
Tel-Aviv University

Raymond and Beverly Sackler Faculty of Exact Sciences

School of Computer Science

HEAP-LIVENESS-BASED MEMORY MANAGEMENT:

POTENTIAL, TOOLS, AND ALGORITHMS

by

Ran Shaham

under the supervision of Dr. Mooly Sagiv

and the consultation of Dr. Elliot Kolodner

A thesis submitted

for the degree of Doctor of Philosophy

Submitted to the Senate of Tel-Aviv University

September 2003

ii

To my parents, Rivka and Joshua.

To my dearest ones, Yael, Nadav and Avishai.

iii

iv

Abstract

Heap-Liveness-based Memory Management:

Potential, Tools, and Algorithms

Ran Shaham

Doctor of Philosophy

School of Computer Science

Tel-Aviv University

Deallocating memory in a timely manner is a hard (and in general undecidable) problem. Programs

(and programmers) face the problem of determining the exact lifetime of an allocated piece of memory.

Failing to do so may lead either to errors as memory leaks or to poor performance due to consumption

of extra space, or worse errors due to incorrect reuse of needed memory. Automatic garbage collectors

mitigate some of these problems, but even they cannot prevent memory leaks and may be unacceptable

in some environments.

In OO programs, such as Java programs, most of the allocated memory resides in the heap. We

develop automatic techniques to determine when memory allocated in the heap is live at certain point

in the execution, i.e., can be used further along some execution path from this point. We developed

dynamic and static algorithms to determine heap liveness. This information is used to safely deallocate

space and determine when manual memory deallocation is unsafe. The information may also be used to

allow a garbage collector (GC) to reclaim more space.

Our dynamic algorithms profile the memory in order to collect liveness information (including live-

ness of heap-allocated elements) in a feasible manner. The dynamic algorithms were implemented in

the Java Virtual Machine and used to estimate the potential memory savings beyond the ones obtained

by existing GC algorithms. We also show that simple program transformations can be used to achieve

some of these savings.

Our static algorithms identify program points at which memory can be deallocated and when heap

references will not be used further. These algorithms establish temporal properties of the heap, which

is challenging because the addresses of the memory elements concerned are not statically known. The

algorithms were implemented and applied to a set of small interesting Java programs including JavaCard

programs, to show we can actually deallocate memory at compile time.

v

vi

Acknowledgements

I am deeply indebted to my advisor, Mooly Sagiv, for his dedicated supervision, guidance, great

patience and for his endless optimism throughout this work. The imprint of his vast knowledge, scientific

method and enthusiasm on my academic development and on this thesis is deep.

I have been fortunate to have Elliot Kolodner as my second unofficial advisor. I am grateful to

him not only for his dedicated guidance, ideas, and significant contribution, but also for his unflagging

support.

I would like to thank to Michael Pan for contributing to the research presented in in Chapter 4.

Thanks to David Detlefs and Eliot Moss for their help in validating our empirical results for stack

liveness in Chapter 5. Special thanks to Eran Yahav for joining in the research presented in Chapter 6,

and for providing useful comments on earlier drafts of this thesis. I would like to thank to Roman

Manevich and Thomas Stocker for many insights contributing to the research presented in Chapter 6.

Special thanks to IBMHaifa Research Laboratory for its generous financial and technical support. Also,

I would like to thank Giesecke & Devrient, Munich for their assistance and financial support. Finally,

I would like to thank Nurit Dor, Viktor Kuncak, Tom Reps, Noam Rinetzky and Reinhard Wilhelm for

reading earlier drafts of papers, on which this thesis is based.

This research was supported in part by the Israeli Academy of Science and by IBM through the

Faculty Partnership Award.

vii

viii

Contents

1 Introduction 1

1.1 Thesis Contribution . 3

1.2 Outline . 4

2 Preliminaries 5

2.1 Technical Definitions . 5

2.1.1 Drag Definitions . 6

2.1.2 Liveness Definitions . 9

2.1.3 Summary of Drag and Liveness Definitions 11

2.1.4 Program Transformation Definitions . 11

2.1.5 Space Measurement Definitions . 15

2.2 Experimental Methodology . 16

2.2.1 The Benchmark Programs . 16

2.2.2 JVM Instrumentation . 17

3 Drag Potential 21

3.1 Introduction . 21

3.1.1 Measuring Dragged Objects . 21

3.1.2 Characterizing Dragged Objects . 22

3.2 The Scene . 23

3.2.1 Concept . 23

3.2.2 Implementation . 23

3.3 Experimental Results . 24

3.3.1 Dragged Object Size . 25

3.3.2 Reachable vs. In-Use Objects . 25

3.3.3 Drag Time . 29

3.3.4 Distribution of Dragged Objects by Root Kind 30

3.3.5 Distance from the Stack . 30

ix

4 A Drag Tool 31

4.1 Introduction . 32

4.2 The Tool . 32

4.2.1 Drag Profiling . 32

4.2.2 Drag Reporting . 33

4.3 Applying the Tool . 33

4.3.1 Reducing the Drag . 34

4.3.2 Code Rewriting Strategies . 34

4.3.3 Putting It All Together . 36

4.4 Results . 38

4.4.1 Rewritings . 38

4.4.2 Space Savings . 41

4.4.3 Runtime Savings . 43

4.5 Extensions . 43

4.5.1 HUP tool . 44

4.5.2 Lag Information . 44

5 Memory Liveness Potential 47

5.1 Motivation . 47

5.1.1 Main Results . 48

5.2 Liveness Measurements . 49

5.2.1 Algorithm . 51

5.2.2 Implementation . 54

5.3 A Feasible Heap Liveness GC Interface . 54

5.3.1 Algorithm . 55

5.3.2 Implementation . 57

5.4 Experimental Results . 58

5.4.1 The Space Savings due to Liveness . 58

5.4.2 The Space Savings due to Null Assignments 62

6 A Framework for Static Analysis of Local Temporal Heap Safety Properties 65

6.1 Introduction . 66

6.1.1 Local Temporal Heap Safety Properties . 66

6.1.2 Compile-Time Memory Management Properties 67

6.1.3 A Motivating Example . 67

6.1.4 A Framework for Verifying Heap Safety Properties 68

6.2 Specifying Compile-Time Memory Management Properties via Heap Safety Properties 69

x

6.3 Instrumented Concrete Semantics . 71

6.3.1 Representing Program Configurations using First-Order Logical Structures . . 71

6.3.2 Operational Semantics . 73

6.4 An Abstract Semantics . 74

6.4.1 Abstract Program Configurations . 74

6.4.2 Abstract Semantics . 76

6.5 Extensions . 78

6.5.1 Assign-Null Analysis . 78

6.5.2 Simultaneous Verification of Multiple Properties 79

6.6 Empirical Results . 80

6.6.1 Implementation . 81

6.6.2 Benchmark Programs . 82

6.6.3 Results . 82

7 Related Work 85

7.1 Drag and Liveness Information . 85

7.2 Memory Management Techniques . 86

7.3 Software Verification of Safety Properties . 87

8 Conclusion 89

8.1 Further Work . 90

Bibliography 92

A QNF prototype 99

A.1 Overview . 99

A.1.1 QNF Phases . 100

A.2 Free and Assign Null Queries . 100

A.2.1 Specifying a Query . 100

A.2.2 Query Answers . 104

A.3 Using the Prototype . 104

A.4 Known Limitations . 106

xi

xii

List of Tables

2.1 The benchmark programs. 18

3.1 The major kinds of roots recorded. 23

3.2 Reachability integrals (in MB2) and maximum reachable heap size (in MB). 24

3.3 Distribution of total dragged object size with respect to drag time (expressed in MB). . 28

3.4 Distance of dragged objects from Java stack. 30

4.1 Summary of Rewritings. 39

4.2 Reachability integrals (in MB2) and maximum reachable heap size (in MB) after code

rewriting. 42

4.3 Space savings and footprint savings for alternate inputs. 43

4.4 Runtime Savings. 44

4.5 Lag measurements. 46

5.1 Liveness information gathered during the run. y is a stack variable and g is a static

variable. use y, use g denote a use of the variables y,g, respectively. env(x) gives the

object referenced by x. We treat a dereference as two consecutive events. Thus, use x.f

is split into use x and ûse x.f, where ûse is a special operation that only uses the r-value

of x.f. The mutator phase is denoted by M, and the collector phase is denoted by C. . 50

5.2 Computation of the earliest collection time for an object. 53

5.3 Detection of null assignable program points. The set SNULL holds the null assignable

program points. For a heap reference h in the run, P (h) holds the last program point

that used the l-value of h, i.e., either h itself was used as an r-value, or h was assigned.

When the program starts, SNULL is initialized with all program points manipulating

the heap. 55

5.4 Reachability integrals (in MB2) for different liveness kinds. 58

5.5 Maximum reachable heap size (in MB) for different liveness kinds. 60

5.6 The difference (in %) in assign null reachable integral results when considering null

assignable program points computed for two runs with different inputs. 63

xiii

6.1 Predicates for partial Java semantics. 71

6.2 Use events triggered by r-values of expressions in program statements. 74

6.3 Analysis cost for the benchmark programs. Space is measured in MB, and time is mea-

sured in seconds. 81

xiv

List of Figures

1.1 The heap. 1

2.1 Reachability, drag and liveness example. 6

2.2 A trace of the program in Fig. 2.1. 7

2.3 The lifetime of an object. 8

3.1 Total allocation size, total dragged object size and total short-lived object size. 25

3.2 Reachable object size vs. in-use object size for SPECjvm98 benchmarks. 26

3.3 Reachable object size vs. in-use object size for non-SPECjvm98 benchmarks. 27

3.4 Distribution of dragged objects by root kind. 29

4.1 Original reachable/in-use heap size vs. revised reachable/in-use heap size. X-axis de-

notes allocation time in MB. Y-axis denotes size in MB. The thick gray line shows the

reachable size and the thin gray line the in-use size before rewriting. The thick black

line shows the reachable size and the thin black line the in-use size after rewriting. . . 40

4.2 The lag of an object. 45

5.1 A heap snapshot at time t. 54

5.2 Assign null example. 56

5.3 Potential space savings results. 59

5.4 Potential space savings for Analyzer. 60

6.1 A program for creating and traversing a singly linked list. 68

6.2 A heap safety automaton Afree
10,y for free y at line 10. 70

6.3 Concrete program configurations (a) before — and (b) immediately after execution of t

= y.n at line 10. 72

6.4 An abstract program configuration representing the concrete configuration of Fig. 6.3(a). 75

6.5 Concretization, predicate-update, automaton transition updates, and abstraction for the

statement t = y.n in line 10. 77

6.6 A heap safety automaton Aan
10,y,n for assign null to y.n at 10. 79

xv

A.1 A piece of Java code for traversing a list. 100

A.2 QNF Architecture. The current version supplies a front-end, an analyzer and a back-end

for reporting free and assign-null information. The optimizer is not implemented yet. . 101

A.3 A piece of Jimple code for traversing a list. Every Jimple statement is succeeded by

two numbers, which represent a bytecode offset and a line number in the original code.

These numbers appear in the .jimple file, and used to specify free and assign-null queries. 102

xvi

Chapter 1

Introduction

Deallocating memory in a timely manner is a hard (and in general undecidable) problem. Programs

(and programmers) face the problem of determining the exact lifetime of an allocated piece of memory.

Failing to do so may lead either to errors as memory leaks or to poor performance due to consumption

of extra space, or worse errors due to incorrect reuse of needed memory.

Automatic garbage collectors mitigate some of these memory problems, but even they cannot pre-

vent memory leaks and may be unacceptable in some environments. Also, in some environments the

cost of garbage collection can be significant. Typically, a garbage collector (GC) collects objects that

are no longer reachable from a set of root references. However, there are some objects that the program

never accesses again, even though they are reachable. This is illustrated pictorially in Fig. 1.1. Allocated

but not reachable objects can be collected by GC. In-use objects have a future use and must be retained.

Thus, an additional potential for space savings are the reachable objects that are not in-use.

Programmers, compiler writers, and memory manager developers are already aware of this problem.

For example, in live-precise GC [5, 65, 1] the GC is enhanced with local variable liveness information

to reclaim some of the reachable but not in-use objects; in particular, objects solely reachable from dead

stack slots may be collected. Also, some of the JDK implementations are written in a GC-aware fashion,

Figure 1.1: The heap.

1

2 CHAPTER 1. INTRODUCTION

although this is not a good programming practice. For example, in Sun’s implementation of the class

java.lang.Vector a null assignment statement is introduced for the sole purpose of making an

object, which is not in-use object, unreachable [55, Section 1.1].

In this thesis we investigate the potential for improving current memory management techniques

and develop algorithms for that purpose. In particular, we study the gap between the reachable objects

and the reachable but not in-use objects (which we call gap). Closing this gap will allow more space-

efficient programs, consuming space just for objects needed in the run. In addition, we would like to

develop static analysis techniques to reduce GC cost. Thus, we study the following questions:

1. How big is the gap? A small gap indicates that current GCs are good enough to obtain space-

efficient programs, while a large one leaves room for further improvements.

2. There exist techniques allowing GC to partially close the gap (e.g., live-precise GC). We would

like to know how far these techniques are from closing the gap.

3. What kind of static information do we need to further close the gap beyond existing techniques?

4. What effective static algorithms could be developed to further close the gap beyond existing tech-

niques?

5. Can static analysis be used to enable GC to be more effective (i.e., reclaim more space when

invoked), and to eliminate the need for GC in memory constrained environments?

In order to estimate the gap between the reachable objects and the reachable but not in-use objects

we develop dynamic algorithms to profile the memory behavior of a program in a feasible manner. The

dynamic algorithms were implemented in a Java Virtual Machine (JVM). Our empirical results show a

large potential for space savings beyond GC— 42% on the average for a set of Java programs.

Our measurements also give a kind of an upper bound for space savings beyond GC using existing

techniques. We show a small potential (2% on the average) for space savings if static information on

local variables is used, and medium potential if this information is combined with static information on

global variables (9% on the average). The fact that local static information yields small benefits indicate

that such algorithms are inadequate. This is in line with [1] that concludes that the main benefit of such

algorithms is “preventing bad surprises”.

For static information regarding heap paths (of arbitrary length) our measurements show a large

potential for space savings (39% on the average), and when restricting the interface to GC such that the

program is instrumented with null assignments to heap references we obtain a potential of 15% on the

average beyond current GCs. These measurements motivate the development of static algorithms that

reason rather precisely on arbitrary heap paths.

1.1. THESIS CONTRIBUTION 3

Based on our dynamic algorithms we developed a prototype heap profiling tool that attributes the

potential space savings to source locations. The tool is used to guide a user in performing simple space-

saving source modifications. Our experience with the tool shows an actual reduction of 14% on the

average for a set of Java programs.

Finally, we developed a framework for proving temporal properties of heap manipulating programs.

We instantiate the framework with two new static algorithms allowing the automation of the process

of program space savings. These algorithms fall in the domain of compile-time garbage collection

(see Chapter 7), which was studied in the past mostly for functional languages. Our algorithms are

shown to be precise for heap manipulating programming languages allowing destructive updates (e.g.,

Java). Furthermore, our algorithms allow space saving beyond GC, i.e., they allow the deallocation of

reachable objects not needed further in the run. For some of our example programs they even eliminate

the need for GC.

The first algorithm instantiated from the framework detects places in code where free statements

can be safely inserted. The second algorithm detects places in code where statements assigning null to

heap references can be safely inserted, thereby allowing GC to reclaim more space. A prototype imple-

mentation of the static algorithms is applied to a set of Java programs, including JavaCard programs,

to show we can actually insert code to deallocate memory at compile time. Moreover, we show that

using points-to based heap abstraction [3, 63] is insufficient for deallocating memory in our example

programs. Interestingly, our techniques could also be used for languages like C to either deallocate

memory or to find errors by detecting a misplaced call to free that prematurely deallocates an object.

1.1 Thesis Contribution

The contributions of this thesis can be summarized as follows. We also cite for each contribution, where

we first reported it publicly.

1. New algorithms for dynamic measurements of space, which cannot be saved by existing GC [56,

59].

2. Measurements for potential space savings beyond GC showing large potential for heap-liveness-

based memory management, and showing small potential for existing techniques (e.g., live-

precise GC) [59].

3. We show that the information collected by our dynamic algorithms can be utilized to reduce space

in programs, and present a tool allowing a programmer to find places in code to save space [57].

4. We develop a framework for proving temporal properties of heap manipulating programs [61, 60].

4 CHAPTER 1. INTRODUCTION

5. We instantiate the framework for providing new static algorithms for finding space, which cannot

be saved by existing GC [61, 60].

1.2 Outline

Chapter 2 give some preliminaries; we define the terms used throughout the thesis and discuss our

experimental methodology. In Chapter 3 we study the effectiveness of GC, by measuring the potential

space savings if an object is collected as soon it is no longer accessed in the run. In Chapter 4 we present

a heap profiling tool based on the measurements of Chapter 3 for guiding the user in simple space-

saving source modifications. In Chapter 5 we present further dynamic measurements for showing upper

bounds for space savings for existing techniques, and for investigating the potential savings due to the

consideration of static information of arbitrary heap paths. Chapter 6 reports a framework for verifying

temporal heap properties, along with two instances of the framework for providing static algorithms

allowing space savings beyond current GCs. Throughout the thesis we briefly mention related work.

In addition in Chapter 7 we give a more in depth view of the related work. Finally, in Chapter 8 we

conclude and discuss further research.

Chapter 2

Preliminaries

This chapter lays the groundwork for later chapters of this thesis. First, in Section 2.1 we define the terms

used in this thesis. Then, in Section 2.2 we discuss the experimental methodology used for obtaining

empirical results.

2.1 Technical Definitions

We assume a Java-like programming model. Throughout this chapter we use the simple program shown

in Fig. 2.1 as our running example. A program state σi = 〈storei, pti〉 represents the state of the
program, which consists of the store (storei) and the current program point (pti)

1. The store consists of

an execution stack and a heap of objects. A heap object is viewed as a record of fields, where an object

field is associated with a memory location. Thus, an object field has an l-value [43]. An array is a special

kind of an object. In the following definitions we omit the treatment of reference array expressions (e.g.,

of the form a[i]) since it is similar to the treatment of other reference expressions (e.g., of the form e.f).

We use a pictorial representation of program states shown in Fig. 2.2. For example, Fig. 2.2(d) shows

σ4, the program state where the current program point is 4, i.e., just before executing the statement y

= x at line 4. The global store in σ4 consists of an execution stack and two heap objects. The stack

variable x references the object o1, and the stack variable y references the object o2. Both objects o1, o2

consist of a single field named f. The field f of o1 is used to reference o2. The field f of o2 has a null

value, thus does not reference any object.

A trace π = σ1,σ2, . . . is a (possibly infinite) sequence of program states σi. A trace reflects a

program execution. For example, Fig. 2.2(a)-(i) shows a trace π = σ1, . . . ,σ9 of our example program.

Even for this simple straight-line code program, there are other possible traces, for example, the program

can terminate after the allocation at 2 due to memory overflow. For a trace π, and for some i, we define

1We make a simplifying assumption, and do not discuss multithreaded execution in this chapter. We discuss multithreaded

execution in later chapters where applicable.

5

6 CHAPTER 2. PRELIMINARIES

class C {

public C f;

}

class Main {

public static void main(String args[]) {

[1] x = new C();

[2] y = new C();

[3] x.f = y;

[4] y = x;

[5] x = x.f;

[6] if (x == y)

[7] System.out.println{"internal error");

[8] x = null;

[9] y = null;

[10]

}

}

Figure 2.1: Reachability, drag and liveness example.

the trace prefix πi as the program states σ1, . . . ,σi; we also define the trace suffix πi as the program

states σi,σi+1,

2.1.1 Drag Definitions

As stated in Chapter 1, our main motivation is to improve current memory management techniques by

reducing the gap between the reachable objects and the reachable but not in-use objects. We now define

the terms that characterize this gap.

Definition 2.1.1 (Reachable Object) An object is a reachable object in a program state σi = 〈storei, pti〉,
if it is reachable from the set of the root references in storei; root references typically include stack ref-

erence variables and global reference variables2.

Garbage collectors typically reclaim objects based on reachability information. Objects that are

not reachable are considered as garbage and thus collected. For example, o1 is reachable in σ2, . . . ,σ8

shown in Fig. 2.2(b)-(h). It is not reachable in σ9 shown in Fig. 2.2(i), thus it can be collected by a

reachability-based GC, after the program executes the statement at 9.

Definition 2.1.2 (Object Dereference) An object o is dereferenced in a program state σi = 〈storei, pti〉,
if the statement at pti contains an expression e.f and the r-value of e at storei is o.

2Later in the text, in Table 3.1, we list the root kinds for Java.

2.1. TECHNICAL DEFINITIONS 7

σ1 at 1 σ2 at 2 σ3 at 3 σ4 at 4

stack

x

y

stack

x o1

y

stack

x o1

y o2

stack

x o1

f

y o2

(a) (b) (c) (d)

σ5 at 5 σ6 at 6 σ7 at 8 σ8 at 9

stack

x o1

f

y o2

stack

x o1

f

y o2

stack

x o1

f

y o2

stack

x o1

f

y o2

(e) (f) (g) (h)

σ9 at 10

stack

x o1

f

y o2

(i)

Figure 2.2: A trace of the program in Fig. 2.1.

8 CHAPTER 2. PRELIMINARIES

creation last-use

in-use

unreachable

in-drag

Figure 2.3: The lifetime of an object.

For example, o1 is dereferenced in σ3, since the statement x.f = y at 3 contains the expression

x.f and the r-value of x in store3 is o1. Later in the text the terms object use and object access are

also used to denote an object dereference. The last object dereference determines when an object is no

longer needed in a program execution, as captured in the following definition.

Definition 2.1.3 (In-Use Object) Given a trace π, an object is an in-use object in program state σi,

if it is dereferenced in program state σj , for some j ≥ i.

In other words, an in-use object is an object which is still accessed in the program; thus still needed.

As shown in Fig. 2.3, an object is in-use from the time it is created until the time of its last use, i.e., the

time it is last accessed. Clearly, an in-use object is a reachable object; however, a reachable object may

not be in-use. For example, o1 is in-use (and reachable) in σ2,σ3,σ4,σ5. It is not in-use (but reachable)

in σ6,σ7,σ8.

Definition 2.1.4 (In-Drag Object) Given a trace π, an object is an in-drag object in program state

σi, if it is not dereferenced in program state σj , for all j ≥ i.

For example, o1 is in-drag in σ6,σ7,σ8. The term drag is due to Röjemo and Runciman [50]. We

refer to the time interval from the last use of an object until it becomes unreachable as the object’s drag

time. An object with a drag time greater than zero is considered a dragged object. Drag time measures

a potential for space savings independent of the actual GC method or GC implementation.

Drag information allows determining the earliest possible time an object could be collected. There

is one subtle issue, though, with collecting in-drag objects as demonstrated in σ6 (shown in Fig. 2.2(f)).

The object o1 is in-drag in σ6, thus can be collected. However, the reference to o1 from y is still used

in the condition x == y at 7, thus the value of y cannot be discarded by the memory manager. This

situation would require the memory manager to handle “valid dangling references”, in which an object

is reclaimed but references to that object cannot yet be ignored.

The main burden in maintaining ”valid dangling references” stems from the fact that due to reuse

of space, a valid dangling reference and a regular reference may have the same r-value, although the

meaning of these references is different. The valid dangling reference value denotes a dangling reference

to an object that have been deallocated, while the regular reference value denotes a reference to an

2.1. TECHNICAL DEFINITIONS 9

allocated object. Moreover, due to multiple reuse of the same space, the memory manager may need

some mechanism for distinguishing valid dangling references that have the same r-value but refer to

different deallocated objects. Motivated by the above, in the next section we discuss our remedies for

this problem.

2.1.2 Liveness Definitions

One way to alleviate the problem of “valid dangling references” is to delay the reclamation of an object

until its references are no longer used. Indeed, this is the approach we develop in Chapter 5 and Chap-

ter 6. More technically, we focus on the liveness of references (to be defined shortly), and in particular

the liveness of heap references, to determine when an object can be collected. Interestingly, our exper-

imental results (see Section 5.4) show that the potential for space savings if an object is collected as

soon as its references are dead (i.e., all its references are no longer used) is close to the potential space

savings if an object is collected as soon it is in-drag (i.e., after the object is last used).

Before presenting the definitions for reference liveness, recall (e.g., [43]), that a scalar variable var

is live at a program point pt, if there exists a trace π including a program state σi = 〈storei, pt〉 and a
use of var in σj such that (i) i ≤ j and (ii) var is not assigned in σi . . . σj−1. For example x is live at

4, due to the use of x at the statement y = x at 4.

We now present a two-fold extension of this definition. First, we extend the definition to allow

reasoning about “complete liveness information”, i.e., the most precise liveness information given a

program execution. We use this complete liveness information to give theoretical upper bounds on the

impact of liveness information on the space consumption of a program. Second, following our previous

work [55] we extend the liveness definition to express the liveness of arbitrary expressions.

Definition 2.1.5 (Dynamic Location Liveness) A memory location l is dynamically live in a pro-

gram state σi along a trace π if (i) l is used in σj , for some j ≥ i, and (ii) l is not assigned in all

σi, . . . ,σj−1.

For example, the location of the field f of object o1 is live in σ5 due to its use in σ5 (to obtain

the r-value of x.f in the statement x = x.f at 5). Dynamic location liveness allows reasoning about

complete liveness information given a program execution, as it defines the liveness of every location in

every program state along the trace. As usual in liveness definitions, a location, which is not dynamically

live is considered a dynamically dead location. In the same manner, the next definitions in this section

also implicitly define their corresponding negated (dead) notions,, e.g., Definition 2.1.6 also implicitly

defines what is a dynamically dead object.

Later in the text, we use the term heap reference liveness to denote dynamic heap location liveness,

when the heap location stores information of reference type. We do the same for locations used to store

10 CHAPTER 2. PRELIMINARIES

stack and global variables, i.e., we use the terms stack reference liveness and global reference liveness,

to denote dynamic liveness of stack or global variable locations of type reference.

Using Definition 2.1.5 we are now able to determine the time an object can potentially be collected.

Definition 2.1.6 (Dynamic Object Liveness) An object is dynamically live in a program state σi

along a trace π if at least one location among the locations of its references in storei is dynamically

live in σi.

In other words, an object can be collected as soon as its references are no longer used. For example,

o1 is dynamically live in σ2,σ3,σ4,σ5,σ6, and is dynamically dead in σ7,σ8,σ9. Thus, o1 may be

collected in σ7 assuming dynamic liveness information is available.

Our second extension to the liveness definition concerns the liveness of an expression. The following

definitions allow the relating of liveness information to the program code.

Definition 2.1.7 (Dynamic Expression Liveness) An expression e is dynamically live in a program

state σi along a trace π, if (i) e denotes a location l in σi, and (ii) l is used in σj , for some j ≥ i, and

(iii) l is not assigned in all σi . . . σj−1.

For example, the expression x.f is dynamically live in σ5 in our example trace, since x.f denotes

the location of the field f of object o1 in σ5; this location is used (without prior assignment) in σ5 (to

obtain the r-value of x.f in the statement x = x.f).

Definition 2.1.8 (Dynamic Expression Liveness at a Program Point) An expression e is dynami-

cally live at a program point pt in a trace π, if π includes a program state σi = 〈storei, pt〉 such
that (i) e denotes a location l in σi, and (ii) l is used in σj , for some j ≥ i, and (iii) l is not assigned in

all σi . . . σj−1.

For example, the expression x.f is dynamically live at 5 in our example trace, since x.f denotes

the location of the field f of object o1 in σ5; this location is used (without prior assignment) in σ5 (to

obtain the r-value of x.f in the statement x = x.f).

Definition 2.1.9 (Static Expression Liveness) An expression e is statically live at a program point

pt, if there exists a trace π including a program state σi = 〈storei, pt〉 such that (i) e denotes a location

l in σi, and (ii) l is used in σj , where j ≥ i, and (iii) l is not assigned in all σi . . . σj−1.

Clearly, if e is dynamically live at pt in a trace π then it is also statically live. For example, the

expression x.f is statically live at 5. Also, note the distinction we make between static liveness and

dynamic liveness definitions. Static liveness existentially quantifies over traces, while dynamic liveness

reasons about a given trace. Finally, note that static expression liveness and the classic definition of

variable liveness coincide when e is a simple variable expression (e.g., e ≡ x).

2.1. TECHNICAL DEFINITIONS 11

2.1.3 Summary of Drag and Liveness Definitions

In Section 2.1.1 and in Section 2.1.2 we have characterized three dynamic approaches for determining

when an object can be collected given a trace:

Reachability Information An object may be collected as soon it is not reachable from the root set. In

our running example the earliest program state at which o1 is not reachable is σ9.

Drag Information An object may be collected as soon it is in-drag. In our running example the earliest

program state at which o1 is in-drag is σ6. This approach provides the earliest potential collection

time for an object at the price of handling “valid dangling references”.

Object Liveness Information An object may be collected as soon it is dynamically dead. In our run-

ning example the earliest program state at which o1 is dynamically dead is σ7. The potential col-

lection time using object liveness information is between the drag-information-based collection

time and the reachability-information-based collection time. Indeed, object liveness information

provides collection time potentially earlier than the collection time based on reachability infor-

mation, while avoiding the problem of valid dangling references arising with drag information.

Dynamic drag and liveness information require a full trace, thus these techniques are applicable

only for a post-mortem analysis, allowing theoretical upper bounds on space savings beyond the ones

obtained by reachability information. However, both drag and liveness information may be beneficial

for improving a reachability-based GC. In particular, in Chapter 3 and Chapter 4 we show that drag

information provides insights on space-saving code transformations. In Chapter 5 and Chapter 6 we

(i) show that dynamic object liveness information provides potential space benefits similar to the ones

of drag information, and (ii) provide heap-liveness-based static algorithms to automate the process of

locating space-saving code transformations.

2.1.4 Program Transformation Definitions

One way to allow space savings in a program is by transforming the program code, while preserving the

correctness of the original program. Throughout the thesis we explore simple program transformations

that allow space savings. Some of the transformations assume a GC facility, while others may work

either with or without a GC facility. We now define what is a correctness preserving transformation

and define the program transformations used. For simplicity, in the following we consider terminating

programs.

Definition 2.1.10 (Correctness-Preserving Transformation) A program transformation is correctness-

preserving if it preserves the observable properties of the original program, i.e., on a given input the

12 CHAPTER 2. PRELIMINARIES

original and transformed program either terminate and produce the same output, or they both do not

terminate.

This definition assumes no resource limits when running the program, unless the program code

explicitly handles the case of an unavailable resource. For example, a transformation may still be

correctness-preserving even if the original program abnormally terminates due to lack of memory, and

the transformed program completes normally due to some space savings. The idea is that if the original

program completes normally given enough space, then both the original and the transformed program

would produce the same output. Having said that, special care still needs to be taken when the program

code explicitly handles the case of an unavailable resource. For simplicity, we assume that space saving

transformations are not allowed for Java programs that handle a java.lang.OutOfMemoryError

exception raised by an allocation statement.

Let us now look at two important space saving transformations we investigate throughout this thesis.

The first transformation allows us to free an object, by issuing a free statement in the program. The sec-

ond transformation allows the garbage collector to reclaim more space by issuing a statement assigning

null to a reference in the heap graph.

In Java, free statements are not supported, thus we assume the Java language is extended with a

free x3 statement. In Section 6.2 we discuss how free statements could be implemented in Java.

For that purpose of giving semantics to a free statement, we assume a constant domain seman-

tics [20], where Loc is the set of program locations. When the program begins, all program locations

are inactive (i.e., not allocated). As usual, an allocation request is satisfied by taking an inactive location

l and making it active. Garbage collection frees locations by making active locations inactive. Our free

statement also free a location by making it inactive, thus candidate for reuse.

Definition 2.1.11 (Free Property 〈pt, x〉) The property free 〈pt, x〉 holds if there exist no trace π

with a program state σi = 〈storei, pt〉 such that there exists a reference to the object referenced by x in
σi+1, which is dynamically live in σi+1 in π.

The free property allows us to free an object that is referenced solely by dead references. In partic-

ular, if a free property 〈pt, x〉 holds, then it is safe to issue a free x statement immediately after pt.

For example, the free property 〈6, y〉 holds for our example program, since the reference(s) to o1 at 6

are dynamically dead on all possible traces. Thus, free y may be safely inserted after 6, allowing the

reclamation of o1 in before σ7.

For expository purposes, we only present the free property for an object referenced by a program

variable. However, this free property can easily handle the free for an object referenced through an

3for simplicity we assume only a variable expression is included in a free statement

2.1. TECHNICAL DEFINITIONS 13

arbitrary reference expression exp, by introducing a new program variable z, assigned with exp, and

verifying that free z may be issued just after the statement z = exp.

We now prove that issuing a free statement where the free property holds is a correctness-preserving

transformation. We assume the transformed program is deterministic. In the following, P denotes the

original program, and P ′ denotes the transformed program. For convenience, we assume the original

program P includes a “placeholder” program point for inserting the free statement, i.e., we assume a

program point ptf that immediately follows pt, which includes a skip statement in P , and that P′

transforms the skip at ptf to a free x statement. e (σ) denotes the r-value of an expression e

at program state σ. It can be defined by structural induction on e. Finally, a store mapping function

S : Loc∪ Atoms→ Loc∪Atoms maps locations of one store to locations of another store. In addition
such store mapping function serve as the identity function for atomic values.

Lemma 2.1.12 If a free property 〈pt, x〉 holds, and ptf is the program point immediately after pt and

P is transformed to a program P′ so the skip statement in P at ptf is replaced by free x in P ′

at ptf , and π = σ1 . . . ,π′ = σ′
1 . . . are traces in P,P ′, respectively obtained for the same input, and

σi = 〈storei, p〉,σ′
i = 〈store′i, p〉 are program states in π,π′, respectively, then there exist store mapping

functions Si : storei → store′i and S′
i : store′i → storei, such that for every dynamically live expression

e in either σi or σ′
i it holds that e (σi) = Si(e (σ′

i)) and S′
i e (σi) = e (σ′

i).

Proof: In the spirit of Lacey et. al [39] we prove the Lemma by induction on the length k of the trace.

Basis: For the base case (k = 1) we set S1, S′
1 to the identity function. The claim trivially holds for that

case, since both the original and transformed programs start with uninitialized values for all program

locations.

Induction hypothesis: If πi,π′
i are the trace prefixes of the original and transformed program respec-

tively, then there exist store mapping functions Si : storei → store′i and S′
i : store′i → storei such that

for every dynamically live expression e in either storei or store′i it holds that e (σi) = Si(e (σ′
i)) and

S′
i e (σi) = e (σ′

i).

Induction step: In every step we set Si+1(v) = Si(v) and set S′
i+1(v) = S′

i(v) for every location or

atomic value v. The only changes to the store mapping functions take place during allocation. These

changes are described in the first subcase of case 1 below. We note that during deallocation there are

no changes to the store mapping functions. This is since the free property holds for the deallocated

locations, thus deallocation takes place only for dynamically dead locations, which have no effect on

our claims for dynamically live expressions.

For brevity, we show in the following that for Si+1 and every dynamically live expression e,

e (σi+1) = Si+1(e (σ′
i+1)). Showing that for S′

i+1 and for every dynamically live expression e,

it holds that S′
i e (σi) = e (σ′

i) is done in a similar manner.

14 CHAPTER 2. PRELIMINARIES

For the step case (k = i + 1) we distinguish between two cases:

case 1: σi = 〈storei, p〉,σ′
i = 〈store′i, p〉 and p (= ptf . We now consider the possible assignments at p

and their effect on storei, store′i, and also consider the effect of an allocation statement. We distinguish

between a variable expression (of the form x) and a field expression (of the form x.f1.f2.fj), and

assume assignment statements are normalized so a field expression may not appear on both the left hand

and right hand sides of the statement. In the following subcases, y denotes a program variable.

subcase x = new C(): Assuming the allocation in σi is satisfied by a location l, and the allocation in

σ′
i is satisfied by a location l′, we update Si+1 to map l to l’, and update S′

i+1 to map l′ to l (for all other

locations and atomic values Si+1(v) = Si(v), and S′
i+1(v) = S′

i(v)). In addition we assume allocation

returns an uninitialized location, thus x (σi) = Si+1(x (σ′
i)).

subcase x = y: Because y is used at p, it is live in storei, therefore by the induction hypothesis

y (σi) = Si(y (σ′
i)). Si+1 is set to Si, leading to x (σi+1) = Si+1(x (σ′

i+1)).

subcase x = y.f1.f2.fj: Because y.f1.f2.fj is used at p, it is live is storei and therefore by

the induction hypothesis y.f1.f2.fj (σi) = Si(y.f1.f2.fj (σ′
i)). Si+1 is set to Si, leading to

x (σi+1) = Si+1(x (σ′
i+1)).

subcase x.f1.f2.fj = y: Because x.f1.f2.fj−1 is used at p, the expressions

x, x.f1, x.f1.f2,. . . , x.f1.f2.fj−1 are dynamically live in storei, therefore by the induction hypoth-

esis x (σi) = Si(x (σ′
i)), x.f1 (σi) = Si(x.f1 (σ′

i)), x.f1.f2 (σi) = Si(x.f1.f2 (σ′
i)), . . . ,

x.f1.f2.fj−1 (σi) = Si(x.f1.f2.fj−1 (σ′
i)), Also, y is used at p, thus y is dynamically live

in storei, therefore by the induction hypothesis y (σi) = Si(y (σ′
i)). Si+1 is set to Si, leading to

x.f1.f2.fj (σi+1) = Si+1(x.f1.f2.fj (σ′
i+1)).

case 2: σi = 〈storei, ptf 〉,σ′
i = 〈store′i, ptf 〉. We now apply a free x to σ′

i and a skip to σi to get

σ′
i+1,σi+1, respectively. We assume l′x denotes the location of x in store′i. Thus, free x makes the

location l′x inactive in store
′
i+1. From Definition 2.1.11, l

′
x is solely referenced by dynamically dead ref-

erences, thus no dynamically live expression e in σ′i may reference l′x. Thus, making lx inactive in store′i

does not affect the evaluation of dynamically live expressions in either σ′i (or σi), thus the induction

hypothesis still holds.

Lemma 2.1.13 If a free property 〈pt, x〉 holds, then issuing a free x statement immediately after pt

is a correctness-preserving transformation.

Proof: We assume the program can output the r-value of non-reference expressions (as in Java). Thus

if e is used as output, then e is dynamically live, therefore from Lemma 2.1.12 e has the same value in

both P,P ′ and the programs will produce the same output.

Definition 2.1.14 (Assign-Null Property 〈pt, x, f〉) The property assign null 〈pt, x, f〉 holds if there

exist no trace π that includes a program state σi = 〈storei, pt〉 such that the location denoted by x.f in

σi+1 is dynamically live in σi+1 in π.

2.1. TECHNICAL DEFINITIONS 15

The assign-null property allows us to assign null to a dead heap reference (recall a live heap reference

is a dynamically live heap location of type reference, see Definition 2.1.5). Adding an assign-null

statement potentially makes objects unreachable, thus subject to GC. In particular, if an assign-null

property 〈pt, x, f〉 holds, then it is safe to add a x.f = null statement immediately after pt. For

example, the assign-null property 〈5, x, f〉 holds for our example program, since the location denoted
by x.f (the location of field f emanating from o1 in our example trace) is dynamically dead in all

traces in the program state following a program state at 5. Inserting x.f = null after 5 removes the

reference from o1 to o2; thus it allows the reclamation of o2 in σ7, which is earlier than collecting it

in σ9, the original earliest time to collect o2 based on reachability information. As in the free property

case, our assign-null property can also handle arbitrary reference expressions (e.g., of the form exp.f),

by introducing a new program variable z, assigned with exp, and verifying the z.fmay be issued just

after the statement z = exp.

Lemma 2.1.15 If an assign null property 〈pt, x, f〉 holds, and ptf is the program point immediately

after pt and P is transformed to a program P′ so the skip statement in P at ptf is replaced by x.f

= null in P ′ at ptf , and π = σ1 . . . ,π′ = σ′
1 . . . are traces in P,P ′, respectively obtained for the

same input, then there exist store mapping functions Si : storei → store′i and S′
i : store′i → storei, such

that for every dynamically live expression e in either σi or σ′
i it holds that e (σi) = Si(e (σ′

i)) and

S′
i e (σi) = e (σ′

i).

Proof: The proof is similar to the proof of Lemma 2.1.12 with the difference that in case 2 we apply a

x.f = null to σ ′
i and a skip to σi to get σ′

i+1,σi+1, respectively. The induction hypothesis holds in

case 2 since from Definition 2.1.14, x.f = null assigns a null value to a dynamically dead location,

and this is the only change taking place in storei, store′i.

Lemma 2.1.16 If an assign null property 〈pt, x, f〉 holds, then issuing a x.f = null statement im-

mediately after pt is a correctness-persevering transformation.

Proof: Similar to the proof of Lemma 2.1.13, with the difference that now Lemma 2.1.15 is used (instead

of Lemma 2.1.12).

2.1.5 Space Measurement Definitions

This section defines the terms we use when estimating the potential space savings achievable beyond

current GCs. The main idea here is to compute the space consumption of a program (and its potential

reduced space consumption) as independently as possible of the actual GC implementation and the

underlying machine used to run the benchmarks. We now define the related terms.

Definition 2.1.17 (Allocation Time) Allocation time is the number of bytes allocated so far in the

program.

16 CHAPTER 2. PRELIMINARIES

We use allocation time rather than wall-clock time. This is since: (i) GC is typically triggered upon

allocation events, and (ii) it is less machine dependent, e.g., gives the same results on machines identical

up to their CPU clock rate. Such byte-time measurements are standard for the purpose of evaluating a

memory manager (e.g., [64, 1]).

Definition 2.1.18 (Reachability Integral) Reachability Integral is the area under the curve plotted

by the size of the reachable objects over (allocation) time

Definition 2.1.19 (Reachability Footprint) Reachability footprint is the maximum of the curve plot-

ted by the size of the reachable objects over (allocation) time

There are two approaches we take when computing the space consumption of the program. One is to

plot the size of the heap at regular intervals and then measure the time-space product (Definition 2.1.18).

The second is to compute the maximum heap size over time (Definition 2.1.19). Both approaches are

standard for the purpose of evaluating a memory manager (e.g., [1]).

The reachability integral captures an “average space behavior”, while the reachability footprint cap-

tures “extreme space behavior”. In a similar way, we define other space-related integrals and footprints.

For example, the in-use integral is the area under the curve plotted by the size of the in-use objects over

allocation time, and in-use footprint is the maximum of the same curve.

Finally, in order to compute the potential space savings, we compute the ratio between two inte-

grals (or two footprints) reflecting the (potential) space consumption of an application. For example,

in Chapter 3 we divide the in-use integral by the reachability integral to compute the potential savings

due to drag information. Similarly, we also show there the result of dividing the in-use footprint by the

reachability footprint.

2.2 Experimental Methodology

We now discuss the methodology used for obtaining results in Chapter 3, Chapter 4 and Chapter 5,

in which we perform dynamic measurements, i.e., profile the run of a program on an input, and then

analyze the profiling data. In Section 2.2.1 the benchmark programs we use for the experiments are

described, and in Section 2.2.2 we discuss the implementation used to collect the profiling information.

The methodology for obtaining other results that do not involve profiling information is discussed later

in the thesis (see Chapter 6).

2.2.1 The Benchmark Programs

We report results for the 10 benchmarks shown in Table 2.1 in Chapter 3, Chapter 4, and Chapter 5.

In Chapter 6 we consider a different set of benchmarks, due to scalability issues. The second and third

2.2. EXPERIMENTAL METHODOLOGY 17

columns of Table 2.1 show the total number of application classes and the total number of application

source code statements, respectively. As shown in Table 2.1 we concentrate on sequential programs,

although our suggested program transformations are applicable also for multi-threaded programs. We

run the benchmarks with a “typical” input, and in some cases where an investigation of alternative

execution paths of the benchmark program is necessary we run the benchmarks with an “alternative”

input. The number of JDK classes and general SPEC classes shared by all SPECjvm98 benchmarks are

not included in the numbers shown in Table 2.1. There are 32 general SPEC classes having total of 3173

source code statements.

We employed 5 of the benchmarks from the SPECjvm98 benchmark suite [62] and excluded two

of the benchmarks. We use the original SPECjvm98 input (size 100) to run the benchmarks. javac is

a java compiler compiling a large file multiple times. jack is a parser generator generating multiple

copies of itself from an input file describing grammar and actions of jack. Interestingly, this periodical

behavior of javac and jack is reflected in their memory behavior shown in Fig. 3.2. raytrace is

a raytracer that works on a scene depicting a dinosaur. The input model is 340KB in size. db performs

multiple database functions on memory resident database of names, addresses and phone numbers.

jess is the Java Expert Shell System based on NASA’s CLIPS expert shell system. The benchmark

workload solves a set of puzzles commonly used with CLIPS. We did not consider compress or

mpegaudio because they do not use significant amounts of heap memory.

Turning to the other benchmarks, juru and analyzer are internal IBM tools. euler and mc

were taken from Java Grande benchmark suite [34]. Finally, tvla is a three-valued-logic analysis

engine framework for static analysis [41]. We now describe these benchmarks and their input used to

run the benchmarks.

juru performs web indexing. We run it to index several hundred input files. analyzer performs

mutability analysis of Java files. We run it on the (transitive closure of the) java.lang source files

of the JDK. euler is a Euler equations solver. It solves time-dependent Euler equations for flow in a

channel with a ”bump” on one of the walls. The solution is iterated for 200 time steps. mc performs

financial simulation using Monte Carlo techniques to price products derived from the price of an under-

lying asset. The code generates N sample time series with the same mean and fluctuation as a series of

historical data. tvla performs static analysis of programs. We use tvla to apply shape analysis [52]

to analyze a program that merges two singly-linked lists. The analysis results prove that the merge

program indeed outputs a singly-linked list as expected.

2.2.2 JVM Instrumentation

Our profiling information is gathered by instrumenting the JVM to record events of interest. An al-

ternative approach to JVM instrumentation is bytecode instrumentation, where the program code is

instrumented to record the events of interest. In Chapter 4 we describe our experience with bytecode in-

18 CHAPTER 2. PRELIMINARIES

Benchmark Class Stmts Short Description

javac 176 12345 java compiler

jack 56 5106 parser generator

raytrace 25 1479 raytracer of a picture

db 3 512 database simulation

jess 151 4567 expert system shell

euler 5 726 Euler equations solver

mc 15 880 financial simulation

analyzer 258 35489 mutability analyzer

juru 38 2505 web indexing

tvla 218 25264 static analysis framework

Table 2.1: The benchmark programs.

strumentation (see Section 4.5). The benefit of bytecode rewriting is portability, while the main benefits

of using JVM instrumentation are (i) it is easier to profile native code, i.e., code of libraries not written

in Java, and (ii) it gives more control on the execution of the program, e.g., it allows the forcing of GC

at regular intervals.

We use JVM instrumentation to gather profiling information for several algorithms presented in later

chapters. In the following section, we describe the principles of the JVM instrumentation we use. Some

details, which are algorithm-specific are described later in the text, when the algorithm is explained.

Recorded Information

The instrumented JVM is based on Sun’s JVM 1.2 (aka classic JVM) [36]. Its memory system uses

indirect pointers to objects (“handles”); thus, objects can be relocated easily during GC.

We attach a trailer to every object to keep track of our profiling information. We do not count

the space taken for this trailer in our data. The information in an object’s trailer is written to a log

file upon reclamation of the object or upon program termination. An object’s trailer fields include its

creation time, its last use time, its length in bytes, its allocation site, and mark bits to keep track of

root reachability. The length includes the handle, the header and the alignment (i.e., the bytes that were

skipped in order to allocate the object on an 8 byte boundary), but excludes the trailer.

Profiling Information

Here is the set of events we profile. In later chapters we describe for every profiling-based algorithm,

which of the events in this set it actually needs.

2.2. EXPERIMENTAL METHODOLOGY 19

Object Creation Occurs upon allocation of an object (e.g., via new bytecode).

Object Use The following events constitute an object use: (1) getting field information (e.g., via

getfield bytecode), (2) setting field information (e.g., via putfield bytecode), (3) invoking

a method on that object (e.g., via invokevirtual bytecode) (4) entering or exiting a monitor

on that object (via monitorenter, monitorexit bytecodes) and (5) derefencing a handle

to that object.

Reference Use The following events constitute a reference use: (1) getting reference field information

(e.g., via getfield bytecode). (2) getting local variable information (e.g., via aload byte-

code). (3) getting global variable information (e.g., via getstatic bytecode).

GC An invocation of a full garbage collection. When an object is freed, we log all of the information

collected in its trailer.

Reporting Information

After every 100 KB of allocation we trigger a deep GC (a larger interval yields less precise results). A

deep GC consists of the following steps: (1) GC, (2) run finalizers for all objects waiting for finalization,

(3) GC. Forcing finalization ensures instant reclamation of all unreachable objects and removes a source

of non-determinism (since finalization would otherwise occur in a separate thread). When an object is

freed, we log all of the information collected in its trailer. When the program terminates, we perform a

last deep GC and then we log information for all objects that still remain in the heap.

The rules for the collection of Class objects are not the same as for regular objects. Thus, we

exclude them and the special objects reachable from them (e.g., constant pool strings and per-class

security-model objects) from our reports.

Process Reported Information

Depending on the profiling-based algorithm, an analyzer processes the log file to produce the results.

The details of the specific analyzers are described together with the description of the profiling-based

algorithms.

20 CHAPTER 2. PRELIMINARIES

Chapter 3

Drag Potential

We study the effectiveness of GC algorithms by measuring drag time for objects, i.e., the time difference

between the actual collection time of an object and the potential earliest collection time for that object.

Specifically, we compare the objects reachable from the root set to the ones that are actually used again.

The idea is that GC could reclaim unused objects even if they are reachable from the root set. Thus,

we conduct experiments to indicate a kind of upper bound on storage savings that could be achieved.

We also try to characterize these objects in order to understand the potential benefits of various static

analysis algorithms.

The Java Virtual Machine (JVM) was instrumented to measure objects that are reachable, but not

used again, and to characterize these objects. Experimental results are shown for our set of 10 bench-

marks including 5 SPECjvm98 benchmarks. The potential memory savings for these benchmarks is

42% on average, ranging from 4% to 72%.

The remainder of this chapter is as follows. Section 3.1 discusses drag memory. In Section 3.2 we

describe the framework of our experiment. Finally, Section 3.3 gives our experimental results.

3.1 Introduction

We study the effectiveness of GC algorithms by measuring the drag time for objects. Our measurements

provide an upper bound on the storage savings over current GC algorithms that could be achieved. The

bound is not tight since it is not clear that all such dragged objects could be identified by automatic

means. However, a small value for the upper bound would indicate that the GC reclaims unused memory

in a timely fashion.

3.1.1 Measuring Dragged Objects

We instrumented Sun’s JDK 1.2 in order to measure dragged objects. Specifically, we record at regular

intervals (1) the reachable objects, i.e., the objects reachable at the end of the interval and (2) the in-use

21

22 CHAPTER 3. DRAG POTENTIAL

objects, i.e., the objects that are also used subsequent to the interval. As discussed in Section 2.1.5 we

compare the reachability integral and the in-use integral, and we also compare the maximum reachable

heap size and the maximum in-use heap size. The ratio between the reachability integral and the in-

use integral captures the average space savings, and the ratio between the reachability footprint and the

in-use footprint captures the potential for savings in the maximum heap size.

The measurements were conducted on our set of 10 benchmarks. The differences between the

integrals for the reachable and the in-use objects is 42% on average, and ranges from 4% to 72%. The

differences between the reachable footprint and the in-use footprint is 36% on average, and ranges from

4% to 62%.

Our drag measurements can also be used to understand memory allocation behavior (as done in

[50]). We can track memory leaks and tune performance by inspecting the dragged objects (see Chap-

ter 4). Other tools for memory profiling [54, 46] show the heap configuration and allocation frequency;

they also help in tracking memory leaks by allowing the heap to be inspected at points during the ex-

ecution of the program. As noted in [54], tracking memory leaks by inspecting dragged objects is

orthogonal to tracking leaks by inspecting the heap during the course of execution. This is since mea-

surements of drag are based on future information, i.e., the future use of objects, while heap inspection

requires history information, i.e., the current heap paths in the run.

3.1.2 Characterizing Dragged Objects

Our experiments indicate that for some benchmarks, such as jack, most dragged objects are also

reachable from roots, which are not local variables. For these benchmarks, techniques such as live-

precise GC [5, 65, 1] which are based on liveness analysis of local variables, should have a small

impact. Our experiments also indicate that most of these objects are reachable from non-private fields;

dealing with this case would require analysis of the entire program.

Another interesting fact that we found is that dragged objects exist along very deep heap paths (e.g.,

a path length of 1231 for the javac benchmark). Motivated by that, in Chapter 6 we analyze heap

paths, e.g., through shape analysis [17, 52], to reclaim more memory.

Finally, it should be noted that in some programs it might be hard if not impossible for any static

analysis algorithm to identify all dragged objects and to realize the space savings potential. For ex-

ample, in the db benchmark a random access database is maintained. Thus, static analysis of such a

database is expected to conservatively determine that all parts of the database are in use. In Chapter 5

we perform dynamic measurements that allow tighter bounds by considering a feasible GC interface

(see Section 5.3). Indeed, our results there indicate a negligible potential for space savings for the db

benchmark.

3.2. THE SCENE 23

Root Kind Short Description

Java stack root The Java stack is used for maintaining the execution frames of Java methods.

A Java stack root is a memory slot of reference type.

native stack root The native stack is used for maintaining the execution frames of native

(usually C) code. A native stack root is a memory slot of reference type.

static variable root A static reference variable.

other roots For example, Java Native Interface (JNI) global references

(used by native code to access Java objects).

Table 3.1: The major kinds of roots recorded.

3.2 The Scene

3.2.1 Concept

At a high level we associate a time field with every object in order to record drag information. On every

use of an object, we record the current time in its field. Thus, the field always holds the time at which

the object was last used. In order to approximate the time at which an object becomes unreachable, we

frequently trigger a full GC; thus when an object is collected, its drag time is calculated as the difference

between the approximated time it becomes unreachable (i.e., its collection time) and the time it was last

used. We measure time in bytes allocated since the beginning of program execution, assuming that all

uses of an object in the interval between consecutive garbage collection cycles are performed at the

beginning of the interval.

For every dragged object we also report the kind of its roots. The major kinds of roots are shown

in Table 3.1. This experiment may indicate the potential benefits of performing liveness analysis for

some or all of these root kinds, specifically the benefit of performing local variable analysis (e.g., [1]).

In Chapter 5 we further explore the potential for space savings using liveness information for some or

all the root kinds.

In another experiment we measure the minimal distance of a dragged object from a root in the Java

stack. This may indicate whether it is important to statically analyze deep heap paths.

3.2.2 Implementation

We follow the implementation described in Section 2.2.2. In order to compute root kind reachability

information, we keep special mark bits for an object. These mark bits contain one bit for each kind of

root. Object information is updated upon the following events:

Object Creation The creation time, length and allocation site are set.

24 CHAPTER 3. DRAG POTENTIAL

Integral Footprint

potential potential

benchmark in-use reach savings(%) in-use reach savings(%)

javac 1058.19 1644.62 35.66 8.35 9.25 9.74

jack 86.33 216.59 60.14 0.57 1.39 58.81

raytrace 253.73 656.89 61.37 2.39 4.35 45.10

db 497.63 805.31 38.21 7.60 9.60 20.90

jess 108.53 392.97 72.38 0.61 1.41 56.70

euler 1936.73 2148.82 9.87 6.72 7.76 13.40

mc 11423.94 11923.18 4.19 78.93 82.27 4.07

analyzer 276.08 674.09 59.06 1.38 3.59 61.64

juru 55.31 88.25 37.33 0.46 0.88 47.61

tvla 318.12 569.29 44.12 1.51 2.40 37.07

average 42.23 35.50

Table 3.2: Reachability integrals (in MB2) and maximum reachable heap size (in MB).

Object Use The last use time is set.

GC Before GC we clear the special markbits for all objects1. During the phase of GC that marks roots,

we set the special markbits for the objects directly reachable from the roots according to the kind

of root. At the completion of the trace phase, we perform a special trace phase per root kind in

order to propagate the marks according to reachability. During the special trace phase for the

Java stack root kind, we also measure the (minimal) distance from the Java stack for each object,

which is reachable from the Java stack.

3.3 Experimental Results

We now present our empirical results. In Section 3.3.1 we explain how dragged objects have a significant

impact on the space consumption despite the fact that most allocated objects are not dragged objects.

Then, in Section 3.3.2 we give the ”high-level” results. We compare the size of the reachable heap to the

size of the in-use objects over time, and show a large potential for space savings attributed to dragged

objects.

1Clearing the special markbits before every GC means that we report only the kind of roots that kept the object reachable

in the interval just before it became unreachable. We have found that considering all possible root kinds from the last moment

the object is used adds “white noise” to the results. For example, if an object dies at a young age, the native stack slot used to

hold the address of the object during allocation may still hold the object’s address.

3.3. EXPERIMENTAL RESULTS 25

Figure 3.1: Total allocation size, total dragged object size and total short-lived object size.

In order to understand what strategies and information is needed to reduce the drag time for object,

we further analyze dragged objects as follows: Section 3.3.3 analyzes dragged objects with respect

to their drag time, as for example it may be beneficial to focus on dragged objects with large drag

drag. Section 3.3.4 and Section 3.3.5 classify dragged objects by their root kind and their distance

from the stack, respectively. This information may hint on the kind of static analysis needed to reduce

drag time for objects. For example, a dragged object on a long heap path may require static analysis

techniques such as shape analysis.

3.3.1 Dragged Object Size

Fig. 3.1 shows total number of bytes allocated and total number of bytes attributed to dragged objects for

each benchmark. We define a short-lived object to be an object that is allocated and becomes unreach-

able in the same measurement interval; thus, there cannot be any memory savings for theses objects.

Short-lived objects are excluded from the subsequent results, since these objects are not reachable at the

sampling points.

Although in four benchmark less than 10% of the total object allocation are dragged objects, the

total size of the dragged objects is large compared to the total size of the reachable objects, (as shown

in Section 3.3.2), so there is a potential for a large savings in memory.

3.3.2 Reachable vs. In-Use Objects

Table 3.2 compares the reachable object size with the in-use integral, and the maximum reachable heap

size with the maximum heap size when considering just the in-use objects. The potential for savings is

26 CHAPTER 3. DRAG POTENTIAL

Figure 3.2: Reachable object size vs. in-use object size for SPECjvm98 benchmarks.

3.3. EXPERIMENTAL RESULTS 27

Figure 3.3: Reachable object size vs. in-use object size for non-SPECjvm98 benchmarks.

28 CHAPTER 3. DRAG POTENTIAL

Pct. javac db jack raytrace jess euler mc analyzer juru tvla

90% 0.9 0.1 0.3 0.9 0.1 0.1 0.1 0.1 0.1 0.1

80% 6.5 0.2 33.1 6.3 0.1 0.3 0.1 0.1 0.1 0.1

70% 8.7 0.4 51.9 22.0 1.5 0.7 0.1 0.1 0.1 0.1

60% 11.6 0.9 60.5 22.0 6.4 0.9 0.1 0.1 0.1 0.2

50% 13.4 1.2 75.3 22.0 12.8 1.3 0.1 0.2 0.1 0.2

40% 18.1 4.7 148.5 35.2 18.4 1.5 0.1 0.2 0.1 0.5

30% 21.1 8.8 149.6 44.5 302.5 1.9 0.1 0.3 0.1 1.6

20% 26.0 9.7 150.7 90.5 302.5 2.1 0.1 0.9 0.1 5.6

10% 35.9 10.6 151.7 94.4 307.5 2.5 0.1 3.2 0.1 13.5

Table 3.3: Distribution of total dragged object size with respect to drag time (expressed in MB).

42% on the average for the reachable integral, and 36% on the average for the maximum heap size.

Fig. 3.2 and Fig. 3.3 compare the reachable object size and the in-use object size over time. We

now provide details on the memory behavior of the benchmarks. We see that the javac benchmark

operates in several cycles. These cycles correspond to the fact that javac benchmark compiles a large

file several times (see Section 2.2.1). For every cycle there is an initial phase of allocating memory,

in which almost every reachable object is in-use. As the program continues, the difference in sizes

between the reachable and the in-use objects increases until the end of the cycle. At that time the

memory consumption of the program drops at once, and another cycle begins.

For the db benchmark, after an initial phase of allocating memory, the difference between the reach-

able and the in-use objects is constant until the program allocates 54.52 MB. After that point the size

of the reachable objects remains more or less constant, but fewer objects are used, so that the differ-

ence between the reachable and in-use object sizes increases. jack behaves similarly to javac, and

raytrace behaves similarly to db. The cycles in jack correspond to the fact the jack is a parser

generator generating multiple copies of itself (see Section 2.2.1). For jess the difference between

the reachable and in-use object sizes is constant at around 0.92 MB. This is further explained in Sec-

tion 3.3.3.

For euler the size of the reachable objects behaves similarly to db. However, the size of the

in-use objects grows and shrinks in cycles of small width and small height. This is further explained

in Section 3.3.3. For mc the size of the reachable heap keep growing until the end of the program,

and the size of the in-use objects behaves similarly. This suggests that almost all program objects are

traversed when the program is about to terminate. juru operates in cycles and behaves similarly to

jack. analyzer and tvla behaves quite similarly to jess.

3.3. EXPERIMENTAL RESULTS 29

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

javac db jack raytrace jess

other

no root

stack root + static root

stack root + native root

static root

stack root

Figure 3.4: Distribution of dragged objects by root kind.

3.3.3 Drag Time

Table 3.3 shows the distribution of dragged object size with respect to drag time. We further discuss

some of the results. For jess 30% of the dragged object size (which is 0.72 MB) has a drag time of

at least 302.5 MB; this is nearly the lifetime of the program. Thus, these objects are used for their last

time near the beginning of the program, yet they are not collected until the program terminates. As

noted before, there is also a constant difference of 0.92 MB between the reachable and in-use objects.

These two facts explain how a seemingly insignificant amount of dragged objects (less than 1% of the

total allocation size) can result in a 72% savings in the reachable integral (i.e., 72% of average space

savings). Similarly, for raytrace we see that close to 40% of the dragged objects have drag time,

which is nearly the lifetime of the program. In Chapter 4 we focus on these objects to obtain an actual

33% space savings in raytrace.

euler, mc, analyzer, and juru have objects with small drag time. In euler and mc it leads to

small potential in space savings. For analyzer and juru the potential is still large due to relatively

small reachable heap size.

30 CHAPTER 3. DRAG POTENTIAL

Benchmark Average Maximum

Program Distance Distance

javac 20.47 1231

jack 6.78 25

raytrace 22.19 1412

db 6.24 20

jess 6.72 28

Table 3.4: Distance of dragged objects from Java stack.

3.3.4 Distribution of Dragged Objects by Root Kind

Fig. 3.4 shows for the SPECjvm98 benchmarks the distribution of the dragged objects by the types of

the roots that keep them reachable. In most of the SPECjvm98 benchmarks (3 out of 5), most of the

dragged objects have just one kind of root, the Java stack. For example, in javac close to 88% of the

dragged objects are reachable solely through the Java stack.

For db, close to 97% of the dragged objects are reachable from the Java stack, as well as from

the native stack. db maintains a database; all objects in the database are reachable from the database

root object of type spec.benchmarks. 209 db.Database. This database root object is directly

referenced from the native stack for the entire course of the program; thus, all database objects are

considered as native stack reachable. In this case, live-precise GC should have little impact.

For the jack benchmark, close to 30% of the dragged objects are reachable only from static vari-

ables. Another 50% of the dragged objects are reachable from both the Java stack and from static

variables. Investigating the bytecode we found that the relevant static fields have public access; thus,

in order to perform liveness analysis for these global variables the whole program would need to be

analyzed. This could be very expensive and is difficult to apply to Java.

3.3.5 Distance from the Stack

Table 3.4 shows the average distance and maximum distance of dragged objects from the Java stack

for the SPECjvm98 benchmarks. For 3 out of 5 benchmarks the average distance for dragged objects is

around 6.5. This seems like a reasonable number for object-oriented languages. javac and raytrace

benchmarks have a much larger average distance from the Java stack. This is due to the presence of long

linked lists (of length 1231 and length 1412, respectively) containing dragged objects. In javac this

linked list represents the bytecodes of a method being compiled, while in raytrace this linked list

represents the vertices of a complex polygon. Using shape analysis to analyze these paths may provide

a memory savings. In Chapter 6 we rely on shape analysis to save memory along arbitrary heap paths.

Chapter 4

A Drag Tool

In Chapter 3 we measured the drag time for objects and tried to characterize the dragged objects. The

results showed a potential for space savings from 4% to 72% for our set of benchmarks if objects could

be collected at their last use. We now describe a prototype tool based on drag measurements that is

aimed to help in actual reduction of space.

Our tool measures the drag time of objects for a Java application. Drag time indicates potential sav-

ings. Then the tool sorts the allocation sites in the application source code according to the accumulated

potential space saving for the objects allocated at the sites. A programmer can investigate the source

code surrounding the sites with the highest potential savings to find opportunities for code rewriting that

could save space. Our experience shows that in many cases simple code rewriting leads to actual space

savings and in some cases also to improvements in program runtime.

Experimental results using the tool and manually rewriting code show average space savings of 14%

for our set of Java benchmarks. We have also classified the program transformations that we have used

and argue that in many cases improvements can be achieved by an optimizing compiler assuming whole

code availability.

In follow-up research done in collaboration with M. Pan as part of his Master’s thesis [45] a further

drag tool named HUP was built. HUP is a portable tool based on bytecode instrumentation and on a

standard profiling interface (JVMPI), while the tool reported here is based on JVM instrumentation.

HUP is available at hup.sourceforge.net. In Section 4.5 we report our experience with HUP for measur-

ing lag information, the difference between the time an object is allocated and the time the object is first

used.

The remainder of this chapter is as follows. Section 4.2 describes our prototype tool and explains

how drag information could be used for space savings. Section 4.3 presents the framework of the

experiment. In Section 4.4 empirical results are discussed. Finally, Section 4.5 discusses our experience

with the HUP tool.

31

32 CHAPTER 4. A DRAG TOOL

4.1 Introduction

Our goal is reducing the size of the reachable heap at every sampling point, by reclaiming reachable

objects that are not in-use. Thus, our prototype tool obtains drag information for objects as described

in Chapter 3. Then, in an offline phase, dragged objects are partitioned according to their allocation

site. For each allocation site we sum the drag space-time product of every dragged object. The drag

space-time product, or drag for short, is the product of the size of the object and the time the object is

reachable but not in-use. Allocation sites having a large drag suggest a potential for significant space

savings. Therefore, our tool displays allocation sites according to their drag.

Our profiler tool can be used either directly by a programmer or to produce input for a profile-based

optimizer. Currently, we use the tool to direct manual code inspection of the allocation sites having a

large drag. Examining these sites we have found that three kinds of simple program transformations

have been effective in achieving space savings: (i) explicitly assigning null to a dead reference to an

object, (ii) removal of dead code, and (iii) lazy allocation of objects. These program transformations

cannot harm the space consumption of a program, and in most cases save space. In Chapter 6 we take a

further step in the process of automating the program transformations, by developing a static algorithm

for assigning null to dead heap references.

The tool was applied to our set of benchmarks. Although we were not familiar with the code of these

benchmarks, it took us just a few hours to understand the results produced by the tool and to rewrite

the code. Also, only few lines of code had to be rewritten. Of course, we believe that an application

programmer using our tool on his own code could do a better job, both in terms of speed (of rewriting)

and more importantly in terms of space (reduction of drag).

Code rewriting for the benchmarks we considered reduces the total drag by 45% on average, leading

to an average space saving of 14%. In some cases the runtime cost is also reduced by 1%-2%. This

is mainly due to: (i) GC is invoked less frequently and (ii) allocation and initialization are avoided for

objects that are never used.

4.2 The Tool

The heap-profiling tool consists of two phases: (i) an online phase, in which we measure the dragged

objects, and (ii) an offline phase, in which we analyze the results and produce a list of allocation sites of

dragged objects sorted by their potential space savings.

4.2.1 Drag Profiling

In the first online phase, an instrumented JVM runs a Java application and outputs information on

dragged objects to a file. This is the same instrumentation described in Section 2.2.2. For the purpose

4.3. APPLYING THE TOOL 33

of dragged object profiling, object information is updated upon the following events:

Object Creation The creation time, length and allocation site are set.

Object Use The last use time and last line of code at which the object is used (hereafter, called last use

site) are set.

4.2.2 Drag Reporting

The second offline phase analyzes the file, producing a list of allocation sites sorted by their potential

for drag reduction. In particular, we partition the dragged objects according to their allocation site, and

for each allocation site we sum the drag of every dragged object. Allocation sites having a large drag

suggest a potential for significant space savings.

We found that it is best to have information regarding the nested allocation site of a dragged object,

i.e., the call chain leading to its allocation. Thus, we partition the dragged objects into groups according

to their nested allocation site, associating with each group the sum of the drag for all objects allocated

at its site.

Sometimes an allocation site is used in many contexts and a large drag may be distributed among

several smaller drag groups when partitioning solely according to nested allocation site. Thus, we also

do a coarse-grained partition according to the allocation site.

Sometimes the last-use site, i.e., the site at which a dragged object was last used, may provide a hint

at the code rewriting strategy best-suited for reducing its drag. For example, if a dragged object remains

reachable due to dead references, the last-use site may hint at the program point where a reference to

that object becomes dead. Thus, we also partition dragged objects according to nested allocation site

and last-use site. In the Euler benchmark (see Table 2.1), the last-use site is used to determine which

reference variable prevents an object from being reclaimed.

A special case for a dragged object is an object that is never used. We partition these never-used ob-

jects according to nested allocation site and according to allocation site. Our experience so far suggests

that a large drag caused by never-used objects is a “sure bet” for code rewriting.

4.3 Applying the Tool

We applied the drag reduction tool to our set of Java programs to determine the allocation sites in those

programs contributing the most to the drag. Then we carefully analyzed the source code around those

sites in order to find program transformations that reduce the drag. Interestingly, we found that a very

shallow understanding of the program suffices to reduce a significant part of the drag. Moreover, we

believe that future optimizing compilers may be able to automatically conduct these transformations.

34 CHAPTER 4. A DRAG TOOL

In this section we describe the drag reducing program transformations and how we used the tool to

direct the choice of the proper transformations.

4.3.1 Reducing the Drag

The code was manually investigated in order to determine the reasons for drag. Since we were unfamiliar

with the code of the sample programs, we employed JAN [47], a tool for analyzing and understanding

Java programs. We used two kinds of information provided by JAN: (i) the class hierarchy graph, and

(ii) the program call graph. This kind of information is also provided by many other Java compilers and

analysis tools.

We used the class hierarchy graph for accelerating source browsing, e.g., locating overloaded meth-

ods. We used the program call graph to check the applicability and validity of program transformations.

For example, assigning null to a dead reference variable requires inspection of every possible use of that

variable. Using the program call graph, we can check that some uses of the variable, which appear in the

source code, do not actually occur at runtime, e.g., if the graph shows that the method is never invoked.

Source transformations were applied only after a thorough inspection of the source code and vali-

dation that the transformation was applicable using the program call graph. We also checked that the

original and revised benchmarks produce identical results on several inputs. In order to measure the

effect of code rewriting on the running times of the programs, the original and revised versions were

invoked and their running times also compared.

The code of the benchmarks as well as selected classes of the JDK itself were rewritten using the

code rewriting strategies discussed below in Section 4.3.2. The tool was reapplied to the revised code

in order to measure the resulting drag, and determine the actual space savings. Sometimes, the results

revealed more opportunities for drag reduction; in that case, another cycle of code rewriting and applying

the tool took place.

4.3.2 Code Rewriting Strategies

Surprisingly enough (at least for us), it appears that a few simple code rewriting techniques suffice for

reducing much of the drag. The first technique is simply assigning the null value to a reference that is

no longer in use, i.e., a dead reference (see Definition 2.1.14). This reference may be a local variable,

an instance field, a static field, or an element within an array of references. The second technique is

removing dead code, i.e., code that has no effect on the result of the program. Our main interest is in

dead code that produces dragged objects. The third technique is delaying the allocation of an object

until its first use; thus, avoiding memory consumption for objects that are never used.

4.3. APPLYING THE TOOL 35

Assigning Null

In many cases a dragged object remains reachable after its last use due to a dead reference. We inspect

the code for all possible uses, identify the places where the reference stops being used, and insert a

statement assigning null to that reference. The details depend on the kind of variable containing the

reference.

• For a local reference variable we inspect the containing method for possible uses.

• For an instance field we inspect the code according to visibility modifiers of the field, e.g., for a
private field we inspect only the code of the containing class. Sometimes the program call graph

is used to determine the context for a possible use. As noted earlier, we use program call graph

information to invalidate possible uses in unreachable methods.

• For arrays of objects we have found cases where an element becomes dead. For almost all cases
the array is being used to implement a data type similar to a Java vector and an element is being

removed from the array [55].

Our tool provides information about the last line of code at which an object is used. This helps to

find the place in the code where the object is no longer in use.

Dead Code Removal

Dead code [43] does not affect the result of the program. Using a feature of the tool showing objects that

are allocated but never used, we find allocation sites where all objects are never-used. These never-used

objects may be referenced by local variables, instance variables and array elements of type reference.

We eliminate the allocation of these objects. This optimization is not always possible as it also removes

the invocation of the constructors for these objects. We must guarantee that the constructor is the only

code that references the object and that the constructor has no influence on the rest of the program, e.g.,

it does not update other objects or static variables and it cannot throw an exception for which there may

be a handler in the surrounding code.

Lazy Allocation

Using the same feature of the tool showing objects that are allocated but never used, we find allocation

sites that produce many never-used objects. If these objects are big contributors to the drag, then we

change the code to allocate them lazily. In particular, we eliminate the original allocation of the object

and the variable that would have referenced the object remains null or is assigned null. Then, at every

possible first use of the object, there is a test to check whether the variable is null. If so, the object is

allocated. We find possible first uses in the source code by employing the program call graph.

36 CHAPTER 4. A DRAG TOOL

In general determining that postponing the allocation of an object does not change program seman-

tics is hard. For example, the object could be shared by several threads. Thus, we only employ this

transformation for the easy cases. In particular, the constructor may not depend on program state, e.g.,

it must have no parameters or parameters that are constant, and it may not read program state (for ex-

ample, access a static variable) in its body. Also, the constructor may not throw exceptions for which

there may be handlers in the surrounding code. For all of the objects for which we applied this transfor-

mation, the only possible exception was java.lang.OutOfMemoryError for the allocation itself;

thus, we only had to check that there were no handlers for java.lang.OutOfMemoryError in the

program.

Lazy allocation may add runtime overhead for the checks at every possible first use. Thus, there

is a risk that it could be detrimental for some program inputs, and care needs to be taken to apply it

only when most of the objects allocated at the dragged allocation site are never-used. Nevertheless, this

transformation has a potential for reducing space and drag. We used it for just one of the benchmarks,

jack. Interestingly, later versions of jack (now called javacc [33]) employ a similar rewriting for

lazy allocation of objects.

4.3.3 Putting It All Together

Given the output of the drag-profiling tool we need to determine which program transformation to

apply. Our experience shows that the first step is to find the method and the reference variable on

which attention should be focused. We choose a nested allocation site with high drag. The bottom

level is likely to be an allocation site in JDK or other library code, e.g., allocating a character array in

java.util.String. We follow the call chain upwards looking for the first place in application code

where a reference to the allocated object (or to an object containing the allocated object) is stored in a

variable. We call this place the anchor allocation site. We call the variable the anchor variable.

Our experience suggests that the second step is to employ the output of the tool to investigate the

lifetime characteristics of dragged objects at the anchor allocation site. In particular, the tool outputs

the drag size due to objects allocated at a given anchor allocation site without any recorded use (the last

use time is zero). The tool also partitions the dragged objects at that anchor allocation site according to

their drag time, in-use time, and collection time. We have identified the following patterns of behavior:

1. All of the drag at the site is due to objects that are never-used. In some cases the only use of an

object may be in its constructor and its in-use time is very short; we also consider these as objects

that were never used.

2. Most of dragged objects at the site are never-used.

3. Most of dragged objects at the site have a large drag.

4.3. APPLYING THE TOOL 37

4. The variance of the drag for the objects at the site is high.

Based on the lifetime pattern at the anchor allocation site, one of the drag reducing program trans-

formations might be applicable. The first pattern suggests the dead code removal transformation. The

second pattern suggests the lazy allocation transformation. The third pattern suggests that assigning null

(to a dead reference) is the most applicable transformation.

The fourth pattern suggests that there may be no program transformation that might help. For

example there may be a large repository of objects as in the db benchmark. A query on the repository

leads to a use of an object. However, each query accesses only a small number of objects and the queries

are spread out over the whole application. Nevertheless the repository and all objects in it need to be

kept as the exact queries cannot be predicted in advance.

These patterns do not cover all of the possibilities. However, most repeated more than once and we

found them to be useful for finding applicable program transformations. Below we provide examples

from the benchmark programs for each of the transformations and try to relate them to the patterns.

Sometimes, when applying these transformations, the value of the anchor variable is assigned to other

variables. These variables also have to be considered when applying the transformation.

Assigning Null

In juru the largest drag for an allocation site is 12.4MB2. Character arrays of 100K elements are

allocated at this site and assigned to a local variable. Each of these arrays is in-use for 200KB of

allocation and then in-drag for another 200KB until it becomes unreachable. Assigning null to this local

variable after its last use eliminates this drag and leads to a 38% reduction in total drag for juru. The

drag time of these objects is short, but the objects are large so these objects contribute significantly to

the drag space-time product. This fits the third pattern.

Dead Code Removal

In the raytrace benchmark there are 17 allocation sites with the same behavior: an object is allocated

and assigned to an array element; the object’s last use occurs during its initialization, which is done in its

constructor. Thus, all objects allocated at these sites are considered never-used. Each of these allocation

sites contributes 13.5MB2 to the drag. This behavior fits the first pattern and we apply the dead code

removal transformation.

With the help of the program call graph, we verify that these objects referenced by the array elements

are never accessed outside their constructors. We also verify that the constructors do not have any side

effects. Thus, the code for the allocation of these objects can be removed. This leads to a 44% reduction

in total drag.

38 CHAPTER 4. A DRAG TOOL

Lazy Allocation

In the jack benchmark, the three allocation sites producing the largest drag are all in the same con-

structor. More than 97% of the drag for these three allocation sites is due to objects that are never-used.

This behavior fits the second pattern and we apply the lazy allocation transformation.

We turn to the constructor’s code. One Vector and two HashTable objects are allocated at

the allocation sites. References to each of these data structures are assigned to instance fields. These

instance fields have package visibility, i.e., they are visible to all package members. Thus, we scan the

package for possible uses. It turns out that all uses of these instance fields occur in their containing

class. We eliminate the allocations and before every possible first use of one of the instance fields, we

add a test to check whether the allocation has already been done. If not, the allocation is performed.

4.4 Results

First, we discuss our rewritings to the benchmark programs. Then, we present the results of applying

our heap profiling tool to the benchmark applications: the savings in space and the savings in time.

4.4.1 Rewritings

Table 4.1 summarizes the rewritings applied to our set of benchmarks. For every benchmark we show the

applicable rewriting techniques (Rewriting Strategy column), and the drag saving due a rewriting (Drag

Saving column). Column Reference Kinds shows the kind of references for which a rewriting strategy

was applied. Reference kind information gives initial insight to the code that needs to be inspected

before applying a rewriting.

Code removal is applied to three benchmarks (raytrace, jess, and mc). For example, in

raytrace we notice that some of the coordinates in an octagon face class are created but never used.

This code inefficiency is due to modularity. Thus, we remove the code allocating these coordinates; this

removal leads to 44% drag savings.

Lazy allocation is applied to just one benchmark (jack). In a class maintaining an automaton state,

two hashtables, and one vector are lazily allocated, so their allocation takes place only when these are

first accessed. As noted in Section 4.3.2, later versions of jack (now called javacc) employ a similar

rewriting for lazy allocation of objects.

Finally, assign null is applied to all benchmarks except jack. This fact motivates our work de-

scribed in Chapter 6 where we further explore how to automate the process of assigning null to dead

references. For example, in javac we find for a parser class that assigns null to a statically dead refer-

ence field that maintains a large string yields 10% of drag savings. In Chapter 6 we statically analyze a

slice of the code of javac to infer the same assign null automatically.

4.4. RESULTS 39

Benchmark Rewriting Reference Drag

Program Strategy Kinds Saving

(%)

javac assign null protected 9.95

jack lazy allocation package 54.49

raytrace code removal private array 44.39

assigning null private 8.63

jess assigning null private array 1.60

code removal public static final 1.00

(JDK rewrite)

code removal private static 6.57

euler assigning null package array 75.26

mc code removal local variable + 65.07

private

assigning null private array 26.51

analyzer assigning null local variable + 27.81

private static

juru assigning null local variable 37.65

Table 4.1: Summary of Rewritings.

40 CHAPTER 4. A DRAG TOOL

Figure 4.1: Original reachable/in-use heap size vs. revised reachable/in-use heap size. X-axis denotes

allocation time in MB. Y-axis denotes size in MB. The thick gray line shows the reachable size and the

thin gray line the in-use size before rewriting. The thick black line shows the reachable size and the thin

black line the in-use size after rewriting.

4.4. RESULTS 41

4.4.2 Space Savings

For each of the benchmarks Fig. 4.1 shows graphs of the reachable heap size (sum of the sizes of the

reachable objects) and the in-use heap size (sum of the sizes of the in-use objects) before and after the

rewriting of the code. The thick gray line shows the reachable size and the thin gray line the in-use size

before rewriting. The area between these two lines is the initial drag. The thick black line shows the

reachable size and the thin black line the in-use size after rewriting. In most cases the thin gray line and

the thin black line coincide and cannot be differentiated. The area between the thick gray line and the

thick black line is the space that is saved by the source rewriting optimizations.

Looking at the graphs for SPECjvm98 benchmarks, we see that the size of the reachable heap

is reduced for jack and there is a rather small reduction in the reachable heap size for javac. In

addition, for both benchmarks, the reachable and in-use object size lines for the optimized version occur

“earlier” in the graph than for the original run. This is due to the elimination of some unnecessary

allocation.

For raytrace the size of the reachable heap is reduced by a constant size of 1.4MB, and the in-

use object size remains the same. This is due to the fact that a similar amount allocation of long-lived

never-used objects has been eliminated. However, there is practically no shift in the graph since 1.4MB

is less than 1% of the total number of bytes allocated during a run.

There is a potential for drag reduction by rewriting some of the JDK code. We demonstrate drag

reduction due to JDK rewriting in jess benchmark. In particular, we rewrite the code of a JDK con-

verter class to eliminate the references to an alias table after this table is last used, thus enabling earlier

collection of that table. In principal, JDK rewriting is applicable for all of the benchmarks. The size of

the reachable heap for jess is reduced by a constant size, similarly to raytrace.

The graph for db is not shown. There is no space savings for this benchmark.

Turning to the other benchmarks, for euler the size of the reachable heap for the original run has

a constant size, because all allocations are done in advance. By assigning null to dead references we

were able to reduce most of the drag (75% of it), and the optimized heap size almost coincides with the

in-use object size.

In mc the size of the reduced reachable heap is even below the size of original in-use object size.

This is due to the fact that many allocations are eliminated.

In juru there is a constant reduction of 200KB in the reachable heap size. juru acts in cycles,

with the same reduction on every cycle.

Lastly, for the analyzer benchmark the size of the reachable heap is reduced only after allocating

the first 98MB in the program. This occurs because objects used for the first part of computation (first

98MB of allocation) are not needed later in the computation.

In Table 4.2, we show measurements of the drag reduction and the total space savings. The original

42 CHAPTER 4. A DRAG TOOL

Integral Footprint

drag space footprint

benchmark in-use reach savings(%) savings(%) in-use reach savings(%)

javac 1033.58 1561.64 9.95 5.05 8.35 9.20 0.52

jack 77.93 137.21 54.49 36.65 0.53 0.87 37.57

raytrace 252.03 441.40 53.03 32.80 2.41 2.99 31.17

db 497.63 805.31 0 0 7.60 9.60 0

jess 108.54 366.90 9.17 6.63 0.62 1.34 4.94

euler 1932.08 1984.56 75.26 7.64 6.76 6.94 10.61

mc 11022.10 11064.12 91.58 7.20 78.93 79.07 3.89

analyzer 275.64 563.19 27.81 16.49 1.38 3.11 13.55

juru 55.81 76.35 37.65 13.49 0.46 0.67 24.17

average 44.87 14.00 14.05

Table 4.2: Reachability integrals (in MB2) and maximum reachable heap size (in MB) after code rewrit-

ing.

drag is the difference between original reachable and in-use integrals. The amount of drag reduction is

the difference between the original reachable integral and reduced reachable integral. Drag savings is

computed as the ratio between the amount of reduced drag and the original drag.

The average space savings for all the benchmarks (including db) is 14% and the average drag

savings is 51%. In mc the size of the reduced reachable heap is close to size of the original in-use

objects. This leads to 92% savings of drag, since we saved most of original drag.

We also ran each benchmark on an input other than the one initially analyzed by the tool. Results

are shown in Table 4.3. For raytrace, euler, mc, juru and analyzer space saving results were

similar to the ones reported for the initial input. For javac, jack and jess some space is saved,

although less than the amount of space saved for the initial input. We believe that this shows that the

transformations work for multiple inputs, noting that the approximation of the amount of space savings

in general should be based on measurements for a set of inputs.

We informed the developers of juru and analyzer of our results. These developers will be

integrating our suggested rewritings into future versions of their code. Interestingly, we also noted that

later versions of jack application, which is now called javacc, use similar rewritings to the ones we

suggest.

Finally, the drag information for tvla was investigated using HUP (see Section 4.5). Applying

assign-null transformations to the code, 10% space savings and 21% footprint savings are reported

4.5. EXTENSIONS 43

Integral Footprint

reduced original space reduced original footprint

benchmark reach reach savings(%) reach reach savings(%)

javac 546.00 565.09 3.38 7.03 7.06 0.41

jack 74.64 91.52 18.45 0.80 1.13 29.65

raytrace 1057.20 1529.39 30.87 3.14 4.54 30.79

db N/A N/A 0 N/A N/A 0

jess 128.41 129.88 1.14 2.01 2.03 0.84

euler 9790.88 10552.93 7.22 15.08 17.00 11.32

mc 7088.99 7638.18 7.19 63.29 65.85 3.89

analyzer 1183.40 1421.45 16.75 3.85 4.50 14.54

juru 107.96 120.73 10.58 0.71 0.90 21.96

average 10.62 12.6

Table 4.3: Space savings and footprint savings for alternate inputs.

in [45].

4.4.3 Runtime Savings

Our motivation here is to show that the rewritings aimed at space savings have no negative impact on

the runtime of the benchmarks. The measurements were done on a 400MHz Pentium-II CPU with

128MB main memory running Windows NT 4.0 on Sun HotSpot Client 1.3 [37]. For the SPECjvm98

benchmarks, juru and analyzerwe used a 32MB initial heap size and a 48MB maximum heap size.

For euler and mc we used a 64MB initial heap size and a 96MB maximum heap size. Each reported

result is the average of 10 runs.

Table 4.4 shows the runtime savings for the optimized benchmarks. The average runtime for all of

the benchmarks is reduced by 1.2%. This indicates that on the original and alternate input our space

savings transformation have a small positive impact on the performance of the benchmarks.

4.5 Extensions

This section describes a follow-up research done in collaboration with M. Pan as part of his Master’s

thesis. In this section we elaborate on a more portable drag tool named HUP we built and used in order

to extend our research. In Section 4.5.1 we discuss the HUP tool. Then, in Section 4.5.2 we describe

lag information measurements, allowing to reason on when objects can be lazily allocated.

44 CHAPTER 4. A DRAG TOOL

Sun HotSpot 1.3 Client

Benchmark Reduced Original Runtime

Program Runtime Runtime Saving

(sec.) (sec.) (%)

javac 26.569 26.538 -0.12

jack 14.961 15.11 0.99

raytrace 16.07 16.452 2.32

jess 11.868 12.116 2.05

euler 42.772 43.605 1.91

mc 34.154 34.884 2.09

juru 23.51 23.69 0.76

analyzer 15.958 15.898 -0.38

average 1.2

Table 4.4: Runtime Savings.

4.5.1 HUP tool

HUP (Heap Usage Profiler) is a profiling tool for measuring drag and lag information. The motivation

for HUP is having a portable tool. While the drag tool reported so far in this chapter is based on JVM

instrumentation, and thus not portable, HUP is made portable by basing it on bytecode instrumentation

and on a generic JVM profiling interface, named JVMPI [69]. JVMPI provides a (limited) predefined

set of profiling events. Example events are object allocation and object deallocation by GC. The idea

is that JVMPI will be supported by many JVMs. Bytecode instrumentation is used to profile events

not supported by JVMPI. For example, an object use event is profiled using bytecode instrumentation.

One benefit of HUP’s approach is that an application can be profiled on several different Java Virtual

Machine implementations, in order to better tune its performance.

As in our prototype drag tool, HUP consists of two phases. The first online phase profiles informa-

tion using JVMPI and bytecode instrumentation. The information is logged to a file. The second offline

phase analyses the log file, and allows a user to perform queries regarding the lag and the drag of the

profiled application.

4.5.2 Lag Information

The lag is defined as the difference between the time an object is allocated and the time the object is

first used [50]. This is shown in Fig. 4.2(a). The motivation for lag measurements is to understand

whether objects can be lazily allocated so these are allocated just before their first use. We would like to

4.5. EXTENSIONS 45

(a)

creation first-use

lag time

unreachable

(b)

creation
first-use (≡ constructor invocation)

unreachable

(c)

creation
(+ constructor

invocation)

first-use

lag time

unreachable

Figure 4.2: The lag of an object.

understand: (i) what is the potential space savings due to lag information, and (ii) the feasibility of lazy

allocation of lagged objects.

Röjemo and Runciman [50] conducted lag measurements for Haskell, a lazy functional language.

They note that “Under a call-by-need regime, we should not be surprised that many cells are used as soon

they are created – zero lag”. Not surprisingly, our experience with Java, an object-oriented imperative

language, shows similar findings. Thus, we slightly modify the definition of lag (to be described shortly)

and then use HUP to measure lag of objects in several benchmarks.

The zero lag problem in Java stems from the fact that the constructor of an object is invoked im-

mediately upon the allocation of an object. A method invocation for an object is considered as a use of

an object, thus all objects have zero lag as shown in Fig. 4.2(b). Other programming languages (e.g.,

C) avoid the zero lag problem since there is no coupling between the allocation of an object and the

initialization of the object.

Fig. 4.2(c) shows a simple remedy to avoid the zero lag problem, by ignoring the first use event of an

object, i.e., not considering the invocation of the object constructor as a use event. As a result, the next

use event, either taking place in the code of the constructor (e.g., initialization of a field of that object),

or taking place after the constructor method returned, is considered as the first use of the object. In [45]

we discuss other remedies to the zero lag problem, e.g., ignoring the constructor invocation as well as

ignoring the uses of the object occurring in the code of the constructor. We do not detail the alternative

remedies here, since the empirical results for these alternatives (given in [45]) are quite similar to the

46 CHAPTER 4. A DRAG TOOL

Benchmark Lag/Reachable

javac 13.77%

jack 5.01%

raytrace 7.76%

db 29.76%

jess 0.12%

Table 4.5: Lag measurements.

results reported here.

Table 4.5 shows lag measurements for 5 SPECjvm98 benchmarks. As explained, we consider the

lag shown in Fig. 4.2(c), i.e., the time from the constructor invocation of an object to the time the object

is first used. The second column shows the ratio between the lag space integral and the reachability

integral. For lag space integral we plot the size of objects allocated but not used yet as a function over

allocation time, and compute the integral under the curve. We see that the lag ranges from 0% to 30%,

i.e., up to 30% of the total space is due to objects allocated but not yet used.

The only benchmark we obtain space savings due to rewritings aimed at lag reduction is Raytrace.

We apply lazy allocation (see Section 4.3.2) to objects, which were not found to be used immediately

after their allocation. These transformations lead to a total of 2.5% space savings due to reduction in

lag for objects in Raytrace. For other benchmarks, e.g., db the lag is due objects in a random-access

repository, which are accessed long after allocated and initialized. Due to the undetermined nature of

access to objects it is not clear how to rewrite the code to reduce the lag.

Chapter 5

Memory Liveness Potential

We study the potential impact of different kinds of liveness information on the space consumption of

a program in a garbage collected environment, specifically for Java. The idea is to measure the time

difference between the actual time an object is collected by the garbage collector and the potential ear-

liest time an object could be collected assuming dynamic location liveness information were available.

We focus on the following kinds of liveness information: (i) stack reference liveness (local reference

variable liveness in Java), (ii) global reference liveness (static reference variable liveness in Java), (iii)

heap reference liveness (instance reference variable liveness or array reference liveness in Java), and (vi)

any combination of (i)-(iii). We also provide some insights on the kind of interface between a compiler

and GC that could achieve these potential savings.

We use our instrumented JVM to measure dynamic location liveness information. Experimental

results are given for our set of 10 benchmarks. We show that in general stack reference liveness may

yield small benefits, global reference liveness combined with stack reference liveness may yield medium

benefits, and heap reference liveness yields the largest potential benefit. Specifically, for heap reference

liveness we measure an average potential savings of 39% using an interface with complete liveness

information, and an average savings of 15% using a more restricted interface.

The remainder of the chapter is as follows. Section 5.1 gives motivation for our experiments. Sec-

tion 5.2 describes our algorithm for measuring the impact of liveness information and its implementa-

tion, assuming an idealized GC interface. Section 5.3 presents the algorithm and implementation for

measuring the impact of liveness in the presence of a restricted GC interface. In Section 5.4 we discuss

the benchmark programs and compare the empirical results of both experiments.

5.1 Motivation

In Chapter 3 we measure the potential space savings if an object is collected as soon as it is in-drag,

i.e., immediately after it is last dereferenced. However, as explained in Chapter 2 collecting in-drag

47

48 CHAPTER 5. MEMORY LIVENESS POTENTIAL

objects requires the memory manager to handle the burden of “valid dangling references”. One way to

alleviate this burden, is to delay the reclamation of an object until its references are (dynamically) dead;

thus, we measure the potential space savings if an object is collected as soon its references are dynam-

ically dead. Interestingly, our experimental results indicate that dynamic location liveness information

provides potential space benefits similar to the ones obtained for drag information.

It is well known that liveness information may aid in earlier reclamation of objects, by reducing

the set of root references, or by removing dead references (i.e., references that are not subsequently

used prior to redefinition) from the heap graph [43]. For example, in [1] liveness information for local

reference variables is used to remove dead local reference variables from the root set; thus, some objects

could be identified as unreachable and garbage collected earlier.

However, the impact of general liveness on the space collected by GC is as yet unknown. Moreover,

the overhead of having GC consult liveness information may be significant. In fact, as noted in [28], it

is not clear how to represent heap liveness information in a feasible manner.

In this chapter we study the above questions for Java programs. The information is gathered dy-

namically for a given run for different kinds of liveness information. Thus, these experiments indicate

a kind of upper bound on storage savings that could be achieved assuming static liveness information is

available.

5.1.1 Main Results

We estimate the effect of general liveness information on space consumption of Java applications. We

measure the impact of following kinds of liveness information: (i) stack reference liveness (local refer-

ence variable liveness in Java), (ii) global reference liveness (static reference variable liveness in Java),

(iii) heap reference liveness (instance reference variable liveness or array reference liveness in Java),

and (vi) any combination of (i)-(iii).

Our instrumented Sun JVM is used in order to measure dynamic location liveness information.

Experimental results are given for our 10 benchmarks, including 5 of the SPECjvm98 benchmark suite.

The information for our measurements is gathered dynamically during a program run. Specifically, we

compare the objects reachable from the root set to the ones that are reachable from the root set when

ignoring dead references. Thus, these experiments indicate a kind of upper bound on storage savings

that could be achieved assuming static liveness information is available.

We measure the impact of liveness assuming two possible interfaces for communicating liveness

information to the garbage collector: (a) an idealized interface, where the dynamic location liveness is

recorded for individual heap references (b) a more restricted interface, in which dead heap references

are assigned null immediately after their last use.

In a first experiment we consider the idealized interface to GC, which gives an upper bound on any

static liveness analysis algorithm combined with any interface to GC. While in some cases this upper

5.2. LIVENESS MEASUREMENTS 49

bound may turn out to be too loose, we found that for stack reference and global reference liveness

analysis, this upper bound suggests small to medium benefits. On average stack reference liveness

information buys 2% savings, and combining it with global reference liveness information the savings

increases to 9%. Thus, although these liveness schemes suggest known practical solutions both with

respect to the static analysis algorithm (at least for stack reference liveness), and with respect to the

GC interface, the importance of having these kinds of liveness information is not clear considering their

limited impact on space savings.

For heap reference liveness, the idealized interface yields an average 39% potential savings. In this

case the question is what part of the potential is achievable considering a “realistic” heap reference

liveness analysis and a “reasonable” interface to GC. Using the more restricted but more realistic assign

to null interface we measured a potential savings of 15% on average. This leads us to believe that a

practical algorithm achieving significant space savings may be possible.

The results of these experiments with the restricted interface also give insights for the kind of infor-

mation required by heap reference liveness analysis. For example, interprocedural information seems

to have major effect on the expected impact. On average we get 6% potential savings assuming only

intraprocedural information, and this increases to 15% when interprocedural information is available. In

addition, combining heap reference liveness and global reference liveness information using the same

restricted GC interface gives negligible additional benefits (less than 0.5% on average) to the potential

benefits obtained just by heap liveness.

5.2 Liveness Measurements

In this section we present a method for measuring the impact of general liveness schemes on space

consumption in a garbage collected environment. Our major observation for approximating the impact

of liveness information on space consumption is that there is no need to directly compute dynamic

location liveness information. In a nutshell, we found that instead it is sufficient to identify the last

use of any of the references reaching an object. In Section 5.2.1 we show that this can be done with

a single run of the program by keeping a constant overhead per object (around 60 bytes in our current

implementation), and by extending the tracing phase in GC to compute the necessary information1.

In [28, 29], the impact of stack reference liveness and global reference liveness on space consump-

tion is computed by running the program once to track uses and definitions of references, writing them

to a log file. The resulting log file is analyzed in a backward direction to directly compute dynamic

liveness information for references, and finally the information is communicated to a second run of

the program. Our technique has the following advantages over the above technique. First, it alleviates

1For a non-tracing GC, this may require a separate tracing phase which is specialized to compute just the necessary infor-

mation for the liveness measurements.

50 CHAPTER 5. MEMORY LIVENESS POTENTIAL

Property Intended Meaning Phase Event Update

heapL(obj) obj is referenced by a

live heap reference at time

heapL(obj)

M ûse x.f heapL(env(x.f)) = Current Time

ûse a[i] heapL(env(a[i])) = Current Time

stackL(obj) obj is referenced by a

live stack root at time

stackL(obj)

M use y stackL(env(y)) = Current Time

stackL∗ (obj) obj is reachable along

a path starting from a

live stack root at time

stackL∗ (obj)

C init liveness stackL∗ (obj) = max(stackL(obj), stackL∗ (obj))

trace children stackL∗ (obj) = max

(
stackL∗ (father),
stackL∗ (obj)

)

stackR(obj) obj is referenced by

a stack root at time

stackR(obj)

C trace roots
stackR(obj) = Current Time

stackR∗ (obj) = Current Time

stackR∗ (obj) obj is reachable along

a path starting from

a stack root at time

stackR∗ (obj)

C trace children stackR∗ (obj) = Current Time

staticL(obj) obj is referenced by a

live static root at time

staticL(obj)

M use g staticL(env(g)) = Current Time

staticL∗ (obj) obj is reachable along

a path starting from a

live static root at time

staticL∗ (obj)

C init liveness staticL∗ (obj) = max(staticL(obj), staticL∗ (obj))

trace children staticL∗ (obj) = max

(
staticL∗ (father),
staticL∗ (obj)

)

staticR(obj) obj is referenced by

a static root at time

staticR(obj)

C trace roots
staticR(obj) = Current Time

staticR∗ (obj) = Current Time

staticR∗ (obj) obj is reachable along

a path starting from

a static root at time

staticR∗ (obj)

C trace children staticR∗ (obj) = Current Time

otherR(obj) obj is referenced by

an other root at time

otherR(obj)

C trace roots
otherR(obj) = Current Time

otherR∗ (obj) = Current Time

otherR∗ (obj) obj is reachable along

a path starting from

an other root at time

otherR∗ (obj)

C trace children otherR∗ (obj) = Current Time

Table 5.1: Liveness information gathered during the run. y is a stack variable and g is a static variable.

use y, use g denote a use of the variables y,g, respectively. env(x) gives the object referenced by x.

We treat a dereference as two consecutive events. Thus, use x.f is split into use x and ûse x.f, where ûse

is a special operation that only uses the r-value of x.f. The mutator phase is denoted by M, and the

collector phase is denoted by C.

5.2. LIVENESS MEASUREMENTS 51

the problem of the infeasible amount of dynamic liveness information (as reported in [28, 29]). As an

immediate result our measurements can handle local variable references, global variable references and

heap references without further approximations. Second, the implementation is simpler as there is no

need for a mechanism to match a reference in the first run to its corresponding reference in the second

run for communicating liveness information. Finally, running the program once allows us to handle

non-deterministic (e.g., multithreaded) applications.

5.2.1 Algorithm

Our algorithm operates on the program states. It computes liveness information while the program

(mutator) executes: (i) when the mutator uses the store, we record local information for objects, (ii) when

the garbage collector traverses the reachable heap it propagates global information, and (iii) when an

unreachable object is collected we compute liveness information.

Table 5.1 shows the information gathered during the run of the program. As usual, time is measured

in bytes allocated so far in the program. All the information is maintained at the level of an object.

Columns property and intended meaning describe the properties we maintain for every allocated ob-

ject. We classify references as follows: (i) stack references correspond to references on the Java stack,

(ii) static references correspond to references in static variables, (iii) other references correspond to ref-

erences on the native stack, and other special root references, and (iv) heap references correspond to

references in instance variables and references in arrays. For each type of reference there are four kinds

of properties: (i) liveness (the last time a reference of this type to the object is used), (ii) direct reach-

ability (the last time the object was directly reachable from a variable of this reference type), (iii) path

liveness (the last time the object was reachable through a path starting at a live reference of this type),

and (iv) reachability (the last time the object was reachable through a path starting at this reference

type). Table 5.1 includes only reference properties needed for computing the liveness impact of stack,

static and heap references. For example, stackL∗(obj) keeps the time an object is still reachable along a

path starting from a live stack root. Such information is used to determine when obj could be collected

assuming stack reference liveness information were available. Interestingly, associating the necessary

information with objects avoids the need to keep track of all the references in a run and is one of the

keys to keeping the amount of information required for the analysis feasible.

The phase column indicates which properties are updated during GC, and which properties are up-

dated as result of mutator execution. Specifically, the liveness properties are updated during mutator

execution, and the direct reachability, reachability and path liveness properties during GC. A property

is updated upon events shown in event column. The update column shows the new value for the corre-

sponding property when the event occurs. In the following, we provide details for property update.

We trigger GC after every 100 KB of allocation in order to propagate the liveness and reachability

information at regular intervals. In Section 7 we discuss alternative ways we could obtain reachability

52 CHAPTER 5. MEMORY LIVENESS POTENTIAL

information and liveness information along heap paths.

Actions in the Mutator

When an object reference is used, we update the local information associated with the object. In par-

ticular, for a use r event, where r is either a heap, stack or a static reference, we set the corresponding

liveness property of the object referenced by r, heapL, stackL, or staticL to be the current time. We

treat a dereference as two consecutive events. Thus, use x.f is split into use x and ûse x.f, where ûse is

a special operation that only uses the r-value of x.f. Also, def x.f is split into use x andd̂ef x.f, where

d̂ef is a special operation that only uses the l-value of x.f. Array reference expressions are handled

similarly.

Interestingly, since we associate the liveness properties with the objects, we only need to update

the properties for the use x and ûse x.f events. These events are sufficient to determine the last time a

reference to the object of a particular type (stack, static, or heap) was used. Notice, that after the last

use through a particular reference type, the corresponding property will hold the time of last use and the

property will not be updated further.

Actions in the Collector

When the collector runs, we update the direct reachability, reachability and path liveness properties of

the objects. Specifically, the collector establishes the invariants that these properties correctly describe

the status of the heap. For example, when the collection is complete, stackL∗(obj) is set to the last time

that obj is reachable along a path starting from a live stack root.

Here are the details. We update the path liveness properties for each kind of root. We begin by setting

the path liveness properties of each object to the maximum of its current value and the object’s liveness

property. Next, we propagate path liveness information from each root to its children. In particular, if

object A references object B, and the path liveness property of A is greater than that of B, then we set

B’s value to A’s and continue propagating from B. To keep the cost of the propagation proportional to

the number of references, we scan stack roots in decreasing order of the path liveness property value of

their referenced object. We do the same for static roots. Note that the above implies we visit an object

at most twice.

We also update the direct reachability and reachability properties for each kind of root. First we scan

the roots and for the objects referenced by the roots, set the directly reachable and reachable properties to

the current time according to the kind of the root. For example, if obj is referenced by a stack variable,

we set stackR(obj), stackR∗(obj) to the current time. Then, we propagate reachability information

from each root to its children. For example, if obj is along a path starting from a stack variable, we set

stackR∗(obj) to the current time. Notice that the propagation of reachability and liveness information

5.2. LIVENESS MEASUREMENTS 53

Information Collection Time

none max(stackR∗(obj), staticR∗(obj), otherR∗(obj))

heap liveness max(heapL(obj), stackR(obj), staticR(obj), otherR(obj))

stack liveness max(stackL∗(obj), staticR∗(obj), otherR∗(obj))

static liveness max(staticL∗(obj), stackR∗(obj), otherR∗(obj))

stack + static liveness max(stackL∗(obj), staticL∗(obj), otherR∗(obj))

heap + stack liveness max(heapL(obj), stackL(obj), staticR(obj), otherR(obj))

heap + static liveness max(heapL(obj), staticL(obj), stackR(obj), otherR(obj))

heap + stack + static liveness max(heapL(obj), stackL(obj), staticL(obj), otherR(obj))

Table 5.2: Computation of the earliest collection time for an object.

can be combined; thus, in total we visit an object at most twice, scanning the roots once.

Computing Impact of Liveness

When an object is collected, we evaluate the earliest time it could have been collected assuming each

of the liveness schemes. Table 5.2 shows how to compute these times from the object properties. We

now demonstrate two cases using Fig. 5.1, which shows a snapshot of the heap during the run at time t

before GC is invoked.

Assuming stack reference liveness information were available, an object could be collected when it

is no longer reachable along a path from a live stack root, and also not reachable from other roots (e.g.,

a static root). For example, in Fig. 5.1, if stackL∗(o3) < t, then o3 could be collected since it is not

reachable from other roots. However, o4 could not be collected at time t since it is still reachable from

a static variable (i.e., staticR∗(o4) ≥ t).

An object’s heap liveness property provides information as to whether there is a live reference to

it from another object. However, to determine whether the object can be collected, we also need to

make sure that it is not directly reachable from a root. For example, o3 could be collected at time t if

heapL(o3) < t. However, o4 could not be collected at time t since it is still directly reachable from a

static variable (i.e., staticR(o4) ≥ t).

We compute the average space savings for a particular liveness scheme using the ratio of two reach-

ability integrals. The numerator is the integral for the liveness scheme: we plot the size of the reachable

objects assuming the scheme as a function of time and compute the integral under the curve. The

denominator is the reachability integral assuming no liveness information.

54 CHAPTER 5. MEMORY LIVENESS POTENTIAL

other

stack

x
o1 f1

o3
f3 o4

y
o2

f2

static

g

f4

Figure 5.1: A heap snapshot at time t.

5.2.2 Implementation

We use the instrumented JVM described in Section 2.2.2. For the purpose of dynamic location liveness

profiling, object information is updated upon the following events:

Object Creation Creation time and length fields are set.

Reference Use Information is updated according to the reference kind: (1) getting reference field in-

formation (e.g., via getfield bytecode) updates the heapL property of the referenced object.

(2) getting local variable information (e.g., via aload bytecode) updates the stackL property of

the referenced object. (3) getting global variable information (e.g., via getstatic bytecode)

updates the staticL property of the referenced object.

GC Our implementation follows Section 5.2.1.

When the program terminates our analyzer reads the output log file, and then follows Table 5.2 to

compute the earliest time an object could be collected assuming a particular liveness scheme. Then, the

reachability integral for each of the liveness schemes is computed.

5.3 A Feasible Heap Liveness GC Interface

In this section we consider a feasible interface to communicate heap reference liveness information to

GC, in which dead references are assigned null immediately after their last use. This interface does not

require any changes to GC. As noted in [1, 55] such an interface may not be practical. However, we

believe that it allows us to estimate the potential savings expected with a reasonable interface.

5.3. A FEASIBLE HEAP LIVENESS GC INTERFACE 55

Event Action

p: use x.f
SNULL = SNULL \ P (lval(x.f));

P (lval(x.f)) = p

p: def x.f P (lval(x.f)) = p

p: use a[i]
SNULL = SNULL \ P (lval(a[i]));

P (lval(a[i])) = p

p: def a[i] P (lval(a[i])) = p

Table 5.3: Detection of null assignable program points. The set SNULL holds the null assignable

program points. For a heap reference h in the run, P (h) holds the last program point that used the

l-value of h, i.e., either h itself was used as an r-value, or h was assigned. When the program starts,

SNULL is initialized with all program points manipulating the heap.

The algorithm operates in two runs. In the first run we detect the places in the code where assign-

ments to null potentially reduce the space, while preserving program semantics, and the program is

modified accordingly. Then, the modified program is executed on the same input, in order to evaluate

the space savings. Unlike the algorithm in Section 5.2, this technique is limited to applications with

deterministic behavior, due to the second execution of the program.

5.3.1 Algorithm

The idea is to run the program once to identify dynamically dead reference expressions. Clearly, if an

expression e is dynamically dead after pt in a trace π, then e may be assigned null every time pt is

executed, since the value e is not used after pt. In order to simplify the presentation, we assume the

code is normalized so each program point manipulates at most one heap reference expression. The Java

bytecode satisfies this requirement. In addition, our algorithm guarantees that e is assigned null after pt

is executed, only if e is included in the statement in pt. Thus, further on we use the term null assignable

program points, since it is clear to which expression a null value is assigned. Finally, the algorithm

could be refined to assign null to a heap reference expression occurring in a specific calling context. For

example, in our implementation explained in Section 5.3.2, program points are actually sequences of

calling contexts.

At the outset our algorithm assumes that all program points that manipulate the heap are candidates

for null assignment. As the program runs, it determines the points where null assignment is impossible,

and eliminates them from consideration. At program termination, the remaining points are the null

assignable ones. This algorithm is summarized in Table 5.3.

In particular, the algorithm starts by inserting all candidate program points in SNULL. Then it runs

56 CHAPTER 5. MEMORY LIVENESS POTENTIAL

void foo(DL x) {
DL y,t;

y = x;

t = null;

p_1: while (y != null) {
t = y.prev;

// y.prev = null;

if (t != null) {
p_2: process(t.data, y.data);

// t.data = null;

}
p_3: t = y.next;

// y.next = null;

y = t;

}
}

x, y o1

data

next o2

data

next
prev

o3

data

next
prev

o4

data

prev

o5 o6 o7 o8

(a) (b)

Figure 5.2: Assign null example.

the program. Upon a use x.f event at program point p, the algorithm concludes that the previous point

that used the location denoted by x.f cannot be assigned null, since it is currently used. Therefore,

we remove the previous program point from the set of null assignable program points SNULL. In

addition, the last program point that used the location denoted by x.f (i.e., P (lval(x.f))) is set to the

current program point p. Upon a def x.f event at program point p, we simply set P (lval(x.f)) to the

current program point p. Usage or a definition of an array reference expression is handled similarly.

When the program terminates, SNULL contains the null assignable program points with respect to this

run. Finally, the program is modified to assign null to the heap reference expressions in program points

included in SNULL.

The modified program is executed a second time on the same input and its space consumption is

measured. Finally, we compare the space consumption with that in the first run to evaluate the savings.

We demonstrate the algorithm using the code fragment in Fig. 5.2(a) that processes a doubly linked

list elements in pairs. We assume the heap at program point p 1 shown in Fig. 5.2(b). The code is

annotated with null assignment for null assignable reference expressions. For example, at p 3 the ex-

5.3. A FEASIBLE HEAP LIVENESS GC INTERFACE 57

pression y.next is null assignable. This is since all next fields used at p 3 (i.e., those emanating

from o1, . . . , o4) have no subsequent use in this code fragment. Assuming no further uses of this list in

the program, y.next is null assignable at p 3. Similarly, t.data is null assignable at p 2. Lastly,

y.data is not null assignable at p 2 since the data field emanating from o1, . . . , o4 will be subse-

quently used in the next iteration through the t.data expression.

5.3.2 Implementation

In our instrumented JVM, we attach a trailer to every object to keep track of calling contexts. For

every reference instance variable, the trailer contains an entry for the last calling context that used the

location of this reference. For feasibility we limit the calling context length to at most k calls. For longer

contexts, we only record the suffix of the k last calls (we ran our experiments for k = 0, 1, 2, 3.)

Our implementation does not modify the program, but instead the JVM is modified to record the fact

that null could be assigned at the proper program points/calling contexts. Since the label of a program

point could change across runs, we represent a program point p by the methodm containing p, the offset

of p in m, and also the opcode in p. Opcode is also used to represent a program point, since our under-

lying JVM uses byte code rewriting (e.g., it replaces getfield bytecode with a getfield quick

non-standard bytecode for faster code execution). We also track information about executed calling

contexts, and only these contexts are candidates for a null assignment. Finally, program points that

manipulate references subsequently manipulated by native program points are not candidates for null

assignment, since a static analysis algorithm is usually not expected to analyze native code.

Object information is updated as described in Table 5.3 upon the following events:

Heap Reference Use getting reference field information (e.g., via getfield or aaload bytecode),

Heap Reference Def setting reference field information (e.g., via putfield or aastore bytecodes)

When the program terminates, we write all null assignable calling contexts to a file. Also, we output

the size of the reachable integral.

For the second run, the modified JVM could execute the program and assign null whenever it en-

counters a null assignable calling context. However, our implementation makes an optimization to allow

estimating in a single run the impact of null assignment for several context lengths, and for breaking

down the space benefits due to assigning null to field references, and due to assigning null to elements

in an array of references, as explained in Section 5.4. Therefore, in the second run we record for every

reference the fact that null could be assigned in the trailer of the object containing that reference. Then,

every 100KB of allocation we invoke a mark phase per null assign scheme, i.e., per a combination of

context length and the kind of references being assigned null (e.g., only elements of an array of refer-

ences). During such a mark phase the information recorded in the object trailer is used to determine

whether a reference is considered as assigned null according to the corresponding null assign scheme.

58 CHAPTER 5. MEMORY LIVENESS POTENTIAL

Liveness Information

drag heap + heap + heap + heap stack + static stack w/out

stack + static stack static liveness

bench. static

jess 108.53 118.64 118.81 119.64 119.80 359.84 365.86 391.05 392.97

raytrace 253.73 258.44 258.51 258.96 259.01 640.03 642.99 656.16 656.89

db 497.63 500.57 500.59 500.85 500.87 795.12 796.43 805.27 805.31

javac 1058.19 1065.08 1065.17 1065.90 1065.98 1623.14 1630.31 1640.73 1644.62

jack 86.33 93.33 93.41 93.95 94.03 187.11 194.97 215.99 216.59

analyzer 276.08 284.98 285.15 287.04 287.21 493.91 615.67 657.54 674.39

juru 55.31 58.64 68.54 59.19 69.09 68.01 78.13 77.97 88.25

euler 1936.73 1942.03 1942.06 1946.41 1946.43 2116.45 2125.61 2139.69 2148.82

mc 11423.94 11429.30 11429.32 11433.51 11433.52 11900.48 11901.69 11921.98 11923.18

tvla 318.14 324.95 325.14 332.40 332.58 525.53 528.78 566.08 569.30

Table 5.4: Reachability integrals (in MB2) for different liveness kinds.

When the program ends, we output the size of the reachable integral per every null assign scheme.

The ratio of these integrals and the integral from the first run yields the potential savings. Finally, the

output of the original and modified JVM executions of the program are compared in order to provide a

sanity check for the correctness of the implementation.

5.4 Experimental Results

5.4.1 The Space Savings due to Liveness

Our experiments were applied to our set of benchmark programs. We ran the algorithm described

in Section 5.2 on the benchmarks. Table 5.4 shows for every benchmark the size of the reachability

integral assuming different kinds of liveness information (see Section 5.2.1). We show information

for stack, static, heap liveness information and for every combination of these. Column w/out liveness

shows the original reachability integral. Column drag repeats the information reported in Section 3.3

by showing the reachability integral if an object is collected immediately after it is last dereferenced in

the program.

In a similar manner, Table 5.5 shows for every benchmark the maximum size of the reachable heap

in the run for different kinds of liveness information. The integrals indicate an overall view of the space

consumption of the program, whereas the maximum heap size is a kind of a feasibility criteria.

Fig. 5.3(a) shows the ratio between the integrals and the original reachability integral, and Fig. 5.3(b)

shows the ratio between the maximum heap size and the original maximum heap size. In both figures

we also show the average across the benchmarks.

We first discuss the resulting integrals. For stack reference liveness the average potential savings is

5.4. EXPERIMENTAL RESULTS 59

(a) Reachability Integral Savings - Idealized Interface

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

jess raytrace db javac jack analyzer juru euler mc tvla average

drag

heap+stack+static liveness

heap+static liveness

heap+stack liveness

heap liveness

stack+static liveness

static liveness

stack liveness

w/out liveness

(b) Maximum Reachable Heap Size Savings - Idealized Interface

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

jess raytrace db javac jack analyzer juru euler mc tvla average

drag

heap+stack+static liveness

heap+static liveness

heap+stack liveness

heap liveness

stack+static liveness

static liveness

stack liveness

w/out liveness

(c) Reachability Integral Savings - Assign Null

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f

jess raytrace db javac jack analyzer juru euler mc tvla average

context=0 context=1 context=2 context=3

(d) Maximum Reachable Heap Size Savings - Assign Null

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f a f a+f

jess raytrace db javac jack analyzer juru euler mc tvla average

context=0 context=1 context=2 context=3

Figure 5.3: Potential space savings results.

60 CHAPTER 5. MEMORY LIVENESS POTENTIAL

Liveness Information

drag heap + heap + heap + heap stack + static stack w/out

stack + static stack static liveness

benchmark static

jess 0.61 0.64 0.64 0.65 0.65 1.30 1.33 1.41 1.41

raytrace 2.39 2.42 2.42 2.42 2.42 4.24 4.26 4.34 4.35

db 7.60 7.63 7.63 7.63 7.63 9.50 9.52 9.60 9.60

javac 8.35 8.38 8.38 8.38 8.38 9.16 9.19 9.24 9.25

jack 0.57 0.61 0.61 0.61 0.61 1.28 1.30 1.39 1.39

analyzer 1.38 1.42 1.42 1.43 1.43 2.43 3.40 3.08 3.59

juru 0.46 0.48 0.66 0.49 0.66 0.55 0.82 0.61 0.88

euler 6.72 6.74 6.74 6.75 6.75 7.67 7.70 7.73 7.76

mc 78.93 78.95 78.95 78.96 78.96 82.17 82.20 82.25 82.27

tvla 1.51 1.53 1.53 1.55 1.55 2.27 2.29 2.38 2.40

Table 5.5: Maximum reachable heap size (in MB) for different liveness kinds.

Analyzer - Idealized Interface

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250 300

allocation time (MB)

s
iz

e
 (

M
B

)

heap liveness

stack+static liveness

w/out liveness

Figure 5.4: Potential space savings for Analyzer.

5.4. EXPERIMENTAL RESULTS 61

2%, and in the best case (juru) 12%. In Agesen et. al [1] the actual savings obtained by implementing

stack reference liveness analysis for Java are shown. The trend of our stack reference liveness results

match [1], and also for a simple artificial benchmark (EllisGC) we get duplicate results. Together with

Detlefs and Moss [16] we have investigated the differences for other benchmarks, where our dynamic

measurements show less potential than the actual savings obtained in [1]. We concluded that our results

are not directly comparable due to differences in the experimental environment (i.e., different versions of

JDK/JVM, different versions of benchmarks, and different input size used to run the benchmarks). How-

ever, the final outcome of both experiments is the same: “the main benefit of stack reference liveness

analysis is preventing bad surprises”. Another difference in our measurements is that our underlying

GC is type-conservative; thus, potential savings are shown w.r.t. a conservative GC, where in [1] the

base GC is type-accurate. According to [28], this latter difference is not expected to have a major effect

on the results.

To the best of our knowledge, the rest of the results are new for object-oriented programs. More-

over, we provide the first study of the effect of heap reference liveness. For static variable liveness,

considering the cost of obtaining the information statically, which requires whole program analysis, our

experimental results (average of 5% savings) indicate that this optimization may not be profitable. Also

for the combination of static variable liveness and stack reference liveness for most of the programs, we

get medium savings (average of 9%), while for juru and analyzer the potential is quite large. This leads

us to the same conclusion of “preventing bad surprises”.

The comparison of the maximum heap sizes assuming liveness information to the original maximum

heap size yields similar results for the benchmarks excluding juru and analyzer. In juru and analyzer

the profit in maximum heap size is much larger than the overall benefit expressed by the integral size.

From our experience discussed in Section 4.4, the reason is that for both benchmarks, stack liveness

and/or static variable liveness aid in a few places in the code where a large object, or a group of objects

referenced by a single root are kept after their last use.

For heap liveness, our results show an average of 39% potential savings. Moreover, combining

heap liveness with other liveness information has negligible effect. This may not come as a surprise,

since most of the objects in the heap are referenced solely by heap references. Finally, assuming drag

information (i.e., tracking the last access to an object) we get 42% potential savings, which is very close

to heap liveness results. Thus, we conclude that heap liveness information potentially brings most of the

space benefits achievable beyond reachability-based garbage collectors.

The comparison of the maximum heap sizes assuming liveness information to the original maximum

heap size shows that for most of the benchmarks the overall benefit (i.e., the savings in the integral size)

is larger (around 7% more savings) than the benefit at the peak (i.e., maximum heap size comparison).

It is interesting to note that our results provide non-trivial upper bounds for potential savings in the

integral and the memory footprint between the current GC and an idealized one which has complete

62 CHAPTER 5. MEMORY LIVENESS POTENTIAL

liveness information. For example, for analyzer, which is a benchmark that allocates memory exten-

sively, the maximum heap size results indicates that in the worst case, the current GC consumes 2.5

times space than the one obtained by an idealized GC.

Fig. 5.4 shows the reachable heap graph over time for analyzer considering the following liveness

schemes: (i) heap liveness, (ii) stack combined with static variable liveness, and (iii) no liveness infor-

mation. We see that assuming complete heap liveness the memory footprint of this program remains

around 920KB. In contrast, assuming complete stack and static variable liveness information, heap

consumption increases as the program executes. As expected, the peaks in memory footprint occur

simultaneously for these three liveness schemes.

5.4.2 The Space Savings due to Null Assignments

Fig. 5.3(c) shows the ratio between the integrals of the modified programs assigning null to dynami-

cally dead instance variables and the reachability integral in the original program. Similarly, Fig. 5.3(d)

shows the ratio for the maximum heap size. We measure potential savings for calling contexts of length

0, 1, 2, and 3. Heap references consist of two kinds, instance fields and elements of an array of refer-

ences. Since algorithms for approximating the liveness of instance fields may be different in nature than

the ones for approximating the liveness of elements in an array of references, we show for each context

a breakdown of heap liveness according to these reference kinds. The a column shows potential savings

when null is assigned only to an element in array of references (i.e., immediately after aaload or

aastore), the f column shows potential savings when null is assigned only to an instance field (i.e.,

immediately after getfield or putfield), and the a+f column shows overall potential savings

when null is assigned to both kinds of heap references.

The average overall space savings for intraprocedural information is 6% while for contexts of length

2, we get 15% potential savings. Breaking down the overall space savings according to heap reference

kind, we see that assigning null to instance fields assuming intraprocedural information saves 4.5%,

while for contexts of length 2 we get on average 10.5% potential savings. Assigning null to elements

in an array of references yields 2% on average assuming intraprocedural information, and 10% po-

tential savings assuming contexts of length 2. In all cases, the added value of contexts of length 3 is

insignificant.

On the negative side, we see that this interface provides significantly less potential saving than the

one by the idealized interface. For example, in jack we get 25% potential savings in contrast to the

idealized GC interface in which the potential savings is 57%. However, we believe that the upper bound

obtained here is actually more tight than the one reported for the idealized interface since it resembles

more closely the effects of static analysis. For example on dbwe get 2% saving here versus 38%with the

idealized interface. This is due to the fact that this program randomly accesses a database of objects and

thus we believe that the 36% extra saving are due to dynamically dead references in the database which

5.4. EXPERIMENTAL RESULTS 63

benchmark ref kind context=0 context=1 context=2 context=3

jess a 5.38 5.41 5.44 5.44

f 0.05 0.06 0.06 0.07

a+f 5.43 5.43 5.45 5.45

raytrace a 0 0 0 0

f 0 0 0 0

a+f 0 0 0 0

javac a 0.34 0.35 0.41 0.43

f 0.10 0.13 0.15 0.67

a+f 0.23 0.26 0.25 0.68

tvla a 0 0 0 0

f 0.17 0.23 0.34 0.56

a+f 0.17 0.22 0.34 0.57

Table 5.6: The difference (in %) in assign null reachable integral results when considering null

assignable program points computed for two runs with different inputs.

cannot be assigned null. Since the input provided in SPECjvm98 is large enough, our algorithm yields

that for every point pt, there exists at least one database reference h used in pt which is subsequently

used and thus pt is not null assignable.

In another experiment we tried assigning null to static variables. On average, assigning null just

to static variables yields less than 1% potential savings, and assigning null both to heap references

and static variables yields 15.3% potential space savings, which is less than 0.5% additional benefits

comparing to assigning null just to heap references.

Validity of Assign Null Results

Our assign null experiment detects null assignable program points with respect to the current run. How-

ever, an optimizer may instrument a program with null assignments, only if a program point is null

assignable on all execution paths (i.e., an assign-null property holds). In order to validate our assign

null results, we ran 4 of our benchmarks with another input, and computed null assignable program

points. Then, each of these benchmarks was run again with the original input, considering only null

assignable program points detected in the run for both inputs.

Here are the alternate inputs we use. For jess we supply the input hard.clp, which is supplied

in the jess distribution. javac is given a different set of files to compile. For raytrace we still

apply the scene depicting a dinosaur, but this time the raytracer frame’s width and height is changed.

64 CHAPTER 5. MEMORY LIVENESS POTENTIAL

Finally, tvla is applied with an input aimed at verifying the partial correctness of an implementation

of the bubble sort algorithm.

Table 5.6 shows the percentage difference in reachable integral potential savings comparing the

results of running a benchmark with the original input considering the original set of null assignable

program points, and then running the benchmark with the original input considering only the set of

program points that are null assignable for both inputs. ref kind column denotes the kind of heap

reference being assigned null (see Section 5.4.2). We see that except for the case of assigning null

to array elements in jess benchmark, the difference is insignificant for all context lengths, and for all

reference kinds. This fact gives hope that a precise static analysis algorithm will be able to achieve most

of the potential savings shown here.

Chapter 6

A Framework for Static Analysis of Local

Temporal Heap Safety Properties

In previous chapter, we estimated the potential for space savings given a trace if (i) an object is collected

as soon its references are dynamically dead, and (ii) a dynamically dead reference expression is assigned

null. Motivated by that, in this chapter we present new static algorithms for saving space in applications

for all traces by (i) issuing a free statement to reclaim objects, which are dynamically dead on all traces,

and (ii) issuing an assign-null statement to nullify a heap reference expression which is dynamically

dead on all traces. This is done by investigating a more general problem, which is static reasoning of

temporal heap safety properties.

We focus on local temporal heap safety properties, in which the verification process may be per-

formed for a program object independently of other program objects. We present a framework for

statically reasoning about local temporal heap safety properties, and apply it to produce new conserva-

tive static algorithms for compile-time memory management, which prove for certain program points

that a memory object or a heap reference is dynamically dead on all traces. We have implemented a pro-

totype of our framework, and used it to verify compile-time memory management properties for several

small, but interesting example programs, including JavaCard programs.

The rest of this chapter is organized as follows. Section 6.1 introduces the problem of verifying local

temporal heap safety properties and gives a motivating example. In Section 6.2, we describe heap safety

properties in general, and formulate the free property (see Definition 2.1.11), as a heap safety propery.

Then, in Section 6.3, we give our instrumented concrete semantics, which maintains an automaton state

for every program object. Section 6.4 describes our property-guided abstraction and provides an abstract

semantics. In Section 6.5, we formulate the assign-null property (see Definition 2.1.14) as a heap safety

property, and discuss efficient verification of multiple properties. Finally, Section 6.6 describes our

implementation and empirical results.

65

66CHAPTER 6. A FRAMEWORK FOR STATIC ANALYSIS OF LOCAL TEMPORAL HEAP SAFETY PROPERTIES

6.1 Introduction

In this chapter we show how static analysis can be used to reduce space consumption, by giving static

algorithms for verifying the free and assign-null properties discussed in Section 2.1.4. Once such prop-

erty is verified the program may be transformed to directly free dead objects, or aid a runtime garbage

collector collect objects earlier in the run by nullifying dead heap references.

In order to verify free and assign-null properties we determine for a source location whether a

heap-allocated object or a heap reference is dynamically dead on all traces. The problem of statically

determining for a source location whether a heap-allocated object or a heap reference is dead can be

formulated as a local temporal heap safety property — a temporal safety property specified for each

heap-allocated object independently of other objects.

In this chapter we present the following contributions:

1. A framework for verifying local temporal heap safety properties of Java programs is given.

2. Using this framework, we formulate two important compile-time memory management properties

that identify when a heap-allocated object or a heap reference is dead, allowing space savings in

Java programs.

3. We have implemented a prototype of our framework, and used it as a proof of concept to verify

compile-time memory management properties for several small but interesting example programs,

including JavaCard programs.

6.1.1 Local Temporal Heap Safety Properties

We develop a framework for automatically verifying local temporal heap safety properties, i.e., tempo-

ral safety properties that could be specified for a program object independently of other program objects.

We assume that a safety property is specified using a heap safety automaton (HSA), which is a deter-

ministic finite state automaton. The HSA defines the valid sequences of events that are permissable on

a given program object.

It is important to note that our framework implicitly allows infinite state machines, since a state is

maintained for every object and the number of objects is unbounded. Furthermore, during the analysis an

event is triggered for a state machine associated with an object. Thus, precise information on heap paths

to disambiguate program objects is crucial for the precise association of an event and its corresponding

program object’s state machine. In fact, in Section 6.6 we show that using a less-precise points-to based

heap abstraction is insufficient for proving the properties of interest for our set of benchmark programs.

We develop static analysis algorithms that verify that on all traces, all objects are in an HSA accept-

ing state. In particular, we show how the framework is used to verify properties that identify when a

heap-allocated object or heap reference is dynamically dead in all traces. This information could be used

6.1. INTRODUCTION 67

by an optimizing compiler or communicated to the runtime garbage collector to reduce the space con-

sumption of an application. Our techniques could also be used for languages like C to find a misplaced

call to free that prematurely deallocates an object.

6.1.2 Compile-Time Memory Management Properties

In Chapter 2 we defined the free property (see Definition 2.1.11) and the assign-null property (see Def-

inition 2.1.14). In this chapter we formulate these properties as local temporal heap safety properties,

allowing us to instantiate our framework with two new static algorithms for statically detecting and

deallocating garbage objects:

free analysis Statically identify source locations at which it is safe to insert a free statement in order to

deallocate an object, which is dynamically dead on all traces.

assign-null analysis Statically identify source locations at which it is safe to assign null to a heap

reference, which is dynamically dead in all traces.

The free analysis may be used with or without a garbage collector. In Chapter 5 we showed that the

potential for space savings beyond GC is on average 39% if an object is freed as soon it is dynamically

dead in a trace.

The assign-null analysis leads to space saving by allowing the GC to collect more space. In Chapter 5

we showed that assigning null to heap references immediately after their last use has an average space-

saving potential of 15% beyond existing GCs. Free analysis could be used with runtime GC in standard

Java environments (see Section 6.2) and without GC for JavaCard.

Both of these algorithms handle heap references and destructive updates. They employ both forward

(history) and backward (future) information on the behavior of the program. This allows us to free more

objects than reachability based compile-time garbage collection mechanisms (e.g., [7, 32]), which only

consider the history.

6.1.3 A Motivating Example

Fig. 6.1 shows a program that creates a singly-linked list and then traverses it. We would like to verify

that the free property 〈10, y〉 holds, i.e., a free y statement can be added immediately after line

10. The free property 〈10, y〉 holds because once a list element is traversed in a program state σi =

〈storei, 10〉 along any trace π, it cannot be accessed in the suffix of π (i.e., πi+1 = σi+1,σi+2, . . .). In

the sequel, we show how to formulate this property as a heap safety property and how our framework is

used to successfully verify it.

It is interesting to note that even in this simple example, standard compile-time garbage collection

techniques (e.g., [7, 32]) will not issue such a free statement, since the element referenced by y is

68CHAPTER 6. A FRAMEWORK FOR STATIC ANALYSIS OF LOCAL TEMPORAL HEAP SAFETY PROPERTIES

class L { // L is a singly linked list

public L n; // next field

public int val; // data field

}

class Main { // Creation and traversal of a singly-linked list

public static void main(String args[]) {

L x, y, t;

[1] x = null;

[2] while (...) { // list creation

[3] y = new L();

[4] y.val = ...;

[5] y.n = x;

[6] x = y;

}

[7] y = x;

[8] while (y != null) { // list traversal

[9] System.out.print(y.val);

[10] t = y.n;

[11] y = t;

}

}

}

Figure 6.1: A program for creating and traversing a singly linked list.

reachable via a heap path starting from x. Furthermore, integrating limited information on the future of

the computation such as liveness of local reference variables (e.g., [1]) is insufficient for issuing such

free statement. Nevertheless, our analysis is able to verify that the list element referenced by y is no

longer needed, by investigating the trace suffixes starting at a program state σi = 〈storei, 10〉 for all
traces.

6.1.4 A Framework for Verifying Heap Safety Properties

Our framework is conservative, i.e., if a heap safety property is verified, it is never violated on any trace

of the program. As usual for a conservative framework, we might fail to verify a safety property which

holds on all traces of the program.

Assuming the safety property is described by an HSA, we instrument the program semantics to

record the automaton state for every program object. First-order logical structures are used to represent

a global state of the program. We augment this representation to incorporate information about the

automaton state of every heap-allocated object.

Our abstract domain uses first-order 3-valued logical structures to represent an abstract global state

of the program, which represents several (possibly an infinite number of) concrete logical structures [52].

6.2. SPECIFYING COMPILE-TIME MEMORY MANAGEMENT PROPERTIES VIA HEAP SAFETY PROPERTIES69

We use canonic abstraction that maps concrete program objects (i.e., individuals in a logical structure)

to abstract program objects based on the properties associated with a program object. In particular, the

abstraction is refined by the automaton state associated with every program object.

For the purpose of our analyses one needs to: (i) consider information on the history of the com-

putation, to approximate the heap paths, and (ii) consider information on the future of the computation,

to approximate the future use of references. Our approach here uses a forward analysis, where the

automaton maintains the temporal information needed to reason about the future of the computation.

In principle we could have used a forward analysis identifying heap-paths integrated into a backward

analysis identifying future uses of heap references [58]. However, we find the cost of merging forward

and backward information too expensive for a heap analysis as precise as ours.

6.2 Specifying Compile-Time Memory Management Properties via Heap

Safety Properties

In this section, we introduce heap safety properties in general, and a specific heap safety property that

allows us to identify source locations at which heap-allocated objects may be safely freed.

Informally, a heap safety property may be specified via a heap safety automaton (HSA), which is a

deterministic finite state automaton that defines the valid sequences of events for a single object in the

program. An HSA defines a prefix-closed language, i.e., every prefix of a valid sequence of events is

also valid. This is formally defined as follows:

Definition 6.2.1 (Heap Safety Automaton (HSA)) A heap safety automaton A = 〈Σ, Q, δ, init, F 〉 is
a deterministic finite state automaton, where Σ is the automaton alphabet which consists of observable

events, Q is the set of automaton states, δ : Q×Σ → Q is the deterministic transition function mapping

a state and an event to a single successor state, init ∈ Q is the initial state, err ∈ Q is a distinguished

violation state (the sink state), for which for all a ∈ Σ, δ(err, a) = err, and F = Q \ {err} is the set of
accepting states.

In our framework, we associate an HSA state with every object in the program, and verify that on all

program traces, all objects are in an accepting state. The HSA is used to define an instrumented seman-

tics, which maintains the state of the automaton for each object. The automaton state is independently

maintained for every program object. However, the same automaton A is used for all program objects.

When an object o is allocated, it is assigned the initial automaton state. The state of an object o is

then updated by automaton transitions corresponding to events associated with o, triggered by program

statements.

We now show how the free property is formulated using an HSA, and begin with an example show-

ing how the free property 〈10, y〉 is formulated using an HSA Afree
10,y . In the sequel, we make a simpli-

70CHAPTER 6. A FRAMEWORK FOR STATIC ANALYSIS OF LOCAL TEMPORAL HEAP SAFETY PROPERTIES

initial 0
ref10,y

use

1

ref10,y

use err

use,ref10,y

Figure 6.2: A heap safety automaton Afree
10,y for free y at line 10.

fying assumption and focus on verification of the property for a single program point. In Section 6.5.2

we discuss a technique for verification for a set of program points.

Example 6.2.2 Consider the example program of Fig. 6.1. We would like to verify that a free y

statement can be added immediately after line 10, i.e., a list element can be freed as soon as it has been

traversed in the loop. The HSAAfree
10,y shown in Fig. 6.2 represents the free property 〈10, y〉. States 0 and

1 are accepting, while the state labelled err is the violation state. The alphabet of this automaton consists

of two events associated with a program object o: (i) use, which corresponds to a use of a reference to

o, and (ii) ref10,y , which is triggered when program execution is immediately after execution of the

statement at line 10 and y references o.

The HSA is in an accepting state along a trace π iff o can be freed in the program after line 10. Thus,

when on all traces, for all program objects o, only accepting states are associated with o, we conclude

that free y can be added immediately after line 10.

First, when an object is allocated, it is assigned the initial state of Afree
10,y (state 0). Then, a use of a

reference to an object o (a use event) does not change the state of Afree
10,y for o (a self-loop on state 0).

When the program is immediately after line 10 and y references an object o (ref10,y event), o’s automaton

state is set to 1. If a reference to o is used further, (i.e., in the subsequent program configurations along

the trace a reference to o is used), and o’s automaton state is 1 the automaton state for o reaches the

violation state of the automaton. In that case the property is violated, and it is not possible to add

a free y statement immediately after line 10 since it will free an object that is needed later in the

program. However, in the program of Fig. 6.1, references to objects referenced by y at line 10 are not

used further, hence the property is not violated, and it is safe to add a free y statement at this program

point. Indeed, in Section 6.4 we show how the free 〈10, y〉 property is verified.

An arbitrary free property is formulated as a heap safety property using an HSA similar to the one

shown in Fig. 6.2 where the program point and program variable name are set accordingly.

It should be noted that in Java, free statements are not supported. Therefore, we assume that equiv-

alent free annotations are issued, and could be exploited by the runtime environment. For example, a

Java Virtual Machine (JVM) may include an internal free function, and the Just-In-Time (JIT) compiler

(which is a runtime compiler included in the JVM) computes where calls to the function can be added.

The internal free function can then indicate to GC not to trace the freed object.

6.3. INSTRUMENTED CONCRETE SEMANTICS 71

Predicates Intended Meaning

after[pt]() The program execution is immediately after program point pt

x(o) The program variable x references the object o

f(o1, o2) The field f of the object o1 points to the object o2

s[q](o) The the current state of o’s automaton is q

Table 6.1: Predicates for partial Java semantics.

6.3 Instrumented Concrete Semantics

We define an instrumented concrete semantics that maintains an automaton state for each heap-allocated

object. In Section 6.3.1, we use first-order logical structures to represent a global state of the program

and augment this representation to incorporate information about the automaton state of every heap-

allocated object. Then in Section 6.3.2, we describe an operational semantics manipulating instrumented

configurations.

6.3.1 Representing Program Configurations using First-Order Logical Structures

A program state σi = 〈storei, pti〉 along a trace π can be naturally expressed as a first-order logical

structure in which each individual corresponds to a heap-allocated object and predicates of the structure

correspond to properties of heap-allocated objects. In the rest of this chapter, we work with a fixed set

of predicates denoted by P .

Definition 6.3.1 (Program Configuration) A program configuration is a 2-valued first-order logical

structure C! = 〈U !, ι!〉 where:

• U ! is the universe of the 2-valued structure. Each individual in U! represents an allocated heap

object.

• ι! is the interpretation function mapping predicates to their truth-value in the structure, i.e., for

every predicate p ∈ P of arity k, ι!(p) : U !k → {0, 1}.

We use the predicates of Table 6.1 to record information used by the properties discussed in this

chapter. The nullary predicate after[pt] records the program location in a configuration and holds in

configurations in which the program is immediately after line pt. The unary predicate x records the

value of a reference variable x and holds for the individual referenced by x. The binary predicate f

records the value of a field reference; f(o1, o2) holds when the field f of o1 points to the object o2.

Unary predicates of the form s[q] (referred to as automaton state predicates) maintain temporal in-

formation by maintaining the automaton state for each object. Such predicates record history informa-

72CHAPTER 6. A FRAMEWORK FOR STATIC ANALYSIS OF LOCAL TEMPORAL HEAP SAFETY PROPERTIES

x y t after[9]

u1

s[1]

n u2

s[1]

n u3

s[1]

n u4

s[0]

n u5

s[0]

n u6

s[0]

n u7

s[0]

(a)

x y t after[10]

u1

s[1]

n u2

s[1]

n u3

s[1]

n u4

s[1]

n u5

s[0]

n u6

s[0]

n u7

s[0]

(b)

Figure 6.3: Concrete program configurations (a) before — and (b) immediately after execution of t =

y.n at line 10.

tion that is used to refine the abstraction. In Section 6.3.2 we describe how these predicates are updated.

The abstraction is refined further by predicates that record spatial information, such as reachability and

sharing (referred to as instrumentation predicates in [52]).

Program configurations are depicted as directed graphs. Each individual of the universe is displayed

as a node. Unary predicates which hold for an individual (node) are drawn inside the node. Unary

predicates of the form x, where x is a reference variable, are shown as an edge from the predicate

symbol to the node in which it holds since they can only hold for a single individual. The name of a

node is written inside the node using an italic face. Node names are only used for ease of presentation

and do not affect the analysis. A binary predicate p(u1, u2) which evaluates to 1 is drawn as directed

edge from u1 to u2 labelled with the predicate symbol. Finally, a nullary predicate p() is drawn inside a

box.

Example 6.3.2 The configuration shown in Fig. 6.3(a) corresponds to a program state in which exe-

cution is immediately after line 9. In this configuration, a singly-linked list of 7 elements has been

traversed up to the 4-th element (labelled u4) by the reference variable y, and the reference variable t

still points to the same element as y. This is shown in the configuration by the fact that both predicates

y(o) and t(o) hold for the individual u4. Directed edges labelled by n correspond to values of the n

field. The nullary predicate after[9]() shown in a box in the upper-right corner of the figure records the

fact that the program is immediately after line 9. The predicates s[0](o) and s[1](o) record which objects

are in state 0 of the automaton and which are in state 1. For example, the individual u3 is in automaton

state 1 and the individual u4 is in automaton state 0.

6.3. INSTRUMENTED CONCRETE SEMANTICS 73

6.3.2 Operational Semantics

Program statements are modelled by generating the logical structure representing the program state after

execution of the statement. In [52] it was shown that first-order logical formulae can be used to formally

define the effect of every statement. In particular, first-order logical formulae can be used to model the

change of the automaton state of every affected individual, reflecting transition-updates in an ordered

sequential manner.

In general, the operational semantics associates a program statement with a set of HSA events that

update the automaton state of program objects. The translation from the set of HSA events to first-order

logical formulae reflecting the change of the automaton state of every affected individual is automatic.

We now show how program statements are associated with Afree
pt,x events. For expository purposes, and

without loss of generality, we assume the program is normalized to a 3-address form. In particular, a

program statement may manipulate reference expressions of the form x or x.f.

Object Allocation

For a program statement x = new C() for allocating an object, a new object onew is allocated, which

is assigned the initial state of the HSA, i.e., we set the predicate s[init](onew) to 1.

Example 6.3.3 Consider the HSA Afree
10,y shown in Fig. 6.2. For this HSA we define a set of predicates

{s[0](o), s[1](o), s[err](o)} to record the state of the HSA individually for every heap-allocated object.
Initially, when an object o is allocated at line 3 of the example program, we set s[0](o) to 1, and other

state predicates 0 on o.

Use Events

Table 6.2 shows the use events fired by each kind of a program statement. These events correspond to

the r-values, which occur in these statements. In particular, (i) a use of x in a program statement updates

the automaton state of the object referenced by x with a use event, and (ii) a use of the field f of the

object referenced by x in a program statement updates the automaton state of the object referenced by

x.f with a use event. For example, the statement x = y.f triggers use events for y and y.f , which

update the automaton state of the object referenced by y with a use event, and update the automaton

state of the object referenced by y.f with a use event. The order in which use events are triggered does

not matter. However, in general, the order should be consistent with the HSA.

refpt,x Events

For a free property 〈pt, x〉, the corresponding automaton Afree
pt,x employs refpt,x events in addition to use

events. A refpt,x event is triggered to update the automaton state of the object referenced by x when the

74CHAPTER 6. A FRAMEWORK FOR STATIC ANALYSIS OF LOCAL TEMPORAL HEAP SAFETY PROPERTIES

statement use events are triggered for

an object referenced by

x = y y

x = y.f y, y.f

x.f = null x

x.f = y x, y

x binop y x, y

Table 6.2: Use events triggered by r-values of expressions in program statements.

current program point is pt. A statement at pt may trigger both use events and a refpt,x event. In this

case the refpt,x event is triggered only after the use events corresponding to the program statement at pt

are triggered.

Example 6.3.4 Fig. 6.3 shows the effect of the t = y.n statement at line 10, where the statement is

applied to the configuration labelled by (a). First, this statement updates the predicate t to reflect the

assignment by setting it to 1 for u5, and setting it to 0 for u4. In addition, it updates the program point by

setting after[10]() to 1 and after[9]() to 0. Then, two use events followed by a ref10,y event are triggered:

(i) use of the object referenced by y, causing the object u4 to remain at automaton state 0, i.e., s[0](u4)

remains 1; (ii) use of the object referenced by y.n, causing the object u5 to remain at automaton state

0, i.e., s[0](u5) remains 1; and (iii) the event ref10,y for the object referenced by y, causing the object u4

to change its automaton state to 1, i.e., setting the predicate s[1] to 1 for u4, and setting the predicate s[0]

to 00 for u4. After applying the above updates we end up with the logical structure shown in Fig. 6.3(b),

reflecting both the changes in the store, and the transitions in the automaton state for program objects.

6.4 An Abstract Semantics

In this section, we present a conservative abstract semantics [14] abstracting the concrete semantics of

Section 6.3. In Section 6.4.1, we describe how abstract configurations are used to finitely represent

multiple concrete configurations. In Section 6.4.2, we describe an abstract semantics manipulating

abstract configurations.

6.4.1 Abstract Program Configurations

We conservatively represent multiple concrete program configurations using a single logical structure

with an extra truth-value 1/2 which denotes values which may be 1 and may be 0.

6.4. AN ABSTRACT SEMANTICS 75

x y t after[9]

u1

s[1]

n u23

s[1]

n

n u4

s[0]

n u567

s[0]

n

Figure 6.4: An abstract program configuration representing the concrete configuration of Fig. 6.3(a).

Definition 6.4.1 (Abstract Configuration) An abstract configuration is a 3-valued logical structure

C = 〈U, ι〉 where:

• U is the universe of the 3-valued structure. Each individual in U represents possibly many allo-

cated heap objects.

• ι is the interpretation function mapping predicates to their truth-value in the structure, i.e., for

every predicate p ∈ P of arity k, ι(p) : Uk → {0, 1/2, 1}. For example, ι(p)(u) = 1/2 indicates

no restriction on the truth value of p, i.e., it may be 1 for some of the objects represented by u and

may be 0 for some of the objects represented by u.

We allow an abstract configuration to include a summary node, i.e., an individual which corresponds

to one or more individuals in a concrete configuration represented by that abstract configuration. Tech-

nically, we use a designated unary predicate sm to maintain summary-node information. A summary

node u has sm(u) = 1/2, indicating that it may represent more than one node.

Abstract program configurations are depicted by enhancing the directed graphs from Section 6.3

with a graphical representation for 1/2 values: a binary predicate value which evaluates to 1/2 is drawn

as dashed directed edge labelled with the predicate symbol, and a summary node is drawn as circle with

double-line boundaries.

Example 6.4.2 The abstract configuration shown in Fig. 6.4 represents the concrete configuration of

Fig. 6.3(a). The summary node labelled by u23 represents the linked-list items u2 and u3, both having

the same values for their unary predicates. Similarly, the summary node u567 represents the nodes u5,

u6, and u7.

Note that this abstract configuration represents many configurations. For example, it represents any

configuration in which program execution is immediately after line 9 and a linked-list with at least 5

items has been traversed up to some item after the third item.

Embedding

We now formally define how configurations are represented using abstract configurations. The idea

is that each individual from the (concrete) configuration is mapped into an individual in the abstract

76CHAPTER 6. A FRAMEWORK FOR STATIC ANALYSIS OF LOCAL TEMPORAL HEAP SAFETY PROPERTIES

configuration. More generally, it is possible to map individuals from an abstract configuration into an

individual in another less precise abstract configuration. The latter fact is important for our abstract

transformer.

Formally, let C = 〈U, ι〉 and C′ = 〈U ′, ι′〉 be abstract configurations. A function f : U → U′

such that f is surjective is said to embed C into C′ if for each predicate p of arity k, and for each

u1, . . . , uk ∈ U the following holds:

ι(p(u1, . . . , uk)) = ι′(p(f(u1), . . . , f(uk))) or ι′(p(f(u1), . . . , f(uk))) = 1/2

and

for all u′ ∈ U ′ s.t. |{u | f(u) = u′}| > 1 : ι′(sm)(u′) = 1/2

One way of creating an embedding function f is by using canonical abstraction. Canonical abstrac-

tion maps concrete individuals to an abstract individual based on the values of the individuals’ unary

predicates. All individuals having the same values for unary predicate symbols are mapped by f to the

same abstract individual. Only summary nodes (i.e., nodes with sm(u) = 1/2) can have more than one

node mapped to them by the embedding function.

Note that since automaton states are represented using unary predicates, the abstraction is refined

by the automaton state of each object. This provides a simple property-guided abstraction since indi-

viduals at different automaton states are not summarized together. Indeed, adding unary predicates to

the abstraction increases the worst-case cost of the analysis. In particular, when considering the effect

of the statement, the cost of updating the automaton state predicates is proportional to |Q|. Our initial
experiments indicate this overhead is tolerable in our case.

6.4.2 Abstract Semantics

Implementing an abstract semantics directly manipulating abstract configurations is non-trivial since one

has to consider all possible relations on the (possibly infinite) set of represented concrete configurations.

The best conservative effect of a program statement [14] is defined by the following 3-stage seman-

tics: (i) a concretization of the abstract configuration is performed, resulting in all possible configura-

tions represented by the abstract configuration; (ii) the program statement is applied to each resulting

concrete configuration; (iii) abstraction of the resulting configurations is performed, resulting with a set

of abstract configurations representing the results of the program statement.

Example 6.4.3 Fig. 6.5 shows the stages of an abstract action: first, concretization is applied to the

abstract configuration resulting with an infinite set of concrete configuration represented by it. The pro-

gram statement update is then applied to each of these concrete configurations. Following the program

statement update, automaton transition updates are applied as described in Section 6.3.2. That is, at first

use events are triggered to update the automaton states of the objects referenced by y and y.n. Then,

6.4. AN ABSTRACT SEMANTICS 77

abstract configuration

after[9] x y t

s[1]
n

s[1]

n

n
s[0]

n
s[0]

n

after concretization

after[9] x y t

s[1]
n

s[1]
n

s[0]
n

s[0]

after[9] x y t

s[1]
n

s[1]
n

s[1]
n

s[0]
n

s[0]

. . . after[9] x y t

s[1]
n

s[1]
n

s[0]
n

s[0]
n

s[0]

. . .

after update

after[10] x y t

s[1]
n

s[1]
n

s[0]
n

s[0]

after[10] x y t

s[1]
n

s[1]
n

s[1]
n

s[0]
n

s[0]

. . . after[10] x y t

s[1]
n

s[1]
n

s[0]
n

s[0]
n

s[0]

. . .

after use events are triggered for the objects referenced by y, y.n— unchanged

after[10] x y t

s[1]
n

s[1]
n

s[0]
n

s[0]

after[10] x y t

s[1]
n

s[1]
n

s[1]
n

s[0]
n

s[0]

. . . after[10] x y t

s[1]
n

s[1]
n

s[0]
n

s[0]
n

s[0]

. . .

after ref10,y is triggered for the object referenced by y

after[10] x y t

s[1]
n

s[1]
n

s[1]
n

s[0]

after[10] x y t

s[1]
n

s[1]
n

s[1]
n

s[1]
n

s[0]

. . . after[10] x y t

s[1]
n

s[1]
n

s[1]
n

s[0]
n

s[0]

. . .

after abstraction

after[10] x y t

s[1]
n

s[1]

n

n
s[1]

n
s[0]

n
s[0]

n

Figure 6.5: Concretization, predicate-update, automaton transition updates, and abstraction for the state-

ment t = y.n in line 10.

78CHAPTER 6. A FRAMEWORK FOR STATIC ANALYSIS OF LOCAL TEMPORAL HEAP SAFETY PROPERTIES

a ref10,y event is triggered to update the automaton state of the object referenced by y. Finally, after all

transition updates have been applied, the resulting concrete configurations are abstracted resulting with

a finite representation.

Our prototype implementation described in Section 6.6.1 operates directly on abstract configura-

tions using abstract transformers, thereby obtaining actions which are more conservative than the ones

obtained by the best transformers. Interestingly, since temporal information is encoded as part of the

concrete configuration via automaton state predicates, the soundness of the abstract transformers is guar-

anteed by the Embedding Theorem of [52]. Our experience shows that the abstract transformers used in

the implementation are still precise enough to allow verification of our heap safety properties.

When the analysis terminates, we verify that in all abstract configurations, all individuals are as-

sociated with an accepting automaton state, i.e., in all abstract configurations, for every individual o,

s[err](o) evaluates to 0.

The soundness of our abstraction guarantees that in all concrete configurations, all individuals are

associated with an accepting automaton state, and we conclude that the property holds.

6.5 Extensions

In this section, we extend the applicability of our framework by: (i) formulating an additional compile-

time memory management property — the assign-null property; and (ii) extending the framework to

simultaneously verify multiple properties.

6.5.1 Assign-Null Analysis

The assign-null problem determines source locations at which statements assigning null to heap ref-

erences can be safely added. Such null assignments lead to objects being unreachable earlier in the

program, and thus may help a runtime garbage collector reclaim objects earlier, thus saving space. As

in Section 6.2, we show how to verify the assign-null property for a single program point and discuss

verification for a set of program points in Section 6.5.2.

The assign-null property 〈pt, x, f〉 (see Definition 2.1.14) allows assigning null to a dead heap refer-
ence. We now show how this property is formulated using an HSA, and begin with an example showing

how the assign-null property 〈10, y, n〉 is formulated using an HSA Aan
10,y,n.

Example 6.5.1 Consider again the example program shown in Fig. 6.1. We would like to verify that a

y.n = null statement can be added immediately after line 10, i.e., a reference connecting consecu-

tive list elements can be assigned null as soon as it is traversed in the loop. The HSA Aan
10,y,n shown in

Fig. 6.6 represents the assign-null 〈10, y, n〉 property. The alphabet of this automaton consists of the fol-
lowing events for an object o: (i) usen, which corresponds to a use of the field n of the object; (ii) defn,

6.5. EXTENSIONS 79

initial 0

usen,defn

ref10,y
1

ref10,y

usen

defn

err

usen, defn
ref10,y

Figure 6.6: A heap safety automaton Aan
10,y,n for assign null to y.n at 10.

which corresponds to a definition of the field n of the object; (iii) ref10,y , which is triggered when pro-

gram execution is immediately after execution of the statement in 10 and y references the object o. Our

implementation verifies assign-null 〈10, y, n〉 property, by applying the framework with Aan
10,y,n to the

example program. Notice that this automaton contains a back arc and thus is more complex than the one

for the free property.

First, when an object o is allocated it is assigned the initial state of Aan
10,y,n. Then, uses or definitions

of the n field of an object o (a usen event or a defn event, respectively) do not change the state ofA
an
10,y,n

for o (the self-loop in state 0). When the program is immediately after line 10 and y references an object

o (ref10,y event), o’s automaton state is set to 1. Now, if the n field of o is further defined (i.e., a defn

event occurs for o in the subsequent program configurations along the trace), and o’s automaton state is

1, the automaton state for o gets back to the initial state (state 0). However, if the n field of o is further

used (i.e., a usen event occurs for o in the subsequent program configurations along the trace) before

this field is redefined, and o’s automaton state is 1 the automaton state for o reaches the violation state

of the automaton. However, in the program of Fig. 6.1, the n-field references emanating from objects

referenced by y at line 10 are not further used before redefined, hence the property is not violated, and

it is safe to add a y.n = null statement at this program point.

An arbitrary assign-null property is formulated as a heap safety property using an HSA similar to

the one shown in Fig. 6.6 where the program point, variable and field names are set accordingly.

6.5.2 Simultaneous Verification of Multiple Properties

So far we showed how to verify the free and assign-null properties for a single program point. Clearly,

in practice one wishes to verify these properties for a set of program points without repeating the ver-

ification procedure for each program point. Our framework supports simultaneous verification of mul-

tiple properties, and in particular verification of properties for multiple program points. Assuming

HSA1, . . . ,HSAk describe k verification properties, then k automaton states s1, . . . , sk are maintained

for every program object, where si maintains an automaton state for HSAi. Technically, as described

in Section 6.3, a state si is represented by automaton state predicates si[q], where q ranges over the states

80CHAPTER 6. A FRAMEWORK FOR STATIC ANALYSIS OF LOCAL TEMPORAL HEAP SAFETY PROPERTIES

of HSAi. The events associated with the automata HSA1, . . . ,HSAk at a program point are triggered

simultaneously, updating the corresponding automaton state predicates of individuals.

The worst-case cost of simultaneous verification of properties is higher than the worst-case cost of

verifying the same properties one by one. However, verifying properties one by one ignores the potential

of computing overlapping heap information just once, where in simultaneous verification of properties

this overlap is taken into consideration. Thus, we believe that in practice simultaneous verification of

properties may achieve a lower cost than verifying the properties one by one.

Interestingly, if we limit our verification of free 〈pt, x〉 properties to ones where x is used at pt (i.e.,

x is used in the statement at pt), then the following features are obtained: (i) an object is freed just after

it is referenced last, i.e., exactly at the earliest time possible, and (ii) an object is freed “exactly once”,

i.e., there are no redundant frees of variables referencing the same object.

A similar choice for assign-null properties assigns null to a heap reference immediately after its last

use. The motivation for this choice of verification properties comes from our results in Chapter 5, show-

ing an average of 15% potential space savings beyond a run-time garbage collector if a heap reference is

assigned null just after its last use. However, we note that our framework allows verification of arbitrary

free and assign-null properties, which may yield further space reduction.

6.6 Empirical Results

We implemented the static analysis algorithms for verifying free and assign-null properties, and applied

it to several programs, including JavaCard programs.

Our benchmark programs were used as a proof of concept. Due to scalability issues our benchmarks

only provide a way to verify that our analysis is able to locate the static information at points of interest,

and we do not measure the total savings. In particular the benchmarks provide three kinds of proof

of concept: (i) we use small programs manipulating a linked-list to demonstrate the precision of our

technique; moreover, we show that less precise analyses as points-to analysis is insufficient for proving

free and assign-null properties for these programs. (ii) we demonstrate how our techniques could be used

to verify/automate manual space-saving rewritings. In particular, in Chapter 4 the code of the javac

Java compiler was manually rewritten in order to save space. Here, we verify the manual rewritings in

javac, which assign null to heap references, by applying our prototype implementation to a Java code

fragment emulating part of the Parser facility of javac; (iii) we demonstrate how our techniques could

play an important role in the design of future JavaCard programs. This is done by rewriting existing

JavaCard code in a more modular way, and showing that our techniques may be used to avoid the extra

space overhead due to the modularity.

6.6. EMPIRICAL RESULTS 81

Program Description Free Assign Null

space time space time

Loop the running example 1.71 1.93 1.37 1.76

CReverse constructive reverse of a list 3.03 5.17 2.58 4.79

Delete delete an element from a list 5.33 19.66 4.21 13.84

DLoop doubly linked list variant of Loop 2.09 2.91 1.75 2.68

DPairs processing pairs in a doubly-linked list 2.76 5.01 2.54 4.86

small javac emulation of javac’s parser facility N/A N/A 16.02 43.84

JavaPurse’ slice a JavaCard simple electronic purse 56.3 979 56.15 991

GuessNumber’ slice a JavaCard distributed guess number game 9.99 17.3 N/A N/A

Table 6.3: Analysis cost for the benchmark programs. Space is measured in MB, and time is measured

in seconds.

6.6.1 Implementation

Following a brief description of our implementation. A more detailed technical view is provided at Ap-

pendix A. Our implementation consists of the following components: (i) a front-end, which translates

a Java program (.class files) to a TVLA program [41]; (ii) an analyzer, which analyzes the TVLA pro-

gram; (iii) a back-end, which answers our verification question by further processing of the analyzer

output.

The front end (J2TVLA), developed by R.Manevich, is implemented using the Soot framework [68].

The analyzer, implemented using TVLA, includes the implementation of static analysis algorithms for

the free and assign-null property verification. TVLA is a parametric framework that allows the heap ab-

stractions and the abstract transformers to be easily changed. In particular, for programs manipulating

lists we obtain a rather precise verification algorithm by relying on spatial instrumentation predicates,

that provide sharing, reachability and cyclicity information for heap objects [52]. For other programs,

allocation-site information for heap objects suffices for the verification procedure. In both abstractions

interprocedural information is computed [49]. Finally, our implementation allows simultaneous veri-

fication of several free or assign-null properties, by maintaining several automaton states per program

object.

The back-end, implemented using TVLA libraries, traverses the analysis results, i.e., the logical

structures at every program point, and verifies that all individuals are associated with an accepting state.

For a single property, we could abort the analyzer upon reaching a non-accepting state on some object

and avoid the back-end component. However, in the case of simultaneous verification of multiple safety

properties, this would not work and the back-end is required.

82CHAPTER 6. A FRAMEWORK FOR STATIC ANALYSIS OF LOCAL TEMPORAL HEAP SAFETY PROPERTIES

6.6.2 Benchmark Programs

Table 6.3 shows our benchmark programs. The first 4 programs involve manipulations of a singly-linked

list. DLoop, DPairs involve a doubly-linked list manipulation. small javac is motivated by our

experiments in Chapter 4, where we manually rewrite the code of the javac compiler, issuing null

assignments to heap references. We can now verify our manual rewriting by applying the corresponding

assign-null properties to Java code emulating part of the parser facility in javac.

The last two benchmarks are JavaCard programs. JavaPurse is a simple electronic cash applica-

tion, taken from Sun JavaCard samples [35]. In JavaPurse a fixed set of loyalty stores is maintained,

so every purchase grants loyalty points at the corresponding store. GuessNumber [44] is a guess num-

ber game over mobile phone SIM cards, where one player (using a mobile phone) picks a number, and

other players (using other mobile phones) try to guess the number.

Due to memory constraints, JavaCard programs usually employ a static allocation regime, where

all program objects are allocated when the program starts. This leads to non-modular and less reusable

code, and to more limited functionality. For example, in the GuessNumber program, a global buffer

is allocated when the program starts and is used for storing either a server address or a phone number.

In JavaPurse, the number of stores where loyalty points are granted is fixed.

A better approach that addresses the JavaCard memory constraints is to rewrite the code using a

natural object-oriented programming style, and to apply static approaches to free objects not needed

further in the program. Thus, we first rewrite the JavaCard programs to allow more modular code in the

case of GuessNumber, and to lift the limitation on the number of stores in JavaPurse. Then, we

apply our free analysis to the rewritten code, and verify that an object allocated in the rewritten code

can be freed as soon it is no longer needed. In JavaPurse we also apply our assign null analysis and

verify that an object allocated in the rewritten code can be made unreachable as soon it is no longer

needed (thus, a runtime garbage collector may collect it). Concluding, we show that in principle the

enhanced code bears no space overhead compared to the original code when the free or the assign-null

analysis is used.

6.6.3 Results

Our experiments were done on a 900 Mhz Pentium-III with 512 MB of memory running Windows 2000.

Table 6.3 shows the space and time the analysis takes. In Loop we verify our free 〈10, y〉 and assign-
null 〈10, y, n〉 properties. For CReversewe verify an element of the original list can be freed as soon
it is copied to the reversed list. In Deletewe show an object can be freed as soon it is taken out of the

list (even though it is still reachable from temporary variables). Turning to our doubly linked programs,

we also show objects that can freed immediately after their last use, i.e., when an object is traversed

in the loop (DLoop), and when an object in a pair is not processed further (DPairs). We also verify

6.6. EMPIRICAL RESULTS 83

corresponding null-assignments that make an object unreachable via heap references just after their last

use.

For small javacwe verify that heap references to large objects in a parser class may be assigned

null just after their last use. Finally, for scalability reasons we analyze slices of rewritten JavaCard

programs. Our current implementation does not include a slicer, thus we manually slice the code. Using

the sliced programs we verify that objects allocated due by our rewritings, can be freed as soon they are

no longer needed.

We have also tried our benchmarks using a points-to based heap abstraction, which is considered

relatively cheap and scalable. We use a flow-sensitive, field-sensitive points-to analysis with unbounded

context information [19]. Our results indicate that in all cases but one (assign-null properties for

JavaPurse benchmark), points-to analysis is insufficient for proving the free and assign-null prop-

erties of interest. For JavaPurse the points-to analysis is able to prove the assign-null properties

of interest since (i) we try to nullify fields emanating from a singleton object, and (ii) field-sensitive

information allow disambiguation of the fields emanating from the singleton object.

84CHAPTER 6. A FRAMEWORK FOR STATIC ANALYSIS OF LOCAL TEMPORAL HEAP SAFETY PROPERTIES

Chapter 7

Related Work

Work closely related to our research falls into the following categories: (i) applying drag and liveness

information for the purpose of space savings, (ii) memory management techniques, and (iii) software

verification of safety properties.

7.1 Drag and Liveness Information

Drag Measurements

Röjemo and Runciman [50] originally defined the terms lag and drag. Their lag and drag measurements

are performed for Haskell, a lazy functional language. Our results for Java are not directly comparable

with their results, since they use wall-clock time where we use allocation time. Using drag and lag

information they demonstrate how to save space by rewriting the code of a Haskell compiler. Their

rewritings are based on a deep understanding of the code.

There are other approaches for profiling the memory of the program. For example, [54, 46] show

the heap configuration and allocation frequency; such information may help in tracking memory leaks

by allowing the heap to be inspected at points during the execution of the program. As noted by Serrano

and Boehm [54], tracking memory leaks by inspecting dragged objects is orthogonal to tracking leaks

by inspecting the heap during the course of execution. This is since dragged objects reasoning requires

future information, i.e., the future use of objects, while heap inspection requires history information,

i.e., the current heap paths in the run.

Liveness Information

Liveness analysis [43] may be used in the context of a run-time to reduce the size of the root set [5,

65, 1] (i.e., ignoring dead stack variables and dead global variables) or to reduce the number of scanned

references (i.e., ignoring dead heap references). For example, in Agesen et. al [1] static stack reference

85

86 CHAPTER 7. RELATED WORK

liveness information is used by a type-accurate GC to reduce the set of root references, thus potentially

saving some space. In Chapter 5 we show a 2% upper bound for space savings achievable through

any static stack reference liveness algorithm. This upper bound is close to the actual space savings

reported in [1], which lead us to conclude that: (i) the static analysis algorithm reported there is precise

enough, and (ii) as noted in [1]: “the main benefit of stack reference liveness analysis is preventing bad

surprises”.

In Hirzel et. al [28] the impact of stack reference and global reference liveness information on space

consumption is studied for C programs in a garbage-collected environment. Interestingly, the trend

of our results for stack reference and global reference liveness information is in line with their results.

However, they do not study heap liveness information. In addition, the measurements technique reported

there leads to an infeasible amount of information, which requires approximations. In Section 5.2 we

explain why our measurement technique maintains a feasible amount of information, thus no further

approximations are required. In particular, our technique is applicable to large applications. Finally,

in [28] two runs of the program are required for obtaining the information. Our technique directly

computes the impact of complete heap liveness information on space consumption using a single run.

This allows us to handle non-deterministic (e.g., multithreaded) applications.

For the purpose of estimating the potential savings due to liveness (and drag) information we ap-

proximate reachability information by sampling the reachable heap graph, i.e., by frequent invocation

of GC and then traversing the reachable heap. In Hertz et. al [27, 26] reachability information is mea-

sured by recording the last time a reference to an object is deleted, and propagating the information on

the heap graph when the program terminates. In a private communication with Hertz [25] we verified

together that reachability information could be collected in either way, i.e., using our technique or using

the technique described in [27, 26]. In any case, our measurements in Chapter 5 report finer reachability

information; for example, we report the last time an object is reachable along a heap path starting from

a stack variable (since an object may still be reachable along a heap path starting from other root kinds),

and the last time an object is reachable along a heap path starting at from live stack variable.

7.2 Memory Management Techniques

Compile-Time GC

Our free property (see Chapter 6) falls in the compile-time garbage collection research domain, where

techniques are developed to identify and recycle garbage memory cells at compile-time. Most work has

been done for functional languages [7, 32, 21, 24, 38]. In this thesis, we show a free analysis, which

handles a language with destructive updates, that may reclaim an object still reachable in the heap, but

not needed further in the run.

7.3. SOFTWARE VERIFICATION OF SAFETY PROPERTIES 87

Escape Analysis

Escape analysis, which allows stack allocating heap objects, has been recently applied to Java [9, 70, 10].

In this technique an object is freed as soon as its allocating method returns to its caller. While this

technique has shown to be useful, it is limited to objects that do not escape their allocating method. Our

technique for providing free and assign-null information (see Chapter 6) applies to all program objects,

and allows freeing objects before their allocating method returns.

Region-Based Memory Management

In region-based memory management [8, 67, 2, 23], the lifetime of an object is predicted at compile-

time. An object is associated with a memory region, and the allocation and deallocation of the memory

region are inferred automatically at compile time. It would be interesting to instantiate our framework

presented in Chapter 6 with a static analysis algorithm for inferring earlier deallocation of memory

regions.

7.3 Software Verification of Safety Properties

In Chapter 6 we present a framework for verifying local temporal heap safety properties. One of the

main difficulties in verifying local temporal heap safety properties is considering the effect of aliasing

in a precise-enough manner. Some of the previous work on software verification allows universally

quantified specifications similar to our local heap safety properties (e.g., [6, 12]). We are the first to

apply such properties to compile-time memory management and to employ a high-precision analysis of

the heap.

ESP [15] uses a preceding pointer-analysis phase and uses the results of this phase to perform finite-

state verification. Separating verification from pointer-analysis may generally lead to imprecise results.

The Bandera project [12] uses the Bandera specification language (BSL) [13] to specify properties

of software systems. Bandera constructs a finite-state model of the program and uses existing model-

checkers (e.g., SPIN [30]) to perform verification. BSL allows universally quantified specifications

which are similar to our local heap safety properties. However, the abstractions currently applied by

Bandera to verify these properties may generally lead to results that are less precise than ours.

The SLIC specification language [6] from MSR’s SLAM project [42] is a low-level specification

language which defines a (possibly infinite) state-machine for tracking temporal safety properties. Al-

though SLIC is more powerful than our local heap safety properties (e.g., it allows counting), the ab-

straction applied by SLAM to verify SLIC properties may produce results that are less precise than

ours.

In Yahav [71] a framework is introduced for verifying safety properties of concurrent Java programs.

88 CHAPTER 7. RELATED WORK

The framework allows the verification of an assertion specified as a first-order formula. This is done

by verifying that the assertion holds on all reachable states. However, this framework does not support

temporal safety properties.

Some prior work used automata to dynamically monitor program execution and throw an exception

when the property is violated (e.g.,[53, 11]). Obviously, dynamic monitoring cannot verify that the

property holds for all program executions.

Recoding history information for investigating a particular local temporal heap safety property was

used for example in [31, 51] (approximating flow dependencies) and [40] (verification of sorting algo-

rithms). The framework presented here generalizes the idea of recording history information by using a

heap safety automaton.

Chapter 8

Conclusion

In this thesis we study the limits of current garbage collection techniques, and show how static infor-

mation regarding heap behavior can aid in closing the gap between reclaiming part of the unneeded

program memory (e.g., collecting according to reachability) to retaining just the memory needed to run

the program.

We present new dynamic algorithms for measuring the potential space savings beyond current GCs

that allow profiling the memory behavior in a feasible manner. For a set of Java benchmarks, our dy-

namic measurements show potential space savings of 42% on average if an object is collected assuming

drag information is available, i.e., assuming an object is collected as soon it is no longer used by the

application. Moreover, our dynamic measurements show that existing techniques fail to exploit the large

potential for space savings. Finally, our dynamic measurements reveal that taking advantage of static

information regarding heap behavior has a large potential for space savings.

In particular, our dynamic algorithms estimate the potential benefits of enhancing GC with static

liveness information including local variabl liveness (stack reference liveness), global variable liveness

(global reference liveness), and instance variable liveness (heap reference liveness). The algorithms

require one run of the program and can handle non-determinism. For heap reference liveness, these

algorithms give the potential space savings if complete heap reference liveness is available; thus, we

also measure the potential space savings due to heap liveness using a more realistic approach, by finding

places in the code where null can be assigned to heap references.

For a set of Java benchmarks our dynamic measurements show that in general stack reference live-

ness may yield small benefits (2% potential space savings on average) and that global reference liveness

combined with stack reference liveness may yield medium benefits (9% potential space savings on aver-

age). Furthermore, for static information regarding heap behavior, our dynamic measurements show that

heap reference liveness yields the largest potential benefit. Specifically, for heap reference liveness we

measure an average potential savings of 39% using an interface with complete liveness information, and

an average savings of 15% using a more restricted interface, where dead heap references are assigned

89

90 CHAPTER 8. CONCLUSION

null immediately after their last use.

We present a tool allowing a programmer to find places in code to save space. The tool utilizes our

dynamic algorithms for measuring potential space savings. In addition, we show that simple correctness-

preserving program transformations, such as assigning null to dead references allow significant space

savings. Applying the tool to our set of Java benchmarks, and manually rewriting the code using the

simple program transformations lead to average space savings of 14%.

Motivated by our dynamic measurements we develop a framework for proving temporal properties

of heap-manipulating programs and instantiate it with static algorithms that identify program points at

which memory can be deallocated. In particular, our static algorithms are used to (i) statically identify

source locations at which it is safe to insert a free statement in order to deallocate an object, which is

dynamically dead on all traces, and (ii) statically identify source locations at which it is safe to assign

null to a heap reference, which is dynamically dead in all traces. The algorithms were implemented and

applied to Java programs including JavaCard programs to show we can actually deallocate memory at

compile-time.

8.1 Further Work

A Framework for dynamic measurements of heap properties

Our dynamic algorithms for profiling the memory behavior of a program include a set of algorithms,

each targeted at a (temporal) heap property. We would like to generalize the algorithms using a frame-

work for dynamically quantifying temporal properties in heap manipulating programs. This task is

challenging since our properties of interest including non-local temporal properties that involve a tran-

sitive closure in the heap graph. For example, the stack liveness property (see Section 5.2.1) combines

information on the future use of a stack references together with transitive closure in the heap graph.

Scaling our Static Analysis Algorithms

Our static algorithms are rather precise, but could be quite expensive on large programs. One way to

reduce the cost is analyzing part of the program. In particular, our dynamic algorithms could be used

to locate source locations that exhibit a large potential for space savings (e.g., allocations sites with

large drag). Then, the analysis is limited to code around these space-beneficial locations, using slicing

techniques [66]. Moreover, our dynamic algorithms may also be used to provide the input for our static

algorithms. For example, for a last use site use x at pt attributed with large drag, we can try to verify the

free property 〈pt, x〉.
Another way to scale our static analysis algorithm is to reduce the cost of gathering interprocedural

information. This could be done by considering a more modular shape analysis [48], where an attempt

8.1. FURTHER WORK 91

is made to identify the part of the heap affected by a procedure p, thus ignoring the rest of the heap when

analyzing p, saving time and space.

Combining Forward and Backward Heap Information

Both free and assign-null analysis consider information on the future of computations of the program.

Traditionally, such future information is approximated using a backward analysis. In particular, classi-

cal liveness analysis for scalar variables is computed using a backward analysis [43]. However, for the

purpose of our analyses one needs to: (i) consider information on the history of the computation, to ap-

proximate the heap paths, and (ii) consider information on the future of the computation, to approximate

the future use of references.

In Chapter 6 we use a forward analysis, where the automaton maintains the temporal information

needed to reason about the future of the computation. An alternative approach to statically approximate

free and assign-null information is to use a forward analysis identifying heap-paths, integrated into a

backward analysis identifying future uses of heap references [58]. The cost of merging forward and

backward information may be too expensive for a heap analysis as precise as ours, but this approach

has the benefit of being used to perform exhaustive approximation of free properties (or assign-null

properties) in a program.

92 CHAPTER 8. CONCLUSION

Bibliography

[1] Ole Agesen, David Detlefs, and Elliot Moss. Garbage Collection and Local Variable Type-

Precision and Liveness in Java Virtual Machines. In SIGPLAN Conf. on Prog. Lang. Design and

Impl., pages 269–279. ACM Press, June 1998.

[2] Alexander Aiken, Manuel F ahndrich, and Raph Levien. Better static memory management: Im-

proving region-based analysis of higher-order languages. In SIGPLAN Conf. on Prog. Lang. De-

sign and Impl., pages 174–185. ACM Press, June 1995.

[3] L. O. Andersen. Program Analysis and Specialization for the C Programming Language. PhD

thesis, DIKU, Univ. of Copenhagen, May 1994. (DIKU report 94/19).

[4] Andrew W. Appel. Runtime tags aren’t necessary. Lisp and Symbolic Computation, 2:153–162,

1989.

[5] Andrew W. Appel. Compiling with Continuations, chapter 16, pages 205–214. CUP, 1992.

[6] T. Ball and S.K. Rajamani. SLIC: A Specification Language for Interface Checking (of C). Tech-

nical Report MSR-TR-2001-21, MSR, 2001.

[7] Jeffrey M. Barth. Shifting garbage collection overhead to compile time. Communications of the

ACM, 20(7):513–518, 1977.

[8] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inference to von neumann ma-

chines via region representation inference. In Symp. on Princ. of Prog. Lang., pages 171–183.

ACM Press, 1996.

[9] Bruno Blanchet. Escape analysis for object oriented languages. application to Javatm. In Conf. on

Object-Oriented Prog. Syst., Lang. and Appl., pages 20–34. ACM Press, 1998.

[10] J-D. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape Analysis for Java. In Conf.

on Object-Oriented Prog. Syst., Lang. and Appl., pages 1–19. ACM Press, November 1999.

[11] T. Colcombet and P. Fradet. Enforcing trace properties by program transformation. In Symp. on

Princ. of Prog. Lang., pages 54–66. ACM Press, January 2000.

93

94 BIBLIOGRAPHY

[12] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, R. Shawn, and L. Hongjun. Bandera: Extracting

finite-state models from Java source code. In Int. Conf. on Soft. Eng. ACM Press, June 2000.

[13] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. A language framework for expressing check-

able properties of dynamic software. In Int. Spin Workshop on Model Check. of Soft., volume 1885

of Lec. Notes in Comp. Sci., pages 205–223. Springer-Verlag, 2000.

[14] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Symp. on Princ.

of Prog. Lang., pages 269–282. ACM Press, 1979.

[15] M. Das, S. Lerner, and M. Seigle. ESP: Path-sensitive program verification in polynomial time. In

SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 57–68. ACM Press, June 2002.

[16] David Detlefs and Elliot Moss, February 2002. Private Communication.

[17] A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In SIGPLAN

Conf. on Prog. Lang. Design and Impl., pages 230–241. ACM Press, 1994.

[18] Amer Diwan, Eliot Moss, and Richard Hudson. Compiler support for garbage collection in a

statically typed language. In SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 273–282.

ACM Press, June 1992.

[19] M. Emami, R. Ghiya, and L. Hendren. Context-sensitive interprocedural points-to analysis in the

presence of function pointers. In SIGPLAN Conf. on Prog. Lang. Design and Impl. ACM Press,

1994.

[20] Melvin Fitting and Richard Mendelsohn. First-Order Modal Logic, volume 277 of Sythese Li-

brary,. Kluwer Academic Publishers, 1998.

[21] Ian Foster and William Winsborough. Copy avoidance through compile-time analysis and local

reuse. In Proceedings of International Logic Programming Sympsium, pages 455–469. MIT Press,

1991.

[22] Benjamin Goldberg. Tag-free garbage collection for strongly typed programming languages. ACM

SIGPLAN Notices, 26(6):165–176, 1991.

[23] Niels Hallenberg, Martin Elsman, and Mads Tofte. Combining region inference and garbage col-

lection. In SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 141–152. ACM Press, 2002.

[24] G. W. Hamilton. Compile-time garbage collection for lazy functional languages. InMemory Man-

agement, International Workshop IWMM 95, volume 637 of Lec. Notes in Comp. Sci. Springer-

Verlag, 1995.

BIBLIOGRAPHY 95

[25] Matthew Hertz, July 2002. Private Communication.

[26] Matthew Hertz, Stephen Blackburn, J. Eliot B. Moss, Kathryn S. McKinley, and Darko Stefanovic.

Error-free garbage collection traces: how to cheat and not get caught. In Int. Conf. on Measure-

ments and Modeling of Comp. Syst., pages 140–151. ACM Press, 2002.

[27] Matthew Hertz, Neil Immerman, and J. Eliot B. Moss. Framework for analyzing garbage col-

lection. In IFIP Int. Conf. on Theor. Comp. Sci., pages 230–242. Kluwer Academic Publishers,

2002.

[28] Martin Hirzel, Amer Diwan, and Antony L. Hosking. On the usefulness of liveness for garbage

collection and leak detection. In European Conf. on Object-Oriented Prog., volume 2072 of Lec.

Notes in Comp. Sci., pages 181–206. Springer-Verlag, 2001.

[29] Martin Hirzel, Amer Diwan, and Antony L. Hosking. On the usefulness of type and liveness

accuracy for garbage collection and leak detection. In Trans. on Prog. Lang. and Syst. ACM Press,

2002.

[30] G.J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,

23(5):279–294, 1997.

[31] S. Horwitz, P. Pfeiffer, and T. Reps. Dependence analysis for pointer variables. In SIGPLAN Conf.

on Prog. Lang. Design and Impl., pages 28–40. ACM Press, 1989.

[32] Katsuro Inoue, Hiroyuki Seki, and Hikaru Yagi. Analysis of functional programs to detect run-time

garbage cells. Trans. on Prog. Lang. and Syst., 10(4):555–578, October 1988.

[33] JavaCC - The Java Parser Generator. Available at http://www.metamata.com/javacc.

[34] Java Grande Benchmark Suite. Available at http://www.epcc.ed.ac.uk/javagrande.

[35] Java card 2.2 development kit. Available at java.sun.com/products/javacard.

[36] Sun JDK 1.2. Available at http://java.sun.com/j2se.

[37] Sun HotSpot Client 1.3. Available at http://java.sun.com/products/hotspot.

[38] Richard Jones. Garbage Collection. Algorithms for Automatic Dynamic Memory Management.

John Wiley and Sons, 1999.

[39] David Lacey, Neil D. Jones, Eric Van Wyk, and Carl Christian Frederiksen. Proving correctness

of compiler optimizations by temporal logic. In Symp. on Princ. of Prog. Lang. ACM Press, 2002.

96 BIBLIOGRAPHY

[40] Tal Lev-Ami, Thomas W. Reps, Reinhard Wilhelm, and Mooly Sagiv. Putting static analysis to

work for verification: A case study. In Int. Symp. on Soft. Testing and Anal., pages 26–38. ACM

Press, 2000.

[41] Tal Lev-Ami and Mooly Sagiv. TVLA: A system for implementing static analyses. In Static

Analysis Symp., volume 1824 of Lec. Notes in Comp. Sci., pages 280–301. Springer-Verlag, 2000.

[42] Microsoft Research. The SLAM project, 2001. http://research.microsoft.com/slam/.

[43] Steven Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.

[44] Oberthur card systems. www.oberthurcs.com.

[45] Michael Pan. HUP - a heap usage profiling tool for Java programs. Master’s thesis, Tel-Aviv

University, 2001.

[46] W. De Pauw and G. Sevitski. Visualizing reference patterns for solving memory leaks in Java.

In European Conf. on Object-Oriented Prog., volume 1628 of Lec. Notes in Comp. Sci., pages

116–134. Springer-Verlag, 1999.

[47] Sara Porat, Bilha Mendelson, and Irina Shapira. Sharpening global static analysis to cope with

Java. In CASCON, 1998.

[48] Noam Rinetzky. Interprocedural shape analysis. Master’s thesis, The Technion, 2001.

[49] Noam Rinetzky and Mooly Sagiv. Interprocedural shape analysis for recursive programs. In Int.

Conf. on Comp. Construct., volume 2027 of Lec. Notes in Comp. Sci., pages 133–149. Springer-

Verlag, 2001.

[50] Niklas Röjemo and Colin Runciman. Lag, drag, void and use—heap profiling and space-efficient

compilation revisited. In SIGPLAN Int. Conf. on Func. Prog., pages 34–41. ACM Press, 1996.

[51] J.L. Ross and M. Sagiv. Building a bridge between pointer aliases and program dependences. In

European Symp. on Prog., volume 1381 of Lec. Notes in Comp. Sci., pages 221–235. Springer-

Verlag, March 1998. Available at “http://www.math.tau.ac.il/∼ sagiv”.

[52] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. Trans. on Prog.

Lang. and Syst., 24(3):217–298, 2002.

[53] F.B. Schneider. Enforceable security policies. ACM Transactions on Information and System

Security, 3(1):30–50, February 2000.

[54] Manuel Serrano and Hans-Juergen Boehm. Understanding memory allocation of scheme pro-

grams. In SIGPLAN Int. Conf. on Func. Prog., pages 245–256. ACM Press, 2000.

BIBLIOGRAPHY 97

[55] Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv. Automatic removal of array memory leaks in

Java. In Int. Conf. on Comp. Construct., volume 1781 of Lec. Notes in Comp. Sci., pages 50–66.

Springer-Verlag, April 2000.

[56] Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv. On the effectiveness of GC in Java. In Int.

Symp. on Memory Management, pages 12–17. ACM Press, October 2000.

[57] Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv. Heap profiling for space-efficient Java. In

SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 104–113. ACM Press, June 2001.

[58] Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv. Backward shape analysis to statically predict

heap behavior. Unpublished manuscript, 2002.

[59] Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv. Estimating the impact of heap liveness in-

formation on space consumption in Java. In Int. Symp. on Memory Management, pages 171–182.

ACM, June 2002.

[60] Ran Shaham, Eran Yahav, Elliot K. Kolodner, and Mooly Sagiv. Establishing local temporal heap

safety properties with applications to compile-time memory management. Invited to a special issue

of the Science of Computer Programming Journal.

[61] Ran Shaham, Eran Yahav, Elliot K. Kolodner, and Mooly Sagiv. Establishing local temporal

heap safety properties with applications to compile-time memory management. In Static Analysis

Symp., volume 2692 of Lec. Notes in Comp. Sci. Springer-Verlag, 2003.

[62] SPECjvm98. Standard Performance Evaluation Corporation (SPEC), Fairfax, VA, 1998. Available

at http://www.spec.org/osg/jvm98/.

[63] B. Steensgaard. Points-to analysis in almost-linear time. In Symp. on Princ. of Prog. Lang., pages

32–41. ACM Press, 1996.

[64] Darko Stefanovic and J. Eliot B. Moss. Characterisation of object behaviour in standard ml of new

jersey. In Conf. on Lisp and Func. Programming, pages 43–54. ACM Press, 1994.

[65] Stephen Thomas. Garbage collection in shared-environment closure reducers: Space-efficient

depth first copying using a tailored approach. Information Processing Letters, 56(1):1–7, October

1995.

[66] Frank Tip. A survey of program slicing techniques. J. Prog. Lang., 3:121–189, 1995.

[67] Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value lambda-calculus

using a stack of regions. In Symp. on Princ. of Prog. Lang., pages 188–201. ACM Press, January

1994.

98 BIBLIOGRAPHY

[68] R. Vallée-Rai, L. Hendren, V. Sundaresan, E. Gagnon P. Lam, and P. Co. Soot - a Java optimization

framework. In Proceedings of CASCON 1999, pages 125–135, 1999.

[69] D. Viswanathan and S. Liang. Java virtual machine profiler interface. IBM Systems Journal, 2000.

[70] John Whaley and Martin Rinard. Compositional pointer and escape analysis for Java programs. In

Conf. on Object-Oriented Prog. Syst., Lang. and Appl., pages 187–206. ACM Press, 1999.

[71] E. Yahav. Verifying safety properties of concurrent Java programs using 3-valued logic. In Symp.

on Princ. of Prog. Lang., pages 27–40. ACM Press, March 2001.

Appendix A

QNF prototype

QNF is a prototype for detecting places in Java code where free or assign-null statements can be inserted

safely1. This guide included in the appendix gives a more technical view of the tool.

A.1 Overview

QNF is a prototype for detecting places in Java code where free or assign-null statements can be inserted

safely. The main idea is that a user specifies assign null or free queries and the prototype answers these

queries. The input to QNF is a Java application (.class files) and a set of queries. For expository

purposes we discuss here a query in terms of the Java source code. In Section A.2 we discuss queries

more formally and relate them to Jimple code, which serves as a simple representation of the Java code.

A query specifies places in the code (e.g., a line number, a method, a class), candidates for the

insertion of a free or an assign-null statement. For example, consider the code in Fig. A.1 showing a

part of the Loop example. The query

Loop:void main(java.lang.String[])[line32] (A.1)

specifies a free query regarding line 32 in mainmethod of Loop class. This query as explained in Sec-

tion A.2 regards the insertion of a free y statement or free y.n statement immediately after line

32.

QNF answers a query by showing the valid free or assign-null statements corresponding to that

query. For example, applying QNF to the Loop example with the query (A.1) yields the following

output:

FREE=> Loop:void main(java.lang.String[])[line32][bc66][var y] (A.2)

1The meaning of a free statement in Java is discussed further in Chapter 6

99

100 APPENDIX A. QNF PROTOTYPE

[29] y = x;

[30] while (y != null) { // list traversal

[31] System.out.print(y.val);

[32] t = y.n;

[33] y = t;

}

Figure A.1: A piece of Java code for traversing a list.

This output states that a free y may be safely inserted immediately after line 32 (we ignore for the

moment the bytecode offset part [bc66])

A.1.1 QNF Phases

Applying the prototype to a Java program consists of the following phases shown in Fig. A.2:

QNF2Jimple The application is first transformed into Jimple format [68]. Jimple provides a simple

representation of the code, which is suitable for our query interface. Fig. A.3 shows the Jimple

version of the Java code in Fig. A.1.

QNF2Tvla The user browses the Jimple code and selects places candidates for the insertion of a free or

an assign-null statement. The queries along with the application are given as input to QNF2Tvla,

which produces a TVLA program [41] that serves as an input to our free and assign-null analyzer.

QNF2Tvla is based on the J2TVLA front-end developed by R. Manevich.

QNFAnalyzer The analyzer applies the free and assign-null static analysis algorithms described in Chap-

ter 6.

QNFAnswer Finally, QNFAnswer processes the analysis results to produce messages regarding the

valid free and assign-null statements that may be inserted. Our prototype gives answers at the

Jimple level, and in most cases it is rather easy to interpret the answers also at the Java source

code level or at the Java bytecode level.

Optimizer The optimizer should insert free and assign-null statements to the application. This part is

currently not implemented.

A.2 Free and Assign Null Queries

A.2.1 Specifying a Query

Queries are expressed in terms of the Jimple code generated from the class files of an application.

In order to relate the Jimple code to the corresponding Java source code/Java bytecode, every Jimple

A.2. FREE AND ASSIGN NULL QUERIES 101

Space-optimized

Application (*.class)

Application (*.class)

QNF2Tvla

*.jimple

Assign null

information

Free

information

*.tvp

Front End

Analyzer

Optimizer

Back End

Assign null Query

Free Query

QNF2Jimple

QNFAnalyzer

*.tvs

QNFAnswer

Figure A.2: QNF Architecture. The current version supplies a front-end, an analyzer and a back-end for

reporting free and assign-null information. The optimizer is not implemented yet.

102 APPENDIX A. QNF PROTOTYPE

y = x;
48

29

goto label4;

49

30

label3:

$r1 = <java.lang.System: java.io.PrintStream out>;
52

31

$i0 = y.<SLL: int val>;

56

31

virtualinvoke $r1.<java.io.PrintStream: void println(int)>($i0);

59

31
t = y.<SLL: SLL n>;

66

32

y = t;

68

33

label4:

if y != null goto label3;

70

30

Figure A.3: A piece of Jimple code for traversing a list. Every Jimple statement is succeeded by two

numbers, which represent a bytecode offset and a line number in the original code. These numbers

appear in the .jimple file, and used to specify free and assign-null queries.

A.2. FREE AND ASSIGN NULL QUERIES 103

statement is succeeded by two numbers. The first number relates the Jimple statement and a bytecode

offset in the corresponding Java bytecode. The second number relates the Jimple statement and the

corresponding Java source code line number. Fig. A.3 shows an example of Jimple code. The numbers

66 and 32 after the Jimple statement t = y.<SLL: SLL n> associate this statement with bytecode

offset 66 and line number 32 in the original Java bytecode/Java source code.

A query specifies places in the Jimple code candidates for the insertion of an assign-null or a free

statement. The syntax of a query is as follows:

Query = class|class: method|class: method[lineNUM]| (A.3)

class: method[lineNUM1][bcNUM2]

where class specifies a class name, method specifies a method signature.lineNUM and bcNUM spec-

ify a line number and bytecode offset in the original code and the bytecode. As shown in (A.4), a query

may specify: (i) the Jimple statements of a class, (ii) the Jimple statements of a method, (iii) the Jim-

ple statements associated with line number NUM in the original Java source code, or (iv) the Jimple

statements associated with line number NUM1 and bytecode offset NUM2. For example, Query (A.1)

considers Jimple statements associated with line number 32 in main method of Loop class. From

Fig. A.3 we see that t = y.<SLL: SLL n> is the only such Jimple statement.

A query is interpreted either as a free query or as an assign-null query. The mapping between a

Jimple statement st specified by a query and the free or assign-null statement candidate for insertion

after st is defined as follows:

• for a free query, a variable or a field used at st is considered. For example, Query (A.1) considers
free y and free y.n2 for insertion after the Jimple statement t = y.<SLL: SLL n>,

since both y and y.n are used at that statement.

• for an assign-null query, a field used at st is considered. For example, Query (A.1) considers y.n
= null for insertion after the Jimple statement t = y.n, since y.n is used at that statement.

We do not consider assign-null to local variables in our prototype, since there are known simpler

algorithms for doing that, and applying our framework for this case is like killing a fly with a

cannon. . .

We note that issuing a query to consider the insertion of a free or an assign-null statement after a

statement st for a variable or field not used in st requires modification of the original Java code. For

example, suppose we would like to consider a free x after the statement t = y.n at line 32 in the

Loop example. Since x is not used at that statement, inserting a new statement SLL dummy = x after

line 32 and then issuing a free query regarding this new statement will do the job.

2for our free and assign-null statements we use Java syntax instead of Jimple syntax

104 APPENDIX A. QNF PROTOTYPE

Finally, we note that in principle, the user may specify a query regarding finding all valid free or

assign-null statements in the program. However, there is a direct tradeoff between the number of code

places candidates for free or an assign-null to the cost the analyzer. The current implementation is more

suitable for issuing queries regarding few lines in a program.

A.2.2 Query Answers

The answer to a query shows the valid free or assign-null statements that can be inserted in the code

places specified by that query. For example, Answer (A.2) shows that it is valid to insert a free y

statement immediately after the Jimple statement associated with Java line 32 and bytecode offset 66,

i.e., immediately after the statement t = y.<SLL: SLL n>.

A.3 Using the Prototype

Using the prototype consists of going through the phases described below.

Compilation In order to allow a more natural interface it is recommended that .class files are generated

with all debugging info (e.g., specifying −g flag in the javac compiler during the compilation

of the .java files). Otherwise, the Jimple code will not show original variable names.

QNF2Jimple The user queries are specified at the Jimple level, thus QNF2Jimple needs to be applied

to the application to produce .jimple files out of the .class files. The command line options for

QNF2Jimple are as follows:

[-startMethod startClass: startMethod][soot-options] mainClass

where startMethod allows the specification of the starting point of the program. For example,

in an applet it allows the specification of the run method of the main class. If the startMethod

option is not used, the directory is set to mainClass.main. soot-options are described in

http://www.sable.mcgill.ca/soot/tutorial. Finally, mainClass specifies the

main class of the application. If startMethod option is not used, the starting point of the program

is set to mainClass.main.

The Jimple files are produced in the directory startClass.startMethod. For example,

applying QNF2Jimple Loop produces the Jimple Files Loop.jimple, SLL.jimple in

Loop.main directory.

QNF2Tvla The queries along with the application are given as input to QNF2Tvla, which produces

.tvp files (i.e., a TVLA program) that serve as an input to our free and assign-null analyzer. In the

current implementation QNF2Tvla repeats the process of converting .class files to .jimple files,

A.3. USING THE PROTOTYPE 105

and then the .jimple files are converted to .tvp files. The command line options for QNF2Tvla are

as follows:

[-qn|-qf|-qnf q1;q2;. . . ;qk|@qfile] [-keepDeadRefs][-scopedVarsField] [QNF2Jimple-options]

where qn interprets a query as an assign-null query, qf interprets a query as a free query, and qnf

interprets a query as a free and as an assign-null query. Queries may be specified in the command

line separated by a semi-colon, or by giving a file that contains queries, each in a new line. For

example, applying QNF2Jimple -qf @Loop.qf Loop specifies for the Loop example the

query file Loop.qf, which contains Query (A.1).

The input to TVLA is a set of .tvp files generated from the .jimple files. By default, before

the translation process begin, the Jimple code is instrumented with statements assigning null to

dead local variables. These null assignments help our analysis drop unnecessary information (i.e.,

ignoring the value of dead variables) at the cost of analyzing the null assignment statements. The

user may disable this step of null assignment instrumentation using keepDeadRefs option. Finally,

scopedVarsField option may be used to affect the abstraction. This option specifies longer names

for variables and fields, by prefixing variables with their containing method, and by prefixing

fields with their type name. This option allows disambiguating fields of the same name, but of

different types, and variables of the same name but of different declaring methods.

QNFAnalyzer The command line options for QNFAnalyzer are as follows:

QFREE|QNULL SLL|DLL|ALLOC-SITE [tvla-options]

This command applies our assign-null/free TVLA-based analyzer. QFREE specifies the free

analysis, and QNULL specifies the assign-null analysis. SLL|DLL|ALLOC SITE determines the

type of analysis being applied. Each type of analysis trades off precision and cost. In par-

ticular, SLL precisely handles a singly linked list, DLL precisely handles a doubly-linked list,

and ALLOC SITE abstracts objects based on their allocation sites (combined with the values

of reference variables). The cost of ALLOC SITE is cheaper than SLL, DLL analyses; how-

ever, it is less precise for recursive data structures. Finally, tvla-options are described in http:

//www.math.tau.ac.il/˜rumster/TVLA.

The QNFAnalyzer command is applied in the startClass.startMethod directory. For

example, in Loop.main directory we apply QNFAnalyzer QFREE SLL to execute a free

analysis for the Loop example using SLL analysis kind.

QNFAnswer QNFAnswer processes the analysis results to produce messages regarding the valid free

and assign-null statements that may be inserted. QNFAnswer must be applied with the same

106 APPENDIX A. QNF PROTOTYPE

options used for the analyzer. For example, in Loop.main directory we apply QNFAnswer

QFREE SLL to give as an answer the free statement shown in (A.2).

A.4 Known Limitations

• static initializers are ignored

• exceptions are ignored

• multithreading is not supported

