concrete semantics of programs manipulating singly-linked lists
and a full heap abstraction for singly-linked lists.

A Simple Programming Language for Singly-Linked Lists.

We now define a simple language and its concrete semantics. Our language has a single data
type List (representing a singly-linked list) with a single reference field n and a data field,
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Figure 5.2: Abstract states at program labelL1, generated by an analysis of the program in
Figure5.1using a powerset abstraction. Edges labeled by1 indicate list segments of length1,
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Figure 5.3: Abstract states at program labelL1, generated by an analysis of the program in
Figure5.1, using the graph decomposition abstraction
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Table 5.1: Concrete semantics of program statements. Primed symbols denote post-execution
values. We writex,y, andx′ to meanenv(x), env(y), andenv′(x), respectively

Statement Condition Update
x=new List() x′ = vnew, wherevnew is a fresh List object

n′ = λ v . (v = vnew ? null : n(v))
x=null x′ = null
x=y x′ = y
x=y.n y 6= null x′ = n(y)
x.n=y x 6= null n′ = λ v . (v = x ? y : n(v))
assume(x!=y) x 6= y
assume(x==y) x = y

which we conservatively ignore.
There are five types of heap-manipulating statements: (1)x=new List(), (2)x=null,

(3) x=y, (4)x=y.n, and (5)x.n=y. Control flow is achieved by usinggoto statements and
assume statements of the formassume(x==y) andassume(x!=y). For simplicity, we
do not present a deallocation,free(x), statement and use garbage collection instead. Our
implementation supports memory deallocation, assertions, and detects (mis)use of dangling
pointers.

Concrete States. Let PVar be a set of variables of typeList . A concrete program state is
a triple C

def
= (UC , envC , nC) whereUC is the set of heap objects, an environmentenvC :

PVar∪ {null} → UC maps program variables (andnull) to heap objects, andnC : UC → UC ,
which represents then field, maps heap objects to heap objects. Every concrete state includes a
special objectvnull such thatenv(null) = vnull.We denote the set of all concrete states byStates.

Concrete Semantics. We associate a transition function[[st]] with every statementst in the
program. Each statementst takes a concrete stateC, and transforms it to a stateC ′ = [[st]](C).
The semantics of a statement is given by a pair(condition, update) such that when the con-
dition specified bycondition holds the state is updated according to the assignments specified
by update. The concrete semantics of program statements is shown in Table5.1.

5.3.1 Abstracting List Segments

The abstraction is based on the one presented in Chapter3; we now briefly repeat the essential
details.

The core concepts of the abstraction areinterruptionsanduninterrupted list. An object
is an interruption if it is referenced by a variable (ornull) or shared (i.e., has two or more
predecessors). An uninterrupted list is a path delimited bytwo interruptions that does not
contain interruptions other than the delimiters.

Definition 5.3.1 (Shape Graphs)A shape graphG
def
= (V G, EG, envG, lenG) is a quadruple

whereV G is a set of nodes,EG is a set of edges, envG : PVar∪ {null} → V G maps variables
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Figure 5.4: (a) A concrete state, and (b) The abstraction of the state in (a)

(and null) to nodes, and lenG : EG → pathlen assigns labels to edges. In this chapter, we use
pathlen

def
= {1,>1}.1

We denote the set of shape graphs bySGPVar, omitting the subscript if no confusion is likely,
and define equality between shape graphs by isomorphism. We say that a variablex points to
a nodev ∈ V G if envG(x) = v.

We now describe how a concrete stateC
def
= (UC , envC , nC) is abstracted into a shape graph

G
def
= (V G, EG, envG, lenG) by the functionβFH : States → SG. First, we remove any node in

UC that is not reachable from a (node pointed-to by a) program variable. LetPtVar(C) be the
set of objects pointed-to by some variable, and letShared(C) the set of heap-shared objects.
We create a shape graphβFH(C)

def
= (V G, EG, envG, lenG) whereV G def

= PtVar(C)∪Shared(C),
EG def

= {(u, v) | (u, . . . , v) is an uninterrupted list}, envG restrictsenvC to V G, andlenG(u, v) is
1 if the uninterrupted list fromu to v has one edge and>1 otherwise. The abstraction function
αFH is the point-wise extension ofβFH to sets of concrete states2. We say that a shape graph is
admissibleif it is in the image ofβFH.

Proposition 5.3.2 A shape graph is admissible iff the following properties hold: (i) Every node
has a single successor; (ii) Every node is pointed-to by a variable (or null) or is a shared node,
and (iii) Every node is reachable from (a node pointed-to by)a variable.

We use Proposition5.3.2to determine if a given graph is admissible in linear time andto
conduct an efficient isomorphism test for two shape graphs inthe image of the abstraction.
It also provides a bound on the number of admissible shape graphs: 25n2+10n+8, wheren

def
=

|PVar|.

Example 5.3.3 Figure5.4(a) shows a concrete state that arises at program labelL1 and Fig-
ure5.4(b) shows the shape graph that represents it.�

Concretization.

The functionγFH : SG→ 2States returns the set of concrete states that a shape graph represents:
γFH(G)

def
= {C | βFH(C) = G}. We define the concretization of sets of shape graphs by using

its point-wise extension. We now have the Galois Connection〈2States , αFH, γFH, 2SG〉.

1The abstraction in Chapter3 is more precise, since it uses the abstract lengths{1, 2, > 2}. We use the lengths
{1, > 1}, which we found to be sufficiently precise, in practice.

2In general, the point-wise extension of a functionf : D → D is a functionf : 2D → 2D, defined by

f(S)
def
= {f(s) | s ∈ S}. Similarly, the extension of a functionf : D → 2D is a functionf : 2D → 2D, defined

by f(S)
def
=

⋃
s∈S

f(s).
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Abstract Semantics.

The most precise, a.k.abest, abstract transformer [CC77] of a statement is given by[[st]]#
def
=

αFH ◦ [[st]] ◦ γFH. An efficient implementation of the most precise abstract transformer is shown
in the full version [MBC+].

5.4 A Graph Decomposition Abstraction for Lists

In this section, we introduce the abstraction that is the basis of our approach as an approxima-
tion of the abstraction shown in the previous section. We define the domain we use—2ASSG, the
powerset of atomic shape subgraphs—as well as the abstraction and concretization functions
between2SG and2ASSG.

5.4.1 The Abstract Domain of Shape Subgraphs

Intuitively, the graph decomposition abstraction works bydecomposing a shape graph into a
set ofshape subgraphs. In principle, different graph decomposition strategies can be used to
get different abstractions. However, in this chapter, we focus on decomposing a shape graph
into a set of subgraphs induced by its(weakly-)connected components. The motivation is that
different weakly connected components mostly represent different “logical” lists (though a
single list may occasionally be broken into multiple weaklyconnected components during a
sequence of pointer manipulations) and we would like to use an abstraction that decouples the
different logical lists. We will refer to an element ofSGPVar as a shape graph, and an element of
SGVars for anyVars⊆ PVaras a shape subgraph. We denote the set of shape subgraphs bySSG
and defineVars(G) to be the set of variables that appear inG, i.e., mapped byenvG to some
node.

5.4.2 Abstraction by Graph Decomposition

We now define the decomposition operation. Since our definition of shape graphs represents
null using a special node, we identify connected componentsafter excluding the null node.
(Otherwise, allnull-terminated lists, i.e. all acyclic lists, will end up in thesame connected
component.)

Definition 5.4.1 (Projection) Given a shape subgraphG
def
= (V, E, env, len) and a set of

nodesW ⊆ V , the subgraph ofG induced byW , denoted byG|W , is the shape sub-
graph (W, E ′, env′, len′), whereE ′ def

= E ∩ (W × W ), env′
def
= env∩ (Vars(G) × W ), and

len′
def
= len∩ (E ′ × pathlen).

Definition 5.4.2 (Connected Component Decomposition)For a shape subgraphG
def
=

(V, E, env, len), let R
def
= E ′∗ be the reflexive, symmetric, transitive closure of the relation

E ′ def
= E \ {(vnull, v), (v, vnull) | v ∈ V }. That is,R does not represent paths going through null.

Let [R] be the set of equivalence classes ofR. The connected component decomposition ofG
is given by

Components(G)
def
= {G|C′ | C ′ = C ∪ {vnull}, C ∈ [R]} .
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if (?)
x = new List();

else
x = null;

y = new List();

null1
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null1
xy

null1
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Figure 5.5: (a) A code fragment; and (b) Shape subgraphs arising after executingy=new
List(). M1: y points to a list andx is not null,M2: y points to a list andx is null; andM3:
x points to a list andy is not null

Example 5.4.3 Referring to Figure 5.2 and Figure 5.3, we have Components(S2) =
{M1, M5}.

Abstracting Away Null-value Correlations.

The decompositionComponentsmanages to decouple distinct lists in a shape graph. However,
it fails to decouple lists from null-valued variables.

Example 5.4.4 Consider the code fragment shown in Figure5.5(a) and the shape subgraphs
arising aftery=new List(). y points to a list (with one cell), whilex is null or points to
another list (with one cell). Unfortunately, they list will be represented by two shape subgraphs
in the abstraction, one corresponding to the case thatx is null (M2) and one corresponding to
the case thatx is not null (M1). If a number of variables can be optionally null, this can lead
to an exponential blowup in the representation of other lists! Our preliminary investigations
show that this kind of exponential blow-up can happen in practice.�

The problem is the occurrence of shape subgraphs that are isomorphic except for thenull
variables. We therefore define a coarser abstraction by decomposing the set of variables that
point to thenull node. To perform this further decomposition, we define the following opera-
tions:

• nullvars : SSG→ 2PVar returns the set of variables that point tonull in a shape subgraph.

• unmap: SSG× 2PVar → SSGremoves the mapping of the specified variables from the
environment of a shape subgraph.

• DecomposeNullVars: SSG→ 2SSG takes a shape subgraph and returns: (a) the given
subgraph without the null variables, and (b) one shape subgraph for every null variable,
which contains just the null node and the variable:

DecomposeNullVars(G)
def
= {unmap(G, nullvars(G))}∪

{unmap(G|vnull, Vars(G) \ {var} | var ∈ nullvars(G)} .

In the sequel, we use the point-wise extension ofDecomposeNullVars.
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We define the setASSGof atomicshape subgraphs to be the set of subgraphs that consist of
either a single connected component or a singlenull-variable fact (i.e., a single variable point-
ing to thenull node). Non-atomic shape subgraphs correspond to conjunctions of atomic shape
subgraphs and are useful intermediaries during concretization and while computing transform-
ers.

The abstraction functionβGD : SG→ 2ASSGis given by

βGD(G)
def
= DecomposeNullVars(Components(G)) .

The functionαGD : 2SG → 2ASSGis the point-wise extension ofβGD. Thus,ASSG= αGD(SG)
is the set of shape subgraphs in the image of the abstraction.

Note: We can extend the decomposition to avoid exponential blowups created by different
sets of variables pointing to the same (non-null) node. However, we believe that such corre-
lations are significant for shape analysis (as they capture different states of a single list) and
abstracting them away can lead to a significant loss of precision. Hence, we do not explore this
possibility in this chapter.

5.4.3 Concretization by Composition of Shape Subgraphs

Intuitively, a shape subgraph represents the set of its super shape graphs. Concretization con-
sists of connecting shape subgraphs such that the intersection of the sets of shape graphs that
they represent is non-empty. To formalize this, we define thefollowing binary relation on shape
subgraphs.

Definition 5.4.5 (Subgraph Embedding)We say that a shape subgraphG′ def
=

(V ′, E ′, env′, len′) is embeddedin a shape subgraphG
def
= (V, E, env, len), denotedG′ ⊑ G,

if there exists a functionf : V → V ′ such that: (i) (u, v) ∈ E iff (f(u), f(v)) ∈ E ′;
(ii) f(env(x)) = env′(x) for everyx ∈ Vars(G); and (iii) for everyx ∈ Vars(G′) \ Vars(G),
f−1(env′(x)) ∩ V = ∅ or env′(x) = env′(null).3

Thus, for any two atomic shape subgraphsG andG′, G′ ⊑ G iff G = G′.
We make〈SSG,⊑〉 a complete partial order by adding a special element⊥ to represent

infeasible shape subgraphs, and define⊥ ⊑ G for every shape subgraphG. We define the
operationcompose: SSG× SSG→ SSGthat accepts two shape subgraphs and returns their
greatest lower bound (w.r.t. to the⊑ ordering). The operation naturally extends to sets of shape
subgraphs.

Example 5.4.6 Referring to Figure5.2and Figure5.3, we haveS1 ⊑ M1 andS1 ⊑ M4, and
compose(M1, M4) = S1.�

The concretization functionγGD : 2ASSG→ 2SG is defined by

γGD(XG)
def
= {G | G = compose(Y ), Y ⊆ XG, G is admissible} .

This gives us the Galois Connection〈2SG, αGD, γGD, 2ASSG〉.

3We definef−1(x)
def
= {y ∈ V . f(y) = x}.
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Figure 5.6: (a) A subgraph at labelL2 in Figure5.1, and (b) Subgraphs atL3 in Figure5.1

Properties of the Abstraction.

Note that there is neither a loss of precision nor a gain in efficiency (e.g., such as a reduction in
the size of the representation) when we decompose a single shape graph, i.e.,γGD(βGD(G)) =
{G}. Both potentially appear when we abstract aset of shape graphsby decomposing each
graph in a set. However, when there is no logical correlationbetween the different subgraphs
(in the graph decomposition), we will gain efficiency without compromising precision.

Example 5.4.7 Consider the graphs in Figure5.2 and Figure 5.3. AbstractingS1 gives
βGD(S1) = {M1, M4}. Concretizing back, givesγGD({M1, M4}) = {S1}. AbstractingS5

yields βGD(S5) = {M2, M5}. Concretizing{M1, M2, M4, M5} results in{S1, S2, S4, S5},
which overapproximates{S1, S5}. �

5.5 Efficient Abstract Transformers
for the Graph Decomposition Abstraction

In this section, we show that it is hard to compute the most precise transformer for the graph
decomposition abstraction in polynomial time and develop sound and efficient transformers.
We demonstrate our ideas using the statementt1.n=temp in the running example and the
subgraphs in Figure5.6and Figure5.3.

An abstract transformerTst : 2ASSG→ 2ASSGis soundfor a statementst if for every set of
shape subgraphsXG the following holds:

(αGD ◦ [[st]]# ◦ γGD)(XG) ⊆ Tst(XG) . (5.1)

5.5.1 The Most Precise Abstract Transformer

We first show how themost precise transformer[[st]]GD def
= αGD ◦ [[st]]# ◦ γGD can be computed

locally, without concretizing complete shape graphs. As observed by Distefano et al. [DOY06],
the full heap abstraction transformer[[st]]# can be computed by considering only therelevant
part of an abstract heap. We use this observation to create a local transformer for our graph
decomposition abstraction.

The first step is to identify the subgraphs “referred” to by the statementst. Let Vars(st)
denote the variables that occur in statementst. We define:

• The functionmodcompsst : 2SSG→ 2SSGreturns the shape subgraphs that have a variable
in Vars(st): modcompsst(XG)

def
= {G ∈ XG | Vars(G) ∩ Vars(st) 6= ∅} .
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Figure 5.7: A set of shape subgraphs over the set of program variables{x,y,z,w}

• The function samecompsst : 2SSG → 2SSG returns the complementary subset:
samecompsst(XG)

def
= XG\ modcompsst(XG) .

Example 5.5.1 modcompst1.n=temp({M1, . . . , M7}) = {M1, M2, M3, M7} and
samecompst1.n=temp({M1, . . . , M7}) = {M4, M5, M6}. �

Note that the transformer[[st]]# operates oncompleteshape graphs. However, the trans-
former can be applied, in a straightforward fashion, to any shapesubgraphG as long asG
contains all variables mentioned inst (i.e., Vars(G) ⊇ Vars(st)). Thus, our next step is to
compose subgraphs inmodcompsst(XG) to generate subgraphs that contain all variables ofst.
However, not every set of subgraphs inmodcompsst(XG) is a candidate for this composition
step.

Given a set of subgraphsXG, a setXG′ ⊆ XG, is defined to beweakly feasiblein XG if
compose(XG′) 6=⊥. Further, we say thatXG′ is feasiblein XG if there exists a subsetXR⊆ XG
such thatcompose(XG′ ∪ XR) is an admissible shape graph (i.e.,∃G ∈ SG: XG′ ⊆ αGD(G) ⊆
XG).

Example 5.5.2 The subgraphsM1 andM7 are feasible in{M1, . . . , M7}, since they can be
composed withM4 to yield an admissible shape graph. However,M1 andM2 contain common
variables and thus{M1, M2} is not (even weakly) feasible in{M1, . . . , M7}. In Figure 5.7,
the shape subgraphsM1 andM4 are weakly-feasible but not feasible in{M1, . . . , M5} (there
is no way to compose subgraphs to includew, sinceM1 and M2 and M3 and M4 are not
weakly-feasible.).�

Let st be a statement withk
def
= |Vars(st)| variables (k ≤ 2 in our language). LetM (≤k)

denote all subsets of sizek or less of a setM . We define the transformer for a heap-mutating
statementstby:

T GD
st (XG)

def
= let Y = {[[st]]#(G) | M = modcompsst(XG), R ∈ M (≤k),

G = compose(R), Vars(st) ⊆ Vars(G),
R is feasible inXG}

in samecompsst(XG) ∪ αGD(Y ) .

The transformer for an assume statementst is slightly different. An assume statement does
not modify incoming subgraphs, but filters out some subgraphs that are not consistent with
the condition specified in the assume statement. Note that itis possible for even subgraphs
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in samecompsst(XG) to be filtered out by the assume statement, as shown by the following
definition of the transformer:

T GD
st (XG)

def
= let Y = {[[st]]#(G) | R ∈ XG(≤k+1),

G = compose(R), Vars(st) ⊆ Vars(G),
R is feasible inXG}

in αGD(Y ) .

Example 5.5.3 The transformerT GD
t1.n=temp: (a) composes subgraphs: compose(M1, M7),

compose(M2, M7), and compose(M3, M7); (b) finds that the three pairs of subgraphs
are feasible in{M1, . . . , M7}; (c) applies the local full heap abstraction transformer
[[t1.n=temp]]#, producingM8, M9, andM10, respectively; and (d) returns the final result:
T GD
t1.n=temp({M1, . . . , M7}) = {M4, M5, M6} ∪ {M8, M9, M10}. �

Theorem 5.5.4 The transformerT GD
st is the most precise abstract transformer.

AlthoughT GD
st applies[[st]]# to a polynomial number of shape subgraphs and[[st]]# itself can

be computed in polynomial time, the above transformer is still exponential in the worst-case,
because of the difficulty of checking the feasibility ofR in XG. In fact, as we now show, it is
impossible to compute the most precise transformer inpolynomial time, unless P=NP.

Definition 5.5.5 (Most Precise Transformer Decision Problem) The decision version of the
most precise transformer problem is as follows: for a set of atomic shape subgraphs XG, a
statement st, and an atomic shape subgraphG, doesG belong to[[st]]GD(XG)?

Theorem 5.5.6 The most precise transformer decision problem, for the graph decomposition
abstraction presented above, is NP-complete (even when theinput set of subgraphs is restricted
to be in the image ofαGD). Similarly, checking if XG′ is feasible in XG is NP-complete.

Proof:[sketch] By reduction from the EXACT COVER problem: given a universeU =
{u1, . . . , un} of elements and a collection of subsetsA ⊆ 2U , decide whether there exists a
subsetB ⊆ A such that every elementu ∈ U is contained in exactly one set inB. EXACT
COVER is known to be NP-complete [GJ79]. �

5.5.2 Sound and Efficient Transformers

We safely replace the check for whetherR is feasible inXG by a check for whetherR is
weakly-feasible (i.e., whethercompose(R) 6=⊥) and obtain the following transformer. (Note
that a set of subgraphs is weakly-feasible iff no two of the subgraphs have a common variable;
hence, the check for weak feasibility is easy.) For a heap-manipulating statementst, we define
the transformer by:

T̂ GD
st (XG)

def
= let Y = {[[st]]#(G) | M = modcompsst(XG), R ∈ M (≤k),

G = compose(R) 6=⊥, Vars(st) ⊆ Vars(G)}
in samecompsst(XG) ∪ αGD(Y ) .
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For an assume statementst, we define the transformer by:

T̂ GD
st (XG)

def
= let Y = {[[st]]#(G) | R ∈ XG(≤k+1),

G = compose(R) 6=⊥, Vars(st) ⊆ Vars(G)}
in αGD(Y ) .

By definition, (5.1) holds forT̂ GD
st . Thus,T̂ GD

st is a sound transformer.

We apply several engineering optimizations to make the transformerT̂ GD
st efficient in prac-

tice: (i) by preceding statements of the formx=y andx=y.nwith an assignmentx=null, we
specialize the transformer to achieve linear time complexity; (ii) we avoid unnecessary com-
positions of shape subgraphs for statements of the formx.n=y andassume(x==y), when
a shape subgraph contains bothx andy; and (iii) assume statements do not change subgraphs,
therefore we avoid performing explicit compositions and propagate atomic subgraphs.

5.5.3 An Incremental Transformer

The goal of anincrementaltransformer is to computêT GD
st (XG∪ {D}) by reusingT̂ GD

st (XG).
We define the transformer for a heap-manipulating statementstby:

T̂ GD
st (XG∪ {D})

def
= if D ∈ modcompsst({D})

let Y = {[[st]]#(G) | M = modcompsst(XG∪ {D}),
R ∈ M (≤k), D ∈ R,
G = compose(R) 6=⊥, Vars(st) ⊆ Vars(G)}

in T̂ GD
st (XG) ∪ αGD(Y )

else

T̂ GD
st (XG) ∪ {D} .

Here, if the new subgraphD is not affected by the statement, we simply add it to the result.
Otherwise, we apply the local full heap abstraction transformer only to subgraphs composed
from the new subgraph (for sets of subgraphs not containingD, the result has been computed
in the previous iteration).

For an assume statementst, we define the transformer by:

T̂ GD
st (XG∪ {D})

def
= let Y = {[[st]]#(G) | R ∈ (XG∪ {D})(≤k+1),

D ∈ R, G = compose(R) 6=⊥, Vars(st) ⊆ Vars(G)}

in T̂ GD
st (XG) ∪ αGD(Y ) .

Again, we apply the transformer only to (composed) subgraphs containingD.
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5.6 Prototype Implementation and Empirical Results

Implementation. We implemented the analyses based on the full heap
abstraction and the graph decomposition abstraction described in previ-
ous sections in a system that supports memory deallocation and asser-
tions of the form assertAcyclicList(x), assertCyclicList(x),
assertDisjointLists(x,y), and assertReach(x,y). The analysis checks
absence of null dereferences, absence of memory leakage, misuse of dangling pointers, and
(manually added) shape assertions. The system supports non-recursive procedure calls via call
strings and unmaps variables as they become dead.

Example Programs. We use a set of examples, described in Table5.2, to compare the full
heap abstraction-based analysis with the graph decomposition-based analysis. The first set of
examples consists of standard list manipulating algorithms operating on a single list (except
for merge). The second set of examples consists of programs manipulating multiple lists. We
created the serial port driver example incrementally, firstmodeling4 of the lists used by the
device and then5. Thequeue 2 stacks program was constructed to show a case where
the graph decomposition-based analysis loses precision—determining that a queue is empty
requires maintaining a correlation between the two (empty)lists. The code appears in Appendix
B.1.

Precision. The results of running the analyses appear in Table5.3. The graph decomposition-
based analysis failed to prove that the pointer returned bygetLast is non-null4, and that
a dequeue operation is not applied to an empty queue inqueue 2 stacks. On all other
examples, the graph decomposition-based analysis has the same precision as the analysis based
on the full heap abstraction.

Performance. The graph decomposition-based analysis is slightly less efficient than the anal-
ysis based on the full heap abstraction on the standard list examples. For the examples manip-
ulating multiple lists, the graph decomposition-based analysis is faster by up to a factor of212
(in theserial 5 lists example) and consumes considerably less space. These results are
also consistent with the number of states generated by the two analyses.

5.7 Related Work

Single-graph Abstractions. Some early shape analyses used a single shape graph to rep-
resent the set of concrete states [JM81b, CWZ90,SRW98]. As noted earlier, it is possible to
generalize our approach and consider different strategiesfor decomposing shape graphs. In-
terestingly, the single shape graph abstractions can be seen as one extreme point of such a
generalized approach, which relies on a decomposition of a graph into its set of edges. The
decomposition strategy we presented in this chapter leads to a more precise analysis.

4A simple feasibility check while applying the transformer of the assertion would have eliminated the subgraph
containing the null pointer.
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Table 5.2: Benchmarks used to compare the full heap analysiswith the graph decomposition
analysis

Benchmark Description
create Creates new elements and adds them to an acyclic list
delete Deletes a cell chosen non-deterministically in an acyclic list
deleteAll Deletes all elements of an acyclic list
getLast Returns a pointer to the last element of an acyclic list
getLast cyclic Returns a pointer to the last element of a cyclic list
insert Inserts an element to an acyclic list in a position chosen

non-deterministically
merge Merges two acyclic lists (simulates merging ordered lists)
removeSeg Removes a sublist from a cyclic list
reverse Reverses an acyclic list
reverse cyclic Applying reversal to a cyclic list
reverse pan Applying reversal to a panhandle list
rotate Moves the first element of an acyclic list to the tail
search nullderef A buggy implementation of a list search
swap Swaps the first two elements of an acyclic list
Benchmarks with Multiple Lists
enqueueEvents The running example
queue 2 stacks Test for an implementation of a queue using two lists
join 5 A program joining5 acyclic lists
split 5 A program that splits a list into5 lists
1394diag Modeling aspects of the diagnostics program

for the 1394 firewire device driver
serial 4 lists Modeling aspects of4 lists in the serial port device driver
serial 5 lists Modeling aspects of5 lists in the serial port device driver
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Table 5.3: Time, space, number of states (shape graphs for the analysis based on full heap
abstraction and subgraphs for the graph decomposition-based analysis), and number of errors
reported. Rep. Err. and Act. Err. are the number of errors reported, and the number of errors
that indicate real problems, respectively. #Loc indicatesthe number of CFG locations. F.H.
and G.D. stand for full heap and graph decomposition, respectively

Benchmark Time (sec.) Space(Mb.) #States R. Err./A. Err.
(#Loc) F.H. G.D. F.H. G.D. F.H. G.D. F.H. G.D.
create (11) 0.03 0.19 0.3 0.3 27 36 0/0 0/0
delete (25) 0.17 0.27 0.8 0.9 202 260 0/0 0/0
deleteAll (12) 0.05 0.09 0.32 0.36 35 64 0/0 0/0
getLast (13) 0.06 0.13 0.42 0.47 67 99 0/0 1/0
getLast cyclic (13) 0.08 0.09 0.39 0.41 53 59 0/0 0/0
insert (23) 0.14 0.28 0.75 0.82 167 222 0/0 0/0
merge (37) 0.34 0.58 2.2 1.7 517 542 0/0 0/0
removeSeg (23) 0.19 0.33 0.96 1.0 253 283 0/0 0/0
reverse (13) 0.09 0.12 0.47 0.46 82 117 0/0 0/0
reverse cyclic (14) 0.14 0.36 0.6 1.4 129 392 0/0 0/0
reverse pan (12) 0.2 0.6 0.9 2.2 198 561 0/0 0/0
rotate (17) 0.05 0.08 0.3 0.4 33 50 0/0 0/0
search nulldref (7) 0.06 0.1 0.4 0.4 48 62 1/1 1/1
swap (13) 0.05 0.09 0.3 0.4 35 62 0/0 0/0
enqueueEvents (49) 0.2 0.2 1.2 0.7 248 178 0/0 0/0
queue 2 stacks (61) 0.1 0.2 0.6 0.7 110 216 0/0 1/0
join 5 (68) 12.5 0.5 67.0 2.4 14,704 1,227 0/0 0/0
split 5 (47) 28.5 0.3 126.2 1.7 27,701 827 0/0 0/0
1394diag (180) 26.2 1.8 64.7 8.5 10,737 4,493 0/0 0/0
serial 4 lists (248) 36.9 1.7 230.1 11.7 27,851 6,020 0/0 0/0
serial 5 lists (278) 552.6 2.6 849.2 16.4 89,430 7,733 0/0 0/0
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Partially Disjunctive Heap Abstraction. In Chapter4, we described a heap abstraction
based on merging sets of graphs with the same set of nodes intoone (approximate) graph. The
abstraction in the current chapter is based on decomposing agraph into a set of subgraphs. The
abstraction in Chapter4 suffers from the same exponential blow-ups as the full heap abstraction
for our running example and examples containing multiple independent data structures.

Heap Analysis by Separation. Yahav and Ramalingam [YR04] and Hackett and Rug-
ina [HR05] decompose heap abstractions to separately analyze different parts of the heap (e.g.,
to establish the invariants of different objects). A central aspect of the separation-based ap-
proach is that the analysis/verification problem is itself decomposed into a set of problem
instances, and the heap abstraction is specialized for eachproblem instance and consists of
one sub-heap consisting of the part of the heap relevant to the problem instance, and a coarser
abstraction of the remaining part of the heap ( [HR05] uses a points-to graph). In contrast, we
simultaneously maintain abstractions of different parts of the heap and also consider the inter-
action between these parts. (E.g., it is possible for our decomposition to dynamically change
as components get connected and disconnected.)

Application to Other Shape Abstractions. Lev-Ami et al. [LAIS06] present an abstraction
that could be seen as an extension of the full heap abstraction in this chapter to more complex
data structures, e.g., doubly-linked lists and trees. We believe that applying the techniques in
this chapter to their analysis is quite natural and can yielda more scalable analysis for more
complex data structures. Distefano et al. [DOY06] present a full heap abstraction based on
separation logic, which is similar to the full heap abstraction presented in this chapter. We
therefore believe that it is possible to apply the techniques in this chapter to their analysis as
well. TVLA [ LAS00] is a generic shape analysis system that uses canonical abstraction. We
believe it is possible to decompose logical structures in a similar way to decomposing shape
subgraphs and extend the ideas in this chapter to TVLA.

Decomposing Heap Abstractions for Interprocedural Analysis. Gotsman et al. [GBC06]
and Rinetzky et al. [RBR+05,RSY05] decompose heap abstractions to create procedure sum-
maries for full heap+ abstractions. This kind of decomposition, which does not lead to loss of
precision (except when cutpoints are abstracted), is orthogonal to our decomposition of heaps,
which is used to reduce the number of abstract states generated by the analysis. We believe
it is possible to combine the two techniques to achieve a moreefficient interprocedural shape
analysis.
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Chapter 6

Cartesian Subheap Decomposition

We demonstrate shape analyses that can achieve a state spacereduction exponential in the num-
ber of threads compared to the state-of-the-art analyses, while retaining sufficient precision to
verify sophisticated properties such aslinearizability. The key idea is to abstract the global
heap by decomposing it into (not necessarily disjoint) subheaps, abstracting away some corre-
lations between them. These new shape analyses are instances of an analysis framework based
on heap decomposition. This framework allows rapid prototyping of complex static analyses
by providing efficient abstract transformers given user-specified decomposition schemes. Ini-
tial experiments confirm the value of heap decomposition in scaling concurrent shape analyses.

6.1 Introduction

The problem of verifying concurrent programs that manipulate heap-allocated data structures
is challenging: it requires considering arbitrarily interleaved threads manipulating unbounded
data structures. Both heap-allocated data structures and concurrency can introduce state explo-
sion. Their combination only makes matters worse. This chapter develops new static analysis
algorithms that address the state space explosion problem in a systematic and generic way.
The result of these analyses can be used to automatically establish interesting properties of
concurrent heap-manipulating programs such as the absenceof null dereferences, the absence
of memory leaks, the preservation of data structure invariants, andlinearizability [HW90].

The Intuition.

Typical programs manipulate a large number of (instances of) data structures (possibly nested
within other data structures). Each individual data structure can usually be in one of several
different states (even in an abstract representation). This can lead to a combinatorial explosion
in the number of distinct abstract states that can arise during abstract interpretation.

The essential idea we pursue is that ofdecomposingthe heap into multiple subheaps and
abstracting away some correlations between the subheaps. Decomposition allows reusing sub-
heaps that were decomposed from different heaps, thus representing a set of heaps more com-
pactly (and more abstractly). For example, consider a program maintainingk disjoint lists.
A powerset-based shape analysis such as the one in [SRW02] uses a lattice whose height is
exponential ink. An abstraction that ignores the correlations between thek lists reduces the

75
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lattice height to be linear ink, leading to exponentially faster analysis. (The savings come
from not maintaining the correlations between different states of the different lists, which we
observe are often irrelevant for a specific property of interest.) Similar situations arise in the
kind of multithreaded programs discussed earlier, where the size of the state space is a function
of the number of threads rather than the number of data structures. In this chapter, we allow
decomposing the heap into non-disjoint (i.e., overlapping) subheaps, which is important for
handling programs with fine-grained concurrency (where different threads can simultaneously
access the same objects) in a thread-modular way.

Fine-Grained Concurrency.

Fine-grained concurrent heap-manipulating programs allow multiple threads to use the same
data structuresimultaneously. They trade the simplicity of the single-thread-owning-a-data-
structure model, which is at the heart of the coarse-grainedconcurrency approach, to achieve a
higher degree of concurrency. However, the additional performance comes with a price: these
programs are notoriously hard to develop and prove correct,even when the manipulated data
structures are singly-linked lists (see, e.g., [DDG+04]).

It is hard to employ thread-modular approaches that exploitlocking [GBCS07] to analyze
fine-grained concurrent programs because they haveintentional (benign) data-races. Thus,
state-of-the-art shape analyses capable of verifying intricate properties of fine-grained con-
current heap-manipulating programs, e.g., linearizability (explained in Section6.3), track all
correlations between the states of all the threads [ARR+]. This makes these analyses hard to
scale. For example, the shape analysis in [ARR+] handles at most3 threads.

It is interesting to observe, however, that it is often the case that although proving properties
of these programs requires tracking sophisticated correlations between every thread and the part
of the heap that it manipulates, the correlations between the states of different threads is often
irrelevant. Intuitively, this is because fine-grained concurrent programs are often written in a
way whichattemptsto ensure the correct operation of every threadregardlessof the actions
taken by other threads. This programming paradigm makes these programs an ideal match with
our approach explained below.

The Conceptual Framework.

To permit the use of heap decomposition in several settings,we first present it as a parametric
abstraction that can be tuned by the analysis designer in three ways:

Decomposition: Specify along what lines a concrete heap should be decomposed into
(possibly overlapping) subheaps. One of the strengths of the specification mechanism is that the
decomposition of a heap depends on its properties. This allows us, for example, to decompose
the state of a concurrent program based on the association between threads and data-structures
in that state, which is usually not known a priori.

Subheap abstraction: Create a bounded abstract heap representation from concrete sub-
heaps (which are unbounded). Subheap abstractions can be obtained from existing whole-heap
abstractions that satisfy certain properties.

Combiner Sets: The framework is parametric with respect to transformers. Computing
sound and precise transformers for statements is quite challenging with a heap decomposition.
Transforming each subheap independently can end up being very imprecise (or potentially
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incorrect, if not done carefully), especially when subheaps overlap. At the other extreme, com-
bining subheaps together into a full heap prior to transforming it can be very inefficient and de-
feats the purpose of using heap decomposition. Achieving the desired precision and efficiency,
without compromising soundness, can be tricky. Our framework allows the analysis designer
to specify only which subheaps should be combined together for a given transformer, called
combiner sets. The framework automatically generates a corresponding sound transformer,
letting the analysis designer easily explore alternativeswithout worrying about soundness.

HeDec.

We implemented our conceptual framework for the family of canonical abstractions [SRW02]
in a system called HeDec (forHeap Decomposition), which is publicly available. This im-
plementation retains the parametricity of the conceptual framework, which allows analysis
designers to rapidly prototype different shape analysis algorithms by defining heap decompo-
sition schemes.

Instances of the Framework.

We have used our framework to develop several shape analyses, including the following, and
have implemented these analyses in HeDec.

(a) A shape analysis for sequential programs manipulating singly-linked lists that abstracts
away the correlations between disjoint lists . The resultant shape analysis algorithm emulates
the algorithm of Chapter5, with some interpretative overhead. Unlike the tedious proof of
soundness of Chapter5, the soundness of this instance immediately follows from the soundness
of the underlying subheap abstraction.

(b) A new shape analysis for sequential programs manipulating singly-linked lists and
trees by abstracting away the correlations between segments which do not contain an element
pointed-to by a variable. We confirmed that it is precise enough to prove memory safety and
preservation of data-structure invariants. This is encouraging for scaling shape analysis for
programs with densely connected heaps.

(c) A shape analysis for fine-grained concurrent programs with a bounded number of
threads which is precise enough to prove memory safety and preservation of data-structure
invariants. Here, we obtain exponential speed-up in terms of time and space, in comparison to
similar whole-heap analysis without decomposition. Our algorithm goes beyond [GBCS07] by
supporting fine-grained concurrency and handling programswith intentional data races.

(d) A shape analysis algorithm for concurrent programs witha bounded number of threads
that manipulate singly-linked lists, which proves linearizability. The resultant algorithm is ex-
ponentially faster than the one in [ARR+], being polynomial in the number of threads. Our ini-
tial empirical results confirm that our algorithm is able to prove linearizability with20 threads,
ten times more than in [ARR+].
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Main Results.

The contributions of this chapter can be summarized as follows:
1. We present a generic analysis framework (in an abstract interpretation setting) for ex-

ploiting state decomposition effectively. The main technical contributions are in intro-
ducing a family of sound abstract transformers that admit flexibly exploring the effi-
ciency/precision spectrum.

2. We propose scalable analyses for several interesting problems involving coarse-grained
as well as fine-grained concurrency, including proving linearizability. These algorithms
scale much better (e.g., polynomially) over the number of threads than the previous al-
gorithms for these problems.

3. The implementation of the framework for canonical abstraction is publicly available,
together with the above mentioned analyses, as well as otherbenchmarks, which show
the benefit of the approach.

6.1.1 Outline

The rest of this chapter is organized as follows. In Section6.2, we demonstrate heap decompo-
sition for fine-grained concurrent programs. In Section6.3, we describe an analysis based on
heap decomposition for proving linearizability of non-blocking data structures. In Section6.4
we present the technical details of our abstract domain and its transformers. In Section6.5we
report on our experiments with HeDec. In Section6.6, we discuss related work, and in Section
6.7, we conclude the chapter. AppendixC.1contains formal proofs for Section6.4. Appendix
C.2 describes optimizations implemented in HeDec. AppendixC.3 contains a case-study of
heap decomposition for the two-lock queue algorithm.

6.2 Heap Decomposition for Fine-Grained Concurrency

In this section, we develop decomposition schemes for performing shape analysis of fine-
grained concurrent programs and show that HeDec can be used to automatically obtain shape
analysis implementations that are precise enough to prove the desired properties of programs
(the absence of null pointer dereferences, absence of memory leaks, and data structure invari-
ants) while scaling up to a large number of threads. The material in this section is presented
informally, deferring formal definitions and technical details to Section6.4.

6.2.1 Decomposing Non-blocking Implementations

A Running Example. Figure6.1 shows a simple running example of a non-blocking stack
implementation from [Tre86]. Producers push elements onto the stack by allocating an ele-
ment, copying the current global pointer to the top of the stack, connecting the new element to
that copied top, and then using CAS (CompareAnd Swap) to atomically check that the top of
the stack has not changed and replace it with the new element.Consumers pop elements from
the stack by copying the current global pointer to top and recording its next element and then
using CAS to atomically check that the top of the stack has notchanged and replace it with the
new top, i.e., the recorded next element. In both cases, a failed CAS results in a restart.
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#define EMPTY -1
typedef int data type;
typedef struct node t {

data type d;
struct node t *n

} Node;

typedef struct stack t {
struct node t *Top;

} Stack;

[1] void push(Stack *S, data type v){
[2] Node *x = alloc(sizeof(Node));
[3] x->d = v;
[4] do {
[5] Node *t = S->Top;
[6] x->n = t;
[7] } while (!CAS(&S->Top,t,x));
[8] }

[9] data type pop(Stack *S){
[10] do {
[11] Node *t = S->Top;
[12] if (t == NULL)
[13] return EMPTY;
[14] Node *s = t->n;
[15] data type r = t->d;
[16] } while (!CAS(&S->Top,t,s));
[17] return r;
[18] }

Figure 6.1: A non-blocking stack implementation
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The goal here is to prove the absence of null pointer dereferences, absence of memory
leaks, and the preservation of data structure invariants, i.e., thatstack points to an acyclic
list.

Concrete Execution. Figure6.2(a) shows an example of two states occurring in the non-
blocking implementation shown in Figure6.1; for now ignore thecorr annotations (which
is used by the linearizability analysis in the next section). The figure shows two consumer
threads and two producer threads. Bothcons1andprod1 can succeed with the CAS if they are
the next threads to be scheduled. Concrete states are depicted by graphs. To avoid clutter the
data field is not shown. Hexagonal nodes denote thread objects andsquare nodes denote list
elements. The program label of every thread is written inside the hexagon. Edges from text
labels to nodes correspond to global pointers (Top). Labeled edges from thread nodes to list
nodes denote thread-local pointer variables (t andx). Edges between list nodes, labeled byn
correspond to thenext field of the list.

Exponential State Space. There are several sources of exponential explosion in the state
space exploration of the stack algorithm. The first one is thecorrelation between the program
locations of the different threads. The second source is thenext pointers of the just allocated
elements. The stack can grow after the next pointer has already been set, but before the CAS,
thus the next pointers of the different producers can point to all possible stack elements and
have all possible aliasing between each other. The third source of state-space explosion is the
recorded next pointer of the consumer threads. Note that thestate space explosion occurs even
if the list has a bounded number of elements. This is a generalproblem when maintaining
correlations between the properties of different threads.Exponential blow-ups also occur in
sequential programs because of aliasing. However, for the purpose of our analysis, these cor-
relations are unimportant and tracking them is pointless and only reduces the efficiency of the
analysis.

Heap Decomposition Abstraction. We reduce the size of the state space by decomposing
the heap into a set (or tuple) of subheaps and abstractly interpreting the program over the
subheaps.

For each subheap to be used in the decomposition, a user of HeDec specifies the part of
the heap it should include. This is done by defining alocation selection predicate, which
specifies the subset of the nodes in the state for which abstract properties (such as aliasing,
heap-reachability, etc.) are maintained. For each location selection predicate, the program state
is projected onto the nodes satisfying that predicate, thusobtaining asubstateof the original
state. We refer to the domain of substates pertaining to a location selection predicatept as the
subdomainof pt.

The Decomposition Scheme. For the purpose of our analysis, we define for each threadt
the location selection predicatept[t] that holds for: (a) the thread object oft, (b) the objects
pointed-to by its local variables (t andx), and (c) the objects pointed-to by the global variables
(Top). In addition, we define the location selection predicateGlobals, which holds for the
objects reachable from global variables.
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Figure 6.2: (a) Two concrete states in the non-blocking stack implementation shown in Figure
6.1; and (b) The decomposed states abstracting the full states in (a). The names of the sub-
domains appear above the substates

Figure6.2(b) shows the result of applying the decomposition scheme explained above to
the states in Figure6.2(a). Notice that different location selection predicates may occasionally
overlap. For example, in the decomposition explained above, the objects reachable from the
global variables appear in each subheap.

Intuitively, the meaning of a substateM , decomposed by a location selection predicate
p(v), is the set of all full states that containM and any disjoint substateM ′, such that the
objects inM satisfyp(v) and the objects inM ′ do not satisfyp(v). A sequence of sets of sub-
states{M1, M5}×{M2, M6}×{M3, M7}×{M4, M8}×{M9} represents the set of full states
obtained by choosing one structure from each subdomain and intersecting their meanings. For
example, composing the substates{M1, M2, M3, M4, M9} together yieldsS1 and composing
the substates{M5, M6, M7, M8, M9} together yieldsS2. The loss of precision by the abstrac-
tion can be observed by the fact that other compositions, such as{M1, M6, M7, M8, M9} yield
full states other thanS1 andS2.

State Space Savings. In general, forn threads, if the set of objects reachable from a thread
is bounded, then the number of substates resulting from the reachability-based decomposition
is linear inn (even though the number of full states generated by the program is exponential
in n). Although we do not show the state space reduction in the figures, one can imagine
how running the program withn threads generates states similar to the ones in Figure6.2(a).
By permuting the thread ids between producers threads and between consumer threads, we
obtain an exponential number of full states that are all reachable by the program execution.
Decomposing these states results in a number of substates that is linear inn.



82 CHAPTER 6. CARTESIAN SUBHEAP DECOMPOSITION

Transformers. HeDec is guaranteed to be sound, in the sense that when the analysis termi-
nates all reachable concrete states are represented by someabstract state.

While the abstraction ignores correlations between substates, transforming substates in iso-
lation using an “independent-attribute” style of analysis[NNH99] leads to debilitating loss
of precision. For example, the analysis executes the statement6: x->n=t where thread
prod1 is scheduled. SubstateM3 does not contain information about the local variables of
threadprod1. Therefore,M3 also represents a stateSbad in which the local variablest and
x of threadprod1 point to the first cell and to the last cell of the list, respectively. Thus, a
conservative transformer of6: x->n=t must emit a warning about a possible creation of a
cyclic list.

To avoid this kind of loss of precision, a user of HeDec can specify which substates,
obtained from different location selection predicates, should be (temporarily) composed by
the transformer. This is done in terms ofcombiner sets, which are subsets of node se-
lection predicates. In this example, for the transformer of6: x->n=t, we can specify
the combiner sets{pt[prod1], pt[prod2]}, {pt[prod1], pt[cons1]}, {pt[prod1], pt[cons2]}, and
{pt[prod1], pt[Globals]}. Then, the generated transformer composes, separately, the substates
{M1, M5} with each of the sets of substates{M2, M6}, {M3, M7}, {M4, M8}, and{M9}.
For the substates composed withM5 (which is the only substate in theprod1-subdomain that
can execute6: x->n=t) the transformer updates then field appropriately, avoiding the
false alarm. Finally, the transformer decomposes the substates again into each one of the sub-
domains. The resulting abstract substates are the same as inFigure6.2, except thatM5 has
ann-link between the object pointed-to byt and the object pointed-to byx and its program
counter is7.

This example shows how, by combining a small number (linear in the number of location
selection predicates, in this case) of substates decomposed by different predicates, the trans-
former is able to increase precision without incurring an unreasonable time/space blow-up.

A Methodology for Combiner Sets.

We now briefly discuss the issue of choosing combiner sets fora transformer (which is done
by the analysis designer in our framework). Every transformer can be thought of as having a
frameas well as afootprint. The frame identifies the part of a program state that is completely
irrelevant to the transformer. Thus, it contains no information that is either used or modified by
the transformer. The footprint is the complement and contains adequate information to perform
the transformer as precisely as possible.

A straightforward approach for computing the footprint of an operation affecting several
subdomains is combining all the affected subdomains. Unfortunately, this approach might
be too expensive. We apply a more efficient approach, which according to our experience is
precise enough. Specifically, for each operation we choose aset ofcore subdomainswhich
contain the heap objects and variables that participate in the operation. We compute thecore
footprint by combining the core subdomains (in practice, there are usually no more than two).
We then independently combine the core footprint with the other affected subdomains. For
example, the core subdomains for a statement of the form “x->f = g”, wherex of threadt
is a local variable andg is a global variable, are the subdomains containing threadt and the
subdomain of the global variableg. The affected subdomains are any subdomains which may
alias these variables.
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Conditional branches pose an interesting puzzle. Note thatbecause the condition essen-
tially filters states it can affectall subdomains. Thus, for a conditional “if (x == g)”,
we identify the core subdomains to be the ones containing (the nodes pointed-to by)x andg.
However, we will independently combine them with all other subdomains.

6.3 Using Decomposition to Prove Linearizability

Linearizability[HW90] is one of the main correctness criteria for implementations of concur-
rent data structures. Informally, a concurrent data structure is said to be linearizable if the con-
current execution of a set of operations on it is equivalent to some sequential execution of the
same operations, in which the global order between non-overlapping operations is preserved.
The equivalence is based on comparing the arguments and results of operations (responses).
The permitted behavior of the concurrent object is defined interms of a specification of the
desired behavior of the object in a sequential setting. Linearizability is a widely-used concept,
and there are numerous non-automatic proofs of linearizability for concurrent objects.

Verifying linearizability is challenging because it requires correlating any concurrent ex-
ecution with a corresponding permitted sequential execution. Verifying linearizability for
concurrent dynamically allocated linked data structures is particularly challenging, because
it requires correlating executions that may manipulate memory states of unbounded size. In-
terestingly, proving linearizability does not require directly proving safety properties such as
preservation of data structure invariants. Instead, one can first prove that the sequential imple-
mentation satisfies the required safety properties and thenprove that the concurrent implemen-
tation is linearizable, thereby, satisfies the safety property. Finally, linearizability of complex
systems can be shown by separately proving the linearizability of each of the individual data
structure implementations.

Intuitively, we verify linearizability by representing, in the concrete state, both the state of
the concurrent program and the state of the reference sequential program. Each element entered
into the data structure is correlated at linearization points with the matching object from the
sequential execution. This works well under abstraction when the differences between the
heaps of the sequential and concurrent implementations arebounded. The details are described
in [ARR+].

In order to guarantee that the shape analysis scales-up in the number of threads, in HeDec
we have defined a decomposition scheme that abstracts away the correlations between the
threads (as in Section6.2). Also, there is no need to track reachability from program vari-
ables. Instead, the subheap abstraction tracks elements whose values in the sequential and the
concurrent implementations are correlated.

6.3.1 A Decomposition Scheme for Linearizability Analysis

In HeDec, we have defined such a decomposition scheme by decomposing the heap inton + 1
components wheren is the number of threads: (i) For each thread the objects pointed-to by
local variables of the thread and objects pointed-to by global variables. This captures the rela-
tionships between local pointer variables and global pointer variables. Each subheap abstracts
away the values of the local variables of the other threads. (ii) A separate subheap with the
objects pointed-to by global variables and the part of the heap already correlated with the se-
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Figure 6.3: The decomposed states abstracting the full stateS1 in Figure6.2(a). The names of
the sub-domains appear above each substate

quential execution. Here, the values of the local variablesof all the threads are abstracted away.
We call this thecorr subdomain as it represents the correlated elements. Figure6.3shows the
effect of applying this decomposition to the full stateS1 in Figure6.2(a).

Intuitively, this decomposition is appropriate for verifying linearizability for the program
in Figure 6.1 because of the following. The list consisting of correlatedobjects changes
locally when a thread executes a successfulCAS operation. In fact, successfulCAS oper-
ations are the linearization points for this program. Precisely interpreting these operations
(CAS(&S->Top,t,x) andCAS(&S->Top,t,s)) in the analysis requires tracking corre-
lations between local and global variables, which we do in the subheap we decompose for each
thread.

The subheap captured by thecorr subdomain is important only during successfulCAS
operations, which is when a (non-correlated) node allocated by a thread is passed into the
list. Maintaining the subheap of thecorr subdomain for each thread is wasteful, and thus we
separate these correlations into different subdomains.

The important thing to notice is that all the exponential explosion in the state space that
is due to the number of threads in the full heap is eliminated by this decomposition. The
number of possible subheaps of each thread becomes independent of the number of threads in
the system (for more than two threads).

Transformers. The combiner sets used in the transformers of the analysis are the application
of the methodology described in Section6.2.1to this decomposition scheme. For example,
copying a global variable into a local variable does not require decomposition as the executing
thread has all the needed information. Copying a local variable into a global variable combines
the subdomain of the executing thread with each of the other subdomains. Other operations that
change the global state such as changes to pointer fields and performing CAS operations behave
the same. Dereferencing a pointer requires composing the subdomain for the current thread and
thecorr subdomain as the information on the next element of the stackis not available in the
thread’s subdomain.



6.4. THE HEAP DECOMPOSITIONABSTRACTION 85

6.4 The Heap Decomposition Abstraction

In this section, we formally define our new parametric heap abstraction and a family of sound
abstract transformers.

6.4.1 Heap Decomposition as a Cartesian Product of Subheaps

We first define the (parameterized) abstract domain of decomposed heaps.
Let (Σ,�,⊗) be a semilattice, where elements ofΣ represent (total and partial) states,� is

a partial ordering onΣ capturing the “is a substate of” relation, and⊗ is the join operation with
respect to� (which composes substates together). We extend⊗ to sets of states as follows. Let
X1 ⊆ Σ andX2 ⊆ Σ. We defineX1 ⊗ X2 = {σ1 ⊗ σ2 | σ1 ∈ X1, σ2 ∈ X2}. For purposes of
abstraction, we shall also make use of the information ordering defined byσ ⊑ σ′ iff σ′ � σ.

Let (P(Σ),⊑) denote the powerset domain ofΣ with the Hoare ordering: i.e., for every
X, Y ⊆ Σ, we writeX ⊑ Y iff ∀x ∈ X : ∃y ∈ Y : x ⊑ y.

A substate extractionfunction is a functionη : Σ → Σ that satisfiesη(σ) � σ. Assume we
have a sequence ofk substate extraction functionsη1 to ηk. We use thek-fold productP(Σ)k

= P(Σ) × · · · × P(Σ) as our domain of abstract states. The abstraction functionα : P(Σ) →

P(Σ)k is defined by:
α(S) = (η̂1(S), . . . , η̂k(S)) (6.1)

whereη̂i is the pointwise extension ofηi defined by:

η̂i(S) = {ηi(σ) | σ ∈ S} (6.2)

We define the meaning, orconcretization, of a tupleI1, . . . , Ik ∈ P(Σ)k by

γ(I1, . . . , Ik) = I1 ⊗ · · · ⊗ Ik. (6.3)

Example 6.4.1 LetS denote the set of states{S1, S2} shown in Figure6.2(a). For any thread
t, we define the predicate pt[t] to be true for: (a) the thread object oft, (b) the objects pointed-to
by its local variables (t andx), and (c) the objects pointed-to by the global variables (Top).
In addition, we define the location selection predicate Globals, which holds for the objects
reachable from global variables. Given any predicatep, the substate extraction functionδp

maps a stateσ to the substate consisting only of the locations satisfyingp. We defineη1 to
be δpt[prod1], η2 to beδpt[prod2], η3 to beδpt[cons1], η4 to beδpt[cons2], and η5 to beδGlobals. Now,
η1(S1) = M1, η2(S1) = M2, η3(S1) = M3, η4(S1) = M4, andη5(S1) = M9.

6.4.2 Abstract Transformers

We now turn our attention to the more challenging aspect of decomposition: computing sound
abstract transformers.

The semantics of a program statement is given by a functionτ : Σ → P(Σ). We make the
standard assumption that the transformer is monotonic in the information order, i.e., ifσ1 ⊑ σ2

thenτ(σ1) ⊑ τ(σ2). We extend this function pointwise toτ : P(Σ) → P(Σ), by defining
τ(S) =

⋃
{τ(σ) | σ ∈ S}. (Note that the extended transformer is monotone in the information

order as well.) For purposes of abstract interpretation, weneed to define a corresponding sound
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abstract transformer onP(Σ)k. Given an input valueI = (I1, . . . , Ik), the abstract transformer
needs to compute the output valueO = (O1, . . . , Ok).

A straightforward sound transformer is the pointwise transformerτpw defined as follows:

τpw(I1, . . . , Ik) = (η̂1(τ(I1)), . . . , η̂k(τ(Ik))). (6.4)

Proposition 6.4.2 The pointwise transformerτpw is sound. That is, for every input valueI =
(I1, . . . , Ik) whereI ∈ P(Σ)k, the following holds:

τ(γ(I)) ⊑ γ(τpw(I)) . (6.5)

Proof: Note that since� and⊑ are reversed,⊗ is a meet (i.e., greatest lower bound) operator
onP(Σ). Let j be any index in{1, . . . , k}.

I1 ⊗ . . . ⊗ Ik ⊑ Ij (6.6)

⊲ ⊗ is a meet operator

γ(I) ⊑ Ij (6.7)

⊲ by (6.6) and (6.3)

τ(γ(I)) ⊑ τ(Ij) (6.8)

⊲ τ is monotone

τ(γ(I)) ⊑ η̂j(τ(Ij)) (6.9)

⊲ by (6.8) and sincêηj is extensive

τ(γ(I)) ⊑ η̂1(τ(I1)) ⊗ . . . ⊗ η̂k(τ(Ik)) (6.10)

⊲ ⊗ is a meet operator

τ(γ(I)) ⊑ γ(η̂1(τ(I1)), . . . , η̂1(τ(Ik)) (6.11)

⊲ by (6.3) and (6.10)

τ(γ(I)) ⊑ γ(τpw(I)) (6.12)

⊲ by (6.4) and (6.11)

�

Example 6.4.3 While the pointwise transformer is simple and efficient, it can lead to impre-
cise results when the transformer has to update a substate that does not have all the relevant
information. Recall the example from Section6.2, and consider the substateM3. SubstateM3

does not contain information about the local variables of other threads. Therefore,M3 also
represents a stateSbad in which the local variablest andx of threadprod1 point to the first cell
and to the last cell of the list, respectively. Thus, a conservative transformer of6: x->n=t,
whenprod1 serves as the scheduled thread, must emit a warning about a possible creation of
a cyclic list. As explained in Section6.2, we can avoid this imprecision by composing sub-
stateM3 with other substates (M1) to produce a more precise substate that can be transformed
without making such worst-case assumptions. This motivates the following definitions.�

A combiner setis a setR ⊆ {1, . . . , k} identifying a set of subheap domains. We define
thepartial concretization functionγR, which combines the information from the specified set
of subdomainsR = {j1, . . . , jm}, as follows:

γR(I1, . . . , Ik) =
⊗

r∈R

Ir = Ij1 ⊗ Ij2 · · · ⊗ Ijm
. (6.13)
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One-Level Composition.

We define thepartial transformerτ1[R, i], which computes the substate corresponding to the
i-th subdomain using the subdomains identified byR, by

τ1[R, i](I) = η̂i(τ(γR(I))). (6.14)

We use the termone-leveltransformer to indicate that combining (or composing) information
from a set of subdomains (identified byR above) occurs in one step.

We define aone-level transformer specificationTS to be a tuple(TS1, . . . , TSk) where each
TS i ⊆ {1, . . . , k}. We define the transformerτ1[TS] by

τ1[TS](I) = (τ1[TS1, 1](I), . . . , τ1[TSk, k](I)). (6.15)

Theorem 6.4.4 For any one-level transformer specificationTS, the transformerτ1[TS] is
sound. That is, for every input valueI ∈ P(Σ)k: τ(γ(I)) ⊑ γ(τ1[TS](I)).

Theorem 6.4.5 Let TS = (TS1, . . . , TSk) where eachTS i ⊆ {1, . . . , k} be a one-level trans-
former specification. Then, the one-level transformerτ1[TS] is sound. That is, for every input
valueI ∈ P(Σ)k, the following holds:

τ(γ(I)) ⊑ γ(τ1[TS](I)) . (6.16)

Two-Level Composition.

We now present a generalization of the above definition. As motivation for this generalization,
consider a situation where we want to compute an output valueOj by combining the input val-
ues from a set of subdomainsR1 or by combining the input values from a set of subdomainsR2

(but we are unable to say which of these combinations to use statically). We could, of course,
combine the input values from the set of subdomainsR1 ∪ R2, but this could be expensive.
Instead, we can utilize the two combinationsindependentlyof each other by using

(η̂j(τ(γR1
(I)))) ⊓ (η̂j(τ(γR2

(I))))

as the desired output value. We call transformers derived inthis fashion two-level transform-
ers, as the use of the meet operation⊓ constitutes a second stage of combining (composing)
information.

Let Y be a set of combiner sets. We define thepartial transformerτ2[Y, i], which computes
the substate corresponding to thei-th subdomain using the combiner sets inY independently,
as follows:

τ2[Y, i](I) =
R∈Y

τ1[R, i](I) (6.17)

We define atwo-level transformer specificationTS to be a tuple(TS1, . . . , TSk) where each
TS i ⊆ P({1, . . . , k}). We define the transformerτ2[TS] by

τ2[TS](I) = (τ2[TS1, 1](I), . . . , τ2[TSk, k](I)). (6.18)

(Note that the computation of the above transformer involves a partial concretization for every
R in everyTS i. In practice, differentTSi andTSj may have common elements, and it is sufficient
for the transformer implementation to do the correspondingpartial concretization just once.)
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Theorem 6.4.6 For any two-level transformer specificationTS, the transformerτ2[TS] is
sound. That is, for every input valueI ∈ P(Σ)k: τ(γ(I)) ⊑ γ(τ2[TS](I)).

Theorem 6.4.7 Let TS = (TS1, . . . , TSk) where eachTSi ⊆ 2{1,...,k} be a two-level transformer
specification. Then, the two-level transformerτ2[TS] is sound. That is, for every input value
I ∈ P(Σ)k, the following holds:

τ(γ(I)) ⊑ γ(τ2[TS](I)) . (6.19)

6.5 Empirical Results

We implemented the HeDec system in Java on top of the TVLA system [LAS00]. HeDec
allows analysis designers to rapidly prototype different shape analysis algorithms by defining
heap decomposition schemes. HeDec, however, is not a panacea — the designer needs to care-
fully select suitable heap decompositions. Nevertheless,HeDec relieves the designer from the
task of developing and implementing the static analysis algorithms, including the transformers.

Table6.2and Table6.1compare the results of our decomposition-based analysis with a full
heap analysis.1

Concurrent Benchmarks.

We use the analysis of [1] as the underlying shape analysis.
Both analyses successfully prove linearizability and absence of null dereferences for the

three concurrent programs. For a given number of threads,t, the table shows the time and
the number of states resulting in the analysis oft threads invoking an arbitrary sequence of
operations on a single instance of the analyzed concurrent data structure. Stack is the non-
blocking stack example of Section6.2.1. TLQ is the two-lock queue implementation described
in [MS96]. NBQ is a non-blocking queue implementation from [DGLM04]. 2

Note that while [ARR+] can analyze at most3 threads, our approach, on the other hand,runs
for 15 threads or more. Furthermore, [ARR+] runs out of memory when analyzing3 threads
manipulating a non-blocking-queue.

Sequential Benchmarks.

Both analyses successfully prove absence of null dereferences, absence of memory leaks, and
data structure invariants for the following sequential benchmarks:6-list-prepend adds
elements, non-deterministically, into one of6 lists; 6-list-join joins 6 lists into one list;
and4-tree-insert inserts nodes, non-deterministically, into one of4 binary search trees.

1All benchmarks except NBQ were run on a2.4 GHz E6600 Core 2 Duo processor with2 GB of memory
running Linux.

2This benchmark was run on a2.66 GHz Quad Xeon with16 GB of memory running Windows XP64 bit.
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Table 6.1: Empirical results for concurrent benchmarks

Full Heap Decomposition
Example # of threads # of states secs. # of substates secs.
Stack 2 3,424 3 1,608 7

3 10,6296 71 4,103 13
4 MemOut - 7,728 22
20 - - 212,048 3,421

TLQ 3 8,783 12 8,911 30
5 44,285 35 23,585 90
8 MemOut - 58,796 307
15 - - 202,555 2,122

NBQ 2 39,583 69 20,646 263
3 MemOut - 57,065 694
15 - - 2,017,280 1 day

Table 6.2: Empirical results for sequential benchmarks

Full Heap Decomposition
Example # of states secs. # of substates secs.
6-list-prepend 17,496 16 557 5
6-list-join 37,689 40 1,282 6
4-tree-insert 43,031 44 5,316 29
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6.6 Related Work

The framework of Cartesian abstraction via state decomposition we have presented is relevant
to a number of previous lines of work.

Heterogeneous Abstractions. Yahav and Ramalingam [LAIS06] defined a notion of hetero-
geneous abstractions. There, Cartesian abstractions are used as a way to achieve decomposi-
tion (or separation, in the terminology of that paper). One contribution of this chapter is to
show that that previous analysis is based on a (simple form of) Cartesian abstraction. On the
other hand, in that work, heterogeneity was used only withina single structure (to abstract
the substructure of interest differently from its context), where our framework supports dif-
ferent abstractions for different factors of the product, yielding heterogeneity across different
structures. Furthermore, while Yahav and Ramalingam [LAIS06] rely on the point-wise trans-
former, we introduce a generalized family of transformers that allow (de)composition when
transformers are applied. This generalization allows specifying more precise transformers, and
gives us dynamic separation/decomposition.

Region-based Heap Analyses.Like [LAIS06], [HR05] also decomposes heap abstractions
to independently analyze different parts of the heap. Therethe analysis/verification problem
is itself decomposed into a set of problem instances, and theheap abstraction is specialized
for each instance and consists of one subheap for the part of the heap relevant to the instance,
and a coarser abstraction of the remaining part of the heap, e.g. a points-to graph. In contrast,
we simultaneously maintain abstractions of different parts of the heap and also consider the
interaction between these parts. (E.g., our decompositiondynamically changes as components
get connected and disconnected.)

Local Transformers. The importance of modularity for the ability to compute transformers
is well known. For example, the first proof rule for procedurecalls, therule of adaptation, was
given in [Hoa71]. It allows reusing a proof of a procedure body in different invocations of the
procedure.

Local reasoning [ORY01, Rey02] enables reasoning about programs that alter heap-
allocated data by combining claims about disjoints parts ofthe heap. The use of decomposition
here is intuitively similar to that of separation in [ORY01]. The chief difference is that here
a decomposition may be used that is finer than the transformers in the underlying domain are
precise for, which we react to by performing composition in the transformers. The transform-
ers used in analyses based on separation logic [BCO05], on the other hand, when applied to
substates either produce exactly as precise information ason full states, or produce top. Our
treatment of decomposition as an abstraction allows more flexibility in this regard. This flex-
ibility is central to the concurrency analysis we presented: By not basing decomposition on
disjointness, the analysis does not necessarily need to be thread-modular. In particular, we
have the option of introducing predicates which track important correlations between different
threads’ local states. Approaches based on disjointness such as [GBCS07] have trouble with
such situations unless auxiliary state is added to the invariants, which is beyond the ability of
the existing automatic analyses.
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Partially Disjunctive Heap Abstraction. In Chapter4 we describe a heap abstraction based
on merging sets of graphs with the same set of nodes into one (approximate) graph. The
abstraction in this chapter is based on decomposing a graph into a set of subgraphs. The
abstraction in Chapter4 is orthogonal to the one in this chapter.

Handling Concurrency for an Unbounded Number of Threads. In [2], we use thread
quantification to analyze programs with an unbounded numberof threads. Thread quantifica-
tion can be thought of as an unbounded variant of a particulardecomposition strategy, which
we use to abstract away correlations between local variables of different threads. In the thread
quantification analysis, we report that using an additionalheap decomposition abstraction in
order to abstract away correlations between values of some local variables and global variables
effects drastic state-space savings. This made the analysis feasible in the example of proving
linearizability of a non-blocking queue implementation.

Proving Linearizability of Data Structures. Shape analysis of concurrent programs with
unbounded dynamic allocation have been investigated. The analysis in [Yah01] addresses an
unbounded number of threads by losing distinctions that cannot be made based on thread-
independent information. This analysis has been extended to verify linearization [ARR+] of
programs with a bounded number of threads. Here we use the decomposition abstraction to
define an analysis that can be exponentially faster than thatin [ARR+].

Manual linearizability proofs using rely-guarantee have been given in [VHHS06], and us-
ing a manual translation to automata followed by an interactive proof in PVS in [CDG05].
Recently, [Vaf09] automatically verifies linearizability from manual specifications in a combi-
nation of rely-guarantee and separation logic, using the proof technique of [ARR+].

6.7 Conclusions

We present systematic and generic techniques for scaling upshape analyses using heap decom-
position, implemented in the HeDec system. A user of HeDec can quickly prototype a shape
analysis by: (a) defining any heap decomposition she believes is appropriate for the class of
programs and properties of interest, and (b) supplying for every type of program statement any
(possibly empty) combiner set she believes supplies the right balance between efficiency and
precision. HeDec then automatically generates a sound analysis.
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Chapter 7

Conclusions

In this thesis, we have shown that partially disjunctive abstractions can be used to greatly im-
prove the performance of precise shape analyses. An analysis designer may start by designing
a disjunctive abstraction and use it over a set of simple benchmarks to obtain confidence that
the abstraction is precise enough for proving the desired properties. Then, the designer would
observe the abstract states arising from such an analysis tofind useless information that is cap-
tured by the abstraction. For example, a predicate may provide local distinctions inside an
abstract state (3-valued logical structure) that are not needed in order to distinguish between
different abstract states. This can suggest merging abstract states that are distinguished by that
predicate by using partial isomorphism join (see Chapter 3). In considering programs with
multiple data structures or concurrency, the analysis designer can define appropriate subheap
decomposition techniques to cope with the exponential factors, e.g., due to thread interleaving
(see Chapter 6).

Indeed, in the beginning of this thesis (Chapter 3), we definea rather precise abstraction
for programs containing a finite number of singly-linked lists. The precision of the analysis
is experimentally verified on a number of benchmarks manipulating one or two lists. Later
(see Chapter 5), we consider programs such as device driversthat simultaneously manipulate
multiple instances of cyclic linked lists. Using a disjunctive abstraction proves to be infeasible,
since it incurs exponential state space blow-ups. We createa further abstraction by abstracting
away the correlations between disjoint subheaps, which usually contain different lists, thus
reducing the exponential factors. These correlations are usually not important for the safety
properties we wish to verify and thus we are able to improve the performance of the analysis
without a significant increase to the number of false alarms.

We note that the abstractions based on decomposition are incomparable, in terms of pre-
cision, with the one based on partial isomorphism, in Chapter 4. For example, applying the
partial isomorphism abstraction on top of the list abstraction of Chapter 3, results in the same
abstraction, since no two shape graphs in the image of the list abstraction are partially iso-
morphic. On the other hand, partial isomorphism abstraction is able to merge multiple similar
structures containing a single connected component, whereas graph decomposition would not
result in an identity abstraction (since the structures cannot be decomposed). This also means
that analyses based on these abstraction are incomparable in terms of performance: Disjoint
subgraph decomposition can help reduce exponential factors where partial isomorphism ab-
straction cannot and vice versa.

It is fortunate, that the two kinds of partially disjunctiveabstraction — the one based on
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partial isomorphism and the ones based on decomposition — can be combined to yield very
useful abstractions, which can many times complement each other in terms of the kinds of
exponential factors that they are able to reduce.

7.1 Suggestions for Further Work

Automatically Refining Partially Disjunctive Abstraction s. The theory of automatically
refining abstractions has been heavily studied by the model checking community using
techniques such as counterexample-guided abstraction refinement forPredicate Abstrac-
tion [CGJ+00,BMMR01,HJMM04]. The theory of automatic abstraction refinement for par-
tially disjunctive abstractions has been studied [GQ01, CGR07], but not as extensively. In-
tuitively, the problem of automatically refining abstractions is harder for partially disjunctive
abstractions, since the analyzer has to learn new abstractions from multiple control flow paths
simultaneously. An interesting direction of research is modifying a system based on predicate
abstraction to use “Cartesian Predicate Abstraction” and automatically finding the relevant
predicates by considering multiple counterexample paths.

Localized Heap Abstractions The main property that was useful in developing precise and
efficient transformers for the analysis in Chapter5 and the analyses in Chapter6 is that the
granularity of the abstraction of a concrete state matched the level of granularity of the concrete
transformer. This property is also utilized in separation based shape abstractions [DOY06].
We are interested in precisely characterizing abstractions that have this property and in the
possibility of automatically generating these abstractions based on a given set of transformers.
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Appendix A

Proofs and Additional Details
for Chapter 3

A.1 Deriving the Abstract transformer for y.n=null

In order to simplify the definition of the transformer fory.n = null, we split it to five different
cases, shown in TableA.1, based on classification of the next list interruption. The table uses
the following shorthand notations:

ListToInDegree2[y] =
∨

z1∈Var UList[z1, ys] ∧ ¬Aliased[y, z1]∧∧
z2∈Var UList[z2, ys] → (Aliased[z2, y] ∨ Aliased[z2, z1])

ListRegularVar[y] =
∨

w∈PVar UList[y, w]
ListToHeapShared[y] =

∨
w∈PVar UList[y, ws]

We show that manual construction of the best transformer results with the same formulae
provided in Section3.4. The derivation is shown TableA.2. For each predicate, we first show
its defining formula after applying the concrete effect of the statementy.n=null. We then
rewrite this formula to an equivalent formula that is foldedinto the nullary predicates of our
predicate-abstraction vocabulary (of Table3.6). In the process of rewriting, we use transfor-
mations ofFOTCunder the assumption that formulae describe heap configurations satisfying
the integrity rules of the following definition:

Definition A.1.1 (Integrity Rules) We require that every heap configuration satisfies the fol-
lowing integrity rules:

1. for every unary predicatex(v) representing a reference variable,
∀v1, v2.x(v1) ∧ x(v2) → v1 = v2

2. for the predicaten(v1, v2) representing then field,
∀v, v1, v2.n(v, v1) ∧ n(v, v2) → v1 = v2

In the process of rewriting, we also use the rewrite rules of the following lemma. When
a rule from the lemma is used in the rewriting, we note its number in brackets. We use[∗] to
denote a rewrite usingFOTCtransformations (assuming formulae describe heap configurations
that satisfy the above consistency rules).

Lemma A.1.2 The following always hold:
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Table A.1: The different cases considered when defining the abstract transformer for the state-
menty.n = null

Case Next List Interruption Precondition
1 is a heap-shared node ¬(UList[y, null] ∨ ListRegularVar[y])∧

not pointed by any regular ListToInDegree2[y]
variable, with in-degree= 2

2 is null UList[y, null]
3 is a node pointed by some ListRegularVar[y] ∧ ¬ListToHeapShared[y]

regular variable and not
heap shared

4 is a heap-shared node ListToHeapShared[y] ∧ ¬ListToInDegree2[y]
with in-degree> 2

5 is a node pointed by a regular ListRegularVar[y] ∧ ListToHeapShared[y]∧
variable and heap shared, ListToInDegree2[y]
with in-degree= 2

(I) ¬PtByV ar(u) ⇒ ¬y(u)

(II) ¬Interruption(u) ⇒ ¬y(u)

The following hold under the precondition of case3:

(III) Interruption′(u) = Interruption(u)

(IV) UList′(v1, v2) = UList(v1, v2) ∧ ¬y(v1)

(V) UListNULL′(v1, v2) = UListNULL(v1, v2) ∨ y(v1)

where the primed values of shorthands denote their value after a after applying the effect of
the statementy.n = null.

Proof:The first claims in the Lemma are mostly immediate from the definitions of the shorthand
notations.

(I)
¬PtByVar(u) = ¬

∨
var∈PVar

var(u)

⇒ ¬y(u)
(II )
¬Interruption(u) = ¬HeapShared(u) ∧ ¬PtByVar(u)

⇒ ¬y(u)
(III ) we begin by showing thatHeapShared′(u) = HeapShared(u)
HeapShared′(u) = ∃a, b.n(a, u) ∧ ¬y(a) ∧ n(b, u) ∧ ¬y(b) ∧ (a 6= b)
by the precondition to this case
HeapShared′(u) = ∃a, b.n(a, u) ∧ n(b, u) ∧ (a 6= b)

= HeapShared(u)
sincePtByV ar(u) does not change under the actiony.n=null,
it follows that Interruption′(u) = Interruption(u).
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Table A.2: Derivation of the transformer fory.n=null for case3.

UList1[z1, z2]
′ ∃v1, v2.z1(v1) ∧ z2(v2) ∧ n(v1, v2) ∧ ¬y(v1) [∗]

∃v1, v2.z1(v1) ∧ z2(v2) ∧ n(v1, v2) ∧ ∃v3.z1(v3) ∧ ¬y(v3) [∗]
UList1[z1, z2] ∧ ¬Aliased[z1, y]

UList1[z1, null]′ ∃v.z1(v) ∧ ∀u.¬(n(v, u) ∧ ¬y(v)) [∗]
∃v.z1(v) ∧ ∀u.(¬n(v, u) ∨ y(v)) [∗]
∃v.y(v) ∨ z1(v) ∧ ∀u.¬n(v, u) [∗]
UList1[z1, null] ∨ Aliased[z1, y]

UList2[z1, z2]
′ ∃v1, v2.z1(v1) ∧ z2(v2) ∧ ∃m.¬Interruption′(m)∧

∧ (n(v1, m) ∧ ¬y(v1)) ∧ (n(m, v2) ∧ ¬y(m)) [III ]
∃v1, v2.z1(v1) ∧ z2(v2) ∧ ∃m.¬Interruption(m)∧
∧ (n(v1, m) ∧ ¬y(v1)) ∧ (n(m, v2) ∧ ¬y(m)) [II ]

∃v1, v2.z1(v1) ∧ z2(v2) ∧ ∃m.¬Interruption(m)∧
∧ n(v1, m) ∧ ¬y(v1) ∧ n(m, v2) [∗]

∃v1, v2.z1(v1) ∧ z2(v2) ∧ ∃m.¬Interruption(m)∧
∧ n(v1, m) ∧ n(m, v2) ∧ z1(v1) ∧ ¬y(v1) [∗]

UList2[z1, z2] ∧ ¬Aliased[z1, y]
UList[z1, z2]

′ ∃v1, v2.z1(v1) ∧ z2(v2) ∧ UList′(v1, v2) [IV ]
∃v1, v2.z1(v1) ∧ z2(v2) ∧ ¬y(v1) ∧ UList(v1, v2) [∗]
UList[z1, z2] ∧ ¬Aliased[z1, y]

UList[z1, null]′ ∃v1.z1(v1) ∧ UListNULL(v1) [V]
∃v1.z1(v1) ∧ UListNULL(v1) ∨ y(v1) [∗]
UList[z1, null] ∨ Aliased[z1, y]
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(IV)
UList′(v1, v2) (n(v1, v2) ∧ ¬y(v1)∨

(∃m.¬Interruption′(m) ∧ (((n(v1, m) ∧ ¬y(v1)) ∧ (n(m, v2) ∧ ¬y(m)))∨
(∃m1, m2.(n(v1, m1) ∧ ¬y(v1) ∧ ¬y(v1)) ∧ (n(m2, v2) ∧ ¬y(m2))∧
(TC a, b : n(a, b) ∧ ¬y(a) ∧ ¬Interruption′(a) ∧ ¬Interruption′(b))(m1, m2))) [III ]

∃v1, v2.z1(v1) ∧ z2(v2) ∧ (n(v1, v2) ∧ ¬y(v1)∨
(∃m.¬Interruption(m) ∧ (n(v1, m) ∧ ¬y(v1)) ∧ (n(m, v2) ∧ ¬y(m)))∨
(∃m1, m2.n(v1, m1) ∧ ¬y(v1) ∧ n(m2, v2)∧
(TC a, b : n(a, b) ∧ ¬y(a) ∧ ¬Interruption(a) ∧ ¬Interruption(b))(m1, m2))) [II ]

∃v1, v2.z1(v1) ∧ z2(v2) ∧ (n(v1, v2) ∧ ¬y(v1)∨
(∃m.¬Interruption(m) ∧ n(v1, m) ∧ ¬y(v1) ∧ n(m, v2))∨
(∃m1, m2.n(v1, m1) ∧ ¬y(v1) ∧ n(m2, v2)∧
(TC a, b : n(a, b) ∧ ¬Interruption(a) ∧ ¬Interruption(b))(m1, m2))) [∗]

∃v1, v2.z1(v1) ∧ z2(v2) ∧ ¬y(v1) ∧ (n(v1, v2)∨
(∃m.¬Interruption(m) ∧ n(v1, m) ∧ n(m, v2))∨
(∃m1, m2.n(v1, m1) ∧ n(m2, v2)∧
(TC a, b : n(a, b) ∧ ¬Interruption(a) ∧ ¬Interruption(b))(m1, m2))) [∗]

UList′(v1, v2) ∧ ¬y(v1)
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(V)
UListNULL′(u) ∀v.¬(n(u, v) ∧ ¬y(u))∨

∃m.(n(u, m) ∧ ¬y(u)) ∧ ¬Interruption′(m) ∧ UListNULL′1(m)∨
∃m1, m2 : (n(u, m1) ∧ ¬y(u)) ∧ UListNULL′1(m2)∧

(TC a, b : (n(a, b) ∧ ¬y(a)) ∧ ¬Interruption′(a)∧
¬Interruption′(b))(m1, m2) [III ]

∀v.¬(n(u, v) ∧ ¬y(u))∨
∃m.(n(u, m) ∧ ¬y(u)) ∧ ¬Interruption(m)
∧(UListNULL1(m) ∨ y(m))∨
∃m1, m2 : (n(u, m1) ∧ ¬y(u)) ∧ (UListNULL1(m2) ∨ y(m2))∧

(TC a, b : (n(a, b) ∧ ¬y(a)) ∧ ¬Interruption(a)∧
¬Interruption(b))(m1, m2) [II ] + [∗]

∀v.¬(n(u, v) ∧ ¬y(u))∨
∃m.(n(u, m) ∧ ¬y(u)) ∧ ¬Interruption(m)
∧(UListNULL1(m) ∨ y(m))∨
∃m1, m2 : (n(u, m1) ∧ ¬y(u)) ∧ (UListNULL1(m2) ∨ y(m2))∧

(TC a, b : (n(a, b) ∧ ¬y(a)) ∧ ¬Interruption(a)∧
¬Interruption(b))(m1, m2) [II ]

∀v.(¬n(u, v) ∨ y(u))∨
∃m.(n(u, m) ∧ ¬y(u)) ∧ ¬Interruption(m) ∧ UListNULL1(m)∨
∃m1, m2 : (n(u, m1) ∧ ¬y(u)) ∧ UListNULL1(m2)∧

(TC a, b : n(a, b) ∧ ¬Interruption(a)∧
¬Interruption(b))(m1, m2) [∗]

∀v.(¬n(u, v)) ∨ y(u)∨
¬y(u) ∧ ∃m.n(u, m) ∧ ¬Interruption(m) ∧ UListNULL1(m)∨
¬y(u) ∧ ∃m1, m2 : n(u, m1) ∧ UListNULL1(m2)∧

(TC a, b : n(a, b) ∧ ¬Interruption(a)∧
¬Interruption(b))(m1, m2) [∗](resolution)

∀v.(¬n(u, v)) ∨ y(u)∨
∃m.n(u, m) ∧ ¬Interruption(m) ∧ UListNULL1(m)∨
∃m1, m2 : n(u, m1) ∧ UListNULL1(m2)∧

(TC a, b : n(a, b) ∧ ¬Interruption(a)∧
¬Interruption(b))(m1, m2) [∗]

UListNULL′(u) ∨ y(u)

�

A.2 Proving Theorem3.6.1

We want to prove that the Predicate Abstraction,βPredAbs, presented in Section3.4 and the
Canonical Abstraction,βCanonic, presented in Section3.5 are equivalent. Before delving into
the details, we make the claim more precise.

Recall that both abstractions are parameterized by an indexk ranging from1 to n (the
number of program variables). The proof here is fork = n (i.e., the full set of auxiliary
variables is used).
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By equivalence of abstractions, we mean that, for any two concrete heapsC1 andC2 (2-
valued structures), the following holds:

βPredAbs(C1) = βPredAbs(C2) whenβCanonic(C1) = βCanonic(C2) .

We will use the following shorthand notations

AP
1 = βPredAbs(C1) ,

AP
2 = βPredAbs(C2) ,

AC
1 = βCanonic(C1) ,

AC
2 = βCanonic(C2) ,

and make use of the embedding functionsf andg such thatC1 ⊑f AC
1 andC2 ⊑g AC

2 . With
these notations we rephrase the equivalence claim:AP

1 = AP
2 whenAC

1 = AC
2 . Note that by

AC
1 = AC

2 we mean that structuresAC
1 andAC

2 are isomorphic, i.e.,AC
1 ⊑ AC

2 andAC
2 ⊑ AC

1 .
The semantics of formulae for3-valued structures is explained in [SRW02].

We will sometimes write the name of a predicate from Table3.6as shorthand for its defining
formula. The exact meaning, however, should be clear from the context, depending on whether
the structure referred to is concrete (2-valued) or abstract (3-valued).

Since the join operator used in both kinds of abstractions isthe same—set union—the
equivalence of the abstractions carries over from single concrete heaps to sets of concrete
heaps.

Proof Structure.

We want to show that both abstractions are able to make exactly the same distinctions about
any two concrete heaps. We start by showing that wheneverC1 andC2 assign different inter-
pretations to a predicate inP A (indicating that their Predicate Abstraction is different), AC

1 is
different fromAC

2 . This is shown by a case analysis according the7 predicate types that appear
in Table3.6 in order of appearance. In each case we assume that the predicates considered
in previous cases have the same interpretation in bothC1 andC2. Finally, we consider the
case where all predicates inP A have the same interpretation inC1 andC2 (indicating that their
Predicate Abstraction is the same), and show thatAC

1 = AC
2 .

We use the following lemmas to show that two concrete heaps are different under Canonical
Abstraction1. In the lemmas, we use the shorthand notations introduced above.

In the proofs of the lemma we will use use the fact that, by the Embedding Theorem
[SRW02], if two 3-valued structures are isomorphic then the value of every closed formula
evaluates to the value in both structures.

Lemma A.2.1 Let C1 andC2 be a pair of2-valued structures, and letϕ(v) be a conjunction
of unary predicates and negations of unary predicates.

If [[∃v : ϕ(v)]]C1 = 1 and [[∃v : ϕ(v)]]C2 = 0 thenAC
1 6= AC

2 .

Proof: Let v be a node inUC1 for which ϕ(v) holds. Since Canonical Abstraction preserves
the definite values of unary predicates,ϕ(v) evaluates to a definite value forf(v) (the same

1The lemmas are stated for the Canonical Abstraction from Section 3.5, but they are actually true for Canonical
Abstraction with any set of predicates.
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value as inC1). Therefore,[[∃v : ϕ(v)]]A
C
1 = 1. Since there is no node inUC1 for which ϕ(v)

holds, there is also node node inAC
2 for whichϕ(v) holds, and therefore[[∃v : ϕ(v)]]A

C
2 = 0.

We conclude thatAC
1 6= AC

2 .
�

Lemma A.2.2 Let C1 andC2 be a pair of2-valued structures, and letϕ(v) be a conjunction
of unary predicates and negations of unary predicates.

If ϕ(v) holds for exactly one individualu in C1, andϕ(v) holds for more than one individual
in C2 thenAC

1 6= AC
2 .

Proof: Sinceϕ(v) holds for exactly one individualu in C1, we have thatϕ(v) holds for exactly
one individualv = f(u) in AC

1 . Therefore,[[∀a, b : ϕ(a) ∧ ϕ(b) =⇒ eq(a, b)]]A
C
1 = 1.

Let V2 be the set of nodes inUC2 for whichϕ(v) holds. Ifw = g(u) = g(v) for some pairs
of nodesu, v ∈ V2 theneq(w, w) = 1/2 and [[∀a, b : ϕ(a) ∧ ϕ(b) =⇒ eq(a, b)]]A

C
2 = 1/2.

Otherwise, thereeqAC
2 (g(u), g(v)) = 0 for every distinct nodesu, v ∈ V2, and therefore[[∀a, b :

ϕ(a) ∧ ϕ(b) =⇒ eq(a, b)]]A
C
2 = 0.

In both cases[[∀a, b : ϕ(a)∧ϕ(b) =⇒ eq(a, b)]]A
C
1 6= [[∀a, b : ϕ(a)∧ϕ(b) =⇒ eq(a, b)]]A

C
2

and we conclude thatAC
1 6= AC

2 .
�

To give some intuition, FigureA.1 shows the different cases of concrete lists and their
Canonical Abstraction, along with the values of the predicates from Table3.6.
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x y x y

cul[x]

ααααcanonic

x x

ααααcanonic

Aliased[x,x], Aliased[y,y],
List1[x,y]

Aliased[x,x]

(a)

x y x y

cul[x] cul[x]

ααααcanonic

x x

cul[x]

ααααcanonic

Aliased[x,x], Aliased[y,y],
List2[x,y], List[x,y]

Aliased[x,x],
List1[x,NULL], List[x,NULL]

(b)

x y x y

cul[x] cul[x]

ααααcanonic

x x

cul[x]

ααααcanonic

Aliased[x,x], Aliased[y,y],
List[x,y]

Aliased[x,x],
List[x,NULL]

(c)

Figure A.1: Applying Canonical Abstraction to lists of different lengths: (a) lists of length 1,
(b) lists of length 2, and (c) lists of length greater than 2
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Proof:[of Theorem3.6.1]
Case 1 : Distinction byAliased[x, y] predicates. Assume that for two variablesx, y ∈

Var we have[[Aliased[x, y]]]C1 = 1 and [[Aliased[x, y]]]C2 = 0. Substituting the predicate
Aliased[x, y] with its defining formula from Table3.6, we get[[∃v : x(v) ∧ y(v)]]C1 = 1 and
[[∃v : x(v) ∧ y(v)]]C2 = 0. Therefore, by LemmaA.2.1, AC

1 6= AC
2 .

Case 2 : Distinction byUList1[x, y] predicates. Assume thatC1 andC2 identify on all
predicates of the formAliased[x, y], and that for somex, y ∈ Var we have[[UList1[x, y]]]C1 = 1
and[[UList1[x, y]]]C2 = 0.

Substituting the predicateUList1[x, y] with its defining formula from Table3.6, we get
[[∃vx, vy : x(vx)∧y(vy)∧n(vx, vy)]]

C1 = 1 and[[∃vx, vy : x(vx)∧y(vy)∧n(vx, vy)]]
C2 = 0. Let

ux, yu ∈ UC1 be the unique (Proposition3.3.4) nodes such thatxC1(ux) = 1 andyC1(uy) = 1.
From the assumption thatC1 andC2 identify on all predicates of the formAliased[x, y], we
have that there exist unique nodesvx, vy ∈∈ UC2 such thatxC2(vx) = 1 andyC2(vy) = 1.

We now have that there exists unique nodesu′
x = f(ux) ∈ AC

1 andu′
y = f(uy) ∈ AC

1

such thatxAC
1 (u′

x) = 1 andxAC
1 (u′

y) = 1. Therefore,nAC
1(u′

x, u
′
y) = nC1(ux, uy) = 1 and

[[∃vx, vy : x(vx) ∧ y(vy) ∧ n(vx, vy)]]
AC

1 = 1.
Furthermore, there exists unique nodesv′

x = g(vx) ∈ AC
2 andv′

y = g(vy) ∈ AC
2 such that

xAC
2 (v′

x) = 1 andxAC
2(v′

y) = 1. Therefore,nAC
2 (v′

x, v
′
y) = nC2(ux, uy) = 0 and [[∃vx, vy :

x(vx) ∧ y(vy) ∧ n(vx, vy)]]
AC

2 = 0.
We conclude thatAC

1 6= AC
2 .

Case 3 : Distinction byUList2[x, y] predicates. Assume thatC1 andC2 identify on all
predicates of the formAliased[x, y] andUList1[x, y], and that for somex, y ∈ Var we have
[[UList2[x, y]]]C1 = 1 and[[UList2[x, y]]]C2 = 0.

The meaning of[[UList2[x, y]]]C1 = 1 is that there exist two nodesvx andvy in UC1 , which
are pointed-to by variablesx andy, respectively, and a third nodevm, such thatvx, vm, vy is a
maximal uninterrupted list inC1. Therefore,cul[x](v)∧¬y(v) holds uniquely forvm in C1. In
addition,[[UList2[x, y]]]C1 = 1 implies[[UList1[x, y]]]C1 = 0, since a maximal uninterrupted list
has a determined integer length. Now, sinceC1 andC2 identify on all predicates of the form
Aliased[x, y] then there exist two nodesux anduy in UC2 that are pointed-to by variablesx and
y, respectively.

We consider the following three sub-cases: (i) There is no uninterrupted list betweenux

anduy. Therefore,[[∃v : cul[x](v) ∧ ¬y(v)]]C2 = 0, and by LemmaA.2.1, AC
1 6= AC

2 ; (ii)
There exists a maximal uninterrupted list betweenux anduy of length1. This possibility is
ruled out since it contradicts the fact that[[UList1[x, y]]]C1 = 0 with our assumption thatC1 and
C2 identify on all predicates of the formAliased[x, y] andUList1[x, y]; and (iii) There exists a
maximal uninterrupted list betweenux anduy of length> 2. This means thatcul[x](v)∧¬y(v)
holds for more than one node inC2 (but only forvm in C1, and so by LemmaA.2.2, AC

1 6= AC
2 .

Case 4 : Distinction byUList[x, y] predicates. Assume thatC1 andC2 identify on all
predicates of the formAliased[x, y], UList1[x, y], andUList2[x, y]; and that for somex, y ∈ Var
we have[[UList[x, y]]]C1 = 1 and[[UList[x, y]]]C2 = 0.

Since [[UList[x, y]]]C1 = 1 we can substitute the definition ofcul[x](v) in the defini-
tion of UList[x, y] and get[[∃v : y(v) ∧ cul[x](v)]]C1 = 1. Applying this substitution For
[[UList[x, y]]]C2 = 0 gives us[[∃v : y(v) ∧ cul[x](v)]]C2 = 0. Therefore, by LemmaA.2.1,
AC

1 6= AC
2 .

Case 5 : Distinction byUList1[x, null ] predicates. Assume thatC1 andC2 identify on
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all predicates of the formAliased[x, y], UList1[x, y], UList2[x, y], andUList[x, y]; and that for
somex ∈ Var we have[[UList1[x, null]]]C1 = 1 and[[UList1[x, null]]]C2 = 0.

Since[[UList1[x, null]]]C1 = 1, we have that there is no list emanating from the node pointed-
to byx in C1, and[[∃v : cul[x](v)]]C1 = 0. Since[[UList1[x, null]]]C2 = 0, we have that there is
a non-empty list emanating from the node pointed-to byx in C2, and[[∃v : cul[x](v)]]C2 = 1.
Therefore, by LemmaA.2.1, AC

1 6= AC
2 .

Case 6 : Distinction byUList2[x, null ] predicates.Assume thatC1 andC2 identify on all
predicates of the formAliased[x, y], UList1[x, y], UList2[x, y], UList[x, y], andUList1[x, null];
and that for somex ∈ Var we have[[UList2[x, null]]]C1 = 1 and[[UList2[x, null]]]C2 = 0.

We consider the following sub-cases: (i) There exists a maximal uninterrupted list of length
1 from the node pointed-to byx to null, in C1, i.e., [[UList2[x, null]]]C2 = 1. This case is ruled
out, since by the assumption thatC1 andC2 identify on all predicates of the formUList1[x, null]
this would mean that[[UList1[x, null]]]C1 = 1, which is not possible since there exists a maximal
uninterrupted list of length2 from that node to null and any maximal uninterrupted list hasa
determined integer length; (ii) There exists a maximal uninterrupted list of length> 2 from
the node pointed-to byx to null, in C1. This means that inC1 the predicatecul[x](v) holds for
exactly one node (the one following the node pointed-to byx), and inC2 the predicatecul[x](v)
holds for more than one node (all of the nodes following the node pointed-to byx). Therefore,
by LemmaA.2.2, AC

1 6= AC
2 ; and (iii) There is no maximal uninterrupted list fromx to null in

C2, which means that there exists a maximal uninterrupted listfrom x to a (possible the same)
variabley, i.e., [[∃v : cul[x](v) ∧ y(v)]]C2 = 1. However, since inC1 there is no maximal
uninterrupted list fromx to any variable,[[∃v : cul[x](v) ∧ y(v)]]C1 = 0, and therefore, by
LemmaA.2.1, AC

1 6= AC
2 .

Case 7 : Distinction byUList[x, null ] predicates. Assume thatC1 andC2 identify on
all predicates of the formAliased[x, y], UList1[x, y], UList2[x, y], UList[x, y], UList1[x, null],
and UList2[x, null]; and that for somex ∈ Var we have [[UList[x, null]]]C1 = 1 and
[[UList[x, null]]]C2 = 0. (This reasoning here is the same as the third sub-case in theprevi-
ous case.)

This means that inC2 there exists a maximal uninterrupted list fromx to a (possible the
same) variabley, i.e.,[[∃v : cul[x](v)∧ y(v)]]C2 = 1. However, since inC1 there is no maximal
uninterrupted list fromx to any variable,[[∃v : cul[x](v) ∧ y(v)]]C1 = 0, and therefore, by
LemmaA.2.1, AC

1 6= AC
2 .

Case 8 : No distinctions by predicates from Table3.6. Assume thatC1 andC2 identify
on all predicates from Table3.6.

We show thatAC
1 is isomorphic toAC

2 by showing that: (i) for every nodeu1 ∈ UAC
1

there exists a unique corresponding nodeu2 ∈ UAC
2 such that for every unary predicatep(v)

from Table3.7 p(u1)
AC

1 = p(u2)
AC

2 (i.e., AC
1 andAC

2 have the same set of canonic names);
and (ii) for every pair of nodesu1, v1 ∈ UAC

1 and corresponding pair of nodes (with respect
to the values of unary predicates)u2, v2 ∈ UAC

2 , the equalitiesn(u1, v1)
AC

1 = n(u2, v2)
AC

2 and
eq(u1, v1)

AC
1 = eq(u2, v2)

AC
2 hold.

Universe to universe bijection and preservation of unary predicates.Let u1 be a node
in UAC

1 , and letX andL be subsets ofVar such that the unary predicates that hold foru1 in AC
1

arex(u1) for everyx ∈ X andcul[x](v) for everyx ∈ L.
We consider two cases separately according to the emptinessof X.

X is non-empty. From Proposition3.3.4 we have thatf−1(u1) = {v1}, andxC1(v1) = 1
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for everyx ∈ X. Thus, [[∃v : x(v) ∧ y(v)]]C1 = 1 for everyx, y ∈ X. From our
assumption thatC1 andC2 identify on all predicates of the formAliased[x, y] we get that
[[∃v : x(v) ∧ y(v)]]C2 = 1 for everyx, y ∈ X. Using Proposition3.3.4we get that there
exists a unique nodev2 ∈ UC2 such thatxC2(v2) = 1 for everyx ∈ X. We denote byu2

the nodeg(v2), which is designated as the corresponding node foru1 in the isomorphism
map, and using the definition of Canonical Abstraction we getthatxAC

2 (u2) = xAC
1 (u1)

for everyx ∈ X.

From the definition of the predicatescul[x](v), we have that[[∃vx, vy : x(vx) ∧ y(vy) ∧
UList(vy, vx)]]

C1 for everyy ∈ L andx ∈ X. From our assumption thatC1 andC2

identify on all predicates of the formUList[x, y] we get that[[∃vx, vy : x(vx) ∧ y(vy) ∧
UList(vy, vx)]]

C2 for everyy ∈ L andx ∈ X. Using the definition of Canonical Abstrac-
tion we get thatcul[y]A

C
2(u2) = cul[y]A

C
1(u1) for everyy ∈ L.

X is empty. Let f−1(u1) = V1 be the set of nodes mapped byf to u1. SinceX is empty we
have that for every nodev1 ∈ V1: xC1(v1) = 0 for everyx ∈ V ar andcul[x]C1(v1) = 1
for everyx ∈ L. EitherV1 is part of a maximal uninterrupted list fromx to null, orV1 is
part of a maximal uninterrupted list fromx to some variabley. In either case, from our
assumption thatC1 andC2 identify on all predicates of the formAliased[x, y], UList[x, y],
andUListNULL[x], we have that there exists a non-empty set of nodesV2 ⊆ UC2 such
that for everyv2 ∈ V2: xC2(v2) = 0 for everyx ∈ V ar and cul[x]C2(v2) = 1 for
everyx ∈ L. Therefore, if we denote byu2 the image ofV2 underg, we get from
the definition of Canonical Abstraction thatxAC

2 (u2) = xAC
1 (u1) for everyx ∈ X and

cul[y]A
C
2(u2) = cul[y]A

C
1(u1) for everyy ∈ L. The uniqueness ofu2 is determined by the

fact that the values of all unary predicates are considered for the nodes ofV2.

The correspondence by values of unary predicates defines a bijectionh : UAC
1 → UAC

2 such
thath(u) = v whenp(u1)

AC
1 = p(u2)

AC
2 for every unary predicatep(v) from Table3.7.

Preservation of the binary predicateeq(u, v). Sinceeq(u, v) is interpreted as0 in every
3-valued structure for distinctu andv, we are only interested ineq(u, u).

Recall that by the meaning of the predicateeq(u, v) its interpretation can either be1 or 1/2
(but never0).

Let u1 be a node inUAC
1 and letu2 beh(u1). Assume thateq(u1, u1)

AC
1 = 1/2 (i.e.,u1 is a

summary node). LetX be the set variables such thatxAC
1 (u1) = 1 for everyx ∈ X andL be

the set of variables such thatcul[y]A
C
1(u1) = 1 for everyy ∈ L. From Proposition3.3.4we get

thatX = ∅.
Denote byV1 the setf−1(u1). We have that|V1| > 1, which means thatV1 are part of

an uninterrupted list inC1 containing more than two elements, which emanates from the node
pointed-to by the variables inL.

Denote byV2 the setg−1(u2). Since we assumed thatC1 andC2 identify on all predi-
cates from Table3.6, we get that from the node pointed-to by the variables inL emanates
an uninterrupted list containing more than two elements inC1. Hence,|V2| > 1. Therefore,
eqAC

2(u2, u2) = 1/2.
Preservation of the binary predicaten(u, v). We will show that, for a structure in the im-

age of Canonical Abstraction with the predicates from Table3.7, the values of unary predicates
together with the value of the predicateeq(u, v), determine the value of the predicaten(u, v).
SinceAC

1 andAC
2 are isomorphic with respect to those predicates, this completes the proof.
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Let S be a structure in the image of Canonical Abstraction with thepredicates from Table
3.7and letu1 andu2 be two nodes inUA. Furthermore, letX1 andL1 be the sets of variables
such that the unary predicates that hold foru1 arex(v) for everyx ∈ X1 andcul[x](v) for
everyx ∈ L1, and letX2 andL2 be the sets of variables such that the unary predicates that
hold foru2 arex(v) for everyx ∈ X2 andcul[x](v) for everyx ∈ L2.

We consider the following sub-cases (the symmetric cases are not discussed):

X1 and X2 are non-empty. If X1 ⊆ L2 it means thatu1 andu2 represent the end-points of a
maximal uninterrupted list. If there is no node inUA such thatcul[x](v) holds for some
x ∈ X1 then the list is of length1 and thereforenS(u1, u2) = 1. Otherwise, the length
of the list is greater than1 andnS(u1, u2) = 0.

X1 is empty,X2 is non-empty, andeqS(u1, u1) = 0. If L1 ⊆ L2 it means thatu2 represents
the last node of a maximal uninterrupted list containing thenodes represented byu1.
Therefore,nS(u1, u2) = eqS(u1, u1) andnS(u2, u1) = 0.. If L2 ⊆ L1 it means thatu2

represents the first node of a maximal uninterrupted list containing the nodes represented
by u1. Therefore,nS(u2, u1) = eqS(u1, u1) andnS(u1, u2) = 0. Otherwise,u1 andu2

represent nodes belonging to distinct uninterrupted list and sonS(u1, u2) = nS(u2, u1) =
0.

X1 and X2 are both empty. If u1 = u2 then nS(u1, u1) = eqS(u1, u1). Otherwise, this
means thatu1 andu2 represent distinct uninterrupted lists and thereforenS(u1, u2) =
nS(u2, u1) = 0.

�

A.3 Proofs for Section3.6

Proof:[of Proposition3.3.2] A program variable points to at most1 element, and therefore
the number of list elements pointed by all program variablesis at mostn. The proof that the
number of heap-shared elements is at mostn is done by induction on the number of non-null
variables.
Basis: Suppose the only non-null program variable isx. The proof is split into the following
cases.

Case 1: The path from the element pointed byx reaches null. In this case, there are no
heap-shared elements.

Case 2: The path from the element pointed byx reaches the element pointed byx, thereby
forming a cycle. In this case, there are no heap-shared elements.

Case 3: The path from the element pointed byx reaches an element other than the one
pointed byx. In this case, there is exactly1 heap-shared element.
Induction hypothesis: Assume that the proposition holds fork ≥ 0 non-null program variables.

Induction step: Suppose there arek + 1 non-null program variablesx1, . . . , xk+1. Let
Hk be the sub-heap consisting of only the elements reachable from x1, . . . , xk and the links
between them. The proof is split into the following cases, according to the interaction between
variablexk+1 andHk.
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Case 1: The set of elements inHk and the set of elements reachable from variablesxk+1

do not intersect. By the induction hypothesis, the sub-heapHk contains at mostk heap-shared
elements, and the sub-heap containing elements reachable fromxk+1 contains at most a single
heap-shared element. Therefore, the entire heap contains at mostk + 1 heap-shared elements.

Case 2: Variablexk+1 points to an element inHk. Since the variablexk+1 in itself does not
contribute to the in-degree of the element it points to, setting xk+1 to null does no change the
number of heap-shared elements. Therefore, by the induction hypothesis, the heap contains at
mostk heap-shared elements.

Case 3: Variable xk+1 connects to the sub-heapHk via the path[u1, . . . , um] (none of
u1, . . . , um is heap-shared). By the induction hypothesis,Hk contains at mostk heap-shared
elements. The link fromum to an element inHk contributes at most a single heap-shared
element to the entire heap, and therefore the entire heap contains at mostk + 1 heap-shared
elements.
Proof:[of Proposition3.3.4] To prove the first part of the claim, supposeu is heap-shared. If
u is pointed-to by a program variable then the claim triviallyholds. Since we assume that the
heap is garbage-free, nodeu is reachable from some program variable. Letx be the program
variable that reachesu on the shortest path. Obviously no node on the path is pointed-to
by a program variable (otherwise there would be a shorter path from a different variable). By
Corollary3.3.3, the path fromx to u consists ofk maximal uninterrupted lists, for somek < n.
Therefore, by definition, auxiliary variablexs,k(v) points tou.

The second part of the claim is proved by induction on the sharing-depthk.
Basis: The term HeapShared(v) ∧ ¬PtByVar(v) means thatxs,1(v) can hold only for a
subset of interruptions that are heap shared but not pointedby any (regular) program
variable. The term∃vx.x(vx) ∧ UList(vx, v) further restricts the set of nodes to only
ones that are reachable by an uninterrupted list from a node pointed by the variable
x. Sincex is a reference variable, it can point to at most one node, which means that
∃vx.x(vx) ∧ UList(vx, v) holds for at most one interruption. Therefore, the entire conjunction
∃vx.x(vx) ∧ UList(vx, v) ∧ HeapShared(v) ∧ ¬PtByVar(v) holds for at most one node.

Induction hypothesis: Assume that the proposition holds for every reference variables
and sharing-depthi ≤ k.

Induction step: By the induction hypothesisxs,k(v) holds for at most one node. There-
fore, the arguments that were used to prove the basis hold (with x replaced byxs,k) for the
sub-formula

∃vk.xs,k(vk) ∧ UList(vk, v) ∧ HeapShared(v) ∧ ¬PtByVar(v) .

The conjunction¬(
∨

m=1...k xs,m(v)) can only further restrict the set of nodes for which the
sub-formula above holds, and therefore the claim holds for the entire formula.
Proof:[of Proposition3.6.2]

FigureA.2 shows a representative case of a concrete heap where the heap-sharing depth
reaches the upper bound.

We will use the simple fact that, since the out-degree of any node in the heap is at most
1, every connected component of the heap (considering the undirected version of the relation
n(u, v)) contains at most one simple cycle.

Let u be a heap-shared node of depthk > 1. There are two cases:
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Figure A.2: A representative case for a heap sharing depth that reaches the upper bound. The
vertical dashed lines are used to show the different levels of heap-sharing depth

Nodeu does not reside on a cycle.Consider the part of heap containing nodes that reachu.
These nodes, along withu form a connected component without cycles where the out-
degree of every node is at most1. This is a tree with program variables at the leaves and
u as a root.

The fact thatu has heap-sharing depthk means thatu is reachable from at least two
distinct nodesa andb of heap-sharing depthk − 1. In addition,a andb do not reside on
a cycle.

The same reasoning can now be applied toa andb, obtaining the fact thatu is reachable
from at least4 nodes of heap-sharing depthk − 2. The reasoning goes on until we get
to the leaves of the tree, and have thatu is reachable from2k nodes that are pointed by
program variables. This means that2k ≤ n and thereforek ≤ ⌊log n⌋.

Nodeu resides on a cycle.Since nodeu is heap-shared and found on a cycle, there are two
distinct interrupting nodesa andb such that the lists froma to u and fromb to u are
maximal uninterrupted lists, anda is on the same thatu is on andb is outside of that
cycle.

Sinceb does not reside on a cycle, we have already shown thatb can have a heap-sharing
depth of at most⌊log n⌋. Therefore, nodeu has heap-sharing depth of at most⌊log n⌋+1.



Appendix B

Additional Details for Chapter 5

B.1 The Code ofqueue 2 stacks

// A procedure that tests an implementation of a queue
// via two stacks.
class List {

public List n;
public Object data;

public List(Object data) {
this.data = data;

}
}

class Queue {
List stack1;
List stack2;

public void qneueue(Object elem) {
// Push into stack1.
List cell = new List(elem);
cell.n = stack1;
stack1 = cell;

}

public Object dequeue() {
if (isEmpty())

throw IllegalOperationException();

List cell;
if (stack2 != null) {

// Pop from stack2
cell = stack2;
stack2 = cell.n;
// In C we would also free cell here.
return cell.data;

}
else {

// Pop contents of stack1 and push it to stack2.
while (stack1 != null) {
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cell = stack1;
stack1 = cell.n;
cell.n = stack2;
stack2 = cell;

}
// Now pop from stack2.
cell = stack2;
stack2 = cell.n;
// In C we would also free cell here.
return cell.data;

}
}

public boolean isEmpty() {
return stack1 == null && stack2 == null;

}

public static void main(String[] args) {
Queue q = new Queue();
if (...) {

q.enqueue(1);
// Now stack1 is not empty and stack2 is empty.

}
else {

q.enqueue(2);
q.enqueue(3);
q.dequeue();
// Now stack1 is empty and stack2 is not empty.

}
// At this point the partially disjunctive abstraction
// represents a state where both stacks are empty,
// which causes a false alarm.
q.dequeue();

}
}



Appendix C

Proofs and Additional Details
for Chapter 6

C.1 Proofs for Section6.4

Proof:[of Theorem6.4.5] Let j be any index in{1, . . . , k}, and letTSj be the corresponding
combiner set.

I1 ⊗ . . . ⊗ Ik ⊑
⊗

r∈TS j

Ir (C.1)

⊲ since⊗ is monotone, i.e.,X ⊆ Y =⇒
⊗

r∈X

X ⊑
⊗

r∈Y

Y

γ(I) ⊑ γTSj
(I) (C.2)

⊲ by (C.1), (6.13), and (6.3)

τ(γ(I)) ⊑ τ(γTS j
(I)) (C.3)

⊲ sinceτ is monotone

τ(γ(I)) ⊑ η̂j(τ(γTS j
(I))) (C.4)

⊲ by (C.3) and sincêηj is extensive

τ(γ(I)) ⊑ τ1[TSj , j](I) (C.5)

⊲ by (C.4) and (6.14)

τ(γ(I)) ⊑ τ1[TS1, 1](I) ⊗ . . . ⊗ τ1[TSk, k](I) (C.6)

⊲ since⊗ is a meet operator

τ(γ(I)) ⊑ γ(τ1[TS1, 1](I), . . . , τ1[TSk, k](I)) (C.7)

⊲ by (6.3) and (C.6)

τ(γ(I)) ⊑ γ(τ1[TS](I))

⊲ by (6.15) and (C.7)

�

Proof:[of Theorem6.4.7] Let j be any index in{1, . . . , k}, let TSj ⊆ P({1, · · · , k}) be the
corresponding set of combiner sets, and letY ⊆ {1, · · · , k} be a combiner set inTSj.
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τ(γ(I)) ⊑ τ1[R, j](I) (C.8)

by (C.5) in Theorem6.4.5

τ(γ(I)) ⊑
R∈TS j

τ1[R, j](I) (C.9)

by (C.8) and the properties of⊓

τ(γ(I)) ⊑ τ2[TSj , j](I) (C.10)

by (C.9) and (6.17)

τ(γ(I)) ⊑ τ2[TSk, k](I) ⊗ . . . ⊗ τ2[TSk, k](I) (C.11)

by (C.10) and since⊗ is a meet operator

τ(γ(I)) ⊑ γ(τ2[TS1, 1](I), . . . , τ2[TSk, k](I)) (C.12)

by (C.12) and (6.3)

τ(γ(I)) ⊑ γ(τ2[TS](I))

by (6.18) and (C.12)

�

C.2 HeDec System Optimizations

In this section we explain some of the important implementation details of the HeDec system.
HeDec implements standard fixed point iteration techniqueswhere the abstract elements

are tuples of sets of substates, one set per location selection predicate.

C.2.1 Incremental Transformers

We optimize the fixed point iteration by reusing the results from previous iterations. Without
composition, the transformers are distributive and thus they are trivially incremental. The
challenge is handling changes to sets from different tupleswhen they are combined. Combining
sets is defined asX1 ⊗X2 = {σ1 ⊗ σ2 | σ1 ∈ X1, σ2 ∈ X2} whereσ1 ⊗ σ2 is an operation that
combines individual substates.

For two sets of substatesX andY , let ∆X and∆Y be new substates for each set, respec-
tively. Now, we would like to computeτ((X ⊔ ∆X) ⊗ (Y ⊔ ∆Y )) by reusingτ(X ⊗ Y ). We
use a known technique in computing differential fixpoint iterations (see, e.g., [EY04]), and use
the transformer

τ((X ⊔ ∆X) ⊗ (Y ⊔ ∆Y )) = τ(X ⊗ Y )⊔
τ(X ⊗ ∆Y )⊔
τ(Y ⊗ ∆X)⊔
τ(∆X ⊗ ∆Y )

where the first joined element is taken from the previous iteration.
The use of incremental transformer is very important for efficiency. For example, on the

non-blocking stack of Section6.2.1, the incremental transformers improve the running times
of 5 threads from206 seconds to36 seconds and of10 threads from2612 seconds to211
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[1] #define EMPTY -1
[2] typedef struct queue t {
[3] struct element t *Head;
[4] struct element t *Tail;
[5] lock type HLock;
[6] lock type TLock;
[7] } Queue;

// @pre Queue->Head!=NULL &&
// Queue->Tail!=NULL
[8] void enqueue(Queue *Q, data type v){
[9] Node *x = alloc(sizeof(Node));
[10] x->d = v;
[11] lock(&Q->TLock);
[12] Node *t = Q->Tail;
[13] t->n = x;
[14] Q->Tail = x;
[15] unlock(&Q->TLock);
[16] }

// @pre Queue->Head!=NULL &&
// Queue->Tail!=NULL

[17] data type dequeue(Queue *Q){
[18] lock(&Q->HLock);
[19] Node *h = Q->Head;
[20] Node *s = h->n;
[21] if (s == NULL)
[22] unlock(&Q->HLock);
[23] return EMPTY;
[24] data type r = s->d;
[25] Q->Head = s;
[26] unlock(&Q->HLock);
[27] return r;
[28] }

Figure C.1: Two-lock queue implementation

seconds. More than10-fold improvement that increases as the complexity of the problem and
the number of threads increase.

C.2.2 Optimized Composition for Sets of Substates

One of the costly operations in our framework is the combination operator on setsX ⊗ Y
(which is implemented using the algorithm from [AMSS06]). The number of substates that
need to be combined grows exponentially with the number of sets. In our benchmarks, we
usually compose at most3 sets but this is still very costly, in practice.

However, many of the pairs of substates that are combined areinconsistent, and thus do
not contribute substates in the output. We therefore use pruning techniques to avoid combining
many inconsistent substates unnecessarily.

For a stateσ ∈ X, we say thatsignatureX(σ) is a signature ofσ in X, if for everyσ′ ∈ X,
we have the property that ifsignatureX(σ) 6= signatureX(σ′) thenσ andσ′ are inconsistent.
We use signatures based on unary predicates to combine sets of substates by:

X ⊗ Y = {σ1 ⊗ σ2 | signatureX∪Y (σ1) = signatureX∪Y (σ2)} .

We have observed, in our experiments, that using the optimized combination for sets reduces
the amount of useless combinations operations by up to a factor of 100.

C.3 Case Study: Proving Linearizability for a Two-Lock
Queue

FigureC.1 shows the two-lock queue implementation described in [MS96]. The queue has
Head and Tail pointers, each protected with its own lock. Note that although the implemen-
tation uses locks, the algorithm allows benign data-races in case the queue is empty, i.e., the
Head and Tail pointers are aliased.
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Figure C.2: A concrete memory in the two-lock queue implementation shown in FigureC.1

C.3.1 Concrete Execution

Figure C.2 shows one example of a store occurring in the two-lock queue implementation
shown in FigureC.1. The figure shows two consumer threads and two producer threads. The
elements of the heap already correlated with the sequentialexecution are marked withcorr.
Locks are depicted by arrows to the locking thread.

prod1 andcons2are waiting in the corresponding lock acquire point, waiting for the lock.
cons1finished dequeuing an element from the queue and is about to release the lock. Finally,
prod2 has already added an element to the tail of the queue, but has not yet updated the Tail
pointer. The source of exponential explosion in the state space exploration of the two-lock
queue algorithm is the correlation between the program locations of the different threads as in
the coarse-grained concurrency.

C.3.2 The Decomposition Scheme

We refine the decomposition scheme of Section6.2.1by adding a subdomain to represent the
locks. The subheap contains the objects pointed-to by global variables and for each lock, the
thread object acquiring it. FigureC.3 shows the the effect of applying this decomposition to
the full state in FigureC.2.

The important thing to notice is that all the exponential explosion in the state space that
existed in the full heap is eliminated by this decomposition. The possible subheaps of each
thread become independent of the number of threads in the system (for more than2 threads).
The subheaps of the locks subdomain ({T3}) only contain the thread information of2 threads
at most at a time.

C.3.3 Transformers

The compositions described in Section6.2.1work here as well. In the added operations of
acquiring and releasing a lock, the subdomain of the currently executing thread is combined
with the locks subdomain and each of the other components.
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