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Abstract

Partially Disjunctive Shape Analysis

Roman Manevich
Doctor of Philosophy
The Blavatnik School of Computer Science
Tel-Aviv University

Modern programs rely significantly on the use of dynamicallpcated linked data struc-
tures. Shape analysis algorithms statically analyze aranago determine information about
these data structures, e.g, “does variable x point to ardiadigt?” and “is it possible to reach
an object via pointer traversals from two different varesdl” These algorithms are conserva-
tive (sound), that is, the discovered information is truedeery program input, and thus can
be applied for various uses, such as program verificaticimagation, parallelization, etc.

Disjunctive shape analyses operate by abstracting theet@moemory stores into (bounded)
shape graphsAt control flow join points of the program, the shape grapiesnaerged by using
disjunction (set union), which often leads to an exponéetiplosion in the number of shape
graphs. In concurrent programs this problem is even moreeadue to the interleaving of
different threads.

We present new “partially disjunctive” shape analyses diatdaming the size of the state
space by abstracting disjunctions, as well as soundly appeding program statements. We
implemented and applied these analyses to prove propeftesgjuential programs and fine-
grained concurrent programs. We were able to prove a vaoiethallenging properties, in-
cluding cleanness properties, shape invariants, andriradality of concurrent data structure
implementations. The new shape analyses scale better lkadigjunctive shape analyses,
usually running faster by orders of magnitude, and stiledblprove the desired properties.
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Chapter 1

Introduction

In this thesis, we are interested in statically inferringperties of programs manipulating
linked data structures, which is referred tosfimpe analysiand is a special case abstract
interpretation[CC77. The main application of shape analysis in this thesis isfigation

of safety properties, including absence of null derefeeenabsence of memory leaks, data
structure invariants, absence of concurrent modificati@megtions in Java, and checkilig-
earizabilityof concurrent data structures.

Requisites and Theoretical Backgrounds. A requisite for understanding the material in this
thesis is familiarity with static program analysis via ahst interpretation (for an introduction
to abstract interpretation see Nielson et INH99)), including understanding of the following
concepts:abstraction concretizationabstract domainsabstract transformersand inference
of program invariants bghaotic iteration(fixed-point computation). We next include a brief
reminder to these concepts. We also include the necessdsygiahe theory of parametric
shape analysis viad-valued logic BRW03 in Chapter 2. In this framework, concrete states
and abstract states are represented by logical structuhesh) can be thought of as directed
graphs with multiple types of edges and Boolean propertiss@ated with the vertices.

Abstract Interpretation Essentials. In this thesis, we will assume that an abstract domain
A is given by a complete latticB 4 = (T4, L4,M4, La, T4) WhereA is the set of elements;
C 4 Iis a partial ordering on the elements; is the least upper bound, in, operatorj1, is
the greatest lower bound, areef operator; L 4 is the least element of the lattice; and, is
the greatest element of the lattice. We say that an elemastmoreprecisethan an element
Co When01 C co.

In abstract interpretatiorJJC77), an abstraction function®“ : C' — A maps an element
of the concrete domai@y' to the most precise element that represents it iratheract domain
A. The meaning of an abstract element A is given by aconcretizatiorfunctiony*¢ : A —

C. Thatis, we say that € A represents any element C' such thaty*“(a). Moreover, the
pair (y4¢, a©4) forms aGalois Connection

In the sequel, we will drop the subscripts and superscript®ting the semantic domains
when no confusion is likely.

15



16 CHAPTER 1. INTRODUCTION

A semantic functionf* : A — A is asoundover-approximation of a semantic function
F : C — C'if the following holds:

F(y(a)) Ev(F¥(a)) .

We call the functionF the concrete transformer and the functiBhthe abstract transformer.
In this thesis, we will often be interested in over-approaiimg the meaning of a program
statemenist] over a finite abstract domai.

The semantics of a program is given in terms of a least fixedtpipi( /') and its abstract
semantics is given biyp(F*#)1. Properties of a program can be conservatively inferreddny-s
ing from an initial element, and then applying the functiofA* over and over until reaching
the fixed point. This process is guaranteed to end when tlglhei the latticeA is finite.

Finally, we note that two abstract domaiAs and A, may be equivalent, i.e., isomorphic,
offering different encodings of the same information. Tisafor every concrete elemeate
C, we havey1:¢(a%A1(c)) = y42:C(a%42(c)).

Disjunctive Abstractions vs. Partially Disjunctive Abstractions. An abstract domaim
(and the corresponding abstraction) is said tdisginctivewhen the following holds for every
two abstract elements, a, € A:

Y(a1) Ue y(az) = v(a1 Ua az) .

Otherwise (wheny(a;) Uc y(az2) T v(a1 L4 ag) is possible), the domain is said to partially
disjunctive
We now compare the two forms of abstraction:

¢ Disjunctive abstractions are popular in the model checkioghmunity, where an ab-
straction is defined by finitely partitioning the set of caterstates. Partially disjunctive
abstractions are more general, since they allow definindatraction in terms of over-
lapping sets of states (closed under join and meet).

¢ Disjunctive abstract domains are powersets of the set avalgmce classes of the con-
crete domain, with respect th. Thus, they can be quite expensive for static analyses. For
instance, when a static analyzer interprets control flow paints, the size of the joined
element can be double the size of each of the elements in #melgs. In contrast, a
partially disjunctive domain can over-approximate theredats from two branches in a
such a way that the size remains feasible (especially ing@frthe computer represen-
tation) and the fixed point computation terminates fastécddrse, the abstract element
computed in this way might be less precise and thus lessldsefe.g., program verifica-
tion. Therefore, partially disjunctive abstractions h&wée chosen carefully to support
two opposite needs — taming the cost of the analysis and girayinformation that is
precise enough for the goals of the analysis.

Un actuality, the fixed-point is usually taken for the sequeerof iterates defined by, = ao and
Xps1 = X, UF#(X,)
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Figure 1.1: Abstractions and transformers developed isishe

Goals. Ourgoalinthisthesisisto: (i) find precise new abstradifam linked data structures;
and (i) find new partially disjunctive abstractions andcent transformers that can be used
to analyze heap-manipulating programs with similar prenias analysis using disjunctive ab-
stractions, but with better performance. In particularseek partially disjunctive abstractions
that enable the analysis designer to intentionally abisénaay information that he considers to
be irrelevant for proving a certain property (e.g., absingcaway the correlation between the
properties of disjoint lists to prove absence of null derfees).

1.1 Overview

The material in this thesis is based on four conference pdM8RF04 MYRS05 MBC*07,
MLAS*08], each one with its corresponding technical chapter. Thégter contains an infor-
mal overview of the thesis, describing the contributionsadh of the papers, and the connec-
tions between them.

Figurel.lillustrates the various abstractions and transformerrdlgos developed in this
thesis. The concrete domain, which is not shown in the figareither a powerset &-valued
structures (in chapters 3,4, and 6) or a powerset of shapbdgfam Chapter 5).

1.1.1 A Precise Abstraction for Singly-Linked Lists

In chapter 3, we introduce a rather precise disjunctiverabson for programs containing a
finite number of (possibly cyclic) lists (of unbounded lemgtThese ideas have been adapted
and extended in subsequent works of other researcA@\é(J6, APV08, LAIS06].

Abstract Domain Encoding. We show how to encode the abstract elements in Predicate Ab-
straction 5S97 and in Canonical Abstractior5RW04 and prove these encodings are equiv-



18 CHAPTER 1. INTRODUCTION

alent in the sense defined above. (In Chapter 5, we use a ment, dipecialized, encoding of
the abstract elements by shape graphs.)

Application. We use this abstraction to prove basic safety propertiegdatal structure in-
variants in standard list-manipulating procedures.

Main Contributions: (i) We define an instance of Canonical Abstracti®&RV03 that ab-
stracts cyclic lists more precisely than existing instanea@sed on Canonical Abstraction; (ii)
we compare Predicate Abstraction and Canonical Abstraatiterms of the number of pred-
icates needed to encode the same abstraction and show ikelegce of the two encodings
for the list abstraction; and (iii) we report on an empiriegbluation of an analysis based on
the new abstraction on a suite of benchmarks.

1.1.2 Partial Isomorphism Abstraction

In Chapter 4, we introduce a partially disjunctive absicacbn top of Canonical Abstraction.
The idea is to use an equivalence relation on structuresg psirtial isomorphismto define

a notion of similarity between them. We merge similar stuoes into a single structure, thus
reducing the number of structures after a join. We do not metgictures that are not similar,
since we consider them to be distinguished by propertigsrihg be important for the analysis.

Abstract Domain Encoding. We build on top of the3-valued shape analysis theory and
encode the abstract elementsdyalued structures. This enables us to define a very general
abstraction and reuse the abstract transformers avaitatiiat framework.

Application. We applied the analysis to a wide variety of benchmarks, whiere defined
over the years by different users of the TVLA systdtA$00], including sequential and con-
current benchmarks, checking list- and tree-manipulginegedures, and checking concurrent
modification exception in Java.

Main Contributions: (i) A generic type of abstraction (variations of this idearavadapted
by other researcher&’[B*08]); (ii) a robust implementation in TVLA; and (iii) empirita
evaluation on a wide variety of benchmarks showing dransgézd-ups to the performance of
TVLA.

1.1.3 Disjoint Subgraph Decomposition

In Chapter 5, we define a partially disjunctive abstractmreiploiting loose coupling between
different, disjoint, data structures. This abstraction oeduce exponential factors in analysis
of programs manipulating multiple disjoint data structure

Abstract Domain Encoding. We formulate the concrete states and the abstract states us-
ing specialized shape graphs. This is done for the simplafithe presentation. However,
recasting the results in terms of logical structures isgittéorward.
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Application. We have implemented and applied the analysis to programguoiating mul-
tiple cyclic singly-linked lists, including programs mdeé after windows device drivers.

Main Contributions: (i) We introduce a new type of shape abstraction that exptbgjoint-
ness of data structures to reduce the height of the abstawid; (ii) we study the complexity

of the abstract transformers and show that the most preeaissformers are NP-complete; (iii)
we propose polynomial, efficient, transformerSR) that are less precise than the most precise
transformer but are usually good in practice, that is, tiseltang analysis is as precise as the
one based on disjunctive abstraction for most benchmanki(ig) we have implemented and
showed significant speed-ups of the analysis on a set of bear&s manipulating lists.

1.1.4 Cartesian Subheap Decomposition

In Chapter 6, we introduce a framework for constructing ipyt disjunctive abstractions,
based on the idea of decomposing logical structures intessulotures and using Cartesian ab-
straction. A user of the framework can specify differentddgrof decompositions and different
kinds of transformers, ensured to result in a sound analysis

Abstract Domain Encoding. We present the ideas using concrete stores. The algorittens a
incorporated into TVLA and use logical structures. Thisldas a very generic system.

Application. We applied the ideas to analyze concurrent fine-grained-@nagmanipulating
list data structures to prove basic safety properties,(algsence of null dereferences) and
linearizability [HW9(Q], by building on top of the analysis of Amit et akRR"].

Main Contributions: (i) We define the concept of heap decomposition and show how it
can be utilized with Cartesian abstraction; (ii) we devekeghniques for sound and efficient
transformersA, [TS, 72[TS) that can be parameterized by the analysis designer;h@iptgo-
rithms are incorporated into TVLA where an analysis desigraa specify a decomposition
parameterD and a transformer parametéf and automatically obtain a sound analysis to
experiment with; and (iv) we show the usefulness of the fraark for analyzing concurrent
fine-grained programs and checking linearizability. Weehstvown that using these techniques
is prudent for efficiently checking linearizability for pgoam with an unbounded number of
threads BLAM 08].

Cartesian decomposition abstraction can capture disgoingraph decomposition and the
efficient transformers developed in Chapter 5.

The partial isomorphism abstraction?, and the Cartesian decomposition abstractions,
a?[D], can be easily combined. We use both of these abstractionistain the analyses and
the results reported in Chapter 6 and in a subsequent \Bark§1 +08].
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1.2

CHAPTER 1. INTRODUCTION

Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 contains background materials for Canonicalrabson SRWO03;

Chapter 3 presents a finitary abstraction for stores cantpia bounded number of
singly-linked lists (of unbounded length) and describew @ encode the abstraction
using different formalisms;

Chapter 4 presents a partially disjunctive abstractionapnaf Canonical Abstraction
based on merging similar abstract states and its applictaiia wide variety of analyses;

Chapter 5 presents a partially disjunctive abstractioretbas decomposing (abstract)
heaps into their sets of disjoint subheaps and its apphicati analyzing sequential pro-
grams;

Chapter 6 presents a parametric framework for partiallydidive abstractions based on
decomposing (abstract) heaps into sets of — not-necessigjbint — subheaps, and
its application to analyzing sequential and concurreng@ms;

Chapter 7 concludes the thesis and discusses possible fegsgarch directions.



Chapter 2

3-valued Shape Analysis Background

In this section, we provide a brief introduction into thedhgeof parametric shape analysis via
3-valued logic BRWO0J and, in particular, define Canonical Abstraction.

2.1 Concrete Program States

We represent the state of a program using a first-order lbgficacture in which each individual
corresponds to a heap-allocated object and predicates sfiiicture correspond to properties
of heap-allocated objects.

Definition 2.1.1 A 2-valued logical structure over a vocabulary (set of predes P is a pair
S = (U®,5) whereU? is the universe of the-valued structure, and’ is the interpretation
function mapping predicates to their truth-value in theusture: for every predicatg € P of

arity k, 5 (p) : Us* - {0,1}.

In the following, we use®(v) as alternative notation faf (p)(v); we also omit the super-
scriptS, when no confusion is likely.

In the context of shape analysis, a logical structure is asealshape descriptor, with each
individual corresponding to a heap-allocated object aedipates of the structure correspond-
ing to properties of heap-allocated objects.

We denote the set of al-valued logical structures over a set of predicafesby
2-STRUCT,. In the sequel, we assume that the vocabulBrys fixed, and abbreviate
2-STRUCT, to 2-STRUCT.

Table4.1shows the predicates we typically use to record properfiggltviduals. A unary
predicatex(v) holds when the objeat is pointed-to by the reference varialde We assume

Table 2.1: Typical predicates used for representing coaqnegram states

Predicates Intended Meaning

eq(vy, vg) vy IS equal tov,

{z(v): x € PVar} reference variablg points to the object
n(vy, ve) next field of the object; points to the object,

21
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Table 2.2: Predicate-update formulae that define the sersawmit heap-manipulating state-
ments

Statement Update formulae

x = null ' (v)=0

x =t 2'(v) = t(v)

X =t.n ' (v) = Juy : t(v1) An(vy,v)

x.n = null n'(vy,v9) = n(vy, vy) A —x(vq)

X.n =t (assuming x.n == null) n'(vy,ve) = n(vy,ve) V (x(v1) A t(vs))

that the set of predicates includes a unary predicate foyeeéerence variable in a program.
We usePVar to denote the set of all reference variables in a program. narli predicate
n(vy, vy) records the value of the reference field

2.1.1 Concrete Semantics

Program statements are modelleddayionsthat specify how statements transform an incom-
ing logical structure into an outgoing logical structurénidlis done primarily by defining the
values of the predicates in the outgoing structure usingtdeie of first-order logic with transi-
tive closure over the incoming structui®RwW03. The update formulae for heap-manipulating
statements are shown in Tald3e2 For brevity, we omit the treatment of the allocation state-
mentnew T( ), the interested reader may find the detailsSRWO03.

To simplify update formulae, we assume that every assightoghen field of an object is
preceded by first assigning null to it.

2.2 Canonical Abstraction

The goal of an abstraction is to create a finite representafia potentially unbounded set of
2-valued structures (representing heaps) of potentialljounded size. The abstractions we
use are based dhvalued logic BRWO03, which extends boolean logic by introducing a third
valuel/2 denoting values that may be O or 1.

We represent an abstract state of a program usiigadued first-order structure.

Definition 2.2.1 A 3-valued logical structure over a set of predicateéds a pair S = (U, ¢)
whereU is the universe of tha-valued structure (an individual iV may represent multiple
heap-allocated objects), ands the interpretation function mapping predicates to theith-
value in the structure: for every predicatec P of arity k, «(p) : U* — {0,1,1/2}.

An abstract state may inclugeimmary nodes.e., an individual which corresponds to one
or more individuals in a concrete state represented by thestract state. A summary node
haseq(u,u) = 1/2, indicating that it may represent more than a single indixgd In the rest
of the thesis, we assume that the set of predic&texludes a distinguished unary predicate
smto indicate if an individual is a summary individual.
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Table 2.3: Predicates used for the Canonical Abstractiemgfy-linked lists in ERW03, and
their meaning

Predicates Intended Meaning Defining formulae
{z(v): x € PVar} reference variablg points tov
n(u,v) next field ofu points tov
{r.(v) : x € PVar} v isreachable fronx by Fug.x(vy) A n*(vg,v)
dereferencing fields
cn(v) v resides on a cycle of fields nt(v,v)
is(v) v is heap-shared vy, va.n (v, v) An(ve,v) A (v1 # v2)

2.2.1 Embedding

We now formally define how states are represented usingaabstiates. The idea is that each
individual from the (concrete) state is mapped into an iidial in the abstract state. More
generally, it is possible to map individuals from an abdtetate into an individual in another,
less precise, abstract state.

Formally, letS = (U, ) andS" = (U’, /) be abstract states. A functigh U — U’ such
that f is surjective is said tembedS into S’ if for each predicate of arity k£, and for each
uy, ..., u; € U, one of the following holds:

plur, - up)) = (p(f(w), - fur)) o d(p(f(w), ..., flur)) = 1/2

We say thatS’ representsS when there exists such an embeddfing

One way of creating an embedding functifms by usingCanonical AbstractionCanon-
ical Abstraction maps concrete individuals to an abstnadividual based on the values of
the individuals’ unary predicates. All individuals havitige same values for unary predicate
symbols are mapped bhyto the same abstract individual.

Table 3.3 presents the set of predicates usedSRW03 to abstract singly-linked lists.
The predicates,(v), ¢,(v), andis(v), referred to in BRW03 asinstrumentation predicates
record derived information and are used to refine the aligirac
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Chapter 3

A Precise Abstraction for Singly-Linked
Lists

Predicate abstraction and canonical abstraction are twarfirabstractions used to prove prop-
erties of programs. We study the relationship between ttvasabstractions by considering a
very limited case: abstraction of (potentially cyclic) giyrlinked lists.

We provide a new and rather precise family of abstractiongp&tentially cyclic singly-
linked lists. The main observation behind this family of a#stions is that the number of
shared nodes in linked lists can be statically bounded.éfbes, the number of possible “heap
shapes” is also bounded. We present the new abstractionthrpbedicate abstraction form as
well as in canonical abstraction form.

As we illustrate in the chapter, given any canonical abstracit is possible to define a
predicate abstraction that is equivalent to the canonizstraction. However, with this straight-
forward simulation, the number of predicates used for tleeljgate abstraction is exponential
in the number of predicates used by the canonical abstractio

An important feature of the family of abstractions we predarthis chapter is that the
predicate abstraction representation we define is far maetipal as it uses a number of
predicates that is quadratic in the number of predicated bgehe corresponding canonical
abstraction representation. In particular, for the mostralot abstraction in this family, the
number of predicates used by the canonical abstractiomésidiin the number of program
variables, while the number of predicates used by the paggl@bstraction is quadratic in the
number of program variables.

We have encoded this particular predicate abstraction armésponding transformers in
TVLA, and used this implementation to successfully verigfety properties of several list
manipulating programs, including programs that were nevipusly verified using predicate
abstraction or canonical abstraction.

3.1 Introduction

Abstraction and abstract interpretati@(79 are essential techniques for automatically prov-
ing properties of programs. The main challenge in abstraetpretation is to develop ab-
stractions that are precise enough to prove the requirgoepsoand efficient enough to be
applicable to realistic applications.

25
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Predicate abstractiol®[S97 abstracts the program into a Boolean program which conser-
vatively simulates all potential executions. Every safatyperty which holds for the Boolean
program is guaranteed to hold for the original program. Harmnore, abstraction refine-
ment [CGJ 00,BR0OZ can be used to refine the abstraction when the analysis pesdu‘false
alarm”. When the process terminates, it yields a concreta érace in which the property
is violated, or successfully verifies the property. In pijphe, the whole process can be fully
mechanized given a sufficiently powerful theorem proveiisinocess was successfully used
in SLAM [Mic01] and BLAST [HIMSO03 to prove safety properties of device drivers.

Canonical abstractiorSRWO0Z is a finitary abstraction that was specially developed to
model properties of unbounded memory locations (inspised®81). This abstraction has
been implemented in TVLALASOQ], and successfully used to prove various properties of
heap-manipulating programs (e.(RWF02, YR04, SYKS03).

3.1.1 Main Results

In this chapter, we study the utility of predicate absti@ctio prove properties of programs
operating on singly-linked lists. We also compare the esgive power of predicate abstraction
and canonical abstraction.

The results in this chapter can be summarized as follows:

e We show that current state-of-the-art iterative refinenteahniques fail to prove in-
teresting properties of singly-linked lists such as paietgualities and absence of null
dereferences in a fully automatic manner. This means thatamy simple programs the
process of refinement will diverge when the program is corrBais result is inline with
the experience of Blanchet et aBCC*03].

e We show that predicate abstraction can simulate arbitrarafy abstractions and, in
particular, canonical abstraction. This trivial resulbt immediately useful because of
the number of predicates used. The number of predicategeddo simulate canonical
abstraction is, in the worst case, exponential in the nurobg@redicates used by the
canonical abstraction (usually, this means exponenti#thénnumber of program vari-
ables).

e We develop a new family of abstractions for heaps contai(potentially cyclic) singly-
linked lists. The main idea is to summarize list elements nshared list segments
not pointed-to by local variables. For programs manipotasingly-linked lists, this
abstraction is finitary since the number of shared list elgmeeachable from program
variables is bounded. Abstractions in this family vary ieitHevel of precision, which
is controlled by the level of sharing-relationships reeatd

e We show that the abstraction recording only one-level sigarelationships (i.e., the
least precise member of the family that records sharingyficgent for successfully
verifying all our example programs, including programsttare not verified earlier
using predicate abstraction or canonical abstraction.

e We show how to code the one-level-sharing abstraction usitig canonical abstraction
(with a linear number of unary predicates) and predicatératison (with a quadratic
number of nullary predicates).



3.1. INTRODUCTION 27

/I head points to the first elenment of an acyclic |ist
//tail points to the last elenent of the sanme I|ist
curr = head;
while (curr !'=tail) {

assert (curr !'= null);

curr = curr.n;

OB WONPEF

Figure 3.1: A simple program on which counterexample-gdiigdinement diverges

3.1.2 Motivating Examples

Figure3.1shows a program that traverses a singly-linked list withadhgointethead and a
tail-pointert ai | . This is a trivial program since it only uses an acyclic lidKist, and does
not contain destructive pointer updates. When counterplaguided iterative refinement is
applied to this program to assure that the assertion aglis@ever violated, it will diverge. At
thei-th iteration it will generate an assertion of the focmr r (. n)?! = nul | . However, no
finite value ofi will suffice. Indeed, the problem of proving the absence df-dereferences
is undecidable even in programs manipulating singly-lchkets and even under the (non-
realistic) assumption that all control flow paths are exallgt [Cha03.

In contrast, the TVLA abstract interpretdtAS0Q] proves the absence of null dererefer-
ences in this program i seconds, consuming6MB of memory. TVLA uses canonical
abstraction which generalizes predicate abstractionlbwaig first-order predicates (relation
symbols) that can have arguments. Thus, nullargrity) predicates correspond to predicates
in the program and in predicate abstractions. Unary présidg-arity) are used to denote sets
of unbounded locations and binag¢drity) predicates are used to denote relationships betwee
unbounded locations.

A curious reader may ask herseHre there program properties that can be verified with
canonical abstractions but not with predicate abstracti®n

It is not hard to see that the answer is negative, since antarygnabstraction can be
simulated by a suitable predicate abstraction. For exangaasider an abstraction map-
ping a : C — A, from a concrete domaid' to a finite abstract domain of indexed
elementsA = {1,...,n}. Define the predicate BIJ] to hold for the set of concrete
states{c | thejth bit of a(c), in its binary representation, i3. Now, the set of predicates

{BIT[j] ][lif’” yields a predicate abstraction that simulatesThis simulation is usually not
realistic, since it contains too many predicates. The nurobgredicates required by predicate
abstraction to simulate canonical abstraction can be exgail in the number of predicates
used by the canonical abstraction.

Fortunately, the only nullary predicate crucial to prove #ibsence of null dereferences in
this program is the fact thatai | is reachable froncurr by a path ofn selectors (of some
length). Similar observations were suggested indepehdarftJJINS97BRS991001]. In this
chapter, we define a quadratic set of nullary predicatesddyatiures the invariants in many
programs manipulating (potentially cyclic) singly-lirkésts.

Figure3.2 shows a simple program removing a contiguous segment froyalec singly-
linked list pointed-to by. For this example program, we would like to verify that theuiéing
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/'l x points to a cyclic singly-linked Iist
/'l 1ow and high are two integer values, |ow < high

1 t = null;

2 y = X;

3 while (t !'=x & y.data < low) {
4 t =y.n; y =t;

5 }

6 Z =,

7 while (z '= x & z.data < high) {
8 t =z.n; z =t,;

9 ¥

10 t = null;

11 if (y!=2) {

12 y.n = null;

13 y.n = z;

14 }

Figure 3.2: A simple program that removes the segment bettese and high from a linked
list

structure pointed-to bx remains a cyclic singly-linked list. Unfortunately, usiiyLA's
canonical abstraction with the standard set of predicates ut to be insufficient. The prob-
lem stems from the fact that canonical abstraction with taedard set of predicates loses the
ordering between th@ reference variables that point to that cyclic singly-lidKest (this is
further explained in the next section).

In this chapter, we provide two abstractions — a predicastrabttion, and a canonical
abstraction — that are able to correctly determine that élselt of this program is indeed a
cyclic singly-linked list.

3.1.3 Outline

The rest of this chapter is organized as follows. Sec3@provides background on the basic
concrete semantics we are using, Canonical AbstractiahPaedicate Abstraction. Section
3.3 presents an instrumented concrete semantics that reastdstérruptions. Sectio.4
shows a quite precise predicate abstraction for singkelihlists. Sectior8.5 shows a quite
precise canonical abstraction of singly-linked lists. gt®on3.6, we show that the predicate
abstraction of Sectio8.4 and the canonical abstraction of Sectib are equivalent. Section
3.7 describes our experimental results.

3.2 Background

In this section, we provide basic definitions that we will aseughout the chapter. In par-
ticular, we provide a reminder of Canonical Abstractionhngbme examples, and we define
Predicate Abstraction.
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Table 3.1: Predicates used for representing concrete grogtates

Predicates Intended Meaning

eq(vy, vg) vy IS equal tov,

{z(v): x € PVar} reference variablg points to the object
n(vy,ve) next field of the object; points to the object,

y
(@) (b)

Figure 3.3: The effect of the statemgntn=nul | in the concrete semantics. (a) a possible
state of the program of Figu@2 at line 12; (b) the result of applying. n=nul | to (a)

3.2.1 Concrete Program States

In our setting, we represent the state of a program usingtaofidger logical structure in which
each individual corresponds to a heap-allocated objectpaadicates of the structure corre-
spond to properties of heap-allocated objects.

Table4.1shows the predicates we use to record properties of indasdé unary predicate
X(v) holds when the objeat is pointed-to by the reference variatde We assume that the set
of predicates includes a unary predicate for every refer@adable in a program. We uBd/ar
to denote the set of all reference variables in a program.naryipredicate:(v;, v9) records
the value of the reference fieid

Concrete Semantics

Recall that the semantics of program statements Dwedued structures is modelled layg-
tions that specify how statements transform an incoming logitralcture into an outgoing
logical structure. This is done primarily by defining theues of the predicates in the out-
going structure using formulae of first-order logic withrséive closure over the incoming
structure BRWO03. The update formulae for heap-manipulating statemeetslaown in Table
3.2 For brevity, we omit the treatment of the allocation stagaetmew T( ) , the interested
reader may find the details iISRWO03.

To simplify update formulae, we assume that every assightoethen field of an object
is preceded by first assigning null to it. Therefore, theestant at linel2 of the example
program of Figure3.2assigns null ty. n before the next statement assigns it the new value
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Table 3.2: Predicate-update formulae that define the sersawmit heap-manipulating state-
ments

Statement Update formulae

x = null 2'(v) =

X =t ' (v) = t(v)

X =t.n ' (v) = Juy : t(v1) An(vy,v)

x.n = null n'(vy,v9) = n(vy, vy) A —x(vq)

X.n =t (assuming x.n == null) n'(vy,ve) = n(vy,ve) V (x(v1) A t(vs))

Table 3.3: Predicates used for the Canonical Abstractidiigare3.4, and their meaning

Predicates Intended Meaning Defining formulae
{z(v): x € PVar} reference variablg points tov
n(u,v) next field ofu points tov
{r.(v) : x € PVar} v isreachable fronx by Ju,.x(vy) A n*(vg, v)
dereferencing fields
cn(v) v resides on a cycle of fields nt(v,v)
is(v) v is heap-shared vy, va.n (v, v) An(ve,v) A (v) # v2)

Example 3.2.1 Applying the actiory. n = nul | to the concrete structure of Figu®3(a),
results with the concrete structure of Figu8e3(b). Throughout this chapter we assume that
all heaps are garbage-free, i.e., every element is reaghibm some program variable, and
that the concrete program semantics reclaims garbage elsnmmediately after executing
program statements. Thus, the two objects betweandz are collected whery. n is set to
null, as they become unreachable.

3.2.2 Canonical Abstraction

The goal of an abstraction is to create a finite representafia potentially unbounded set of
2-valued structures (representing heaps) of potentialjounded size. The abstractions we
use are based ahvalued logic BRWO03, which extends Boolean logic by introducing a third
valuel/2 denoting values that may be O or 1.

We represent abstract states of a program usihwgalued first-order structures.

Table 3.3 presents the set of predicates usedSR\W03 to abstract singly-linked lists.
The predicates,(v), ¢,(v), andis(v), referred to in BRW03 asinstrumentation predicates
record derived information and are used to refine the aligirac

This set of predicates has been used for successfully imgifgany programs manipulating
singly-linked lists, but is insufficient for verifying thalhe output of the example program of
Figure3.2is a cyclic singly-linked list pointed-to by.

Example 3.2.2 Figure 3.4(b) shows the Canonical Abstraction of the concrete statégfre
3.4(a), using the predicates of TabB3 The node with double-line boundaries isammary
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n T’x,Ty
n ‘/\(5% X G T, & NotNullz]
X Py rs o g NotNully]
" 8“ é‘n g NotNullz]
n7@\ EqualsNext{x, y]
n " C Ty EqualsNextly, z]
T Ty,

y - EqualsNextz, ]

(@) (b) (©)

Figure 3.4: (a) a concrete possible state of the progranpuoireB.2at line 12, (b) its canonical
abstraction in TVLA, (c) its predicate abstraction with gt of predicates in Tab&4

node possibly representing more than a single concrete node déshed edges atg2 edges,

a dashed edge exists betwagnand v, whenn(vy,v,) = 1/2. The abstract state of Figure
3.4(b) records the fact that,y, andz point to a cyclic list (using the, (v) predicate), and
that all list elements are reachable from &lireference variables (using the(v),r,(v), and
r,(v) predicates). This abstract state, however, does not rett@adrder between the reference
variables. In particular, it does not record thatdoes not reside betwegrnandz (the segment
that is about to be removed by the program statement atliY)e As a result, applying the
abstract effect of. n=z to this abstract state results with a possible abstractestatwhich
the cyclic list is broken.

3.2.3 Predicate Abstraction

Predicate Abstraction abstracts a concrete state intalred&ssignment for a finite set of propo-
sitional (nullary) predicates.

A Predicate Abstraction is defined by a vocabul&y = { P, ..., P,.}, where each, is
associated with a defining formula that can be evaluated over concrete states. An abstract
state is a truth assignment to the predicate®in Given an abstract staté, we denote the
value of P, in A by A,.

Let 2-STRUCTP] denote the set of all-valued logical structures over the set of predi-
catesP. A concrete stateS over a vocabulary?®, is mapped to an abstract stateby an
abstraction mapping: 2-STRUCTP] — 2-STRUCTP4|. The abstraction mapping evalu-
ates the defining formulae of the predicate®ifover.S and sets the appropriate values to the
respective predicates if. Formally, for everyl <i < m, 4; = [@i]5.

Table3.4shows an example set of predicates similar to the ones u$B§iMR01,DNO3].
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Table 3.4: Predicates used for the Predicate Abstractiigure3.4, and their meaning. Note
that the maximal tracked lengfki is fixed a priori

Predicates Intended meaning Defining formulae

{NotNullz]: z € PVar} x is not null Fv,.z(vy)

{ EqualsNeXi[z, y] the node pointed-to by o, . .., vg.x(vo) A y(v)A
s x,y € PVar, is reachable by n fields No<icr n(Vi, Vig1)
0<k<K} from the node pointed-to by -

Example 3.2.3 Figure 3.4(c) shows the Predicate Abstraction of the concrete stabevahin
Figure 3.4(a) using the predicates of Tab84. A predicate of the form NotN(dl] records the
fact thatx is not null. In Figure3.4(c), all three variablesc,y,andz are not null. A predicate
of the form EqualsNeXiz, y] records that the node pointed-to ipys reachable by: steps over
then fields from the node pointed-to By(Note that/’, the maximal tracked length, is fixed
a priori). For example, in Figure3.4(c), the list element pointed-to lyyis reachable from the
list element pointed-to by in 2 steps over tha field, and therefore EqualsNékt, 4] holds.

3.3 Recording List Interruptions

In this section, we instrument the concrete semantics turdex designated set of nodes, called
interruptions in singly-linked lists. The instrumented concrete sentanpresented in this
section serves as the basis for the predicate abstractibtharranonical abstraction presented
in the following sections.

3.3.1 The Intuition

The intuition behind our instrumented concrete is that dage-free heap, containing only
singly-linked lists, is characterized by two factors: (igt‘shape” of the heap, i.e., the con-
nectivity relations between a set of desighated nodesrfuggons); and (ii) the length of
“simple” list segments connecting interruptions, but nomt@ining interruptions themselves.
This intuition is similar to proofs of small model propesige.g., RSY04).

Considering this characterization, we observe that thebaurof shapes that are equiva-
lent, up to lengths of simple list segments, is bounded. \Weetbre instrument our concrete
semantics to record interruptions, which are an essengaédient of the sharing patterns.

The abstractions presented in the next sections, abdtetdrigths of simple list segments
into a fixed set of abstract lengths (thereby obtaining aefi@presentation). These abstractions
retain the general shape of the heap but lose any correddbetmveen the actual lengths of dif-
ferent simple list segments. Our experience indicateghleatorrectness of program properties
usually depends on the shape of heap, rather than on théseoigsimple list segments.

In the rest of this section, we formally define the notionsmaéiruptions and simple list
segments, and formally define the information recorded lyirmirumented concrete seman-
tics.
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Xs,15 ys,l Xs,2; ys,2

Figure 3.5: Two lists sharing the same tail, and their regar&gion in the instrumented concrete
semantics

3.3.2 Basic Definitions

We say that a list node is aninterrupting node or simply aninterruption if it is pointed-to
by a program variable or it is heap-shared. Figgifeshows a heap with interruptions: (i) the
node pointed-to by, (ii) the node pointed-to by, (iii) the node pointed-to by, ; andy, ;, and
(iv) the node pointed-to by, » andy, ,.

Definition 3.3.1 (Uninterrupted Lists) We say that there is amninterrupted lisbetween list
nodeu and list nodev, denoted by UList:, v), when there is a non-empty path between them,
such that, every node on the path between them (i.e., nodimg/z andv) is non-interrupting.
We also say that there is an uninterrupted list between l&terv and null, denoted by
UListNULL(v), when there is a non-empty path framo null, such that, every node on the
path, except possibly, is non-interrupting.
Table3.5formulates UListu, v) and UListNULL(v) as formulae infO*¢.

Given a heap, we are actually interested in a subset of itdemupted lists. We say that
an uninterrupted list imaximalwhen it is not contained in a longer uninterrupted list.

The heap in Figur8.5containst maximal uninterrupted lists: (i) from the node pointed-to
by x and the node pointed-to by ; andy, ,, (ii) from the node pointed-to by and the node
pointed-to byx, ; andy, ,, (iii) from the node pointed-to by, ; andy , to the node pointed-to
by x, 2 andy, ,, and (iv) from the node pointed-to by, andy, , to itself.

3.3.3 Statically Naming Heap-Shared Nodes

We now explain how to use a quadratic number of auxiliaryalags to statically name all
heap-shared nodes. This will allow us to name all maximahteniupted lists using nullary
predicates for the predicate abstraction, and using unadigates for the canonical abstrac-
tion.

Proposition 3.3.2 A garbage-free heap, consisting of only singly-linkedslistth » program
variables, contains at mostheap-shared nodes and at mastinterruptions.

Corollary 3.3.3 In a garbage-free heap, consisting of only singly-linketsliwithn program
variables, list node is reachable from list node if and only if it is reachable by a sequence
of k < n uninterrupted lists. Similarly, there is a path from nad& null if and only if there is
a path fromw to null by a sequence @f < n uninterrupted lists.
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Table 3.5: Shorthand notations used throughout this chapte
Shorthand Meaning Formula
HeapSharet) | v is heap-shared da, b.n(a,v) An(b,v) A (a # b)
PtByVar(v) v is pointed-to by some variable \/ var(v)
varePVar
Interruption(v) | v is an interrupting list node | HeapShare(h) v PtByVarv)
UList; (u, v) there is an uninterrupted list off n(u, v)
length1 fromu tow
UListy(u, v) there is an uninterrupted dm.—Interruption(m)A

list of length2 from u to v

n(u,m) An(m,v)

UList.(u, v)

there is an uninterrupted
list of length> 2 from u to v

Imy, ma : n(u, my) A n(ma, v)A
(TCa,b: n(a,b) A —Interruption(a)A
—Interruption(b))(m;, ms)

from v to null

UList(u, v) there is an uninterrupted list off UList; (u, v) vV UListy(u, v)V
some length from: to v UList.o(u, v)

UListNULL; (v) | there is an uninterrupted list off Yw.—n (v, w)
length1 from v to null

UListNULLy(v) | there is an uninterrupted Im.n(v, m) A —Interruption(m)A
list of length2 from v to null UListNULL, (m)

ULiStNULL.»(v) | there is an uninterrupted Imq, my : n(v, mq) A ULIStNULL; (ms)
list of length> 2 from v (TCa,b:n(a,b) A —Interruptiona) A
to null —Interruption(b))(m;, ms)

UListNULL(v) there is a list of some length | UListNULL,; (v) V ULiStNULL, (v)V

ULiStNULL. (v)
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Proof: By Proposition3.3.2 every simple path (from to v or from v to null) contains at most
n interruptions, and, therefore, at mesimaximal uninterrupted lists.

For every program variable, we define a set of auxiliary variablds; |k = 1...n —
1}. Auxiliary variablex, , points to a heap-shared nodewhen there exists a simple path
consisting ofk maximal uninterrupted lists from the node pointedasto to «, such that all
of the interrupting nodes on the path are not pointed-to lmgm@am variables (i.e., they are
heap-shared). Formally, we define the set of auxiliary Wemderived for program variable
by using the following set of formulae IROC.

Xs1(v) = Jug.x(v,) A UList(v,, v) A HeapShareth) A —-PtByVarv),

k;,fﬂ(v) = Jug.Xsx(vx) A UList(vg, v) A HeapShare)A
—PtByVarv) A =(V,,—y i Xsm(v)) -

We denote the set of auxiliary variablesAyxVarand the set of all (program and auxiliary)
variables byar = PVaru AuxVar.

Proposition 3.3.4 Every heap-shared node is pointed-to by a variable in VaisoAk ;(v)
holds for at most one node, for every reference variatdad k.

3.3.4 Parameterizing the Concrete Semantics

Letn denote the number of (regular) program variables. Notiag thuzVar| = O(n?). Inthe
following sections, we will see that using the full set of @axy variables yields a canonical
abstraction with a quadrati©)(n?)) number of unary predicates, and a predicate abstraction
with a bi-quadratic@(n*)) number of predicates.

We use a parametér to define different subsets afar as follows: Var, = PVaru
{Xsi(v)|x € PVar,i: < k}. By varying the “heap-shared depth” parametemwe are able
to distinguish between different sets of heap-shared no#és discovered that, in practice,
heap-shared nodes with depthl rarely exist (they never appear in our examples), and, there
fore, restrictingk to 1 is usually enough to capture all maximal uninterruptedlistsingVar,
as the set of variables to record, we obtain a canonicaladigtn with a linear number of unary
predicategsO(n)) and a predicate abstraction with a quadréfi¢n?)) number of variables.

Figure3.5shows a heap containing a heap-shared node of @dpthinted byx; » andy, ,).
By setting the heap-shared depth paramétey 1, we are able to record the following facts
about this heap: (i) there is a list of lengtHrom the node pointed-to by to a heap-shared
node, (ii) there is a list of lengthfrom the node pointed-to byto a heap-shared node, (iii) the
heap-shared node mentioned in (i) and (ii) is the same (wardeadiasing between variables),
and (iv) there is a partially cyclic list (i.e., a non-cyclist connected to a cyclic list) from
the heap-shared node mentioned in (iii). We know that thérbsn the first heap-shared node
does not reach null (since we record lists from interrugitmnull) and it is not a cycle from
the first-heap shared node to itself (otherwise there woelddsecond heap-shared node and
the cycle would be recorded). The information lost, due ®ftict thatx, » andy, , are not
recorded, is that the list from the first heap-shared nodedorsd has length and the cycle
from the second heap-shard node to itself is also of leagth
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Table 3.6: Predicates used for the Predicate Abstractidrbair meaning

Predicates Defining formulae and intended meaning
{Aliasedz,y] : x,y € Var} Fv:z(v) Ay(v)
variablesx andy point to the same object
{UListy[z,y] : xz,y € Var}  Ju,, v, : x(vs) Ay(vy) An(vg,vy)
then field of the object pointed-to by and the variablg
point to the same object
{UList[z,y] : xz,y € Var}  Ju,, v, : x(v,) A y(v,) A UList (v, vy)
there is an uninterrupted list of lengétfrom the
object pointed-to by to the object pointed-to by
{UListlz,y] : z,y e Var}  Ju,, v, : z(v,) A y(v,) A UList(v,, vy)
there is an uninterrupted list of lengtlor more from the
object pointed-to by to the object pointed-to by
{UListy[z,null] : z € Var}  Fu, : z(v,) A ULiStNULL, (v,,)
theren field of the object pointed-to by points to null
{UListy[z,null] : z € Var}  Ju, : x(v,) A ULiIStNULLy (v, )
there is an uninterrupted list of lengttfrom the
object pointed-to by to null
{UListjz,null] : z € Var}  Fu, : z(v,) A ULIStNULL(v,,)
there is an uninterrupted list of lengttor more from the
object pointed-to by to null

The Instrumented Concrete Semantics

The instrumented concrete semantics operates by usingtiaaiformulae presented in Table
3.2and then using the defining formulae of the auxiliary vaealib update their values.

3.4 A Predicate Abstraction for Singly-Linked Lists

We now describe the abstraction used to create a finite (lBal)mepresentation of a potentially
unbounded set af-valued structures (representing heaps) of potentialbounded size.

3.4.1 The Abstraction

We start by defining a vocabula®” of nullary predicates, which we use in our abstraction.
The predicates are shown in Tal3é.

Intuitively, the heap is partitioned into a linear numbeluointerrupted list segments and
each list segment is delimited by some variables. The paésbkcin Table3.6 abstract the
path length of list segments into one of the following absttangths:0 (via theAliasedz, y]
predicates)] (via theUList; [z, y| predicates)?2 (via theUListy [z, y| predicates), or any length
> 1 (via theUList[x, y] predicates), and infinity (i.e., there is no uninterruptathpand thus
all of the previously mentioned predicates &je
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Aliasedz, x|, Aliasedy, y|, Aliasedz, |
UList; [y, null]

Aliasedz, z], Aliasedy, y|, Aliasedz, z]

UListy[x, y], UListy[z, x| : .
: A ’ : UListy[x, y], UListy [z, z]
UListiz, yl, UListly, 2], UListz, z] UListlz, y], UList(=, 2], UListy, null
(a) (b)
Figure 3.6: The abstract effect §f n=nul | under Predicate Abstraction. (a) Predicate

Abstraction of the state of Figurg.3(a); (b) result of applying the abstract transformer of
y. n=nul | to (a)

The abstraction functiompregaps : 2-STRUCTPC] — 2-STRUCTP“] operates as de-
scribed Sectio.2.3whereP* is the set of predicates in Tales.

Example 3.4.1Figure 3.6(a) shows an abstract state abstracting the concrete stiafégore
3.3(a). The predicates Aliaséd x|, Aliasedy, y|, Aliasedz, z| represent the fact that the refer-
ence variables, y, andz are not null. The predicate ULigtr, y] represents the fact that there
is an uninterrupted list of length exacthyfrom the object pointed-to by to the object pointed-
to byy. This adds on the information recorded by the predicate tjiLig], which represents
the existence of a list of lengthor more. Similarly, the predicate ULigt, =] records the fact
that a list of exactly length exists fronez to x. Note that the uninterrupted list betwegrand

z is of length3, a length that is abstracted away and recorded as a uninfged list of an
arbitrary length by ULisly, z].

3.4.2 Abstract Semantics

Rabin [Rab69 showed that monadic second-order logic of theories witd fumction sym-
bol is decidable. This immediately implies that first-ordegic with transitive closure of
singly-linked lists is decidable, and thus the best tramsér can be computed as suggested
in [RSY04. Moreover, Rabin also proved that every satisfiable foarhds a small model of
limited size, which can be employed by the abstraction. Fapkcity and efficiency, we di-
rectly define the abstractions and the abstract transforfiner reader is referred téHR*04]
which shows that reasonable extensions of this logic beaomdecidable. We believe that
our techniques can be employed even for undecidable logicthb precision may vary. In
particular, the transformer we provide here is fiest transformeand operates in polynomial
time.

Example 3.4.21In order to simplify the definition of the transformer fprn = nul | , we
splitit to 5 different cases (shown in Appendixl) based on classification of the next list inter-
ruption. The abstract state of FiguB6(a) falls into the case in which the next list interruption
is a node pointed-to by some regular variabiei( this case) and not heap-shared (cage
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Table 3.7: Predicates used for the Canonical Abstractidrtlzgir meaning. We use the short-
handUList(u, v) as defined in Definitio.3.1

Predicates Intended Meaning Defining Formulae
{X(v) : z € Var} objectw is pointed-to byx
{cullz](v) : x € Var} there exists an uninterrupted listdp v, : xz(v,) A UList(v,, v)

starting from the node pointed-to By

The update formulae for this case are the following:

ULiStl [Zl, 2’2]/ = ULiStl [21, 2’2] N —|A|iaseq,zl, y]
UList;[z1, null]’ = UList;[z1, null] v Aliasedz,, Y]
ULiSt2 [Zl, 22]/ = UL|St2 [21, ZQ] N ﬁAliasqub y]
ULiSt[Zl, 22]/ = ULiSt[Zl, 22] N _\Aliaseqzl, y]
UList[z;, null = UList[z, null] v Aliasedz, Y]

Applying this update to the abstract state of Fig8r§(a) yields the abstract state of Figure
3.6(b).

In AppendixA.1, we show that these formulae are produced by manual corgiruaf the
best transformer.

3.5 Canonical Abstraction for Singly-Linked Lists

In this section, we show how canonical abstraction, withgprapriate set of predicates, pro-
vides a rather precise abstraction for (potentially cydiogly-linked lists.

3.5.1 The Abstraction

As in Section3.4, the idea is to partition the heap into a linear number of temrmpted list
segments, where each segment is delimited by a pair of Vesigpossibly including auxil-
iary variables). The predicates we use for canonical atistraare shown in Tabl8.7. The
predicates of the formul[z|(v), for x € Var, record uninterrupted lists starting from the node
pointed-to byz.

Example 3.5.1Figure 3.7(a) shows an abstract state abstracting the concrete stiafégore
3.3(a). The predicates ciu](v),cully](v), and culz](v) record uninterrupted list segments.
Note that, in contrast to the abstract state of Fig@d&(b) (which uses the standard TVLA
predicates), the abstract configuration of Figud&(a) records the order between the reference
variables, and is therefore able to observe tkas not pointing to an object on the list froy
toz.
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cul[z] z  culy] cullz] =

cull2] n - ; cullz] n/é/ﬁ\\b

' cul[x]
cullz] v
(@) (b)

Figure 3.7: The abstract effect gf n=nul | under Canonical Abstraction. (a) Canonical
Abstraction of the state of Figurg.3(a); (b) result of applying the abstract transformer of
y. n=nul | to (a)

3.6 Discussion

Equivalence of the Canonical Abstraction and the Predicatébstraction

We first show that the two abstractions — the Predicate Abstra of Section3.4, and the
Canonical Abstraction of Sectidh5— are equivalent. That is, both observe the same set of
distinctions between concrete heaps.

Theorem 3.6.1 The abstractions presented in Sect®and in Sectior8.5are equivalent.

Proof:See AppendiA.2.

The Number of Predicates Used by the Abstractions.

The next proposition shows that in fact only a logarithmientner of auxiliary variables is
required for every regular program variable, in order to eahheap-shared nodes.

Proposition 3.6.2 The heap-sharing deptin any heap is bounded from above by =
|logn| + 1. In other words, auxiliary variables,y, wherek > m never point to nodes.

Proof: See AppendipA.3.[]

Using Propositior3.6.2 we can reduce the number of unary predicates needed for the
Canonical Abstraction t@)(nlogn), and the number of predicates needed for the Predicate
Abstraction toO((n log n)?), without affecting precision.

In general, the number of predicates needed by a Predicatigathion to simulate a given
Canonical Abstraction is exponential in the number of unedicates used by the Canonical
Abstraction. It is interesting to note that, in this case,wee able to simulate the Canonical
Abstraction using a sub-exponential number of nullary jwates.
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Recording Numerical Relationships

We believe that our abstractions can be generalized alangirtés suggested by Deutsch in
[Deu94, by capturing numerical relationships between list Ié&sgfThis will allow us to prove
properties of programs which traverse correlated linksts liwhile maintaining the ability
to conduct strong updates, which could not be handled bydbutindeed, inGDN*04]
numerical and Canonical Abstractions were combined inrdalbandle such programs.

3.7 Experimental Results

We implemented in TVLA the analysis based on the predicatdsabstract transformers de-
scribed in Sectior3.2.3 We applied it to verify various specifications of progranpeiating
on lists, described in Tab® 3. For all examples, we checked the absence of null derefesenc
and memory leaks. For the running example and reveysic we also verified that the output
list is cyclic and partially cyclic, respectively.

The experiments were conducted using TVLA version 2, rupmith SUN’s JRE 1.4, on
a laptop computer with @6 MHZ Intel Pentium Processor wit2b6 MB RAM.

The results of the analysis are shown in Tabla In all of the examples, the analysis
produced no false alarms. In contrast, TVLA, with the alzsion predicates in Tablé.1, is
unable to prove that the output of reverselic is a partially cyclic list and that the output of
removeSegment is a cyclic list.

The dominating factor in the running times and memory corion is the loading phase,
in which the predicates and update formulae are createdefgplctitly represented). For ex-
ample, the time and space consumed during the chaoticitteratt themer ge example iS
seconds and.4 MB, respectively.
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Table 3.8: Time, space and number of errors measuremerys.BRe is the number of errors
reported by the analysis, and Act. Err. is the number of reale

Benchmark Description Time | Space| Rep. Err./
(sec) | (MB) | Act. Err.
create Dynamically allocates a new linked list 3 1.8 0/0
delete Removes an element from a list 7 9.1 0/0
deleteAll Deallocates a list 3 2.7 0/0
getLast Retrieves the last element in a list 4 4 0/0
insert Inserts an element into a sorted list 9 13.5 0/0
merge Merges two sorted lists into a single list 15 29.6 0/0
removeSegment The running example 7 8.4 0/0
reverse Reverses an acyclic list in-place 5 6 0/0
reversecyclic reverse, applied to a partially cyclic list 2 7.1 0/0
rotate Moves the first element after the last element 6 7.9 0/0
search Searches for an element with a specified value3 2.1 0/0
searchnullderef| Erroneous implementation of search that 3 2.4 1/1
dereferences a null pointer
swap Swaps the first two elements in a list 6 8.8 0/0
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Chapter 4

Partially Disjunctive Heap Abstraction

One of the continuing challenges in abstract interpratasahe creation of abstractions that
yield analyses that are bottactableandprecise enougko prove interesting properties about
real-world programs. One source of difficulty is the need aodie programs with different
behaviors along different execution paths. Disjunctivewierset) abstractions capture such
distinctions in a natural way. However, in general, poweasstractions increase space and
time costs by an exponential factor. Thus, powerset aligiracare generally perceived as
very costly.

In this chapter, we partially address this challenge bygaresg and empirically evaluating
a new heap abstraction. The new heap abstraction works lgyimgeshape descriptors accord-
ing to a partial isomorphism similarity criteria, resutiim a partially disjunctive abstraction.

We implemented this abstraction in TVLA—a generic systemirfqplementing program
analyses.We conducted an empirical evaluation of the newaattion and compared it with the
powerset heap abstraction. The experiments show thatsesabased on the partially disjunc-
tive heap abstraction are as precise as the ones based aw@espt heap abstraction. In terms
of performance, analyses based on the partially disjuatiap abstraction are often superior
to analyses based on the powerset heap abstraction. Thecahgasults show considerable
speedups, up td orders of magnitude, enabling previously non-terminaéinglyses, such as
verification of the Deutsch-Schorr-Waite scanning aldonit to terminate with no negative ef-
fect on the overall precision. Indeed, experience indg#tat the partially disjunctive shape
abstraction improves performance across all TVLA analysg®rmly, and in many cases is
essential for making precise shape analysis feasible.

4.1 Introduction

One of the continuing challenges in abstract interpretafloC77 is the creation of ab-

stractions that yield analyses that are bt#ictable and precise enougho prove interest-

ing properties about real-world programs. In this chapter partially address this chal-
lenge by presenting and empirically evaluating a new heatratiion, i.e., an abstraction
for the (potentially unbounded) dynamically allocatedag® manipulated by programs (e.g.,
see PM81h LH88, CWZ90 Lar89, Str92 SRW98 SRWO0J). Heap abstractions are of funda-
mental importance to static analysis and verification ofjpans written in modern languages.
Heap abstractions have been used, for instance, in thextafhthape analysis (e.qg., for prov-

43
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ing that a program fragment preserves certain tree streigtuariants), as well as in verifying
that a client program satisfies certain conformance canssrior the correct usage of a library.

We present our abstraction in the context of the paramestract interpretation frame-
work of [SRWO03, which is based on the idea of representing program staieg 8-valued
logical structures. While it is very natural to view the abstion we present as a heap abstrac-
tion, it can be used for abstracting other domains as well.

The TVLA framework presented irSRWO0J uses a disjunctive (powerset) heap abstrac-
tion: the abstract value at every program point segof shape descriptors (of bounded size)
and set union is used as the join operation. In particulés,ahstraction does not attempt to
combine (or merge) different shape descriptors into oneraliels on the fact that there are
only finitely many shape descriptors (as they are of bounteq.sThis leads to powerful and
sophisticated analyses for proving interesting prograop@rties but is usually too expensive
to be applied to real-world programs. (The number of distsi@ape descriptors is doubly
exponential in the size of the program in the worst case.)

The heap abstractions most commonly used in practice, iedgeghen scalability is im-
portant, tend to bsingle-shapdieap abstractions, which use a single shape descriptor to de
scribe all possible program states at a program p&iR8B, CWZ90, SRW9§. The current
TVLA implementation provides options to utilize such sieglhape heap abstractions. How-
ever, our experience has been that for the kind of applicatitbat we have used TVLA for
(mostly verification problems), the single-shape abstradends to be imprecise and causes a
number of “false alarms” (i.e., verification fails for coctgorograms). Hence, this abstraction
is not widely used by TVLA users. (A detailed discussion c# #ingle-shape abstractions
is beyond the scope of this thesis, because of the complekitymalizing the single-shape
abstractions within the framework 8fvalued-logic.)

This chapter presentsgartially disjunctiveheap abstraction which, in our experience, is
significantly more efficient than the powerset heap abstiadbut has turned out to be precise
enough for all the applications we have experimented witteéd, this abstraction has turned
out to be the abstraction of choice for all TVLA users. Themidea behind this abstraction
is to reduce the set of shape descriptors arising at a progoamby merging “similar” shape
descriptors but keeping “dissimilar” shape descriptorp

4.1.1 Running Example

Figure4.1 shows a method implementing the mark phase of a mark-andpsgarbage col-
lector. The challenge here is to show that this procedureaurigatly correct, i.e., to establish
that “upon termination, an element is marked if and only i§ iteachable from the root.” This
simple program serves as a running example in this chapter.

The partial correctness of this program was establishedguabstract interpretation
in [RSWO01]. This abstract interpretation was created using TVLA—agg& system for im-
plementing program analysesAS00]. The default implementation of TVLA uses the pow-
erset heap abstraction. Verification of the above propesiygithe powerset heap abstraction
took 584 cpu seconds and generatexd, 772 different shape descriptors—definitely too many
for such a simple program and simple property. The situaavorse for verifying a similar
property for an implementation of the Deutsch-Schorr-@/adganning procedureip73]. This
verification took4 hours when the powerset heap abstraction was used.

Powerset heap abstractions are costly since they mayglistimbetween too many shape
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/'l @nsures marked == REACH(r oot)
voi d mar k(Node root, NodeSet narked) {
Node x;
if (root !'=null) {
NodeSet pendi ng = new NodeSet ();
pendi ng. add(root);
mar ked. cl ear () ;
while (!pending.isEmpty()) {
x = pendi ng. sel ect AndRenove();
mar ked. add( x) ;
if (x.left !'= null)
if (!marked.contains(x.left))
pendi ng. add(x. |l eft);
if (x.right '= null)
i f (!marked. contains(x.right)
pendi ng. add(x. ri ght);

}

Figure 4.1: A simple Java-like implementation of the markgdof a mark-and-sweep garbage
collector

descriptors, which may not be necessary in order to veribg@m properties. In this chap-
ter, we define a partially disjunctive heap abstractionchlig coarser than the powerset heap
abstraction. The main idea is to reduce the set of shapeip@ssrarising at a program point
by merging “similar” shape descriptors. In the mark exampégification using the partially
disjunctive heap abstraction to8kcpu seconds and generatied 33 shape descriptors—a two
orders of magnitude improvement over verification usingitwerset heap abstraction—with
the same precision. Similarly, the verification of an impération of the Deutsch-Schorr-
Waite scanning procedure terminated successfullfbicpu seconds using the partially dis-
junctive heap abstraction.

4.1.2 Main Results
A New Abstraction.

We define a new heap abstraction, which we refer to apdinal-isomorphisnheap abstrac-
tion. The new abstraction is coarser than the powerset Hestpaation and yet keeps certain
shape descriptors apart. Our abstraction is parametadloits the user to specify which heap
properties are of importance for a given analysis, and thideg the abstraction in determining
which shape descriptors are merged together.
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Table 4.1: Predicates used to verify the running example

Predicates Intended Meaning

x(v) Does reference variablepoint to objecty?

root(v) Does reference variableot point to objecty?

| eft (vy,v9) Does fieldl ef t of objectv, point to object,?

ri ght (vy,v)  Does fieldri ght of objectv; point to objecty,?
rroot](v) Is objectv heap-reachable from reference variablet?

setlmarked](v) Is objectv a member of thenarked set?
set[pending](v) Is objectv a member of theending set?

Robust Implementation.

We implemented our abstraction in TVLA. This abstractios hianed out to be the abstraction
of choice for all TVLA users (e.g., se&R04]). We believe that it is simple enough to be
implemented in other systems besides TVLA (e.§KB02]).

Empirical Evaluation.

We empirically evaluated our abstraction by comparing thvtihe powerset heap abstraction.
In the largest benchmarbQLExecut er , powerset heap abstraction did not terminate within
20,000 cpu seconds. In contrast, the new abstraction t@@k'3 cpu seconds and proved
correct usage of JDBC objects and absence of null-derefesen

4.1.3 Outline

The rest of this chapter is organized as follows. In Sectidh) we give a reminder o8-
valued-logic based program analysis with some examplesSekition4.3 we describe the
partial-isomorphism heap abstraction. In Sectdo$ we provide an empirical evaluation of
the partial-isomorphism heap abstraction and powersegi Bbatraction. In SectioA.5, we
outline several other heap abstractions that we are igatsig as ongoing work. In Section
6.6, we discuss related work.

4.2 3-valued Shape Analysis Primer

We now present a short reminder $falued based shape analysis, providing examples and
additional details relevant for this chapter.

Concrete Program Configurations

Recall that in our setting, concrete program states aresepted using-valued logical struc-
tures over a fixed vocabulary of predicate symbols.

Table4.1 shows the predicates used to record properties of indilsdoathe analysis of
our running example. A unary predicatef (v) holds when the reference (or pointer) variable
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r[root]
set[marked] root

r[root] -
@ A-leﬁ

left right -left ‘right

r[root] ~
: - X

. right

r[root]
set[marked]

r[root]
set[marked]

(@) (b)

Figure 4.2: (a) A concrete program configuration arisingpatexit label of the mark procedure,
where all non-garbage nodes have been marked; (b) An abpt@gram configuration that
approximates the concrete configuration in (a)

ref points to the object; in our exampler ef € {z,root}. Similarly, a binary predicate
fld(vy,vy) records the value of a reference (or pointer-valued) fiéld; in our exampld | d
e {l eft,right}. Aunary predicataet|s](v) holds when the objeat belongs to the set,
in our examples € {marked, pending}.

In this thesis2-valued logical structures are depicted as directed graphsh individual
of the universe is drawn as a node. A unary predipé&te, which holds for a node, is drawn
inside the node. If a unary predicate represents a reference variablesliog/n by having an
arrow drawn from its name to the node pointed by the variaBléinary predicate(uy, u)
which evaluates ta is drawn as directed edge from to u, labelled withp.

Figure4.2(a) shows a concrete configuration arising at the exit lableomark procedure,
where all the individuals that are reachable frooat are marked, as indicated by the value
of the set[marked| predicate. The individuals represented by the empty nodesspond to
garbage objects.

Abstract Program Configurations

Recall that &-valued logical structure can be used as an abstractioraofjark-valued logical
structure. Thisis achieved by letting an abstract configumdi.e., a3-valued logical structure)
includesummary individualg.e., an individual which corresponds to one or more irdinals
in a concrete configuration represented by that abstradigtmation.

In this thesis3-valued logical structures are also depicted as directaphg; where binary
predicates withl /2 values are shown as dotted edges and summary individuathaven as
double-circled nodes.

We denote the set of alb-valued logical structures over a set of predicatesby
3-STRUCTp, usually abbreviating it to 3-STRUCT.
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Bounded Program Configurations

Note that the size of &-valued structure is potentially unbounded and that 3-STRUSs
infinite. The abstractions studied in this thesis rely onredmental abstraction function for
converting a potentially unbounded structure (eithealued or3-valued) into a boundeg-
valued structure, which we define now. This abstractiontiong?;;,, 4 is parameterized by a
special set of unary predicatdsreferred to as thabstractionpredicates.

Let A be a set of unary predicates. An individual in a structureS; is said to be
A-compatible to an individual, in a structureS, iff for every predicatep € A, p*(u;) C
p>2(uy) or p*2(uy) C p°'(u;). (Recall that the partial ordef on {0, 1,1/2} is defined by
xCyiff x =yory=1/2.)

A 3-valued structure is said to Febounded if no two different individuals in its universe
areA-compatible. A structure that &-bounded can have at magt! individuals. We denote
the set of alB-valuedA-bounded structures over a set of predicates by B-STRUC&Nd, as
usual, omit the subscripts when no confusion is likely.

The abstraction functiof,,, : 3-STRUCT — B-STRUCT, which converts a (potentially
unbounded®B-valued structure into a bound@&dvalued structure, is defined as follows: we
obtain anA-bounded structure from a given structure by merging altspaf A-compatible
individuals. B ((Uy, I)) = (Us, J), Wherels is the set ofA-compatible equivalence classes
of Uy, and the interpretatior is defined by:

pJ(Cl7"'7ck): |_| p1<u17"'7uk) :

ULECT ..., U ECE

Figure4.2(b) shows amA-bounded structure obtained from the structure in Figu&a)
with A = {z, root, r[root], set[marked), set[pendingl}.

The abstraction functiofy,, serves as the basis for abstract interpretation in TVLA. In
particular, it serves as the basis for defining various difie abstractions for the (potentially
unboundedyet of2-valued logical structurethat arise at a program point.

4.2.1 Powerset Heap Abstraction

This abstraction is based on the fact that there can only @ fiumber of bounded structures
that are notsomorphicdo one another. (Two structures are isomorphic when thexrbiigction
between their universes that preserves all predicate sallibe powerset abstraction function
operates by boundirgrvalued structures with respect to a subset of the unaryiqatss, and
removing duplicates (isomorphic structures).

For the sake of simplicity we will work withcanonic bounded structures. Note that
the individuals of anA-bounded structure are uniquely identified by the set of eslaf
the predicates i; we refer to such a set of predicate values as the indivisigalhoni-
cal name For example, the individual pointed byot in Figure 4.2(b) has the canonical
NAMEU {3—0,root=1,r[root]=1,set[marked]=1,set[pending]=0}- A CANONIC bounded structure is a bounded
structure in which the individuals are identified by theingaical names. We refer to the
set of all canonic bounded structures by CB-STRUGT Note that for a given” and
A, CB-STRUCTp 4 is finite. Thecanonicabstraction functionb..,onic : 2-STRUCT —
CB-STRUCT is defined as followsS..,..ni.(S) is obtained by renaming the individuals of
G (S), giving them canonic names.
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The powerset heap abstraction functigy,, : 22-5TRVCT — 2CB-STRUCT{g defined by

aPOlU(XS) = {6ctmom'c(5) | S € XS} .

4.3 The Partial-lsomorphism Heap Abstraction

The idea behind partial-isomorphism heap abstractionrily fsimple. The powerset heap ab-
straction keeps all the canonic bounded structures ttss atia program point separate. Single-
shape heap abstraction merges all canonic bounded s&g8ctising at a program point into
one structure. The partial-isomorphism heap abstradtiacgntrast, merges canonic bounded
structures into one structure only when they have the saiverse.

We say that a pair of canonic bounded structuresiareerse congruerniff the two struc-
tures have the same universe. Universe congruence indoaguavalence relation over sets
of canonic bounded structures. This equivalence relagtsus define an abstraction func-
tion qy,; : 22°STRUCT _, 9CB-STRUCT that merges all universe congruent structures. Given a set
of canonic bounded structurSwith the same univers€&, we define the merged structure
| | XS= (U, I) that has the same universe as all structuréSand the following interpretation

of predicates. For every predicat®f arity & and tuple of individual§us, . .., u;) € U*:
PHXS(ug, ) = |_| P (ug, . ug)
SeXS

We are now ready to define the partial-isomorphism heapadigin functiono,;:
i (XS = {|_| C' | C C oo (XS is a universe congruence equivalence c}ass

Thus, partial-isomorphism heap abstraction is less peebisn the powerset heap abstrac-
tion'. As the empirical results presented later show, the pasmhorphism heap abstraction
seems to work as well as (i.e., is as precise as) the poweraptdbstractionn practice The
following propositions may help explain why.

Proposition 4.3.1 If a pair of bounded structureS; and .S, are universe congruent, then the
merged structures; | | S, is the least bounded structure that approximates (embeuts) $)
and.S,.

When partial-isomorphism abstraction is applied to a pestructuresS; and.S,, there are
two possibilities:

e StructuresS; and S, are not universe congruent. In this case, the result of the ab
straction isay,; ({51, S2}) = {51, 52}, which is the least upper-bound of the powerset
abstraction—the most precise approximation of both stirest

e StructuresS; and.S, are universe congruent. In this case, the result of theadigin is
a,i({S1,52}) = S1|]S2, which is the most precise upper bound among all (singleton
sets of) bounded structures.

'Here, precision is used in the sense of a Galois Connectiovebe a pair of abstract domains.
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Proposition 4.3.2 Partial-isomorphism heap abstraction preserves the \@lokeabstraction
predicates.

In other words, partial-isomorphism heap abstraction ¢todgs the same kind of distinctions
that can also be lost by,;,,—Values of non-abstraction predicates.

In terms of worst-case complexity, partial-isomorphisrafmabstraction has the same com-
plexity as powerset heap abstraction—doubly-exponeintidde number of abstraction predi-
cates. This is due to the number of sets of canonical nameshwathe dominant factor in the
worst-case complexity. However, partial-isomorphismphabstraction can save an exponen-
tial factor due to binary predicates, which is the dominaotdr in many cases, in practice.

4.3.1 lllustrating Example

To illustrate the operation of partial-isomorphism heaptedztion, consider the abstract pro-
gram configuration shown in Figuke2(b) and the abstract program configuration shown in
Figure4.3(a). Both configurations represent cases where all of thegaobage nodes have
been marked and non-garbage nodes have not been markeateigogram property we want
to verify holds for those configurations. The differencewssn the configurations is in the
position of the node pointed byin the part of the heap that has been marked. In this case, the
partial-isomorphism heap abstraction results in the sireacshown in Figurd.3(b), which ig-
nores the precise position of the node pointed lyside the part of the heap that was marked.

The mark program non-deterministically selects an objadtr@moves it from the pend-
ing set. This non-determinism allows many different waydrafersing the set of objects
reachable fronr oot , which results in many different abstract program configars that
sustain the program property we want to verify and only diffg values of binary predicates.
Partial-isomorphism heap abstraction ignores the valfieseobinary predicates, but keeps
precise the overall property for an abstract configuratidmwing sets of nodes with the same
garbage/non-garbage and mark/unmarked properties. litwgsahe analysis to merge many
similar structures without losing the information needegtove the partial correctness of the
mark program.

4.4 Implementation and Empirical Evaluation

We implemented the partial-isomorphism abstraction diesdrin the previous section in
TVLA, and the implementation is publicly availableAS0Q]. We applied it to verify vari-
ous specifications for the Java programs described in TaBleTo translate Java programs
and their specifications to TVP (TVLA's input language), weed a front-end for Java, which
is based on the Soot framewoMRHS99]. For all benchmarks, we checked the absence of
null dereferences in addition to the properties describetable4.2. Our specifications in-
clude correct usage of JDBC objects, correct usage of Javstiéams, correct usage of Java
collections and iterators, and additional small but irdéng specifications.

The experiments were conducted using TVLA version 2, rupmith SUN’s JRE 1.4, on
a1l GHZ Intel Pentium Processor machine with GB RAM. We optimized for precision and
simplicity by using TVLAs Focus and Coerce operations ihtenchmarks. We compared
partial isomorphism to the full powerset abstraction imtgrof time and space performance
and precision.
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Figure 4.3: (a) An abstract program configuration arisinthatexit label of the mark proce-
dure, where all non-garbage nodes have been markexl poihts to a node adjacenttmot ;
(b) The result of merging the structure in (a) and the stmecitu Figure4.2(b)

Table 4.2: Benchmarks and properties used for comparingrtalysis based on powerset heap
abstraction with the analysis based on partial-isomorptisap abstraction. Treeness means
preservation of tree structure invariants

Benchmark Description Property

GC.mark Figuret.1 Partial correctness

DSW Deutsch-Schorr-Waite Partial correctness of treersngn+ Treeness
ISPath Input streams Correct usage of Java IOStreams
InputStream5  Input stream holders Correct usage of Javad@8s

InputStream5b  Input stream holders with error Correct esdgava |IOStreams

InputStream6  Input stream holders Correct usage of Javad@8s

SQLExecutor A JDBC framework Correct usage of JDBC objects
KernelBench.1 CMP benchmarR\WF02] Absence of concurrent modification exceptions
InsertSorted Insertion into sorted trees Tree sortednd@sseness

DeleteSorted Deletion from sorted trees Tree sortedness
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Table 4.3: Time, space and number of errors measuremerys.BRe is the number of errors
reported by the analysis, and Act. Err. is the number of srtbat indicate real problems.
Time and space measurements for non-terminating benckraeglprefixed with- to indicate
the measurements taken when the analysis timed out. Theerurhlbeported errors is the
same for both the analysis based on the powerset heap diostracd the analysis based on
partial-isomorphism heap abstraction on all (termingtingnchmarks. For benchmarks that
did not terminate with the powerset heap abstraction, timeb@us are taken from the analysis
based on partial-isomorphism heap abstraction

Benchmark Time in seconds Space in Mb. Rep. Err. / Act. Err.
Powerset| Partial iso. | Powerset| Partial iso.
GC.mark 584 3 56 1.4 0/0
DSW 14,364 157 116.3 5.6 0/0
ISPath 79 79 2.8 2.9 0/0
InputStream5 4,530 1,706 14.0 11.9 1/0
InputStream5y 3,492 1,394 9.8 9.1 1/0
InputStream6 | 15,558 3,929 23.6 15.9 1/0
SQLExecutor | >20,000 9,673 >109.3 104.8 0/0
KernelBench.1l 7,393 5,355 13.3 10.8 1/1
InsertSorted 264 37 4.5 2.4 0/0
DeleteSorted | >20,000 3,271 >62.6 21.8 0/0

The results of the analyses are shown in Tdh® In all the benchmarks the analysis
based on the partial-isomorphism heap abstraction aahiéeesame precision as the analysis
based on the powerset heap abstraction, and other TVLA resgosted the same phenomena.
In all but one example, the analysis based on partial-isphism heap abstraction achieved
significant performance improvements.

4.4.1 Implementation Independent Results

Although the results shown in Tabfe3 measure the time and space consumption of analyses
using different abstractions, they are also influenced by#rious implementation details of
the abstractions.

In Table4.4, we supply implementation independent measurements. \@suned the total
number of abstract configurations generated by the anadysighe maximal number of ab-
stract configurations that exist in the transition systerargt given time during the analysis.
The total number of abstract configurations and the maximnaler of abstract configurations
are always the same with the powerset heap abstractiom, sinctures are only accumulated
in the transition system. For the partial-isomorphism heagiraction, the maximal number of
abstract configurations is often lower than the total nunatb@bstract configurations, indicat-
ing that structures discovered in different iterationsewaerged together.

The results show a consistency between the improvementaénaind space performance
of the partial-isomorphism heap abstraction, relativeheogowerset heap abstraction, and the
reduced number of abstract configurations.
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Table 4.4: Implementation-independent measurementsal #structs is the total number of
abstract configurations that arose during the analysisiMand#structs is the maximal number
of abstract configurations that existed in the transiticsteay at any time during the analysis.
The results of non-terminating benchmarks are prefixed witb indicate the measurements
taken when the analysis timed out

Benchmark Total #structs Max #structs
Powerset | Partial iso. | Powerset| Partial iso.
GC.mark 189,772 1,133 189,772 748
DSW 320,387 6,480 320,387 2,986
ISPath 2,168 2,168 2,168 2,168
InputStream5 8,164 3,366 8,164 2,204
InputStream5y 5,973 2,598 5,973 1,729

InputStream6 | 24,461 6,678 24,461 4,411
SQLExecutor | >8,824 4,107 >8,824 2,164
KernelBench.l] 12,594 9,296 12,594 5,748
InsertSorted 7,487 1,318 7,487 905
DeleteSorted | >158,780, 30,386 | >158,780 25,673

4.5 Extensions and Future Work

The partial-isomorphism heap abstraction has so far peddrquite satisfactorily in our ex-

perience with TVLA. However, we cannot assume that this ahllays be adequate. Analysis
and verification of larger programs may require more aggressstractions, while in some
cases we may require more precise abstractions. In thi®seee describe various other ab-
stractions that may be of value. We are currently in the m®oé evaluating the effectiveness
of some of the abstractions described below.

Parametric Partial Isomorphism

We now present a parametric abstraction that includes betpawerset heap abstraction and
the partial-isomorphism heap abstraction as special cases

Definition 4.5.1 We say that a pair of bounded structurgs= (U, 1) and S, = (Us, 1) are
partially isomorphic with respect to a set of predicatés denoted by, =5 55, iff there exists
a bijection f** : U; — U,, such that, for every predicajec R of arity k£ and tuple of nodes
(uy, ..., uy) € UF, the following holds:

P (uns e ug) = PP (), P ()

Note that=p is an equivalence relation amoBgalued structures. Given any set of pred-
icatesR that includes the set of all abstraction predicatesve define an abstraction function
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QpilR) - 22-STRUCT_> 2CB-STRUCT as follows:

pifr) (XS) = {|_|C | C' C a,00(XS) is a=g equivalence cla%s :

This function defines a whole family of abstractions. Furthg,,, = o] (WhereP is the set
of all predicates) is the most precise among this family aft@ztions, andy,; = a4 is the
least precise among this family of abstractions.

The reason we restrict ourselves to sktthat contain the set of all abstraction predicates
A is the following. If R includesA, then for any two= g-equivalent bounded structures, the
bijection between the universes of the two structures theggyves the values of predicates in
R is uniquely determined, and this bijection is used to deiteernwhich individuals should be
“merged” together.

This parametric definition allows users to choose abstrastin a more fine-grained fash-
ion, by specifying the set of predicatés The parametric abstraction could also be used by
an appropriate iterative refinement technique, which staith R = A and iteratively adds
predicates tar, until a sufficiently precise abstraction is obtainedioe P.

Deflating Reductions

Deflating reductions can potentially yield performance riayements without a loss of preci-
sion. A very simple deflating reduction is the following: swter a set of 3-valued structur&s
containing structureS; andS,, such thats; C S,. Clearly, the seX’ = X — {S;} is seman-
tically equivalent taX, and removingS; involves no loss of precision (even when the abstract
transformer that is used is not the best). This reductiomfierred to as “non-redundancy”
in [BHZ03]. Making this reduction feasible requires testing for tlaet@l order relation over
3-valued structures, which can be done in polynomial timebfaunded 3-valued structures.
The key question with this reduction is whether the subseigferformance) benefits of do-
ing the reduction outweigh extra cost of performing the cdidun. Our initial experience shows
that this reduction is worth using. This reduction transferTVLAS preorder over sets of 3-
valued structures into a proper (Hoare powerdomain) pantkering.

4.6 Related Work

A substantial body of literature exists on abstractionsvianous different domains and for
creating new abstractions from existing abstractions. disegnguishing aspect of our work is
its focus on heap abstractions and its focus on an empinediiation of the effectiveness of
the proposed heap abstraction.

Function Space Domain Construction.

Function space domain construction is one way of creatisgattions that are “partly disjunc-
tive”. Examples of previous work using such a domain cormsion include Peu94, where the
abstraction is composed of two components—a lattice of gimhccess paths and a paramet-
ric numerical lattice. In this abstraction, abstract eletaavith the same symbolic access path
component are merged by joining the numerical lattice campt The ESP syster®[S0Z
also utilizes a similar function space domain construgtiout not for heap abstractions.
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Least Disjunctive Basis.

In [GR9§, a technique is defined for obtaining the “least disjurethasis”, which is the most
abstract domain inducing the same disjunctive completsoarmther domain. Unfortunately,
this may result in larger sets of abstract elements, asatsgtlements are substituted by sets
of other abstract elements, causing inflation.

Deflating Operators and Widening Operators.

In [BHZO03], different widening operators and congruence relatisasansidered for the pow-
erset polyhedra domain, and in more general settings.
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Chapter 5

Disjoint Subgraph Decomposition

Programs commonly maintain multiple linked data structui@orrelations between multiple
data structures may often In@n-existent or irrelevant to verifying that the prograntiskes
certain safety properties or invariantdn this chapter, we show how thisdependencée-
tween different (singly-linked) data structures can bézal to perform shape analysis and
verification more efficiently. We present a new abstractiasdal on decomposing graphs into
sets of subgraphs, and show that, in practice, this newaattistn leads to very little loss of
precision, while yielding substantial improvements tocagincy.

5.1 Introduction

We are interested in verifying that programs satisfy vagisafety properties (such as the ab-
sence of null dereferences, memory leaks, dangling podteeferences, etc.) and that they
preserve various data structure invariants.

Many programs, such as web-servers, operating systemgmketouters, etc., commonly
maintain multiple linked data-structures in which datadsled and removed throughout the
program’s execution. The Windows IEEE 1394 (firewire) dewultiver, for example, main-
tains separate cyclic linked lists that respectively starg-reset request packets, data regard-
ing CROM calls, data regarding addresses, and data regal8dCH transfers. These lists
are updated throughout the driver’s execution based ort®West occur in the machine. Cor-
relations between multiple data-structures in a prograroh &s those illustrated above, may
often benon-existent or irrelevant to the verification task of il In this chapter, we show
how thisindependencbetween different data-structures can be utilized to perfeerification
more efficiently.

Many scalable heap abstractions typically maintain nostation between differemoints-
to facts (and can be loosely described independent attributebstractions in the sense
of [JM814). Such abstractions are, however, not precise enoughoteephat programs pre-
serve data structure invariants. More precise abstracfmrthe heap that use shape graphs to
representompleteneaps SRWO0Z, however, lead to exponential blowups in the state space.

In this chapter, we focus on (possibly cyclic) singly-linkésts and introduce an approxi-
mation of thefull heap abstractiorpresented in Chapt& The newgraph decomposition ab-
stractionis based on a decomposition of (shape) graphs into setsag€¥lsubgraphs (without
maintaining correlations between different shape subbggapin our initial empirical evalua-

57
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tion, this abstraction produced results almost as presiseesfull heap abstraction (producing
just one false positive), while reducing the state spaceifsigntly, sometimes by exponen-
tial factors, leading to dramatic improvements to the penénce of the analysis. We also
hope that this abstraction will be amenable to abstracefinement techniques (to handle the
cases where correlations between subgraphs are necesssaeyification), though that topic
is beyond the scope of this thesis.

One of the challenges in using a subgraph abstraction isakigml of safe and precise
transformers for statements. We show in this chapter tleatdimputation of the most precise
transformer for the graph decomposition abstraction is{fbiaplete.

We derive efficient, polynomial-time, transformers for ainstraction in several steps. We
first use an observation by Distefano et &JY06] and show how the most precise trans-
former can be computed more efficiently (than the naive aagrpby: (a) identifyingeasible
combinations of subgraphs referred to by a statem@)tcomposing only them, (c) transform-
ing the composed subgraphs, and (d) decomposing the regsitbgraphs. Next, we show that
the transformers can be computed in polynomial time by amgjitihe feasibility check (which
entails a possible loss in precision). Finally, we show thatresulting transformer can be
implemented in amncrementalfashion (i.e., in every iteration of the fixed point compidat
the transformer reuses the results of the previous iteratio

We have developed a prototype implementation of the alyoréand compared the preci-
sion and efficiency (in terms of both time and space) of our alestraction with that of the full
heap abstraction over a standard suite of shape analysihnarks as well as on models of a
couple of Windows device drivers. Our results show that #e analysis produces results as
precise as the full heap-based analysis in almost all cesesjuch more efficiently.

5.1.1 Outline

The rest of the chapter is organized as follows. Sedd@gives a motivation for our analy-
sis. Sectiorb.3 describes a concrete semantics for programs with linkésldisd a full heap
abstraction. Sectiob.4 describes the graph decomposition abstraction. In Seétidme
develop efficient transformers for the graph decomposiibsiraction. Sectiob.6 presents
experimental results and compares the full heap abstregiith the graph decomposition ab-
straction. Sectio®.5discusses related work.

5.2 Overview

In this section, we provide an informal overview of our aggmio. Later sections provide the
formal detalils.

Figure5.1shows a simple program that adds elements into independentd list with a
head object referenced by a variahleand a tail object referenced by a variable, and a list
with a head object referenced by a variableand a tail object referenced by a variabl2.
This example is used as the running example throughout thigteh The goal of the analysis
is to prove that the data structure invariants are presdrvesery iteration, i.e., at labéll
variablesh1l andt 1 and variableh12 andt 2 point to disjoint acyclic lists, and that the head
and tail pointers point to the first and last objects in evesty tespectively.
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/[ @ssunme hl!=null && hl==t1l && hl.n==null &&

Il h2! =nul | && h2==t2 && h2. n==nul |
/'l @nvariant Reach(hl,tl) && Reach(h2,t2) &&
Il Di sjointLists(hl, h2)

EnqueueEvent s() {

L1: while (...) {
Li st tenp = new List(getEvent());
if (nondet()) {

L2: tl.n = tenp;
L3: tl = tenp;
} else {
t2.n = tenp;
t2 = tenp;
P

Figure 5.1: A program that enqueues events into one of tv® lieondet () returns either
t rue orf al se non-deterministically

The shape analysis presented in Chaptes able to verify the invariants by generating,
at program label 1, the 9 abstract states shown in Figuse2 These states represent the
possible states that each list can have: a) a list with omaezlg b) a list with two elements;
and c) a list with more than two elements. This analysis ude#i heap abstractionit does
not take advantage of the fact that there is no interactidwdsn the lists, and explores a
state-space that contains @bossible combinations of casés, b, ¢} for the two lists.

The shape analysis usinggeaph decomposition abstractigumesented in this chapter, rep-
resents the properties of each list separately and gesgediterogram labdl1, the6 abstract
states shown in Figurg 3. For a generalization of this program#dists, the number of states
generated at lab&l1l by using a graph decomposition abstractios is k, compared t&* for
an analysis using a full heap abstraction, which tracksetations between properties of &ll
lists. In many programs, this exponential factor can beiiggmt. Note that in cases where
there is nacorrelationbetween the different lists, the new abstraction of the Estates is as
precise as the full heap abstraction: e.g., Figuzand Figure5.2 represent the same set of
concrete states.

We note that in the presence of pointers, itis not easy tordpose the verification problem
into a set of sub-problems to achieve similar benefits. Fangte, current (flow-insensitive)
alias analyses would not be able to identify that the tws e disjoint.

5.3 A Full Heap Abstraction for Lists

In this section, we describe the concrete semantics of agnagmanipulating singly-linked lists
and a full heap abstraction for singly-linked lists.
A Simple Programming Language for Singly-Linked Lists.

We now define a simple language and its concrete semantigsa@uage has a single data
type List (representing a singly-linked list) with a single refererfield n and a data field,
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Figure 5.2: Abstract states at program lab&l generated by an analysis of the program in
Figure5.1using a powerset abstraction. Edges labeled imgicate list segments of length
whereas edges labeled byl indicate list segments of lengths greater than

hi t1 hl t1 hl t1
eec
My M, M
h2 t2 h2 t2 h2 t2
1
eerc
M, M; Mg

Figure 5.3: Abstract states at program lab&l generated by an analysis of the program in
Figure5.1, using the graph decomposition abstraction
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Table 5.1: Concrete semantics of program statements. 8isyrabols denote post-execution
values. We writer,y, andz’ to mearenVx), en|y), andenv(z), respectively

Statement Condition Update

x=new Li st () 2’ = Unew, Wherevey is a fresh List object
n'=Av.(v="unew?null : nv))

x=nul | 2 = null

X=y =y

X=y. n y # null ' =n(y)

X. n=y x#null ' =Xv.(v=z7y : n))

assunme(x!=zy) x#y
assunme(x==y) x=y

which we conservatively ignore.

There are five types of heap-manipulating statementx£hew Li st (), (2)x=nul | ,
(3) x=y, (4)x=y. n, and (5)x. n=y. Control flow is achieved by usingot o statements and
assume statements of the forrmssunme( x==y) andassune( x! =y) . For simplicity, we
do not present a deallocatiohr ee( x) , statement and use garbage collection instead. Our
implementation supports memory deallocation, assertiand detects (mis)use of dangling
pointers.

Concrete States. Let PVar be a set of variables of typkist. A concrete program state is
a triple C £ (U, en¥,n°) whereU? is the set of heap objects, an environmentf :
PVaru {null} — U® maps program variables (andll) to heap objects, and” : U¢ — U,
which represents thefield, maps heap objects to heap objects. Every concreteistiiides a

special objecty, such thaenynull) = v,y .We denote the set of all concrete stateshytes.

Concrete Semantics. We associate a transition functigst] with every statemerstin the
program. Each statemesittakes a concrete stafg and transforms it to a state¢ = [st](C).
The semantics of a statement is given by a paindition, update) such that when the con-
dition specified byondition holds the state is updated according to the assignmentsisgec
by update. The concrete semantics of program statements is showrbla 34,

5.3.1 Abstracting List Segments

The abstraction is based on the one presented in Ch2ipter now briefly repeat the essential
details.

The core concepts of the abstraction arerruptionsand uninterrupted list An object
is aninterruptionif it is referenced by a variable (owull) or shared (i.e., has two or more
predecessors). An uninterrupted list is a path delimitedvay interruptions that does not
contain interruptions other than the delimiters.

Definition 5.3.1 (Shape Graphs)A shape graptG £ (V¢ EY en¥, len®) is a quadruple
whereV ¢ is a set of nodes;“ is a set of edges, efiv Pvaru {null} — V¢ maps variables
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hi t1 2 h2

COPLOA OO
(0)

Figure 5.4: (a) A concrete state, and (b) The abstractioheétate in (a)

(and null) to nodes, and 1éh: E¢ — pathlen assigns labels to edges. In this chapter, we use
pathlen® {1,>1}.1

We denote the set of shape graphsSii¥.,,, omitting the subscript if no confusion is likely,
and define equality between shape graphs by isomorphismay\iaat a variable& points to
anodev € VC if en¥(x) = v.

We now describe how a concrete staté (U, en¥, n”) is abstracted into a shape graph
G = (VC ES en¥ len®) by the functions™ : States — SG First, we remove any node in
U¢ that is not reachable from a (node pointed-to by a) programabie. LetPtVar(C) be the
set of objects pointed-to by some variable, andSearedC') the set of heap-shared objects.
We create a shape graph(C) = (V¢ EY en#, len®) whereV¢ = PtVar(C') UShared(),
ES = {(u,v) ] (u,...,v) is an uninterrupted ligt enV” restrictsenv’ to V<, andlen® (u, v) is
1 if the uninterrupted list from: to v has one edge arxll otherwise. The abstraction function
o™ is the point-wise extension of" to sets of concrete stafedVe say that a shape graph is
admissibldf it is in the image of3 .

Proposition 5.3.2 A shape graph is admissible iff the following propertieshdi) Every node
has a single successor; (ii) Every node is pointed-to by &awée (or null) or is a shared node,
and (iii) Every node is reachable from (a node pointed-todyariable.

We use Propositiob.3.2to determine if a given graph is admissible in linear time snd
conduct an efficient isomorphism test for two shape graplkenmage of the abstraction.

It also provides a bound on the number of admissible shagghgra®*+1o+8 wheren <
|PVar.

Example 5.3.3 Figure 5.4(a) shows a concrete state that arises at program laldebnd Fig-
ure 5.4(b) shows the shape graph that represents it.
Concretization.

The functiomH : SG— 25%tes returns the set of concrete states that a shape graph netsrese

AFR(G) Z {C' | B7(C) = G}. We define the concretization of sets of shape graphs by using
its point-wise extension. We now have the Galois Connectisfites, ofH, AFH 256),

1The abstraction in Chapt&is more precise, since it uses the abstract lenfith®, > 2}. We use the lengths
{1, > 1}, which we found to be sufficiently precise, in practice.

2In general, the point-wise extension of a functibon D — D is a functionf : 2P — 2P, defined by

F(S) € {f(s) | s € S}. Similarly, the extension of a functiofi: D — 27 is a functionf : 2 — 27, defined

by £(S) = U,es £(5)-
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Abstract Semantics.

The most precise, a.klzest abstract transformeCjC77 of a statement is given bfsf]# &
a0 [sf] o 4FH. An efficient implementation of the most precise abstrastsformer is shown
in the full version MBC™].

5.4 A Graph Decomposition Abstraction for Lists

In this section, we introduce the abstraction that is thésha@fsour approach as an approxima-
tion of the abstraction shown in the previous section. Wengdfie domain we use2256 the
powerset of atomic shape subgraphs—as well as the abstrastd concretization functions
betweer2SC and2ASS6

5.4.1 The Abstract Domain of Shape Subgraphs

Intuitively, the graph decomposition abstraction worksdegomposing a shape graph into a
set ofshape subgraphdn principle, different graph decomposition strategias be used to
get different abstractions. However, in this chapter, wauoon decomposing a shape graph
into a set of subgraphs induced by (fgeakly-)connected componeni$he motivation is that
different weakly connected components mostly represdfardnt “logical” lists (though a
single list may occasionally be broken into multiple weagbnnected components during a
sequence of pointer manipulations) and we would like to usagbestraction that decouples the
different logical lists. We will refer to an element 8%y, as a shape graph, and an element of
SGrsfor anyVars C PVaras a shape subgraph. We denote the set of shape subgrap8&by
and definevarg () to be the set of variables that appeaidni.e., mapped bgny’ to some
node.

5.4.2 Abstraction by Graph Decomposition

We now define the decomposition operation. Since our defmiif shape graphs represents
null using a special node, we identify connected componeftés excluding the null node
(Otherwise, allnull-terminated lists, i.e. all acyclic lists, will end up in tkame connected
component.)

def

Definition 5.4.1 (Projection) Given a shape subgrapf’ = (V, E,envlen) and a set of
nodesW C V, the subgraph of7 induced byW, denoted byG|y, is the shape sub-
graph (W, E’,env, ler), whereE’ £ E N (W x W), env £ envn (VargG) x W), and

len’ = lenn (E' x pathlen.

def

Definition 5.4.2 (Connected Component Decompositionfror a shape subgraphG =

def

(V,E,envlen), let R = E’* be the reflexive, symmetric, transitive closure of the refat
E' = E\ {(vnu1,v), (v, vam) | v € V}. Thatis,R does not represent paths going through null.
Let [R] be the set of equivalence classed?fThe connected component decompositio@ of
is given by

Component&?) = {G|¢ | ¢" = C U {vqu},C € [R]} .
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if (?) y y X X
X = new List();

eIseX:nu”; ‘@ .@, '@

y = new List(); M, M, M,
(a) (b)
Figure 5.5: (a) A code fragment; and (b) Shape subgraphm@radter executing/=new

Li st (). M;:y points to a list anc is not null, M5: y points to a list anc is null; andM5:
X points to a list ang is not null

Example 5.4.3Referring to Figure5.2 and Figure 5.3 we have Componerits,) =
{ My, Ms}.

Abstracting Away Null-value Correlations.

The decompositio@omponentsnanages to decouple distinct lists in a shape graph. However
it fails to decouple lists from null-valued variables.

Example 5.4.4 Consider the code fragment shown in Figt&(a) and the shape subgraphs
arising aftery=new Li st (). y points to a list (with one cell), whil& is null or points to
another list (with one cell). Unfortunately, tlydist will be represented by two shape subgraphs
in the abstraction, one corresponding to the case et null (M;) and one corresponding to
the case thax is not null (M;). If a number of variables can be optionally null, this caade

to an exponential blowup in the representation of othesligDur preliminary investigations
show that this kind of exponential blow-up can happen in fica¢]

The problem is the occurrence of shape subgraphs that an@ipbic except for thaull
variables. We therefore define a coarser abstraction byntigasing the set of variables that
point to thenull node. To perform this further decomposition, we define ttievieng opera-
tions:

e nullvars: SSG— 2°Va returns the set of variables that pointiall in a shape subgraph.

e unmap: SSGx 2PV&" . SSGremoves the mapping of the specified variables from the
environment of a shape subgraph.

e DecomposeNullVars SSG— 25SCtakes a shape subgraph and returns: (a) the given

subgraph without the null variables, and (b) one shape slhgior every null variable,
which contains just the null node and the variable:

DecomposeNullVats!) = {unmap(G, nullvarsG))}U
{unmap(Gl,,,, VardG) \ {var} | var € nullvar§G)} .

In the sequel, we use the point-wise extensiobDetomposeNullVars
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We define the seaSSCof atomicshape subgraphs to be the set of subgraphs that consist of
either a single connected component or a singlié-variable fact (i.e., a single variable point-
ing to thenull node). Non-atomic shape subgraphs correspond to conpumsati atomic shape
subgraphs and are useful intermediaries during conctetizand while computing transform-
ers.

The abstraction functiof®® : SG— 2/SSCis given by

3°P(G) £ DecomposeNullVat€omponents?)) .

The functiona®P : 256 — 245SCGjs the point-wise extension gf°P. Thus,ASSG= a°®P(SGQ
is the set of shape subgraphs in the image of the abstraction.

Note: We can extend the decomposition to avoid exponertalups created by different
sets of variables pointing to the same (narl) node. However, we believe that such corre-
lations are significant for shape analysis (as they captiffiereht states of a single list) and
abstracting them away can lead to a significant loss of pagcisience, we do not explore this
possibility in this chapter.

5.4.3 Concretization by Composition of Shape Subgraphs

Intuitively, a shape subgraph represents the set of itsrsi@pe graphs. Concretization con-
sists of connecting shape subgraphs such that the intensectthe sets of shape graphs that
they represent is non-empty. To formalize this, we definédh@wing binary relation on shape
subgraphs.

Definition 5.4.5 (Subgraph Embedding)We say that a shape subgraplt’ &
(V', E’,env,len) is embeddedn a shape subgraph & (V, E,env len), denoted’ C G,
if there exists a functiorf : V. — V' such that: (i) (u,v) € E iff (f(u), f(v)) € E';
(i) f(enx)) = env(z) for everyz € VarsG); and (iii) for everyz € VarsG') \ VarsG),
f~L(env(z)) NV = 0 or env(z) = env(null).?

Thus, for any two atomic shape subgraghandG’, G' C G iff G = G'.

We make(SSGL) a complete partial order by adding a special elemernb represent
infeasible shape subgraphs, and definé- G for every shape subgrapgh. We define the
operationcompose SSGx SSG— SSGthat accepts two shape subgraphs and returns their
greatest lower bound (w.r.t. to theordering). The operation naturally extends to sets of shape
subgraphs.

Example 5.4.6 Referring to Figures.2 and Figure5.3, we haveS; C M; andS; T My, and
composéM;, M,) = S;.0

The concretization function®P : 24556, 25Cis defined by
veP(XG) £ {G' | G = composé&Y ), Y C XG, G is admissiblg .

This gives us the Galois Connecti¢zr®, P, 6P 2ASSG,

def

3We definef 1 (z) = {y € V. f(y) = z}.
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temp tl temp hi t1 temp hi tl temp
Obd hl OO0 | OF OO
M7 Mg Mg M10
(a) (b)

Figure 5.6: (a) A subgraph at labe? in Figure5.1, and (b) Subgraphs &8 in Figure5.1

Properties of the Abstraction.

Note that there is neither a loss of precision nor a gain igieficy (e.g., such as a reduction in
the size of the representation) when we decompose a singe gitaph, i.e5°P(5°P(G)) =
{G}. Both potentially appear when we abstractet of shape graphisy decomposing each
graph in a set. However, when there is no logical correlavietwveen the different subgraphs
(in the graph decomposition), we will gain efficiency with@ompromising precision.

Example 5.4.7 Consider the graphs in Figur&.2 and Figure5.3. AbstractingS; gives
(°P(S)) = {M,, M,}. Concretizing back, gives®P({M,, M,}) = {S;}. AbstractingSs
yields 3¢P(Ss5) = {M,, M5}. Concretizing{ M, My, My, M5} results in{S;, Sz, S4, S5},
which overapproximate§S;, S5 }. O

5.5 Efficient Abstract Transformers
for the Graph Decomposition Abstraction

In this section, we show that it is hard to compute the mostipeetransformer for the graph
decomposition abstraction in polynomial time and developnsl and efficient transformers.
We demonstrate our ideas using the staterhdntn=t enp in the running example and the
subgraphs in Figurb.6 and Figures.3.

An abstract transformery, : 24556 — 24SSCGijs soundfor a statemenst if for every set of
shape subgraph$G the following holds:

(%P o [st]" o 1°P)(XG) C T«(XG) . (5.1)

5.5.1 The Most Precise Abstract Transformer

We first show how thenost precise transformdst]®® = P o [st]# o 4P can be computed
locally, without concretizing complete shape graphs. As obsery&idiefano et al.DOY06),
the full heap abstraction transformp#]# can be computed by considering only tie¢evant
part of an abstract heap. We use this observation to createahttansformer for our graph
decomposition abstraction.

The first step is to identify the subgraphs “referred” to bg ttatemenst Let Vars(st)
denote the variables that occur in statensgniVe define:

e The functionmodcompg : 255¢— 255Creturns the shape subgraphs that have a variable
in Varg(st): modcompg(XG) £ {G € XG| VargG) N Varg(st) # 0} .
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Figure 5.7: A set of shape subgraphs over the set of prograables{x,y,z ,w}

e The function samecomps : 25°¢ — 255G returns the complementary subset:
samecompgXG) = XG\ modcompg(XG) .

Example 5.5.1 modcomps - enp ({Mi, - .., M7}) = { My, My, M3, M7} and
SAMecoOMpS. n=t enp (1M1, - .., M7 }) = { My, M5, Mg}. [

Note that the transformédst]# operates orrompleteshape graphs. However, the trans-
former can be applied, in a straightforward fashion, to ampgsubgraphG as long as>
contains all variables mentioned &t (i.e., Var§G) O Vargst)). Thus, our next step is to
compose subgraphs modcompg(XG) to generate subgraphs that contain all variablest of
However, not every set of subgraphsnmodcompg(XG) is a candidate for this composition
step.

Given a set of subgraphG, a setXG C XG, is defined to beveakly feasiblen XG if
composeXG') #L. Further, we say that ¢’ is feasiblein XGif there exists a subs&R C XG
such thatomposéXG U XR) is an admissible shape graph (i3G € SG: XG C o®P(G) C
XG).

Example 5.5.2 The subgraphd/, and M; are feasible in{ M, ..., M;}, since they can be
composed withd/, to yield an admissible shape graph. Howewdy, and M/, contain common
variables and thug My, M-} is not (even weakly) feasible inV/;, ..., M;}. In Figure 5.7,
the shape subgraph¥; and M, are weakly-feasible but not feasible{i/,, ..., Ms} (there
is no way to compose subgraphs to inclugesince M; and M, and M3 and M, are not
weakly-feasible.)J

Let st be a statement with £ |Varg(st)| variables § < 2 in our language). Lef/(<»
denote all subsets of sizeor less of a sef/. We define the transformer for a heap-mutating
statemenst by:

TSP(XG) £ letY = {[st]#(G) | M = modcompg(XG), R € M(=H),
G = composeR), Vargst) C Vars(G),
R is feasible inXG}
in samecompss(XG) U a®P(Y) .

The transformer for an assume statemans slightly different. An assume statement does
not modify incoming subgraphs, but filters out some subgsapht are not consistent with
the condition specified in the assume statement. Note thafpibssible for even subgraphs
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in samecompgXG) to be filtered out by the assume statement, as shown by trevioty
definition of the transformer:

TSP(XG) £ letY = {[s#(G) | R € XG=k+1),
G = composéR), Vargst) C Vary G),
R is feasible inXG}
in a®P(Y) .

Example 5.5.3The transformerZ;3° _ ..,: (a) composes subgraphs: compQsg, Mr),
composéM,, M;), and composé/s, Mr); (b) finds that the three pairs of subgraphs
are feasible in{M;,..., M;}; (c) applies the local full heap abstraction transformer
[t 1. n=t enp]#, producingMs, My, and M, respectively; and (d) returns the final result:
TSP ({My, ..., M;}) = { My, Ms, Mg} U { Mg, My, Myo}. O

t1l. n=tenp

Theorem 5.5.4 The transformef P is the most precise abstract transformer.

AlthoughT'SP applies|st]# to a polynomial number of shape subgraphs ftjd itself can
be computed in polynomial time, the above transformer Isestponential in the worst-case,
because of the difficulty of checking the feasibility &fin XG. In fact, as we now show, it is
impossible to compute the most precise transformg@oignomial timeunless P=NP.

Definition 5.5.5 (Most Precise Transformer Decision Proble) The decision version of the
most precise transformer problem is as follows: for a settofrac shape subgraphs XG, a
statement st, and an atomic shape subgréphloesG belong to]st|P(XG)?

Theorem 5.5.6 The most precise transformer decision problem, for the lyrdgcomposition
abstraction presented above, is NP-complete (even whengheset of subgraphs is restricted
to be in the image af®P). Similarly, checking if XGis feasible in XG is NP-complete.

Proof:[sketch] By reduction from the EXACT COVER problem: given aiverselU =
{uy,...,u,} of elements and a collection of subsetsC 2V, decide whether there exists a
subsetB C A such that every element € U is contained in exactly one set . EXACT
COVER is known to be NP-complet&]79. O

5.5.2 Sound and Efficient Transformers

We safely replace the check for wheth@ris feasible inXG by a check for whetheR is
weakly-feasible (i.e., wheth@omposéR) #_1) and obtain the following transformer. (Note
that a set of subgraphs is weakly-feasible iff no two of thegsaphs have a common variable;
hence, the check for weak feasibility is easy.) For a heapipoigating statemerst, we define
the transformer by:

TSP(XG) £ letY = {[sf#(G) | M = modcompg(XG), R € M(=F),

G = composeR) #.1, Vargst) C VargG)}
in samecompgXG) U a®P(Y) .
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For an assume statemestwe define the transformer by:

fs(t;\D(XG) “ ety = {[s1#(G) | R € XG(SI““),
G = composgR) # L, Vargst) C Varg(G)}
in a®P(Y) .

By definition, 6.1) holds fori‘f\f’. Thus,i‘f\f’ is a sound transformer.

We apply several engineering optimizations to make thesfoamer7'SP efficient in prac-
tice: (i) by preceding statements of the foxmy andx=y. n with an assignmen¢=nul | , we
specialize the transformer to achieve linear time comptexii) we avoid unnecessary com-
positions of shape subgraphs for statements of the farm=y andassune( x==y) , when
a shape subgraph contains batandy; and (iii) assume statements do not change subgraphs,
therefore we avoid performing explicit compositions anogargate atomic subgraphs.

5.5.3 An Incremental Transformer

The goal of arincrementaltransformer is to compu /‘?’(XG U {D}) by reusingfs\?D(XG).
We define the transformer for a heap-manipulating statestéyt

TSP(XGU {D}) £ if D € modcompg({D})
let Y = {[sf]#(G) | M = modcompg(XGU {D}),
Re MEW D e R,
G = composéR) #.1, Vargst) C VargG)}
in 789(XG) U a®P(Y)
else

TSP(XG) U {D} .

Here, if the new subgrapp is not affected by the statement, we simply add it to the tesul
Otherwise, we apply the local full heap abstraction trams&r only to subgraphs composed
from the new subgraph (for sets of subgraphs not contaibintpe result has been computed
in the previous iteration).
For an assume statemestwe define the transformer by:
TSP(XGU {D}) = letY = {[s]#(G) | R € (XGU {D})=k+1),
D € R,G = composéR) #.1, Vargst) C Var§G)}

in TS2(XG) U aCP(Y) .

Again, we apply the transformer only to (composed) subgaaimtainingD.
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5.6 Prototype Implementation and Empirical Results

Implementation. We implemented the analyses based on the full heap
abstraction and the graph decomposition abstraction ithescr in  previ-
ous sections in a system that supports memory deallocatiod asser-
tions of the form assertAcyclicList(x), assertCycliclList(x),
assertDi sjointLists(x,y), and assert Reach(x,y). The analysis checks
absence of null dereferences, absence of memory leakagasenof dangling pointers, and
(manually added) shape assertions. The system suppor®oorsive procedure calls via call
strings and unmaps variables as they become dead.

Example Programs. We use a set of examples, described in T&b® to compare the full
heap abstraction-based analysis with the graph decongoebihsed analysis. The first set of
examples consists of standard list manipulating algomtioperating on a single list (except
for mer ge). The second set of examples consists of programs manipylaultiple lists. We
created the serial port driver example incrementally, finsdeling4 of the lists used by the
device and therd. Thequeue_2_st acks program was constructed to show a case where
the graph decomposition-based analysis loses precisieterdining that a queue is empty
requires maintaining a correlation between the two (eni#g. The code appears in Appendix
B.1.

Precision. The results of running the analyses appear in Tat8eThe graph decomposition-
based analysis failed to prove that the pointer returnegdtylast is non-nulf, and that

a dequeue operation is not applied to an empty quewugue_2_st acks. On all other
examples, the graph decomposition-based analysis haartteegecision as the analysis based
on the full heap abstraction.

Performance. The graph decomposition-based analysis is slightly |d&sezft than the anal-
ysis based on the full heap abstraction on the standardhbshples. For the examples manip-
ulating multiple lists, the graph decomposition-basedyaisis faster by up to a factor afi 2
(intheseri al 511 sts example) and consumes considerably less space. Thests asul
also consistent with the number of states generated by thamalyses.

5.7 Related Work

Single-graph Abstractions. Some early shape analyses used a single shape graph to rep-
resent the set of concrete stat@siBlh CWZ90, SRW9g. As noted earlier, it is possible to
generalize our approach and consider different stratégresecomposing shape graphs. In-
terestingly, the single shape graph abstractions can beaseene extreme point of such a
generalized approach, which relies on a decomposition saphginto its set of edges. The
decomposition strategy we presented in this chapter |lesasrtore precise analysis.

4A simple feasibility check while applying the transforméttee assertion would have eliminated the subgraph
containing the null pointer.
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Table 5.2: Benchmarks used to compare the full heap analyighe graph decomposition
analysis

Benchmark Description

Create Creates new elements and adds them to an acyclic list

del ete Deletes a cell chosen non-deterministically in an acydic |

del et eAl | Deletes all elements of an acyclic list

get Last Returns a pointer to the last element of an acyclic list

get Last cyclic Returns a pointer to the last element of a cyclic list

i nsert Inserts an element to an acyclic list in a position chosen
non-deterministically

nmer ge Merges two acyclic lists (simulates merging ordered lists)

renmoveSeg Removes a sublist from a cyclic list

reverse Reverses an acyclic list

reverse_cyclic
rever se_pan
rotate

sear ch_nul | der ef
swap

Applying reversal to a cyclic list

Applying reversal to a panhandle list

Moves the first element of an acyclic list to the tail
A buggy implementation of a list search

Swaps the first two elements of an acyclic list

Benchmarks with Multiple Lists

enqueueEvent s
gueue_2_st acks
joinb

splith
1394di ag

serial 41ists
serial 51ists

The running example

Test for an implementation of a queue using two lists
A program joiningb acyclic lists

A program that splits a list int6 lists

Modeling aspects of the diagnostics program

for the 1394 firewire device driver

Modeling aspects of lists in the serial port device driver
Modeling aspects df lists in the serial port device driver
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Table 5.3: Time, space, number of states (shape graphsdaralysis based on full heap
abstraction and subgraphs for the graph decompositioedeasalysis), and number of errors
reported. Rep. Err. and Act. Err. are the number of errorerted, and the number of errors
that indicate real problems, respectively. #Loc indicabesnumber of CFG locations. F.H.
and G.D. stand for full heap and graph decomposition, resebe

Benchmark Time (sec.) | Space(Mb.) #States R. Err./A. Err.
(#Loc) FH. |G.D.| FH. |G.D.| FH. | G.D. | FH. | G.D.
create (11) | 0.03 | 0.19| 0.3 | 0.3 27 36 | 0/0 0/0
del ete (25) | 0.17 | 0.27| 0.8 | 0.9 202 | 260 | 0/0 0/0
del et eAl' | (12) | 0.05 ] 0.09| 0.32| 0.36| 35 64 | 0/0 0/0
get Last (13) | 0.06 | 0.13| 0.42 | 0.47| 67 99 | 0/0 1/0
get Last cyclic (13) | 0.08 | 0.09| 0.39 | 0.41| 53 59 | 0/0 0/0
i nsert (23) | 0.14 | 0.28| 0.75| 0.82| 167 | 222 | 0/0 0/0
nmer ge (37) | 0.34 | 058| 22 | 17 517 | 542 | 0/0 0/0
renoveSeg (23) | 0.19 ] 0.33| 096 | 1.0 253 | 283 | 0/0 0/0
reverse (23) | 0.09 | 0.12| 0.47 | 0.46| 82 117 | 0/0 0/0
reversecyclic (14) | 014|036 06 | 1.4 129 392 | 0/0 0/0
rever se_pan (12) 02 | 06| 09 | 22 198 561 | 0/0 0/0
rotate (27) | 0.05 | 0.08| 0.3 | 04 33 50 | 0/0 0/0
search.nul | dref (7) 006| 0.1 | 04 | 04 48 62 | 1/1 1/1
swap (23) | 0.05 | 0.09| 0.3 | 04 35 62 | 0/0 0/0
enqueueEvent s (49) 0.2 0.2 1.2 | 0.7 248 178 | 0/0 0/0
gueue_2_st acks (61) 01 | 02| 06 | 0.7 110 216 | 0/0 1/0
joinb5 (68) | 125 | 0.5 | 67.0 | 2.4 | 14,704| 1,227| 0/0 0/0
split5 (47) | 285 | 0.3 |126.2| 1.7 | 27,701 827 | 0/0 0/0
1394di ag (180)| 26.2 | 1.8 | 64.7 | 8.5 | 10,737| 4,493| 0/0 0/0
serial 41ists (248)| 36.9 | 1.7 | 230.1| 11.7| 27,851| 6,020 0/0 0/0
serial 51ists (278) | 552.6| 2.6 | 849.2| 16.4 | 89,430| 7,733| 0/0 0/0
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Partially Disjunctive Heap Abstraction. In Chapter4, we described a heap abstraction
based on merging sets of graphs with the same set of nodesnat@pproximate) graph. The
abstraction in the current chapter is based on decompogjrapa into a set of subgraphs. The
abstraction in Chaptersuffers from the same exponential blow-ups as the full hbapaction
for our running example and examples containing multipteependent data structures.

Heap Analysis by Separation. Yahav and RamalingamYR04] and Hackett and Rug-
ina [HRO5 decompose heap abstractions to separately analyzedtfitfearts of the heap (e.g.,
to establish the invariants of different objects). A cen&ispect of the separation-based ap-
proach is that the analysis/verification problem is itse€amposed into a set of problem
instances, and the heap abstraction is specialized for gatiem instance and consists of
one sub-heap consisting of the part of the heap relevanetpritblem instance, and a coarser
abstraction of the remaining part of the heaplRD9 uses a points-to graph). In contrast, we
simultaneously maintain abstractions of different paftde heap and also consider the inter-
action between these parts. (E.g., it is possible for ouomhposition to dynamically change
as components get connected and disconnected.)

Application to Other Shape Abstractions. Lev-Ami et al. LAIS06] present an abstraction
that could be seen as an extension of the full heap abstndatibis chapter to more complex
data structures, e.g., doubly-linked lists and trees. We\zethat applying the techniques in
this chapter to their analysis is quite natural and can yaehdore scalable analysis for more
complex data structures. Distefano et &Y06] present a full heap abstraction based on
separation logic, which is similar to the full heap abst@cipresented in this chapter. We
therefore believe that it is possible to apply the techrsguethis chapter to their analysis as
well. TVLA [LASOQ] is a generic shape analysis system that uses canonicahetist. \We
believe it is possible to decompose logical structures imala way to decomposing shape
subgraphs and extend the ideas in this chapter to TVLA.

Decomposing Heap Abstractions for Interprocedural Analyss. Gotsman et al.BC0q

and Rinetzky et al. RBR"05, RSY0F decompose heap abstractions to create procedure sum-
maries for full heap+ abstractions. This kind of decompasijtwhich does not lead to loss of
precision (except when cutpoints are abstracted), is gathal to our decomposition of heaps,
which is used to reduce the number of abstract states geddngitthe analysis. We believe

it is possible to combine the two techniques to achieve a reffi@ent interprocedural shape
analysis.
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Chapter 6

Cartesian Subheap Decomposition

We demonstrate shape analyses that can achieve a stateeghact@on exponential in the num-
ber of threads compared to the state-of-the-art analydake vetaining sufficient precision to
verify sophisticated properties such lasarizability. The key idea is to abstract the global
heap by decomposing it into (not necessarily disjoint) ®apis, abstracting away some corre-
lations between them. These new shape analyses are irstdraseanalysis framework based
on heap decomposition. This framework allows rapid prgimtg of complex static analyses
by providing efficient abstract transformers given useresiied decomposition schemes. Ini-
tial experiments confirm the value of heap decompositiorcatiisg concurrent shape analyses.

6.1 Introduction

The problem of verifying concurrent programs that manififeap-allocated data structures
is challenging: it requires considering arbitrarily ineaved threads manipulating unbounded
data structures. Both heap-allocated data structuresanmdirency can introduce state explo-
sion. Their combination only makes matters worse. This wragevelops new static analysis
algorithms that address the state space explosion problearsiystematic and generic way.
The result of these analyses can be used to automaticadlplisét interesting properties of
concurrent heap-manipulating programs such as the abséncd dereferences, the absence
of memory leaks, the preservation of data structure inagjandinearizability [HW9(Q.

The Intuition.

Typical programs manipulate a large number of (instancedaif structures (possibly nested
within other data structures). Each individual data strceecan usually be in one of several
different states (even in an abstract representation} ddm lead to a combinatorial explosion
in the number of distinct abstract states that can ariseg@ibstract interpretation.

The essential idea we pursue is thadetomposinghe heap into multiple subheaps and
abstracting away some correlations between the subheapsniposition allows reusing sub-
heaps that were decomposed from different heaps, thuseyineg a set of heaps more com-
pactly (and more abstractly). For example, consider a pragmaintainingt disjoint lists.

A powerset-based shape analysis such as the orf@RWP3J uses a lattice whose height is
exponential ink. An abstraction that ignores the correlations betweerkthgts reduces the
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lattice height to be linear ik, leading to exponentially faster analysis. (The savingaeo
from not maintaining the correlations between differeatest of the different lists, which we
observe are often irrelevant for a specific property of ege) Similar situations arise in the
kind of multithreaded programs discussed earlier, wheaite of the state space is a function
of the number of threads rather than the number of data atesct In this chapter, we allow
decomposing the heap into non-disjoint (i.e., overlappsupbheaps, which is important for
handling programs with fine-grained concurrency (wheriedght threads can simultaneously
access the same objects) in a thread-modular way.

Fine-Grained Concurrency.

Fine-grained concurrent heap-manipulating programsvattwltiple threads to use the same
data structuresimultaneously They trade the simplicity of the single-thread-owningaa-
structure model, which is at the heart of the coarse-grainadurrency approach, to achieve a
higher degree of concurrency. However, the additionalguerince comes with a price: these
programs are notoriously hard to develop and prove coresety) when the manipulated data
structures are singly-linked lists (see, e.®D[G104)).

It is hard to employ thread-modular approaches that exfgoking [GBCS07 to analyze
fine-grained concurrent programs because they Iraemtional (benign) data-races. Thus,
state-of-the-art shape analyses capable of verifyingcate properties of fine-grained con-
current heap-manipulating programs, e.g., linearizghjgxplained in Sectio®.3), track all
correlations between the states of all the thre@d@R"]. This makes these analyses hard to
scale. For example, the shape analysiNRIR™] handles at most threads.

Itis interesting to observe, however, that it is often theedtat although proving properties
of these programs requires tracking sophisticated cdimambetween every thread and the part
of the heap that it manipulates, the correlations betweestifites of different threads is often
irrelevant. Intuitively, this is because fine-grained aament programs are often written in a
way whichattemptsto ensure the correct operation of every threaghrdlessof the actions
taken by other threads. This programming paradigm makse {i®grams an ideal match with
our approach explained below.

The Conceptual Framework.

To permit the use of heap decomposition in several settuwgdirst present it as a parametric
abstraction that can be tuned by the analysis designeree thays:

Decomposition: Specify along what lines a concrete heap should be decompose
(possibly overlapping) subheaps. One of the strengthsdjtkcification mechanism is that the
decomposition of a heap depends on its properties. Thizallis, for example, to decompose
the state of a concurrent program based on the associatieedrethreads and data-structures
in that state, which is usually not known a priori.

Subheap abstraction: Create a bounded abstract heap representation from cerstriet
heaps (which are unbounded). Subheap abstractions canaieebfrom existing whole-heap
abstractions that satisfy certain properties.

Combiner Sets: The framework is parametric with respect to transformeremg@uting
sound and precise transformers for statements is quitéeolgaig with a heap decomposition.
Transforming each subheap independently can end up bemgmerecise (or potentially
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incorrect, if not done carefully), especially when sublsayerlap. At the other extreme, com-
bining subheaps together into a full heap prior to transfiogit can be very inefficient and de-
feats the purpose of using heap decomposition. Achieviaeglésired precision and efficiency,
without compromising soundness, can be tricky. Our framvatiows the analysis designer
to specify only which subheaps should be combined togetirest fjiven transformer, called
combiner sets. The framework automatically generates @esponding sound transformer,
letting the analysis designer easily explore alternatividsout worrying about soundness.

HeDec.

We implemented our conceptual framework for the family afaaical abstractionsSRWO0J

in a system called HeDec (faleap Decomposition), which is publicly available. This im-
plementation retains the parametricity of the concepttahéwork, which allows analysis
designers to rapidly prototype different shape analygjerghms by defining heap decompo-
sition schemes.

Instances of the Framework.

We have used our framework to develop several shape anaigsksling the following, and
have implemented these analyses in HeDec.

(a) A shape analysis for sequential programs manipulaingyslinked lists that abstracts
away the correlations between disjoint lists . The restishape analysis algorithm emulates
the algorithm of Chapteb, with some interpretative overhead. Unlike the tediousopad
soundness of ChaptBrthe soundness of this instance immediately follows froestbundness
of the underlying subheap abstraction.

(b) A new shape analysis for sequential programs manipgjagingly-linked lists and
trees by abstracting away the correlations between segmémth do not contain an element
pointed-to by a variable. We confirmed that it is precise ghow prove memory safety and
preservation of data-structure invariants. This is eragimg for scaling shape analysis for
programs with densely connected heaps.

(c) A shape analysis for fine-grained concurrent progranth &ibounded number of
threads which is precise enough to prove memory safety aggepration of data-structure
invariants. Here, we obtain exponential speed-up in terfintisn@ and space, in comparison to
similar whole-heap analysis without decomposition. Ogoathm goes beyonddBCS07 by
supporting fine-grained concurrency and handling prognaitisintentional data races.

(d) A shape analysis algorithm for concurrent programs wilounded number of threads
that manipulate singly-linked lists, which proves lineability. The resultant algorithm is ex-
ponentially faster than the one IARR™], being polynomial in the number of threads. Our ini-
tial empirical results confirm that our algorithm is able toye linearizability with20 threads,
ten times more than iMyRR*].
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Main Results.

The contributions of this chapter can be summarized asvistio

1. We present a generic analysis framework (in an abstréatpiretation setting) for ex-
ploiting state decomposition effectively. The main tecahicontributions are in intro-
ducing a family of sound abstract transformers that admiildlg exploring the effi-
ciency/precision spectrum.

2. We propose scalable analyses for several interestingemms involving coarse-grained
as well as fine-grained concurrency, including provingdmzability. These algorithms
scale much better (e.g., polynomially) over the number dalls than the previous al-
gorithms for these problems.

3. The implementation of the framework for canonical alesioa is publicly available,
together with the above mentioned analyses, as well as bédmahmarks, which show
the benefit of the approach.

6.1.1 Outline

The rest of this chapter is organized as follows. In Sedii@we demonstrate heap decompo-
sition for fine-grained concurrent programs. In Sec%o8 we describe an analysis based on
heap decomposition for proving linearizability of non-tkaong data structures. In Sectiém
we present the technical details of our abstract domaintarichinsformers. In Sectigh5we
report on our experiments with HeDec. In Sectt6, we discuss related work, and in Section
6.7, we conclude the chapter. Appendixl contains formal proofs for Sectidh4. Appendix
C.2 describes optimizations implemented in HeDec. Apper@iXcontains a case-study of
heap decomposition for the two-lock queue algorithm.

6.2 Heap Decomposition for Fine-Grained Concurrency

In this section, we develop decomposition schemes for parfagy shape analysis of fine-

grained concurrent programs and show that HeDec can be aseddmatically obtain shape

analysis implementations that are precise enough to prevdésired properties of programs
(the absence of null pointer dereferences, absence of ngdeaks, and data structure invari-
ants) while scaling up to a large number of threads. The mafarthis section is presented

informally, deferring formal definitions and technical diét to Sectiort.4.

6.2.1 Decomposing Non-blocking Implementations

A Running Example. Figure6.1shows a simple running example of a non-blocking stack
implementation fromTre8q. Producers push elements onto the stack by allocatingean el
ment, copying the current global pointer to the top of thelstaonnecting the new element to
that copied top, and then using CASdmpareAnd Swap) to atomically check that the top of
the stack has not changed and replace it with the new elef@ensumers pop elements from
the stack by copying the current global pointer to top andngiag its next element and then
using CAS to atomically check that the top of the stack hashahged and replace it with the
new top, i.e., the recorded next element. In both caseslea f@iAS results in a restart.
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#define EMPTY -1
typedef int data.itype;
typedef struct node t {
data_type d;
struct node t =*n
} Node;

typedef struct stack t {
struct node t =*Top;

} Stack;

tu void push(Stack *S, datatype v){
[2] Node *x = all oc(sizeof (Node));
(3] X->d = v;

[4] do {

(5] Node *t = S->Top;

[6] X->n = t;

(7] } while (!CAS(&S->Top,t,Xx));
(s}

99 datatype pop(Stack *S){

[10] do {

[11] Node *t = S->Top;

[12] if (t == NULL)

[13] return EMPTY,

[ 14] Node *s = t->n;

[15] datatype r = t->d;

[16] } while (!CAS(&S->Top,t,s));
[17] return r;

(18}

Figure 6.1: A non-blocking stack implementation
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The goal here is to prove the absence of null pointer denedee absence of memory
leaks, and the preservation of data structure invariargs,thatst ack points to an acyclic
list.

Concrete Execution. Figure6.2(a) shows an example of two states occurring in the non-
blocking implementation shown in Figu@l; for now ignore thecorr annotations (which

is used by the linearizability analysis in the next sectiomhe figure shows two consumer
threads and two producer threads. Botimslandprodl can succeed with the CAS if they are
the next threads to be scheduled. Concrete states areatepicgraphs. To avoid clutter the
dat a field is not shown. Hexagonal nodes denote thread objects@ute nodes denote list
elements. The program label of every thread is written m#itt hexagon. Edges from text
labels to nodes correspond to global pointdrsy). Labeled edges from thread nodes to list
nodes denote thread-local pointer variabtesiidx). Edges between list nodes, labeledrby
correspond to thaext field of the list.

Exponential State Space. There are several sources of exponential explosion in tite st
space exploration of the stack algorithm. The first one itireclation between the program
locations of the different threads. The second source is¢hé pointers of the just allocated
elements. The stack can grow after the next pointer hasdglie@en set, but before the CAS,
thus the next pointers of the different producers can pairatlt possible stack elements and
have all possible aliasing between each other. The thirtcemf state-space explosion is the
recorded next pointer of the consumer threads. Note that#te space explosion occurs even
if the list has a bounded number of elements. This is a gempecdlem when maintaining
correlations between the properties of different thredglgponential blow-ups also occur in
sequential programs because of aliasing. However, for dinggse of our analysis, these cor-
relations are unimportant and tracking them is pointlesisamy reduces the efficiency of the
analysis.

Heap Decomposition Abstraction. We reduce the size of the state space by decomposing
the heap into a set (or tuple) of subheaps and abstractlgpneteng the program over the
subheaps.

For each subheap to be used in the decomposition, a user cddHgizcifies the part of
the heap it should include. This is done by definintpeation selection predicatenhich
specifies the subset of the nodes in the state for which @bgtraperties (such as aliasing,
heap-reachability, etc.) are maintained. For each looaktection predicate, the program state
is projected onto the nodes satisfying that predicate, tfzining asubstateof the original
state. We refer to the domain of substates pertaining toatitotselection predicaig as the
subdomairof pt.

The Decomposition Scheme. For the purpose of our analysis, we define for each thread
the location selection predicapt|t] that holds for: (a) the thread object of(b) the objects
pointed-to by its local variables$ @ndx), and (c) the objects pointed-to by the global variables
(Top). In addition, we define the location selection predidatebals which holds for the
objects reachable from global variables.
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pt[prodl] | pt[prod2] | pt[consl] | pt[cons2] | Globals

Top

Top

s,
Top
. . 't
n

Figure 6.2: (a) Two concrete states in the non-blockingksitaplementation shown in Figure
6.1, and (b) The decomposed states abstracting the full statgg.i The names of the sub-
domains appear above the substates

Figure6.2(b) shows the result of applying the decomposition schenpéaged above to
the states in Figuré.2(a). Notice that different location selection predicates/raccasionally
overlap. For example, in the decomposition explained abiveobjects reachable from the
global variables appear in each subheap.

Intuitively, the meaning of a substafe, decomposed by a location selection predicate
p(v), is the set of all full states that contaif and any disjoint substat&/’, such that the
objects inM satisfyp(v) and the objects id/’ do not satisfyp(v). A sequence of sets of sub-
states{ My, M5} x { My, Mg} x { M3, M7} x { My, Ms} x { My} represents the set of full states
obtained by choosing one structure from each subdomainmesecting their meanings. For
example, composing the substa{éd,, M, M;, My, My} together yieldsS; and composing
the substate§Ms, Mg, M, Mg, My} together yieldsS,. The loss of precision by the abstrac-
tion can be observed by the fact that other composition, asg)M,, Mg, My, Mg, My} yield
full states other thas; andS,.

State Space Savings. In general, fom threads, if the set of objects reachable from a thread
is bounded, then the number of substates resulting fromethehability-based decomposition
is linear inn (even though the number of full states generated by the anogs exponential

in n). Although we do not show the state space reduction in thedguwne can imagine
how running the program with threads generates states similar to the ones in Fig(a).

By permuting the thread ids between producers threads améebe consumer threads, we
obtain an exponential number of full states that are allltabke by the program execution.
Decomposing these states results in a number of substatas timear inn.
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Transformers. HeDec is guaranteed to be sound, in the sense that when tlysiartarmi-
nates all reachable concrete states are represented byabsinact state.

While the abstraction ignores correlations between stdxsstaansforming substates in iso-
lation using an “independent-attribute” style of analy$8NH99] leads to debilitating loss
of precision. For example, the analysis executes the s&tefn  x- >n=t where thread
prodl is scheduled. Substatd; does not contain information about the local variables of
threadprodl. Therefore,M; also represents a statg,; in which the local variables and
x of threadprodl point to the first cell and to the last cell of the list, respedy. Thus, a
conservative transformer 6f  x- >n=t must emit a warning about a possible creation of a
cyclic list.

To avoid this kind of loss of precision, a user of HeDec cancgpevhich substates,
obtained from different location selection predicateguitt be (temporarily) composed by
the transformer. This is done in terms odmbiner setswhich are subsets of node se-
lection predicates. In this example, for the transforme6of x->n=t, we can specify
the combiner set§pt[prod1l], ptjprod2]}, {pt[prodl], pticonsl}, {pt[prodl], ptjcons2}, and
{pt[prod1], pt{Globalg}. Then, the generated transformer composes, separateybistates
{M;, M5} with each of the sets of substatgsly, Mg}, {Ms, M-}, {My, Mg}, and{My}.
For the substates composed with (which is the only substate in throd1-subdomain that
can executd: x->n=t) the transformer updates thefield appropriately, avoiding the
false alarm. Finally, the transformer decomposes the atéssaigain into each one of the sub-
domains. The resulting abstract substates are the sameFagume 6.2, except that\/; has
ann-link between the object pointed-to lbyand the object pointed-to by and its program
counter is7.

This example shows how, by combining a small number (lineahe number of location
selection predicates, in this case) of substates decommysdifferent predicates, the trans-
former is able to increase precision without incurring areasonable time/space blow-up.

A Methodology for Combiner Sets.

We now briefly discuss the issue of choosing combiner seta taainsformer (which is done
by the analysis designer in our framework). Every trans@@roan be thought of as having a
frameas well as dootprint. The frame identifies the part of a program state that is cetalyl
irrelevant to the transformer. Thus, it contains no infatiorathat is either used or modified by
the transformer. The footprint is the complement and costadequate information to perform
the transformer as precisely as possible.

A straightforward approach for computing the footprint of @peration affecting several
subdomains is combining all the affected subdomains. Wmhately, this approach might
be too expensive. We apply a more efficient approach, whichrdeg to our experience is
precise enough. Specifically, for each operation we choasat afcore subdomainsvhich
contain the heap objects and variables that participatearoperation. We compute tlcere
footprint by combining the core subdomains (in practice, there arallysno more than two).
We then independently combine the core footprint with tHeeptaffected subdomains. For
example, the core subdomains for a statement of the fas»f = g”, wherex of threadt
is a local variable and is a global variable, are the subdomains containing thtestt the
subdomain of the global variabte The affected subdomains are any subdomains which may
alias these variables.
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Conditional branches pose an interesting puzzle. Notelibeduse the condition essen-
tially filters states it can affedll subdomains. Thus, for a conditionalf* (x == g)”,
we identify the core subdomains to be the ones containirggr{tiies pointed-to by) andg.
However, we will independently combine them with all othebdomains.

6.3 Using Decomposition to Prove Linearizability

Linearizability[HW9(Q] is one of the main correctness criteria for implementatiohconcur-
rent data structures. Informally, a concurrent data stineds said to be linearizable if the con-
current execution of a set of operations on it is equivalerstime sequential execution of the
same operations, in which the global order between nonlagyeing operations is preserved.
The equivalence is based on comparing the arguments antsreSoperations (responses).
The permitted behavior of the concurrent object is definettims of a specification of the
desired behavior of the object in a sequential setting. dnizability is a widely-used concept,
and there are numerous non-automatic proofs of linealizafair concurrent objects.

Verifying linearizability is challenging because it retgs correlating any concurrent ex-
ecution with a corresponding permitted sequential exenutiVerifying linearizability for
concurrent dynamically allocated linked data structuseparticularly challenging, because
it requires correlating executions that may manipulate orgrstates of unbounded size. In-
terestingly, proving linearizability does not requireetitly proving safety properties such as
preservation of data structure invariants. Instead, ondicst prove that the sequential imple-
mentation satisfies the required safety properties andgfrese that the concurrent implemen-
tation is linearizable, thereby, satisfies the safety mtgpé&inally, linearizability of complex
systems can be shown by separately proving the linearigabfleach of the individual data
structure implementations.

Intuitively, we verify linearizability by representing) the concrete state, both the state of
the concurrent program and the state of the reference seajygongram. Each element entered
into the data structure is correlated at linearization {gomith the matching object from the
sequential execution. This works well under abstractiormwthe differences between the
heaps of the sequential and concurrent implementatiorsoameded. The details are described
in [ARR™].

In order to guarantee that the shape analysis scales-up muthber of threads, in HeDec
we have defined a decomposition scheme that abstracts awagottelations between the
threads (as in SectioB.2). Also, there is no need to track reachability from prograamni-v
ables. Instead, the subheap abstraction tracks elementewhlues in the sequential and the
concurrent implementations are correlated.

6.3.1 A Decomposition Scheme for Linearizability Analysis

In HeDec, we have defined such a decomposition scheme by gesomy the heap into + 1
components where is the number of threads: (i) For each thread the objectsmbito by
local variables of the thread and objects pointed-to by @lebariables. This captures the rela-
tionships between local pointer variables and global goinariables. Each subheap abstracts
away the values of the local variables of the other threaii)sA (separate subheap with the
objects pointed-to by global variables and the part of thepledready correlated with the se-
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Figure 6.3: The decomposed states abstracting the full Stah Figure6.2(a). The names of
the sub-domains appear above each substate

guential execution. Here, the values of the local variabled| the threads are abstracted away.
We call this thecorr subdomain as it represents the correlated elements. FegBishows the
effect of applying this decomposition to the full statein Figure6.2(a).

Intuitively, this decomposition is appropriate for verifg linearizability for the program
in Figure 6.1 because of the following. The list consisting of correlatdgjects changes
locally when a thread executes a succes€8#E operation. In fact, successf@AS oper-
ations are the linearization points for this program. FRegi interpreting these operations
(CAS( &S- >Top, t, x) andCAS( &S- >Top, t, s)) in the analysis requires tracking corre-
lations between local and global variables, which we do@wstlibheap we decompose for each
thread.

The subheap captured by tleerr subdomain is important only during successtAS
operations, which is when a (non-correlated) node allacaiea thread is passed into the
list. Maintaining the subheap of tlerr subdomain for each thread is wasteful, and thus we
separate these correlations into different subdomains.

The important thing to notice is that all the exponentiallegn in the state space that
is due to the number of threads in the full heap is eliminatgdhis decomposition. The
number of possible subheaps of each thread becomes indagaidhe number of threads in
the system (for more than two threads).

Transformers. The combiner sets used in the transformers of the analysthampplication

of the methodology described in Secti6r2.1to this decomposition scheme. For example,
copying a global variable into a local variable does not negdiecomposition as the executing
thread has all the needed information. Copying a local lségimto a global variable combines
the subdomain of the executing thread with each of the otlimt@mains. Other operations that
change the global state such as changes to pointer fieldeaiodping CAS operations behave
the same. Dereferencing a pointer requires composing titosuain for the current thread and
the corr subdomain as the information on the next element of the stackt available in the
thread’s subdomain.
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6.4 The Heap Decomposition Abstraction

In this section, we formally define our new parametric heagiralstion and a family of sound
abstract transformers.

6.4.1 Heap Decomposition as a Cartesian Product of Subheaps

We first define the (parameterized) abstract domain of deosetpheaps.

Let (¥, <, ®) be a semilattice, where elementdfepresent (total and partial) statesis
a partial ordering ofx capturing the “is a substate of” relation, aRds the join operation with
respect to< (which composes substates together). We extetalsets of states as follows. Let
X; C ¥ andX, C X. We defineX; ® Xy = {0y ® 09 | 01 € X1,0, € X5}, For purposes of
abstraction, we shall also make use of the information andetefined by C o' iff o/ < 0.

Let (P(X),C) denote the powerset domain Bfwith the Hoare ordering: i.e., for every
XY CYX,wewrteXCYiff Vee X :dyeY :xCy.

A substate extractiofunction is a function; : ¥ — ¥ that satisfies)(c) < 0. Assume we
have a sequence éfsubstate extraction functiong to 7. We use the:-fold product?(3)"
=P(X) x --- x P(X) as our domain of abstract states. The abstraction funatio®(>) —

P(2)" is defined by:

a(S) = (m(S), -, Mk(S)) (6.1)
wheren; is the pointwise extension of defined by:
0i(S) = {m(o) | o €5} (6.2)
We define the meaning, ooncretizationof a tuplely, ..., I, € P(E)k by
Yy ) =L@ ® I (6.3)

Example 6.4.1 Let S denote the set of stat¢s’, S;} shown in Figures.2@). For any thread
t, we define the predicate[ptto be true for: (a) the thread object 6f(b) the objects pointed-to
by its local variablest( andx), and (c) the objects pointed-to by the global variabl€sg).

In addition, we define the location selection predicate @lspbwhich holds for the objects
reachable from global variables. Given any predicatethe substate extraction functioyp
maps a stater to the substate consisting only of the locations satisfyingVe define), to
be 5pt[pr0d1]n T2 to be 5pt[prod2}, UES to be 5pt[consl}n M4 to be 5pt[con52], and UB to be 5Globals- Now,
m(S1) = My, n2(S1) = My, n3(S1) = M3, ma(S1) = My, andns(S;) = M.

6.4.2 Abstract Transformers

We now turn our attention to the more challenging aspect obagoosition: computing sound
abstract transformers.

The semantics of a program statement is given by a funetion — P(3). We make the
standard assumption that the transformer is monotonicimfiormation order, i.e., if; C o9
thent(o;) C 7(02). We extend this function pointwise to : P(X) — P(X), by defining
7(S) =U{7(0) | 0 € S}. (Note that the extended transformer is monotone in therimdition
order as well.) For purposes of abstract interpretatiomeesl to define a corresponding sound
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abstract transformer oR(X)". Given an input valug = (I, ..., I;,), the abstract transformer

needs to compute the output valile= (Oy, . . ., Oy).
A straightforward sound transformer is the pointwise tfamaer 7" defined as follows:
™I, de) = (T (1), - (T (1)) (6.4)

Proposition 6.4.2 The pointwise transformet’™ is sound. That is, for every input valde=
(I, ..., I;) wherel € P(%), the following holds:

T(y(I)) E~(77(1)) - (6.5)
Proof: Note that since< andC are reversedy is a meet (i.e., greatest lower bound) operator
onP(X). Letj be any indexin(1,..., k}.

L®..®1, ClI (6.6)
> ® IS ameet operator

v(I) C I (6.7)
> by (6.6) and 6.3

T(v(1)) E7(L) (6.8)
>> 7 IS monotone

T(y(1)) E 0;(7(1L;)) (6.9)
> by (6.8) and sincej; is extensive

T(v(1)) En(r(1)) ® ... @ ik(T(Lk)) (6.10)
> ® is a meet operator

(1)) Ey(n(r(1h)), - - (T (Lk)) (6.11)
> by (6.3) and 6.10

T(y(I)) EA(r7(1)) (6.12)

> by (6.4) and 6.11)
[

Example 6.4.3 While the pointwise transformer is simple and efficientai tead to impre-
cise results when the transformer has to update a substataltes not have all the relevant
information. Recall the example from Sect®@, and consider the substald;. Substatel/;
does not contain information about the local variables dfestthreads. Therefore)/; also
represents a stat&,,, in which the local variables andx of threadprodl point to the first cell

and to the last cell of the list, respectively. Thus, a comsive transformer 06:  x- >n=t ,
whenprodl serves as the scheduled thread, must emit a warning aboussilpe creation of

a cyclic list. As explained in Sectidh2, we can avoid this imprecision by composing sub-
stateM3 with other substates\(;) to produce a more precise substate that can be transformed
without making such worst-case assumptions. This mosivheefollowing definitiong.]

A combiner sets a setkR C {1,...,k} identifying a set of subheap domains. We define
the partial concretization function z, which combines the information from the specified set
of subdomains? = {ji, ..., jm}, as follows:

Yalli, . L) =Q L =1;, @I, @I, . (6.13)
reR
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One-Level Composition.

We define thepartial transformerr; [R, i|, which computes the substate corresponding to the
i-th subdomain using the subdomains identifiediyypy

TR, i(I) = i(7(vr(1)))- (6.14)

We use the ternone-leveltransformer to indicate that combining (or composing) infation
from a set of subdomains (identified Byabove) occurs in one step.

We define aone-level transformer specification to be a tupld sy, . . ., 7sx) where each
rs; € {1,...,k}. We define the transformer|rs| by
n|rs](I) = (m[1s1, (D), ..., 7 [1Sk, k](1)). (6.15)

Theorem 6.4.4For any one-level transformer specificatiary, the transformerr[rs] is
sound. That s, for every input valdes P(%)k: 7(y(1)) C v(1[7s](I)).

Theorem 6.4.5Let s = (794, ..., 75x) Where eachrs; C {1,...,k} be a one-level trans-
former specification. Then, the one-level transformeérs] is sound. That is, for every input
valuel € P(X)*, the following holds:

T(v(1)) E ~(n[rs](1)) - (6.16)

Two-Level Composition.

We now present a generalization of the above definition. Asvaiion for this generalization,

consider a situation where we want to compute an output Vajus/ combining the input val-

ues from a set of subdomaifig or by combining the input values from a set of subdomains

(but we are unable to say which of these combinations to asieaty). We could, of course,
combine the input values from the set of subdomdmsJ R,, but this could be expensive.
Instead, we can utilize the two combinatiandependentlpf each other by using

(7 (T (vm, (1)) 11 (75 (7 (7R, (1))

as the desired output value. We call transformers derivedisnfashion two-level transform-
ers, as the use of the meet operatiooonstitutes a second stage of combining (composing)
information.

LetY be a set of combiner sets. We define plagtial transformerr,[Y’, ¢], which computes
the substate corresponding to th#lh subdomain using the combiner setginndependently,
as follows:

n[Y,i(1) =[] nlR,i(1) (6.17)
ReY
We define @wo-level transformer specificatiors to be a tuplg sy, . . ., 7s;) where each
rs; € P({1,...,k}). We define the transformeg|rs| by
Tol1s|(I) = (1a|1s1, 1|(I), ..., mo[1Sk, k](1)). (6.18)

(Note that the computation of the above transformer in@bvgartial concretization for every
Rineveryrs;. In practice, differents; andzs; may have common elements, and it is sufficient
for the transformer implementation to do the correspongeugial concretization just once.)
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Theorem 6.4.6 For any two-level transformer specificatiors, the transformerr|[rs] is
sound. That s, for every input valdes P(X)*: 7(y(1)) E y(ro[s](1)).

Theorem 6.4.7 Let s = (7sy,. .., 7s;) where eachrs; C 2{1*} be a two-level transformer
specification. Then, the two-level transformeglrrs| is sound. That is, for every input value
I € P(2)*, the following holds:

T(v(1)) E (n[rs](1)) - (6.19)

6.5 Empirical Results

We implemented the HeDec system in Java on top of the TVLAesygLAS00]. HeDec
allows analysis designers to rapidly prototype differdrdage analysis algorithms by defining
heap decomposition schemes. HeDec, however, is not a @aratiee designer needs to care-
fully select suitable heap decompositions. NevertheldsBec relieves the designer from the
task of developing and implementing the static analysisrélgms, including the transformers.

Table6.2and Tables.1compare the results of our decomposition-based analygisafull
heap analysis.

Concurrent Benchmarks.

We use the analysis of [1] as the underlying shape analysis.

Both analyses successfully prove linearizability and abseof null dereferences for the
three concurrent programs. For a given number of threadbge table shows the time and
the number of states resulting in the analysig tfireads invoking an arbitrary sequence of
operations on a single instance of the analyzed concuriat structure. Stack is the non-
blocking stack example of Secti@i2.1 TLQ is the two-lock queue implementation described
in [MS96. NBQ is a non-blocking queue implementation frodGLMO04]. 2

Note that while ARR™] can analyze at mostthreads, our approach, on the other hand,runs
for 15 threads or more. FurthermorddRRR*] runs out of memory when analyzirggthreads
manipulating a non-blocking-queue.

Sequential Benchmarks.

Both analyses successfully prove absence of null derefesgmbsence of memory leaks, and
data structure invariants for the following sequentialdienarks:6- 1 i st - pr epend adds
elements, non-deterministically, into one6lists; 6- | i st -] oi n joins6 lists into one list;
and4-tr ee-i nsert inserts nodes, non-deterministically, into onetdfinary search trees.

1Al benchmarks except NBQ were run or2al GHz E6600 Core 2 Duo processor withGB of memory
running Linux.
2This benchmark was run or2a66 GHz Quad Xeon with 6 GB of memory running Windows XB4 bit.
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Table 6.1: Empirical results for concurrent benchmarks

Full Heap Decomposition
Example| # of threads # of states secs.| # of substates secs.
Stack 2 3,424 3 1,608 7
3 10,6296| 71 4,103 13
4 MemOut - 7,728 22
20 - - 212,048 3,421
TLQ 3 8,783 12 8,911 30
5 44,285 35 23,585 90
8 MemOut - 58,796, 307
15 - - 202,555 2,122
NBQ 2 39,583 69 20,646| 263
3 MemOut - 57,065/ 694
15 - - 2,017,280 1 day

Table 6.2: Empirical results for sequential benchmarks

Full Heap Decomposition
Example # of states secs.| # of substates secs.
6-list-prepend 17,496| 16 557 5
6-list-join 37,689 40 1,282 6
4-tree-insert 43,031 44 5,316 29
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6.6 Related Work

The framework of Cartesian abstraction via state decortipnsive have presented is relevant
to a number of previous lines of work.

Heterogeneous Abstractions. Yahav and Ramalingani AISO6] defined a notion of hetero-
geneous abstractions. There, Cartesian abstractionsegeas a way to achieve decomposi-
tion (or separation, in the terminology of that paper). Oastibution of this chapter is to
show that that previous analysis is based on a (simple fojrCaftesian abstraction. On the
other hand, in that work, heterogeneity was used only withgingle structure (to abstract
the substructure of interest differently from its contexthere our framework supports dif-
ferent abstractions for different factors of the produa)ding heterogeneity across different
structures. Furthermore, while Yahav and RamalingaAi$06] rely on the point-wise trans-
former, we introduce a generalized family of transformérat allow (de)composition when
transformers are applied. This generalization allowsi§gag more precise transformers, and
gives us dynamic separation/decomposition.

Region-based Heap Analyses. Like [LAIS06], [HRO5 also decomposes heap abstractions
to independently analyze different parts of the heap. Thereanalysis/verification problem
is itself decomposed into a set of problem instances, anthélap abstraction is specialized
for each instance and consists of one subheap for the pdré dfdap relevant to the instance,
and a coarser abstraction of the remaining part of the hegpagoints-to graph. In contrast,
we simultaneously maintain abstractions of different paiftthe heap and also consider the
interaction between these parts. (E.g., our decompogifjoamically changes as components
get connected and disconnected.)

Local Transformers. The importance of modularity for the ability to compute s&rmers
is well known. For example, the first proof rule for procedaadls, therule of adaptationwas

given in [Hoa71]. It allows reusing a proof of a procedure body in differemtacations of the
procedure.

Local reasoning QRYO0L, Rey03 enables reasoning about programs that alter heap-
allocated data by combining claims about disjoints parte@heap. The use of decomposition
here is intuitively similar to that of separation i®@RYOQ1. The chief difference is that here
a decomposition may be used that is finer than the transfsrinéhe underlying domain are
precise for, which we react to by performing compositionha transformers. The transform-
ers used in analyses based on separation I&J0Y, on the other hand, when applied to
substates either produce exactly as precise informati@mdsll states, or produce top. Our
treatment of decomposition as an abstraction allows maxéiligy in this regard. This flex-
ibility is central to the concurrency analysis we present®y not basing decomposition on
disjointness, the analysis does not necessarily need tbrbad-modular. In particular, we
have the option of introducing predicates which track int@oircorrelations between different
threads’ local states. Approaches based on disjointnetsasi[GBCS07 have trouble with
such situations unless auxiliary state is added to theimves, which is beyond the ability of
the existing automatic analyses.
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Partially Disjunctive Heap Abstraction. In Chapterd we describe a heap abstraction based
on merging sets of graphs with the same set of nodes into gpq@mate) graph. The
abstraction in this chapter is based on decomposing a graphaiset of subgraphs. The
abstraction in Chaptefis orthogonal to the one in this chapter.

Handling Concurrency for an Unbounded Number of Threads. In [2], we use thread
guantification to analyze programs with an unbounded nurmobtiireads. Thread quantifica-
tion can be thought of as an unbounded variant of a particldeomposition strategy, which
we use to abstract away correlations between local vagaildifferent threads. In the thread
guantification analysis, we report that using an additidvealp decomposition abstraction in
order to abstract away correlations between values of socagVariables and global variables
effects drastic state-space savings. This made the anédasible in the example of proving
linearizability of a non-blocking queue implementation.

Proving Linearizability of Data Structures. Shape analysis of concurrent programs with
unbounded dynamic allocation have been investigated. makysis in [vah0]1 addresses an
unbounded number of threads by losing distinctions thahatbe made based on thread-
independent information. This analysis has been extermledrify linearization ARR™] of
programs with a bounded number of threads. Here we use tlemg@sition abstraction to
define an analysis that can be exponentially faster thanrtfARR™].

Manual linearizability proofs using rely-guarantee haeer given in YHHSO0€], and us-
ing a manual translation to automata followed by an intéragbroof in PVS in CDGO03.
Recently, af09] automatically verifies linearizability from manual spgcations in a combi-
nation of rely-guarantee and separation logic, using tbefgechnique of ARR™].

6.7 Conclusions

We present systematic and generic techniques for scalisbajpe analyses using heap decom-
position, implemented in the HeDec system. A user of HeDecoeackly prototype a shape
analysis by: (a) defining any heap decomposition she belisvappropriate for the class of
programs and properties of interest, and (b) supplyingJ¥eretype of program statement any
(possibly empty) combiner set she believes supplies the bglance between efficiency and
precision. HeDec then automatically generates a soungssal
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Chapter 7

Conclusions

In this thesis, we have shown that partially disjunctivetedutions can be used to greatly im-
prove the performance of precise shape analyses. An asakysigner may start by designing
a disjunctive abstraction and use it over a set of simple lin@acks to obtain confidence that
the abstraction is precise enough for proving the desiredesties. Then, the designer would
observe the abstract states arising from such an analygitoseless information that is cap-
tured by the abstraction. For example, a predicate may geolical distinctions inside an
abstract state3fvalued logical structure) that are not needed in order stirdjuish between
different abstract states. This can suggest merging abstates that are distinguished by that
predicate by using partial isomorphism join (see ChapterlB)considering programs with
multiple data structures or concurrency, the analysisgthesican define appropriate subheap
decomposition techniques to cope with the exponentiabface.g., due to thread interleaving
(see Chapter 6).

Indeed, in the beginning of this thesis (Chapter 3), we dedinather precise abstraction
for programs containing a finite number of singly-linkeddisThe precision of the analysis
is experimentally verified on a number of benchmarks maaimg one or two lists. Later
(see Chapter 5), we consider programs such as device diinarsimultaneously manipulate
multiple instances of cyclic linked lists. Using a disjumetabstraction proves to be infeasible,
since it incurs exponential state space blow-ups. We ceehtgher abstraction by abstracting
away the correlations between disjoint subheaps, whichllysaontain different lists, thus
reducing the exponential factors. These correlations swally not important for the safety
properties we wish to verify and thus we are able to improegadrformance of the analysis
without a significant increase to the number of false alarms.

We note that the abstractions based on decomposition avenperable, in terms of pre-
cision, with the one based on partial isomorphism, in ChragpteFor example, applying the
partial isomorphism abstraction on top of the list abstoacof Chapter 3, results in the same
abstraction, since no two shape graphs in the image of thabstraction are partially iso-
morphic. On the other hand, partial isomorphism abstragi@ble to merge multiple similar
structures containing a single connected component, \@len@ph decomposition would not
result in an identity abstraction (since the structuresroabe decomposed). This also means
that analyses based on these abstraction are incompanaielenis of performance: Disjoint
subgraph decomposition can help reduce exponential &aetbere partial isomorphism ab-
straction cannot and vice versa.

It is fortunate, that the two kinds of partially disjunctiaéstraction — the one based on

93
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partial isomorphism and the ones based on decompositionr-be&aombined to yield very
useful abstractions, which can many times complement etedr i terms of the kinds of
exponential factors that they are able to reduce.

7.1 Suggestions for Further Work

Automatically Refining Partially Disjunctive Abstractions. The theory of automatically
refining abstractions has been heavily studied by the moldetking community using
techniques such as counterexample-guided abstractiomemaint for Predicate Abstrac-
tion [CGJ"00,BMMRO01, HIMMO04]. The theory of automatic abstraction refinement for par-
tially disjunctive abstractions has been studi€®D1, CGRO07, but not as extensively. In-
tuitively, the problem of automatically refining abstracts is harder for partially disjunctive
abstractions, since the analyzer has to learn new absinadtiom multiple control flow paths
simultaneously. An interesting direction of research iglifyaing a system based on predicate
abstraction to use “Cartesian Predicate Abstraction” antdratically finding the relevant
predicates by considering multiple counterexample paths.

Localized Heap Abstractions The main property that was useful in developing precise and
efficient transformers for the analysis in Chapbesind the analyses in Chaptéris that the
granularity of the abstraction of a concrete state matdmeteiel of granularity of the concrete
transformer. This property is also utilized in separatiasddl shape abstractiori3QY06)].

We are interested in precisely characterizing abstrastibat have this property and in the
possibility of automatically generating these abstraxtibased on a given set of transformers.
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Appendix A

Proofs and Additional Detalls
for Chapter 3

A.1 Deriving the Abstract transformer for y. n=null

In order to simplify the definition of the transformer fprn = null, we splitit to five different
cases, shown in Tabk.1, based on classification of the next list interruption. Tdlae¢ uses
the following shorthand notations:

ListToInDegreel)] = \/, .y, UList[z1,Y,] A —Aliasedy, z1|A
A, cvar ULiSt22,Y,] — (Aliasedz,, y] v Aliasedzy, 2 ])
ListRegularVayy| = Vepvar YLIstly, w]

ListToHeapShargd] = \/, cpva UListly, W]

We show that manual construction of the best transformerteewith the same formulae
provided in Sectior3.4. The derivation is shown Tabk.2. For each predicate, we first show
its defining formula after applying the concrete effect of gtatemeny. n=null. We then
rewrite this formula to an equivalent formula that is foldatb the nullary predicates of our
predicate-abstraction vocabulary (of TaBl€). In the process of rewriting, we use transfor-
mations of FOT“under the assumption that formulae describe heap confignsasatisfying
the integrity rules of the following definition:

Definition A.1.1 (Integrity Rules) We require that every heap configuration satisfies the fol-
lowing integrity rules:
1. for every unary predicate(v) representing a reference variable,
Vi, ve.x(v1) A z(vg) — v = V9
2. for the predicate:(v;, v9) representing the field,
Yo, vy, ve.n(v,v1) An(v,v9) — v = vy

In the process of rewriting, we also use the rewrite rulesheffollowing lemma. When
a rule from the lemma is used in the rewriting, we note its neimib brackets. We use] to
denote a rewrite usingO” “transformations (assuming formulae describe heap coafigus
that satisfy the above consistency rules).

Lemma A.1.2 The following always hold:

101
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Table A.1: The different cases considered when defininglis&ract transformer for the state-
menty. n = null

Case Next List Interruption Precondition
1 is a heap-shared node —(UListy, null] v ListRegularVafy|) A
not pointed by any regular ListTolInDegreed|
variable, with in-degree- 2
2 is null UList[y, null]
3 is a node pointed by some ListRegularVajy| A —ListToHeapShardg]

regular variable and not
heap shared

4 is a heap-shared node ListToHeapShardg] A —ListTolnDegreep)|
with in-degree> 2

5 is a node pointed by a regular  ListRegularVajy| A ListToHeapShardg]A
variable and heap shared, ListTolInDegreed|

with in-degree= 2

() =PtByVar(u) = —y(u)
(1) —Interruption(u) = —y(u)
The following hold under the precondition of case
(1) Interruption’(u) = Interruption(u)
(IV) UList' (v1,v9) = UList(vy, v2) A —y(v1)
(V) ULIiStNULL (vy, v3) = UListNULL(v1, v5) V y(v1)

where the primed values of shorthands denote their valwes afafter applying the effect of
the statement. n = null.

Proof:The first claims in the Lemma are mostly immediate from thenitédins of the shorthand
notations.

I
<ﬁl)3tByVar(u) = -V var(u)

varePVar

= —y(u)
()
—Interruption(u) = —HeapSharet:) A\ —-PtByVaru)
= —y(u)

(11 we begin by showing thateapSharedu) = HeapShare()

HeapSharedu) = Ja,b.n(a,u) A —y(a) An(b,u) A —y(b) A (a # b)

by the precondition to this case

HeapSharequ) = da,bn(a,u) An(b,u) A (a #b)

= HeapShare(h)
sincePtByVar(u) does not change under the actionn=null,
it follows thatInterruptiori(u) = Interruption(u).
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Table A.2: Derivation of the transformer fgr n=null for case3.

UListy[z1, 22)  Fu1, ve.21(v1) A 29(v2) A nlvy, v2) A —y(vy) [*]
Fuy, va.21(v1) A 22(v2) A (v, ve) A Jvs.zg(vs) A —y(vs)  [#]
UList; [z1, 2o] A —Aliasedzy, y]

UList; [z1, null]  Fv.z;(v) A Yu.=(n(v, u) A —y(v)) []
Fv.z1(v) A Vu.(—n(v,u) V y(v)) [*]
Fv.y(v) V 21 (v) AVu.—n(v, u) [*]

UList; [21, null] vV Aliasedz, Y]
ULiSt2 [Zl, 2’2]/ 31)1, V.21 (’Ul) N Z9 (’Uz) VAN Elm.ﬂlnterruptiorf(m)/\

A (n(vi, m) A=y (v1)) A (n(m, v2) A —y(m)) 1y
Fuy, v9.21(v1) A 22(v2) A Im.—Interruption(m)A
A (no1,m) A =g(02)) A (n(m, 02) A —y(m) n
Fuy, va.21(v1) A 22(v2) A Im. ﬁlnterruptlon(m)A
A n(vy,m) A —y(vy) A n(m,ve) . [%]
31)1, V2.2 (’Ul) VA (’Uz) AN Elm.ﬂlnterruptlor(m)/\
/\.n(vl, m) A n(m‘, v9) A z1(v1) A —y(vy) [%]
UListy[z1, 22| A —Aliasedzy, Y]
ULiSt[Zl, 22]/ E'Ul, V.21 (’Ul) N z9 (’Ug) VAN ULiStl(’Ul, Ug) [lV]
Juy, vg.21(v1) A 29(v2) A =y (v1) A UList(vy, vs) []
UList[z1, 2] A —Aliasedz, Y]
ULiSt[Zl, nU”]/ 31}1.21 (’Ul) VAN ULlStNULL(’Ul) [V]
;.21 (v1) A ULIStNULL(vy) V y(v1) [%]

UList[zy, null] v Aliasedz,, Y|
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ULiSt’(’Ul, UQ)
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(n(vy, v2) A ﬁy(vll)\/

(Im.=Interruptior(m) A (((n(vy, m) A —y(v1)) A (n(m, ve) A —y(m)))V

(Fma, ma.(n(vr, ma) A —y(vr) A =y(or)) A (n(me, v2) A —y(ma))A

(TCa,b:n(a,b) A—y(a) A —Interruptiori(a) A —Interruptiori(b))(my,ms))) [lll]
Fuy, v9.21 (V1) A 22(U2) (n(vy,v9) A —y(vp)V

(Im.=Interruption(m) A (n(vy,m) A =y(vi)) A (n(m, va) A —y(m)))Vv

(Fmy, ma.n(vy, my) A —y(v1) A n(me, vg)A

(TCa,b:n(a,b) A ( ) A —Interruption(a) A —Interruption(b))(my, m2)))  [I]
Juy, vg.21(v1) A 22(v2) A (n(vy,v9) A =y(v))V

(Im.—Interruption(m) A n(vy, m) A =y(v1) A n(m, vy))V

(Elml, mg.n(vl, ml) A ﬁy(Ul) A n(m2, Ug)/\

(TCa,b: n(a,b) A —Interruption(a) A —Interruptiond))(my, ms))) []
Juy, v9.21(v1) A 2.2(’112) A =y(vr) A (n(vy, va)V

(Im.—Interruption(m) A n(vy, m) A n(m,vq))V

(Imy, mo.n(vy, my) A n(ma, v?)/\ _

(TCa,b: n(a,b) A —Interruption(a) A —Interruptiond))(ms, ms))) [*]
UList' (v1, v2) A =y (v1)
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(V)

ULIiStNULL' (u) Vv =(n(u,v) A =

O

y(u)v
m.(n(u, m) A =y(u

Elml,m2 ( (U 1) ( )) A UListNULL, (mg)/\
(TCa,b: (n(a,b) N —yl(a ))/\ﬂlnterruptiorf(a)/\
—Interruptiori(b)) (ml, ms)

Vo.=(n(u, v) A=y (u))V

Im.(n(u, m) A —y(u)) A =Interruption(m)

A(ULISINULL, (m) V y(m))V

Imy, me : (n(u,my) A —y(u)) A (ULIStINULL, (ms) V y(ma))A
(TCa,b: (n(a,b) A —y(a)) A —Interruptiona)A
ﬂlnterrupnor(b))(ml, ms)

Vo.m(n(u, v) A=y (u))V

Im.(n(u, m) A —y(u)) A =Interruption(m)

/\(ULlstNULLl( )V y(m))V

Imy, me : (n(u,my) A —y(u)) A (ULIStINULL, (ms) V y(ma))A
(TCa,b: (n(a,b) A —y(a)) A —Interruptiona) A
—Interruption(b))(my, ms)

Vo.(—n(u,v) Vy(u))V

Im.(n(u, m) A =y(u)) A =Interruption(m) A ULiStNULL, (m)V

Imy,my : (n(u,my) A —y(u)) A ULIStNULL,; (mg)A
(TCa,b:n(a,b) A —Interruptiona) A
—Interruption(b))(my, ms)

Vou.(—n(u,v)) V y(u)V

—y(u) A Im.n(u, m) A —Interruption(m) A ULiStNULL, (m)V

—y(u) A Imy, ma : n(u, my) A ULISINULL,; (mg)A
(TCa,b:n(a,b) A —Interruptiona) A
—Interruption(b))(my, ms)

Yo.(—n(u,v)) Vy(u)V

Im.n(u, m) A =Interruption(m) A ULiStNULL, (m)V

Elml, meo : n(u, ml) VAN UL|StNULL1 (m2>/\
(TCa,b:n(a,b) A —Interruptiona) A
—Interruption(b))(my, ms)

ULiStNULL (u) V y(u)

A.2 Proving Theorem3.6.1

We want to prove that the Predicate AbstractiGpeqans presented in SectioB.4 and the

Canonical Abstractionjcanonic Presented in SectioB.5 are equivalent. Before delving into

the details, we make the claim more precise.
Recall that both abstractions are parameterized by an ihdaxging from1 to n (the

number of program variables). The proof here is foe= n (i.e.,

variables is used).

)) A —Interruptiorf(m) A ULiStNULL, (m)V
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By equivalence of abstractions, we mean that, for any tweiea heapg’; andC, (2-
valued structures), the following holds:

6PredAbécl) - ﬁPredAbs(C2) WhenﬁCanonic(Cl) - 6Canonic(C2) .

We will use the following shorthand notations

A1P = 6PredAbs(Cl)
Ag - ﬁPredAbs{CZ) 5
A(1: = 6Canonic(Cl) )
A(2: = 6Canonic(C2)

and make use of the embedding functighand g such thatC; C/ A andCy, £9 AS. With

these notations we rephrase the equivalence claifn= A5 when A¢ = AS. Note that by
A§ = AS we mean that structure$$ and AS are isomorphic, i.e. A T AS and AS T A§.

The semantics of formulae f@rvalued structures is explained iIBRWO03.

We will sometimes write the name of a predicate from TabGas shorthand for its defining
formula. The exact meaning, however, should be clear frenctimtext, depending on whether
the structure referred to is concrefev@lued) or abstracBfvalued).

Since the join operator used in both kinds of abstractiorthessame—set union—the
equivalence of the abstractions carries over from singlei@ie heaps to sets of concrete
heaps.

)

Y

Proof Structure.

We want to show that both abstractions are able to make gxthetlsame distinctions about
any two concrete heaps. We start by showing that whern@yvandC; assign different inter-
pretations to a predicate iR* (indicating that their Predicate Abstraction is diffejem¢ is
different from AS. This is shown by a case analysis accordingrtpeedicate types that appear
in Table 3.6 in order of appearance. In each case we assume that the giesdconsidered
in previous cases have the same interpretation in bgtand C,. Finally, we consider the
case where all predicates i have the same interpretationdh andC, (indicating that their
Predicate Abstraction is the same), and show #jat= AS.

We use the following lemmas to show that two concrete heapditierent under Canonical
Abstractiort. In the lemmas, we use the shorthand notations introduceeeab

In the proofs of the lemma we will use use the fact that, by th&b&dding Theorem
[SRWO03, if two 3-valued structures are isomorphic then the value of everged formula
evaluates to the value in both structures.

Lemma A.2.1 Let C; andC, be a pair of2-valued structures, and let(v) be a conjunction
of unary predicates and negations of unary predicates.
If [Fv: ()] =1and[Jv : p(v)]? = 0 then AS # AS.

Proof: Let v be a node i/ for which o(v) holds. Since Canonical Abstraction preserves
the definite values of unary predicategp) evaluates to a definite value fgfv) (the same

1The lemmas are stated for the Canonical Abstraction frorni@eg.5, but they are actually true for Canonical
Abstraction with any set of predicates.



A.2. PROVING THEOREM 3.6.1 107

value as inC). Therefore3v : (v)]*T = 1. Since there is no node " for which o (v)
holds, there is also node nodeA for which ¢(v) holds, and thereforfv : ¢ (v)]4% = 0.
We conclude thati¢ # AS.
U

Lemma A.2.2 Let C; and C, be a pair of2-valued structures, and let(v) be a conjunction
of unary predicates and negations of unary predicates.

If ¢(v) holds for exactly one individualin C, andy(v) holds for more than one individual
in Cy then A§ # AS.

Proof: Sincep(v) holds for exactly one individual in Cy, we have thap(v) holds for exactly
one individualy = f(u) in AS. Therefore[Va, b : o(a) A p(b) = eq(a,b)]4T = 1.

Let V5 be the set of nodes iti“? for which ¢(v) holds. Ifw = g(u) = g(v) for some pairs
of nodesu, v € V, theneg(w, w) = 1/2 and[Va,b : o(a) A o(b) = eq(a,b)]*5 = 1/2.
Otherwise, thereq” (¢(u), g(v)) = 0 for every distinct nodes, v € V4, and thereforva, b :
pla) Ap(b) = eq(a,b)]*% = 0.

In both case$va, b : p(a)Ap(b) = eqla,b)]T # [Va,b: pla)Ap(b) = eq(a, )]
and we conclude that§ # AS.

O

To give some intuition, Figuré.1 shows the different cases of concrete lists and their
Canonical Abstraction, along with the values of the pre@isdrom TableS.6.
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X y X y
—>
Aliased[x,x], Aliased[y,y],

List1[x,y] cullx]
X X
acanonic
Aliased[x,X]
(a)
Aliased[x,x], Aliased[y,y],
List2[x,y], List[x,y] cul[x] cullx]
X X
8)_@ qcanonic é_@
>
Aliased[x,x],
List1[x,NULL], List[x,NULL] cul[x]
(b)

X y

X y
> - -

Aliased[x,x], Aliased[y,y],

List[x,y] cul[x] cullx]
X X
> -
Aliased[x,x],
List[x,NULL] cul[x]
(©)

Figure A.1: Applying Canonical Abstraction to lists of difent lengths: (a) lists of length 1,
(b) lists of length 2, and (c) lists of length greater than 2
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Proof:[of Theorem3.6.1]

Case 1 : Distinction byAliased|z, y] predicates. Assume that for two variables y €
Var we have[Aliasedzr, y]]* = 1 and [Aliasedz, y]]“> = 0. Substituting the predicate
Aliasedz, y] with its defining formula from Tabl&.6, we get[3v : x(v) A y(v)]“* = 1 and
[Bv: z(v) Ay(v)]? = 0. Therefore, by Lemma.2.1, AS £ AS.

Case 2 : Distinction byUList; [z, y| predicates. Assume that; andC, identify on all
predicates of the formliasedz, y], and that for some, y € Varwe have[UList, [z, y]]* =1
and[UList; [z, y]]¢* = 0.

Substituting the predicatdList; [z, y| with its defining formula from Table&.6, we get
[Fve, vy, 1 2(ve) Ay(vy) An(vg, v,)] = 1 and[Tv,, v, : 2(v,) Ay(v,) An(ve, v,)]? = 0. Let
Uy, yu € U be the unique (Propositid® 3.4 nodes such that®! (u,) = 1 andy“* (u,) = 1.
From the assumption that, and C, identify on all predicates of the forrliasedz, y|, we
have that there exist unique nodesv, €€ U2 such that“2(v,) = 1 andy“?(v,) = 1.

We now have that there exists unique nodés= f(u,) € AY andu), = f(u,) € A

such thate*% () = 1 and2"%(u!) =1 Therefore,n ¥ (u), u!) = n (u,,u,) = 1 and
[Fve, vy 2(vs) Ay(v,) An(vg,v,)]4 = 1.
Furthermore, there exists unique nodés= g(v,) € AS andv}, (v,) € AS such that

=49
a3 (v)) = 1 anda%(v)) = 1. Thereforen3(v),v!)) = n(uy,u,) = 0 and[3v,,v, :
z(vg) A y(vy) An(vg, v,)]42 = 0.

We conclude thati¢ # AS.

Case 3 : Distinction byUList;[z, y| predicates. Assume that’; andC, identify on all
predicates of the form\liasedz, y] and UList; [z, y|, and that for some:;,y € Var we have
[UListy [z, y]]¢* = 1 and[UListy[z, y]]“* = 0.

The meaning ofUList [z, y]]* = 1 is that there exist two nodes andv, in U, which
are pointed-to by variablesandy, respectively, and a third nods,, such thaw,, v,,, v, is a
maximal uninterrupted listid’;. Thereforecul[z](v) A —y(v) holds uniquely forw,, in C;. In
addition,[UListy[z, y]]* = 1 implies [UList;[z, y]]* = 0, since a maximal uninterrupted list
has a determined integer length. Now, siigeandC5 identify on all predicates of the form
Aliasedz, y] then there exist two nodes andu, in U that are pointed-to by variablesand
y, respectively.

We consider the following three sub-cases: (i) There is natarrupted list between,
andu,. Therefore,[Fv : cullz](v) A —y(v)]“? = 0, and by LemmaA.2.1, A # AS; (i)
There exists a maximal uninterrupted list betwegrand v, of length1l. This possibility is
ruled out since it contradicts the fact tHatList, [z, y]]<* = 0 with our assumption that; and
C, identify on all predicates of the foriliasedx, y] andUList; [z, y|; and (iii) There exists a
maximal uninterrupted list betweesn andu, of length> 2. This means thatul[z](v) A —y(v)
holds for more than one noder, (but only forv,, in C1, and so by Lemma.2.2, A¢ # AS.

Case 4 : Distinction by UList[z, y| predicates. Assume that”; and C, identify on all
predicates of the forrAliasedz, y], UList; [z, y], andUListy [z, y|; and that for some, y € Var
we have[UList[z, y]]¢* = 1 and[UList[z, y]]“? = 0.

Since [UList[z,y]]°* = 1 we can substitute the definition @ll[z]|(v) in the defini-
tion of UList[z,y] and get[Fv : y(v) A cullz](v)]** = 1. Applying this substitution For
[UList[z, y]]? = 0 gives us[3v : y(v) A culz](v)]“> = 0. Therefore, by Lemma&.2.1,
AS #£ AS.

Case 5 : Distinction byUList; [z, null] predicates. Assume that’; and C, identify on
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all predicates of the formliasedz, y], UList; [x, y|, UListy[x, y|, andUList[x, y|; and that for
somer € Var we have[UList; [z, null]]¢* = 1 and[UList, [z, null]]“2 = 0.

Since[UList, [z, null]]¢* = 1, we have that there is no list emanating from the node pointed
to by z in C, and[Jv : cul[z](v)]“* = 0. Since[UList, [z, null]]“2 = 0, we have that there is
a non-empty list emanating from the node pointed-tachig Cy, and[Jv : cul[z](v)]¢? = 1.
Therefore, by Lemma.2.1, AS £ AS.

Case 6 : Distinction byUList; |z, null] predicates. Assume that’; andC, identify on all
predicates of the formliasedz, y|, UList; [x, y], UListy[z, y], UList[z, y], andUList; [z, null];
and that for some € Var we have]UList, [z, null]]¢* = 1 and[UListy[z, null]]“2 = 0.

We consider the following sub-cases: (i) There exists a makuninterrupted list of length
1 from the node pointed-to by to null, in C}, i.e., [UListy [z, null]]“2 = 1. This case is ruled
out, since by the assumption ti@t andC, identify on all predicates of the fortdList; [z, null]
this would mean thdUList; [z, null]]“* = 1, which is not possible since there exists a maximal
uninterrupted list of length from that node to null and any maximal uninterrupted list Aas
determined integer length; (ii) There exists a maximal teriupted list of length> 2 from
the node pointed-to by to null, in C;. This means that i6’; the predicateul|x](v) holds for
exactly one node (the one following the node pointed-te}pynd inC;, the predicateul|z](v)
holds for more than one node (all of the nodes following theéenpointed-to byt). Therefore,
by LemmaA.2.2, AS # AS; and (iii) There is no maximal uninterrupted list franto null in
Cs5, which means that there exists a maximal uninterruptedrbst = to a (possible the same)
variabley, i.e., [3v : cullz](v) A y(v)]“> = 1. However, since irC; there is no maximal
uninterrupted list fromr to any variable[3v : cullz](v) A y(v)]¢* = 0, and therefore, by
LemmaA.2.1, AS # AS.

Case 7 : Distinction by UList[z, null] predicates. Assume that’; and C, identify on
all predicates of the formhliasedz, y|, UList; [z, y], UListy[z, y], UList[z, y|, UList; [z, null],
and UListy[x, null]; and that for somer € Var we have [UList{z,null]]** = 1 and
[UList[z, null]]“2 = 0. (This reasoning here is the same as the third sub-case ipr¢he
ous case.)

This means that ilt'; there exists a maximal uninterrupted list franto a (possible the
same) variable, i.e.,[Jv : cullz](v) A y(v)]? = 1. However, since iiC’; there is no maximal
uninterrupted list fromz to any variable[3v : cullz](v) A y(v)]** = 0, and therefore, by
LemmaA.2.1, AS # AS.

Case 8 : No distinctions by predicates from Table8.6. Assume that’; andC’, identify
on all predicates from Tabl&.6.

We show thatA§ is isomorphic toAS by showing that: (i) for every node, < UAT
there exists a unique corresponding nedec U4 such that for every unary predicgtév)
from Table3.7 p(u)*T = p(uy)?s (i.e., AS and AS have the same set of canonic names);
and (ii) for every pair of nodes;, v, € U4 and corresponding pair of nodes (with respect
to the values of unary predicates), v, € U“, the equalitiesi(uy, v;)T = n(us, v2)** and
eq(ug, v1)AT = eq(uy, v2)*% hold.

Universe to universe bijection and preservation of unary pedicates.Let u; be a node
in UAT, and letX andL be subsets ofar such that the unary predicates that holddfpin AS
arex(u, ) for everyz € X andcul[z|(v) for everyz € L.

We consider two cases separately according to the empthess

X is non-empty. From Propositior8.3.4we have thatf ~'(u;) = {v}, andz“(v;) = 1
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for everyz € X. Thus,[3v : z(v) A y(v)]“* = 1 for everyz,y € X. From our
assumption that’, andC; identify on all predicates of the fordliasedz, y] we get that
[Bv : x(v) Ay(v)]2 = 1 for everyz,y € X. Using Propositior8.3.4we get that there
exists a unique node, € U such that:“2 (v,) = 1 for everyz € X. We denote by,
the nodey(v,), which is designated as the corresponding node fan the isomorphism
map, and using the definition of Canonical Abstraction wethatz*% (u,) = 27 (u,)
for everyx € X.

From the definition of the predicatesil[z](v), we have thaf3v,, v, : z(v,) A y(v,) A
UList(v,, v,)]<* for everyy € L andz € X. From our assumption that; and C;
identify on all predicates of the fortdList[z, y| we get thaf3v,, v, : z(v.) A y(v,) A
UList(v,, v, )] for everyy € L andz € X. Using the definition of Canonical Abstrac-
tion we get thatul[y]*5 (us) = cully]T (u,) for everyy € L.

X is empty. Let f~(u;) = Vi be the set of nodes mapped Jpyo u,. SinceX is empty we
have that for every nodg € Vi: 2% (v;) = 0 for everyz € Var andcul[z] (v,) = 1
for everyx € L. EitherV/ is part of a maximal uninterrupted list fromto null, orV; is
part of a maximal uninterrupted list fromto some variablg. In either case, from our
assumption that; andC;, identify on all predicates of the forliasedz, y|, UList[z, y],
andUListNULL[z], we have that there exists a non-empty set of nddes U2 such
that for everyv, € Vo 2¢2(vy) = 0 for everyx € Var andculz]“2(vy) = 1 for
everyx € L. Therefore, if we denote by, the image ofl; underg, we get from
the definition of Canonical Abstraction thats (uy) = z4%(u,) for everyz € X and
cul[y]Ag(uz) = Cul[y]A(f(ul) for everyy € L. The uniqueness af, is determined by the
fact that the values of all unary predicates are considerethé nodes of.

The correspondence by values of unary predicates defingscsidm 2 : U4S — U42 such
thath(u) = v whenp(u, )47 = p(uy)*? for every unary predicatg(v) from Table3.7.

Preservation of the binary predicateeq(u, v). Sinceeq(u, v) is interpreted a8 in every
3-valued structure for distinet andwv, we are only interested iey(u, u).

Recall that by the meaning of the predica#¢u, v) its interpretation can either deor 1 /2
(but nevelD).

Let u; be a node iU47 and letu, be h(u;). Assume thakq(uy, ;)45 = 1/2 (i.e.,u; is a
summary node). LeX be the set variables such thati(u,) = 1 for everyz € X andL be
the set of variables such thaul[y]4%(u,) = 1 for everyy € L. From Propositior8.3.4we get
that X = (.

Denote byV; the setf~*(u;). We have thatV;| > 1, which means that; are part of
an uninterrupted list i, containing more than two elements, which emanates fromabde n
pointed-to by the variables ih.

Denote byV; the setg~'(uy). Since we assumed that and C, identify on all predi-
cates from Table3.6, we get that from the node pointed-to by the variabled. iemanates
an uninterrupted list containing more than two elements'in Hence,|V;| > 1. Therefore,
qug(u27u2> =1/2.

Preservation of the binary predicaten(u, v). We will show that, for a structure in the im-
age of Canonical Abstraction with the predicates from T&blethe values of unary predicates
together with the value of the predicatg u, v), determine the value of the predicaté., v).
SinceA§ and AS are isomorphic with respect to those predicates, this ceteplthe proof.



112 APPENDIX A. PROOFS ANDADDITIONAL DETAILS FOR CHAPTER 3

Let S be a structure in the image of Canonical Abstraction withpteslicates from Table
3.7and letu; andu, be two nodes /4. Furthermore, lef; and L, be the sets of variables
such that the unary predicates that hold dgrare z(v) for everyx € X; andcul[z]|(v) for
everyr € Ly, and letX, and L, be the sets of variables such that the unary predicates that
hold foru, arex(v) for everyz € X, andcul[z](v) for everyz € Ls.

We consider the following sub-cases (the symmetric cages@rdiscussed):

X; and X, are non-empty. If X; C L, it means that;; andu, represent the end-points of a
maximal uninterrupted list. If there is no nodelit such thatul[z](v) holds for some
r € X, then the list is of length and therefore:®(u,, u,) = 1. Otherwise, the length
of the list is greater thah andn® (uy, uy) = 0.

X, is empty, X, is non-empty, andeq®(u;,u;) = 0. If L; C L, it means that:, represents
the last node of a maximal uninterrupted list containing nbeles represented hy.
Thereforen®(uy, us) = eq”(ui, uy) andn®(ug, uy) = 0.. If Ly C L, it means that,
represents the first node of a maximal uninterrupted listatnimg the nodes represented
by u;. Thereforen”(us, u1) = eq®(uy, u1) andn®(uy, uy) = 0. Otherwiseu; andus
represent nodes belonging to distinct uninterruptedtidtson® (uy, us) = n°(uy, uy) =
0.

X, and X, are both empty. If u; = uy thenn®(ui,u;) = eq”(ui,u;). Otherwise, this
means that;, andu, represent distinct uninterrupted lists and therefotéu,, u,) =
n® (ug, uy) = 0.

O

A.3 Proofs for Section3.6

Proof:[of Proposition3.3.3 A program variable points to at mostelement, and therefore
the number of list elements pointed by all program variaidest most:. The proof that the
number of heap-shared elements is at moist done by induction on the number of non-null
variables.
Basis Suppose the only non-null program variablexisThe proof is split into the following
cases.

Case 1 The path from the element pointed Ryreaches null. In this case, there are no
heap-shared elements.

Case 2 The path from the element pointed byeaches the element pointedxythereby
forming a cycle. In this case, there are no heap-shared aklsme

Case 3 The path from the element pointed Ryreaches an element other than the one
pointed byx. In this case, there is exactlyheap-shared element.
Induction hypothesisAssume that the proposition holds foe> 0 non-null program variables.

Induction step Suppose there aré + 1 non-null program variables;, ..., z; ;. Let
H,, be the sub-heap consisting of only the elements reachaimefy, .. ., z;, and the links
between them. The proof is split into the following casespading to the interaction between
variablez; . ; and Hy.
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Case 1 The set of elements if/; and the set of elements reachable from variables
do not intersect. By the induction hypothesis, the sub-iéapontains at most heap-shared
elements, and the sub-heap containing elements reachairie f,; contains at most a single
heap-shared element. Therefore, the entire heap contamssék + 1 heap-shared elements.

Case 2 Variablez, ., points to an element i#/,.. Since the variable,,, in itself does not
contribute to the in-degree of the element it points to,rsgtt; ., to null does no change the
number of heap-shared elements. Therefore, by the indulsyipothesis, the heap contains at
mostk heap-shared elements.

Case 3 Variable 24, connects to the sub-hedp, via the pathfus, ..., u,,] (none of
u, ..., u, IS heap-shared). By the induction hypothegis,contains at most heap-shared
elements. The link froms,, to an element in;, contributes at most a single heap-shared
element to the entire heap, and therefore the entire heapinerat mosk + 1 heap-shared
elements.

Proof:[of Proposition3.3.4 To prove the first part of the claim, supposeés heap-shared. If
u IS pointed-to by a program variable then the claim trividdblds. Since we assume that the
heap is garbage-free, noddas reachable from some program variable. kdie the program
variable that reaches on the shortest path. Obviously no node on the path is pciated
by a program variable (otherwise there would be a shortér foain a different variable). By
Corollary3.3.3 the path from to « consists o maximal uninterrupted lists, for somie< n.
Therefore, by definition, auxiliary variable ,(v) points tou.

The second part of the claim is proved by induction on theisbadepthk.

Basis The termHeapShareth) A —PtByVafv) means thatx,;(v) can hold only for a
subset of interruptions that are heap shared but not poibyedny (regular) program
variable. The termduv,.z(v,) A UList(v,,v) further restricts the set of nodes to only
ones that are reachable by an uninterrupted list from a nametgu by the variable
z. Sincex is a reference variable, it can point to at most one node, whieans that
Jv,.x(v,) A UList(v,, v) holds for at most one interruption. Therefore, the entingjwoction
Jv,.x(v,) A UList(v,, v) A HeapShareth) A —=PtByVar(v) holds for at most one node.

Induction hypothesis Assume that the proposition holds for every reference abées
and sharing-depth< k.

Induction step By the induction hypothesig; ,(v) holds for at most one node. There-
fore, the arguments that were used to prove the basis hott fwieplaced byx; ;) for the
sub-formula

v X, i (vi) A UList(vg, v) A HeapShareth) A =PtByVar(v) .

The conjunction-(\/, _, . Xsm(v)) can only further restrict the set of nodes for which the
sub-formula above holds, and therefore the claim holdsfeentire formula.
Proof:[of Proposition3.6.23

Figure A.2 shows a representative case of a concrete heap where thelnapy depth
reaches the upper bound.

We will use the simple fact that, since the out-degree of avgenn the heap is at most
1, every connected component of the heap (considering thieeated version of the relation
n(u, v)) contains at most one simple cycle.

Letu be a heap-shared node of depth 1. There are two cases:
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heap-sharing
depth 1

x1 heap-sharing

x2
x3
X4

X5 heap-:sharing

depth 4

X6
X7

x8

Figure A.2: A representative case for a heap sharing deptirélaches the upper bound. The
vertical dashed lines are used to show the different levidigap-sharing depth

Nodew does not reside on a cycleConsider the part of heap containing nodes that reach
These nodes, along with form a connected component without cycles where the out-
degree of every node is at mdstThis is a tree with program variables at the leaves and
u as a root.

The fact thatu has heap-sharing depthmeans that: is reachable from at least two
distinct nodes: andb of heap-sharing depth— 1. In addition,a andb do not reside on
acycle.

The same reasoning can now be applied &mdb, obtaining the fact that is reachable
from at leastd nodes of heap-sharing depth- 2. The reasoning goes on until we get
to the leaves of the tree, and have thas reachable fron2* nodes that are pointed by
program variables. This means th&t< n and thereforé: < |logn|.

Nodew resides on a cycle.Since node: is heap-shared and found on a cycle, there are two
distinct interrupting nodes andb such that the lists froma to v and fromb to u are
maximal uninterrupted lists, andis on the same that is on andb is outside of that
cycle.

Sinceb does not reside on a cycle, we have already showrbiteat have a heap-sharing
depth of at mostlog n |. Therefore, node has heap-sharing depth of at mpsig n | +1.



Appendix B
Additional Details for Chapter 5

B.1 The Code ofqgueue_2_st acks

/1 A procedure that tests an inplenmentation of a queue
/1 via two stacks.
class List {

public List n;

public Object data;

public List(Object data) {
this. data = data;

}

}

cl ass Queue {
Li st stackil;
Li st stack2;

public void gneueue(Object elen) {
/'l Push into stackl.
List cell = new List(elem;
cell.n = stacki,;
stackl = cell;

}

public Cbject dequeue() {

if (isEmty())
throw Il 1 egal Operati onException();

Li st cell;
if (stack2 !'=null) {
/1 Pop from stack2
cell = stack2;
stack2 = cell.n;
/1 In Cwe would also free cell here.
return cell.data;
}
el se {
/1 Pop contents of stackl and push it to stack2.
while (stackl !'= null) {

115
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cell = stackli;
stackl = cell.n;
cell.n = stack2
stack2 = cell

}

/1 Now pop from stack?2

cell = stack2;

stack2 = cell.n;
// In Cw wuld also free cell here.
return cell.data;

}
}
public bool ean i senmpty() {

return stackl == null && stack2 == null
}

public static void nmain(String[] args) {
Queue g = new Queue();
if (...) {
g. enqueue(l);
/1 Now stackl is not enpty and stack2 is enpty.

}
el se {

g. enqueue(2);

g. enqueue(3);

g. dequeue();

/1 Now stackl is enpty and stack2 is not enpty.
}

/1 At this point the partially disjunctive abstraction
/'l represents a state where both stacks are enpty,

/1 which causes a fal se al arm

g. dequeue();



Appendix C

Proofs and Additional Details
for Chapter 6

C.1 Proofs for Section6.4

Proof:[of Theorem6.4.9 Let j be any index in{1, ..., k}, and letrs; be the corresponding
combiner set.

Le.. . 9LCT Q) I (C.1)

reTS;
> since @ is monotone, i.eX C YV — ®X C ®Y

reX reY

(1) E yrs, (1) (C.2)
> by (C.1), (6.13, and 6.3
T(v(1)) E 7(yrs, (1)) (C.3)
> sincer is monotone
T(v(1)) E 0;(T(vrs, (1)) (C.4)
> by (C.3) and since); is extensive
T(y(I)) E m[rs;, j1(I) (C.5)
> by (C.4) and 6.14
T(v(1)) E mufrsy, (1) @ ... @ Ti[rsk, k](I) (C.6)
> since ® is a meet operator
T(v(1)) C ~y(r[7rs1, 1](]), .. ., |18k, K|(I)) (C.7)

> by (6.3) and C.6)
T(v(1)) E v(m[rs](1))
> by (6.195 and C.7)

[
Proof:[of Theorem6.4.7 Let j be any index in{1,.. ., k}, let rs; C P({1,---,k}) be the
corresponding set of combiner sets, andlet {1,-- -, k} be a combiner set ims;.
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T(v(1)) E n[R, j](1) (C.8)

by (C.5 in Theorem6.4.5

() E [ nlRND) (C.9)
ReTS,

by (C.8) and the properties ofT

T(y(I)) E m[rs;, 51(1) (C.10)

by (C.9 and 6.17)

T(y(I)) C mo[rsi, k](I) ® ... @ o[ sy, k] (1) (C.11)

by (C.10 and since® is a meet operator

7(y(1)) C y(re[7rs1, 1](1), ..., To[Tsk, k(1)) (C.12)

by (C.12 and 6.3
T(v(1)) E y(7[1s](1))
by (6.18 and C.12

O

C.2 HeDec System Optimizations

In this section we explain some of the important implemeotedetails of the HeDec system.
HeDec implements standard fixed point iteration techniquesre the abstract elements
are tuples of sets of substates, one set per location seiguedicate.

C.2.1 Incremental Transformers

We optimize the fixed point iteration by reusing the resultsrf previous iterations. Without
composition, the transformers are distributive and they tare trivially incremental. The
challenge is handling changes to sets from different tuphe=n they are combined. Combining
sets is defined a&; ® X, = {01 ® 09 | 01 € X3, 09 € Xy} Whereo; ® o9 is an operation that
combines individual substates.

For two sets of substates andY’, let AX andAY be new substates for each set, respec-
tively. Now, we would like to compute((X LAX) ® (Y LU AY)) by reusingr(X @ V). We
use a known technique in computing differential fixpointateons (see, e.g.EY04]), and use
the transformer

T(XUAX)® (YUAY)) = 71(X@Y)U
7(X ® AY)U
(Y @ AX)U
T(AX ® AY)

where the first joined element is taken from the previousiten.

The use of incremental transformer is very important forcedficy. For example, on the
non-blocking stack of Sectiof.2.], the incremental transformers improve the running times
of 5 threads from206 seconds t®36 seconds and of( threads from2612 seconds t@211
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[1 #define EMPTY -1
[2] typedef struct queueit {
[3] struct elenent_t = Hegdi /I @re Queue->Head! =NULL &&
[4] struct elenment_t =Tail; S
. /1 Queue- >Tai | ! =NULL
[5] | ock_type HLock;
! [17] data.type dequeue(Qeue *Q {
[6] | ock_type TLock; | ock K -
7} Queue; [18] ock(&Q >HLock) ;
[ ’ [19] Node *h = Q >Head;
/I @re Queue->Head! =NULL && 201 Node »s = h->n;
N [21] if (s == NULL)
11 Queue->Tai | ! =NULL .
. [22] unl ock( &Q >HLock) ;
(81 void enqueue(Queue *Q data-type v){ .
— : . [23] return EMPTY;
[9] Node *x = al |l oc(sizeof (Node)); _ .
U [24] data_type r = s->d;
(0] x->d = v; [25] Q >Head = s;
[11] | ock( &Q >TLock) ; ’ .
(12] Node *t = O >Tail: [ 26] unl ock(&Q >HLock) ;
o [27] return r;
[13] t->n = x; 28 }
[14] Q>Tail = x; [
[15] unl ock( &Q >TLock) ;
[16] }

Figure C.1: Two-lock queue implementation

seconds. More that)-fold improvement that increases as the complexity of tlodblem and
the number of threads increase.

C.2.2 Optimized Composition for Sets of Substates

One of the costly operations in our framework is the comligmabperator on setX ® Y
(which is implemented using the algorithm froANISS0G). The number of substates that
need to be combined grows exponentially with the number . sk our benchmarks, we
usually compose at mostsets but this is still very costly, in practice.

However, many of the pairs of substates that are combinedteoasistent, and thus do
not contribute substates in the output. We therefore us@myuechniques to avoid combining
many inconsistent substates unnecessarily.

For a stater € X, we say thasignature, (o) is a signature of in X, if for everyo’ € X,
we have the property that fignature, (o) # signature,(¢’) theno ando’ are inconsistent.
We use signatures based on unary predicates to combind setsstates by:

X ®Y = {0, ® 0q | signature, - (c1) = signature, y (oq2)} .

We have observed, in our experiments, that using the opgtineéombination for sets reduces
the amount of useless combinations operations by up to arfati00.

C.3 Case Study: Proving Linearizability for a Two-Lock
Queue

Figure C.1 shows the two-lock queue implementation describedM896. The queue has
Head and Tail pointers, each protected with its own lock. eNbat although the implemen-
tation uses locks, the algorithm allows benign data-racesmse the queue is empty, i.e., the
Head and Tail pointers are aliased.
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Head HLock

Figure C.2: A concrete memory in the two-lock queue impletagon shown in Figur€.1

C.3.1 Concrete Execution

Figure C.2 shows one example of a store occurring in the two-lock queysementation
shown in FigureC.1. The figure shows two consumer threads and two producerd$wrddne
elements of the heap already correlated with the sequetéution are marked witborr.
Locks are depicted by arrows to the locking thread.

prodl andcons2are waiting in the corresponding lock acquire point, waitior the lock.
conslfinished dequeuing an element from the queue and is abouetmseethe lock. Finally,
prod2 has already added an element to the tail of the queue, butdiaenhupdated the Tail
pointer. The source of exponential explosion in the stasesgxploration of the two-lock
gueue algorithm is the correlation between the prograntilmsiof the different threads as in
the coarse-grained concurrency.

C.3.2 The Decomposition Scheme

We refine the decomposition scheme of Secidh1by adding a subdomain to represent the
locks. The subheap contains the objects pointed-to by plabebles and for each lock, the
thread object acquiring it. Figui€.3 shows the the effect of applying this decomposition to
the full state in FigureC.2

The important thing to notice is that all the exponentiallegn in the state space that
existed in the full heap is eliminated by this decompositidime possible subheaps of each
thread become independent of the number of threads in thensyfr more thar2 threads).
The subheaps of the locks subdom&is(}) only contain the thread information @fthreads
at most at a time.

C.3.3 Transformers

The compositions described in Sectiér2.1work here as well. In the added operations of
acquiring and releasing a lock, the subdomain of the cuyexecuting thread is combined
with the locks subdomain and each of the other components.
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consl cons2 Locks

cons!

TLock Tail

corr TLock Tail
@ S

T 15 T3
prodl prod2 corr

Tail

Head Head HLock

1} 15

Figure C.3: The decomposed states abstracting the fudl staigureC.2 The names of the
sub-domains appear above each substate
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