
Tel-Aviv University
Raymond and Beverly Sackler Faculty of Exact Sciences

School of Computer Science

I NTERPROCEDURAL AND M ODULAR

L OCAL HEAP SHAPE ANALYSIS

by

Noam Rinetzky

under the supervision of
Prof. Mooly Sagiv

Thesis submitted
for the degree of Doctor of Philosophy

Submitted to the Senate of Tel-Aviv University
June 2008



ii



To my loving and beloved parents, Shalva and Michael.

iii



iv



“Art consists of limitation.
The most beautiful part of every picture is the frame.”

–G. K. Chesterton

v



vi



Abstract

Interprocedural and Modular
Local Heap Shape Analysis

Noam Rinetzky
Doctor of Philosophy

School of Computer Science
Tel-Aviv University

Shape analysis algorithms statically analyze a program to determine information about the heap-allocated data

structures that the program manipulates. Traditionally, shape analysis algorithms abstractwholeheaps at every

program point. This makes it difficult to benefit from procedural abstraction in the analysis and to support modular

reasoning.

In this thesis, we develop interprocedural and modularlocal-heapshape analysis algorithms for sequential

imperative programs. More specifically, we present (i) interprocedural shape analysis algorithms that treat pro-

cedures as heap-transformers betweenrelevant partsof the heap, and (ii) modular shape analysis algorithms that

separately analyze every program module while consideringonly the subheaps manipulated by that module.

The distinguishing aspect of our interprocedural analysesis that they maintain information regarding the

sharing patterns between the procedure local-heap and the other (irrelevant) parts of the heap. Specifically, our

analyses take special care ofcutpoints, objects that separate the “local-heap” that can be mutatedby a procedure

from the rest of the heap, which—from the viewpoint of that procedure—is non-accessible and immutable. This

procedure-local view of the heap allows our analyses to benefit from procedural abstraction.

We also introduce a new modular shape analysis. The distinguishing aspect of our modular analyses is that

they integrate a shape analysis with encapsulation constraints. More specifically, we focus our attention on ana-

lyzing dynamically encapsulatedprograms. In these programs, the live references (i.e., used before set) between

subheaps manipulated by different modules form a tree. Our work presents a nice interplay between dynamic

encapsulation and modular shape analysis: it uses dynamic encapsulation to enable modular shape analysis, and

uses shape analysis to determine that the program is dynamically encapsulated. Thanks to this interplay, we are

able to provide the firstmodularshape analysis algorithm capable of handling pointer parameters.

Technically, we develop our analyses by abstract interpretation of non-standard local-heap concrete opera-

tional semantics. These semantics take special care of cutpoints and check various restrictions on programs. Our

analyses are simplified byassumingthese restrictions, yet remain sound byverifyingthem. Furthermore, in addi-

tion to designing new cutpoint-aware shape abstractions, we show how placing certain restrictions on the allowed

cutpointsenableslifting some existing abstractions which have been used forintraprocedural shape analyses to

the interprocedural andmodularsetting.

We have implemented our interprocedural algorithms and applied them to verify interesting properties of heap-

intensive programs, including the first fully-automatic proof of the partial correctness of a recursive quicksort

implementation.
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Chapter 1

Introduction

Modern programs rely significantly on the use of dynamically-allocated linked data structures. Shape-analysis
algorithms [Rey68, JM81, JM82] statically analyze a program to determine information about the heap-allocated
data structures that the program manipulates. The algorithms areconservative(sound), i.e., the discovered infor-
mation is true for every input. Thus, they can be utilized forprogram verification, optimization, etc..

Designing shape analysis algorithms, in particular ones which are precise enough for the purpose ofprogram
verification, is a challenging problem: (i) there is no a priori bound on the number of dynamically allocated
objects; and (ii) updates to the state of the program may haveindirect effects due to pointer aliasing. Further-
more, handling the heap in a precise manner requiresstrong pointer updates[CWZ90] which calls for the use of
flow-sensitive context-sensitive analysis and expensive heap abstractions. The presence of procedures escalates
the problem because the analysis needs to track interactions between the program (unbounded) stack and the
(unbounded) heap [RS01]. Still, reasoning about the effects of procedure calls is a crucial element in program
analysis.

In this thesis, we present shape analysis algorithms that are precise enough for the purpose ofverifyingimper-
ative programs that manipulaterecursivedynamically-allocated linked data structures using (possibly recursive)
procedures. Our analyses verify properties such asmemory safety, e.g., that a program never dereferences a null-
valued pointer; establish shape invariants, e.g., that at acertain program point variablesx andy always point to
disjoint acyclic linked lists; and prove that the analyzed program satisfies certain partial correctness specification,
e.g., that a procedure invoked on an acyclic linked list always returns a sorted acyclic linked list.

Our algorithms compute a characterization of a procedure’sbehavior in which parts of the heap not relevant
to the procedure are ignored. We provide two kinds of algorithms:

• interproceduralalgorithms that analyze whole program and determine properties ofspecific programs, and
• modularalgorithms that separately analyzepartsof programs (modules), and identify properties of the data

structures manipulated by the analyzed module that hold in any program (which satisfies certain, modularly
checkable, conditions).

Technically, we develop our analyses following the semantics-basedabstract-interpretation[CC77, CC79]
approach for program analysis: We define program semantics at multiple levels of abstraction, starting from a
concrete (standard) program semantics and ending with the abstract semantics used by the analyzer, and formally
establishing the relationship between the different semantics. This allows us to formally derive a sound analy-
sis. In our semantics, procedures are only passedparts of the heap. By being abstract interpretations of these
semantics, our analyses are able to compute characterizations of procedures aslocal-heaptransformers.

By design, instead of attempting to develop algorithms thataim at verifying any (shape) properties of any
program, we focus on by designing static shape analysis algorithms aimed at verifying chosen classes of properties
for selected classes of programs. Thus, we develop our analysis using a two-staged approach:

I. In the first stage, we identify an interesting class of programs and an interesting class of properties. We
define anon-standardconcrete operational semantics which characterizes the class of programs that we are
interested in using semantically-defined conditions. Our non standard semantics agree with the standard
semantics with respect to the properties of interest as longas the program belongs to the targeted class of
programs. However, our semantics halt the execution of a program if the execution violates the intended
restrictions.

1



2 CHAPTER 1. INTRODUCTION

II. In the second phase, we develop shape analysis algorithms by abstract interpretation of our non standard
semantics. Our algorithmsassume and (conservatively) verifythat the analyzed program belongs to the
targeted class of programs. (In particular, by not requiring an a priori classification that a program belongs
to the targeted class of program, our analyses can be appliedto arbitrary programs). Instead of designing
new shape abstractions, we show how to lift existing (bounded) shape abstractions which have been used
for intraprocedural shape analyses (e.g, [DRS00, LARSW00, SRW02, MYRS05, DOY06, LAIS06]) to the
interprocedural and modular setting.

1.1 Main Contributions

The main contributions of this thesis can be summarized as follows:

Procedure local-heap Storeless Semantics.We present two procedure local-heap storeless semantics:LSLCPF

(see Chapter 3) andLSL (see Chapter 4). In both semantics, called procedures are only passedpartsof the heap.
The two semantics differ in the way that they treatcutpoints, objects that separate the “local-heap” that can be
mutated by a procedure from the rest of the heap, which—from the viewpoint of that procedure—is non-accessible
and immutable. (See Definition 3.3.2).

• LSLCPF forbids cutpoints. Specifically, it aborts when a procedureinvocation yields a cutpoint.
• LSL allows arbitrary cutpoints by treating them differently than other, non-cutpoint, objects. More specif-

ically, LSL marks each cutpoint with an immutablecutpoint-label. The cutpoint-label is computed based
on of the position of the cutpoint in the procedure’s local-heap when the procedure starts executing. As a
result, each cutpoint can be identified by a unique canonic context-independent label. (See Definition 4.3.1)

Both semantics preserve procedure-local views of the memory. In particular, they preserve the valuescomputed
by arbitrary code blocks and program expressions. Thus, abstract interpretation algorithms which are based on
LSLCPF andLSL can verify program assertions with respect to thestandardprogram semantics.

Interprocedural local-heap Shape Analysis. We develop shape analysis algorithms by abstract interpretation
of our local-heap semantics. These algorithms support procedural abstraction by computing a conservative char-
acterization of a procedure’s behavior as a transformer oflocal heaps. More specifically, we develop two
frameworks for interprocedural shape analysis algorithms:
• A framework for designing interprocedural shape analysis algorithms forcutpoint-free programs(programs in

which procedure invocations never generate a cutpoint). Bylimiting our attention to cutpoint-free programs, we
can easily harness shape abstractions designed for intraprocedural analysis, e.g., [DRS00], for interprocedural
analysis. The algorithms generated by this framework are abstract interpretation ofLSLCPF. (See Chapter 3).

• A framework for designing interprocedural shape analysis algorithms for programs with arbitrary cutpoints.
This framework is parameterized by the cutpoint-abstraction. Specifically, we show how we can employcanon-
ical abstraction[SRW02] to handle arbitrary programs by taking special careof cutpoints in the abstraction.
The algorithms generated by this framework are abstract interpretation ofLSL. (See Chapter 4).
Our frameworks are based on canonical abstraction [SRW02],and are context- and flow-sensitive with the

ability to perform destructive pointer updates.
We have implemented prototypes of both frameworks, and usedthem to derive analyses for verifying interest-

ing properties, including partial correctness of a recursive quicksort implementation.
Both frameworks can handle arbitrary programs, however, they are based on different approaches: The first

framework verifies that a program is cutpoint-free. If it fails to do so, i.e., if it detects a possible cutpoint, it
gives up on proving any other property. This allows the analysis designer to avoid designing an abstraction for
cutpoints. The second framework handles programs that has procedure calls with cutpoints using a given cutpoint-
abstraction.

Modular Shape Analysis for Dynamically Encapsulated Programs. We presentmodularshape analysis al-
gorithms for a subset of heap-manipulating programs. We consider a program to be a collection of modules and
develop shape (heap) analyses which treat each module separately.
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Modular shape analysis is a challenging problem because shape analysis primarily concerns properties of the
global-heap. Thus, it is at risk of degenerating into a wholeprogram analysis, mainly because of aliasing, which,
in general, is not constrained.

We are able to develop modular shape analysis algorithms by targeting our analyses to a certain class of “well-
behaved”dynamically encapsulatedprograms. In these programs, live references (i.e., used before set) between
subheaps manipulated by different modules form a tree. We found that the judicious use of aliasing in dynamically
encapsulated programs make them more amenable for modular analysis.

Technically, we define a non-standard operational semantics (DOS) which checks that program executions
adhere to the dynamic encapsulation restriction while preserving procedure-local views of the program’s state with
respect to the standard semantics. Based onDOS , we develop a module semantics which assigns a program-
independent meaning to modules. We develop a conservative static analysis algorithm by abstract interpretation
of the module semantics. Our algorithms analyze each moduleseparately while considering only the subheaps
manipulated by that module. Our algorithms modularly verify that a program is dynamically encapsulated and
find shape invariants pertaining to the data structures of the analyzed modules. (See Chapter 5).

1.2 Thesis Organization

This thesis consists of three main chapters, Chapter 3, 4, and 5. In Section 1.3, we provide an informal overview
of each of these chapters, and outline the connections between them. The rest of the thesis is organized as follows:

• Chapter 2 sets the scene by definingEAlgol, a simple imperative language, and defining its standard
store-based semantics. It also provides a bird’s eye view ofthe parametric framework for shape analy-
sis of [SRW02].

• Chapter 3 presentsLSLCPF, a storeless semantics for cutpoint-free programs, and develops interprocedural
shape analysis algorithms for cutpoint-free programs by abstract interpretation ofLSLCPF.

• Chapter 4 presentsLSL, a storeless semantics for programs with arbitrary cutpoints, and develops inter-
procedural shape analysis algorithms by abstract interpretation ofLSL.

• Chapter 5 presents our modular analysis of (dynamically encapsulated) heap-manipulating programs.
• Chapter 6 reviews related work.
• Chapter 7 concludes the thesis and draws out possible directions for further work.

1.3 Overview

This section provides an informal overview of the content ofthis thesis. The section contains forward references
to chapters that formally discuss the presented material.

1.3.1 Procedure Local-Heap Storeless Semantics

Formal semantics is concerned with rigorously specifying the meaning, or behavior, of programs [Win93]. In this
section, we shortly discuss the notions of store-based semantics and storeless semantics for pointer programs. We
then describe theprocedure local-heap storelesssemantics developed in this thesis.

1.3.1.1 Store-based vs. Storeless Semantics

A straightforward way to specify semantics of programs withdynamically allocated objects and pointers is by
a store-basedoperational semantics. (See, e.g., [MS77, NNH99, Rey02].)In these semantics, every object is
identified by itslocation (commonly referred to also as the object’saddress). A store-based semantics is very
natural because it closely corresponds to concepts of the machine architecture.

In programming languages such as JAVA [GJSB05], where addresses cannot be used explicitly, any two heaps
with isomorphic reachable parts are indistinguishable. (In particular, garbage cells have no significance). This
allows representing states in a more abstract way than in languages in which addresses can be manipulated ex-
plicitly, e.g., in C [KR88], where (unsafe)cast statements from integers to pointers are used. This leads tothe
notion ofstoreless semantics, as described below.
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A storeless semantics represents memory states as aliases between pointer access paths. More specifically, a
heap is represented as a collection of objects, where each object is identified by the unique set of access paths
that point to it. (cf. store-based semantics, where each object is identified by a unique, yet essentially arbitrary,
location.) Note that as a result, a storeless semantics gives a canonic representation for any two heaps with
isomorphic reachable parts. Also note that a storeless semantics does not give immutable identifiers to objects:
Because of memory mutations, an object may be identified by different sets of access paths in different memory
states.

Storeless semantics was first introduced by Jonkers [Jon81]. Jonker’s original work does not handle procedure
calls. Deutsch [Deu92b] defines a storeless semantics that handles procedure-calls, and uses it to develop a
may-alias pointer-analysis algorithm. In this semantics,pending access paths(i.e., access paths starting at local
variables of pending calls) are explicitly represented.

It is unfortunate that existing storeless semantics associate the entire heap with each procedure invocation: The
first step in many heap-abstractions is to abstract away fromspecific memory addresses, e.g., [Deu92a, Deu94,
RS01, SRW02, JLRS04, MYRS05, DOY06, LAIS06, MBC+07]. A storelessconcretesemantics has already
performed this step, which relieves the designer of an abstraction from having to do so. Thus, it is natural to
base powerful pointer (shape) analysis algorithms on storeless semantics. However, associating the entire heap
with each procedure invocation makes it difficult to design analyses which are based on a storeless semantics and
support procedure and data abstraction.

Another problem with current storeless semantics is that because objects do not have immutable identifiers,
it is hard to relate properties of objects before and after a call. As a result, it is hard to scale analyses based on
storeless semantics to prove properties of real-life programs. By “scaling”, we mean not just cost issues but also
precision. In particular, even in the concrete execution, after a procedure call returns, some information about the
calling context may be lost.

1.3.1.2 Procedure Local-Heaps Storeless Semantics

In this thesis, we develop storeless semantics for imperative programs with procedures that do not represent
pending access paths. We say that an object isrelevant for the invocationof a procedure when it is reachable from
one of the actual parameters when the procedure is invoked. We develop storeless semantics in which procedures
are invoked onlocal-heapscontaining only relevant objects (and not containing irrelevant objects).

We develop two storeless procedure local-heap semantics:LSLCPF andLSL. Both semantics are large-step
(natural) operational semantics [Kah87] for single-threaded imperative programs. The two semantics differ in the
way that they treatcutpoints, as described below.

Cutpoints

We say that an object in the local-heap of an invocation of a procedure is acutpoint for that invocation when
it separates theprocedure local-heap of that invocation, i.e., the part of the heap that can be accessed by the
procedure in that invocation, from the rest of the heap, which—from the viewpoint of that procedure—is non-
accessible and immutable. (See Definition 3.3.2). More specifically, we say that an object in the procedure
local-heap is acutpointfor an invocation when it is reachable via a pointer-access path that (i) starts at a variable
of a pendingcall and (ii) does nottraversethe local-heap. (Thus, we do not consider an object pointed-to by a
formal parameter of an invocation as one of its cutpoints.)

Example 1.3.1 Figure 1.1 illustrates the notions of local-heaps and cutpoints. To gain intuition,
Figure 1.1 shows these notions using the familiarstore-based[MS77, NNH99, Rey02]small-
step[Plo81, NNH99] stack-based operational semantics.

The figure depicts a memory state of a program comprised of four procedures:main , foo , bar , and
zoo . The figure depicts a memory state that may occur at the entry to zoo . The stack of activation
records is depicted on the left side of the diagram. Each activation record is labeled with the name of
the procedure it is associated with. Thus, as we can see,zoo was invoked bybar ; procedurebar
was invoked byfoo ; andfoo was invoked by themain procedure. The activation record at the top
of the stack pertains to thecurrentprocedure (zoo ). All other activation records pertain topending
procedure calls. Thus, for example, the access pathsz1.f1.f1 , y9 , andx5.f2 are pending access
paths.
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Figure 1.1: An illustration of the cutpoints for an invocation in a store-based small-step (stack-based) operational
semantics at the entry tozoo . We assume thath7 is zoo ’s formal parameter.

Heap-allocated objects are depicted as rectangles labeledwith their location. The value of a pointer
variable (resp. field) is depicted by an edge labeled with thename of the variable (resp. field). The
shaded cloud marks the part of the heap thatzoo can access (i.e., the part of the heap containing the
relevant objects for the invocation). The cutpoints for theinvocation ofzoo (u8 andu9 ) are heavily
shaded. Note thatu7 is not a cutpoint although it is pointed-to by pending accesspaths that do not
traverse through the shaded part of the heap (specifically,x7 , x5.f1.f1 andxx5.f1.f1 ). This
is becauseu7 is also pointed-to byh7 , zoo ’s formal parameter.

1.3.1.3 LSLCPF: A Storeless Semantics for Cutpoint-Free Programs

LSLCPF forbids cutpoints. We refer to a procedure invocation in which no cutpoint object exists as acutpoint-free
invocation. We refer to an execution of a program in which all invocations are cutpoint-free as acutpoint-free
execution, and to a program in which all executions are cutpoint-free as acutpoint-free program.

Cutpoint-Freedom. The main idea behind the design ofLSLCPF is to restrict the “sharing patterns” occurring in
procedure calls between the procedure’s local-heap and therest of the heap:LSLCPF checks that every procedure
invocation is cutpoint free. When a procedure invocation isnot cutpoint-free, the semantics halts in an error state.
In a sense,LSLCPF restricts the “sharing patterns” occurring in procedure calls in such a way that the only objects
that separate the procedure local-heap from the rest of the heap are the ones pointed to by the actual parameters.
Stated differently, the objects pointed by the actual parametersdominatethe part of the heap which is relevant to
the invoked procedure (i.e., the callee’s local-heap).

We refer to our restriction on programs ascutpoint-freedom. As described in Chapter 3, cutpoint-freedom
greatly simplifies the handling of procedure calls in the semantics, and thus the analysis algorithm. (See also
Section 1.3.2). We note thatLSLCPF does notexpectprograms to be cutpoint-free; Itchecksthat they are. This
makes it applicable for arbitrary programs.

Example 1.3.2LSLCPF can detect that the invocation ofzoo on the memory state shown in Fig-
ure 1.1 is not cutpoint-free by inspecting only the access paths of the caller. Specifically, it would
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detect that the caller (procedurebar ) can bypassu7 into zoo ’s local-heap by access pathsx5.f2
andxx5.f2 (shown in Figure 1.1 as pointing tou8) and by access pathx9 (shown in Figure 1.1
as pointing tou9). Thus,LSLCPF would deem this invocation to be non cutpoint-free, and abort the
execution in an error state.

Storeless Semantics. Because our goal is to perform static analysis,LSLCPF is astoreless semantics[Jon81];
every dynamically allocated objecto is represented by the set ofaccess pathsthat reacho. In particular, unreach-
able objects are not represented.

LSLCPF differs from previous storeless semantics based on pointer-access paths [Deu92a, Ven99] in the fol-
lowing way: It does not represent access paths that start from variables of pending calls in the “local state” of the
current procedure. This means that a procedure has a local view that only includes objects that are reachable from
the procedure’s parameters and, in addition, any objects that it allocates.

Observational Soundness. LSLCPF is shown to beobservationally soundwith respect to a standard store-
based semantics, i.e.,if the program is cutpoint-free, any property that a procedurecan observe according to the
standard semantics, it can also observe inLSLCPF. (See Theorem 3.5.3). This allows program analyses based on
an abstract interpretation ofLSLCPF that prove properties ranging from the absence of runtime errors to partial and
total correctnesswith respect to the standard store-based semantics. Furthermore,LSLCPF is shown to be capable
of checkingcutpoint-freedom. This makes analyses based on an abstractinterpretation ofLSLCPF applicable for
arbitrary programs: such an analysis can conservatively verify that the analyzed program is cutpoint-free. (See
Theorem 3.5.3).

1.3.1.4 LSL: A Storeless Semantics for Programs with Arbitrary Cutpoints

LSL is a procedure local-heap storeless semantics. In this respect, it is similar toLSLCPF and differs from
other existing storeless semantics [Deu92a, Ven99]. However,LSL, in contrast toLSLCPF, allows for arbitrary
cutpoints. Note that as a result, when a procedure returns some pending access path may point into the callee’s
local-heap, bypassing the object pointed to by the actual parameters. Determining the effect of the procedure on
such access path in a storeless semantics is challenging because objects do not have unique immutable identifiers
(e.g., addresses).

The main insight behindLSL is that the side-effects of a procedure invocation onR-values of pending access
paths can be delayed to the procedure return—even though thememory cells do not have unique identifiers, e.g.,
locations. Intuitively,LSL is able to determine the effect of a procedure call by labeling every cutpoint with a
unique (canonic) label when the procedure is invoked. When the procedure returns, the cutpoint-labels are used
to update the caller’s local-heap with the effect of the call.

Technically,LSL represents objects using access paths that start at the (current) procedure’s local variables
(in that aspect, it is similar toLSLCPF) and,in addition, with access paths rooted at cutpoints, which are (uniquely
and immutably) labeled throughout the invocation.

LSL provides a context-independent representation for the cutpoints of the invocation usingcutpoint-labels.
A cutpoint-label is a set of access paths starting at formal parameters. The label of a cutpoint is the set of all
access paths that start with a formal parameter (of the invoked procedure) and point-to that cutpoint when the
procedure execution starts. The label of a cutpoint does notchange throughout the execution of the procedure’s
body, even if the heap is mutated by destructive updates.

Example 1.3.3 Figure 1.2 illustrates the notion of storeless representation of procedure local-heaps
using cutpoints. The figure depicts theLSL memory state that arises at the entry to procedurezoo

at the memory state shown in Figure 1.1. The local-heap in Figure 1.1 has two cutpoints:u8 andu9.

The cutpoint-label of the former iscpl8 = ̂{h7.f2} and of the latter iscpl9 = ̂{h7.f2.f2.f1}. (We
use the notation̂S to denote that a setS of access paths is a cutpoint-label).

Every object is represented by a set of access paths startingeither from the object pointed to byh7,
zoo ’s formal parameter (these access paths start withh7), or from a cutpoint (these access paths start
with the appropriate cutpoint-label).1

1Allowing access paths to start at cutpoint-labels is a slight generalization of the notion of an access path. For detailssee Section 4.3.
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Figure 1.2: An illustration of procedurezoo ’s local-heap (with cutpoints) at the memory state shown in Figure 1.1
according to theLSL semantics. We assume thath7 is zoo ’s formal parameter.

For example, the object depicted at locationu12 in Figure 1.1, is represented by the set of access
paths{h7.f1.f1, h7.f2.f1, {ĥ7.f2}.f1}. Access pathsh7.f1.f1 andh7.f2.f1 are usual access

paths starting at program variableh7 . Access path{ĥ7.f2}.f1 starts at the cutpoint object labeled

by the (singleton) set of access paths{ĥ7.f2}.

We note that Figure 1.2 uses the light gray rectangles and thelight gray labeled edges connecting them
only to provide intuition. The set-of-access-paths representation of the allocated objects suffices to
capture the layout of the heap.

Context Independent Encoding of Sharing Patterns. The cutpoint-labels induced by a procedure call encodes
the entry points into the procedure local-heap (bypassing the procedure parameters) from the rest of the heap in
a context independent way: The external sharing is recordedin the same way independently of whether is due to
heap sharing or stack sharing. We refer to this context independent way for recording the external sharing as the
sharing patternbetween the procedure local-heap and the rest of the heap. Ifwe take a traditional global view
of the heap, as done in Example 1.3.1, we see that cutpoints represent the external sharing. For example, in the
local-heap of procedurezoo , depicted in Figure 1.1, objectsu8 andu9 are cutpoints.LSL labels these cutpoints

using the cutpoint-labelŝ{h7.f2} and ̂{h7.f2.f2.f1}, respectively. Note that in this encoding, the fact thatu8 is
a cutpoint due to heap sharing andu9 is a cutpoint due to stack sharing, as well as the names of the variables and
fields pointing to these cutpoints from outside the local-heap, is abstracted away.

Observational Equivalence. LSL is shown to beobservationally equivalentto a standard store-based seman-
tics. This allows it to be used to prove properties ranging from the absence of runtime errors to partial and total
correctnesswith respect to the standard store-based semantics. In addition, it has a number of standard properties
includingfull abstractionanddeterminism. (See Section 4.5).

Remark 1.3.4 Informally, a procedure local-heap semantics replaces themore standardcall-by-referencecall-
ing convention (where procedures are passed references to the global-heap) with acall-by-value-resultcalling
convention (with local-heaps being the valuecopiedwhen the procedure starts executing, andrestoredwhen it
terminates). This non standard view allows to delay the propagation of the procedure’s side-effects until it returns:
Instead of treating the heap as a single global resource which is shared by all procedures, a local-heap semantics
views the heap as a local resource of every procedure, and delays the propagation of the side effects of an invoked
procedure until it returns.
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Remark 1.3.5 The observation regarding the uniform effect of a procedureon pending access paths was already
utilized in [Deu92a, LR92] for pointer analysis. We believethat our work is the first to explore the usage of this
observation in semantics.

The material pertaining toLSLCPF is described in detail in Chapter 3. This material originally appeared
in [RSY05a, RSY05b]. The material pertaining toLSL is described in detail in Chapter 4. This material originally
appeared in [RBR+05, RBR+04]. Section 6.1 contrasts our work with existing works on storeless semantics.

1.3.2 Interprocedural Local-Heap Shape Analysis

Static program analysis algorithms determine statically (i.e., without the programs being actually executed) dy-
namic properties of programs (i.e., properties of program executions). The analysis results are valid for every
possible input. Because, in general, program verification is an undecidable problem, the key idea is that of ap-
proximation, as formalized by the theory of abstract interpretation [CC79]. (For an introduction to the theory
of abstract interpretation and its applications, see, e.g., [Cou00, Cou96].) Interprocedural analysis concerns the
static examination of programs consisting of multiple procedures. (See Section 6.3.1 for a short review of existing
approaches for interprocedural program analysis).

LSLCPF andLSL have been used to develop frameworks for interprocedural shape analysis. The instantia-
tions of these frameworks are abstract interpretation algorithms ofLSLCPF andLSL, respectively. These algo-
rithms employ thefunctionalapproach for interprocedural analyses [CC78, SP81, KS92, RHS95, BR01, DLS02,
JLRS04]:2 they tabulate abstractions of memory configurations beforeand after procedure calls. Because the
instantiated algorithms abstract procedure local-heap semantics, they tabulatelocal-heapsand not whole heaps.
As a result, our analyses are modular in the heap: they allow reusing the effect of a procedure at different calling
contexts.

We develop two frameworks for interprocedural shape analysis:

Interprocedural shape analysis for cutpoint free programs The first framework is designed for the class of
cutpoint freeprograms. It is obtained by abstract interpretation ofLSLCPF. While many programs are not
cutpoint-free, we observe that a reasonable number of programs, including all examples used in [DRS00,
RS01, JLRS04] are cutpoint-free, as well as many of the programs in [Deu94, SYKS03].

One of our key observations here, is that we can exploit cutpoint-freedom to construct an interprocedural
shape analysis algorithm that efficiently reuses proceduresummaries. More specifically, our analysis bene-
fits not only from the tabulation of local-heaps instead of global-heaps (thus it can ignore the part of the heap
not reachable from actual parameters), but also from cutpoint freedom: when analyzing a procedure call, it
exploits the fact that any access path into the callee’s heapmust traverse through an object pointed to by a
parameter. In particular, the handling of procedure returns can be greatly simplified. (See Section 4.10).

Interprocedural shape analysis for programs with cutpoints The second framework is designed for programs
with arbitrary cutpoints. It is obtained by abstract interpretation ofLSL. The framework allows the analysis
designer to define the expected cutpoints. The analysis becomes imprecise (and sometimes expensive)
in programs in which several cutpoints are summarized together. Indeed, it is instructive to distinguish
between two dimensions of heap abstractions: (i) The abstraction of the local-heap which discriminates
between different kinds of aliases inside the reachable part of the heap. For example, locally-unshared
objects, i.e., objects which are pointed to by one selectorfrom the local-heapcan be treated differently
from locally-unshared objects, i.e., objects which are pointed to by two or more selectorsfrom the local-
heap. (ii) The abstraction of thesharing patternsbetween the local-heap and the rest of the heap (as
encoded by the cutpoint-labels).

We note that while this framework can handle programs that generate arbitrary cutpoints, it is expected to
work better when the number of cutpoints is bounded in any procedure invocation as it can avoid from
abstracting cutpoints together.

2See Section 6.3.1.2 for a short review of the functional approach for interprocedural analyses.
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1.3.2.1 Shape Analysis

Our analyses follow thefunctional approachfor interprocedural analysis, and compute procedure summaries by
tabulating (shape abstractions of the) procedure’s input-output relation.

The shape abstractions employed by our analyses are obtained using the3-valued logical framework for pro-
gram analysis of [SRW02]. Thus, our interprocedural frameworks are parametric in the heap abstraction and
in the concrete effects of program statements, allowing to experiment with different instances of interprocedu-
ral shape analyzers. For example, we can employ different abstractions for singly-, doubly-linked lists, and
trees. Both frameworks were implemented using TVLA [LAS00]. (In Section 2.5, we summarize the framework
of [SRW02]).

1.3.2.2 Experimental Evaluation

We implemented our interprocedural shape analysis algorithm and provide initial experimental results. Our em-
pirical evaluation indicates that the analysis is precise enough to prove properties such as the absence of null
dereferences, preservation of data structure invariants such as list-ness, tree-ness, and sorted-ness for iterativeand
recursive in the programs that we experimented with. We notethat these programs have deep references into
the heap and use destructive updates. We were able to verify properties that could not be automatically veri-
fied before, including the partial correctness of a recursive quicksort [Hoa61] implementation (i.e., our analysis
verifies that the quicksort procedures always returns an ordered permutation of its input). We observe that in
our experiments, the cost of analyzing recursive procedures is comparable to the cost of analyzing their iterative
counterparts. Moreover, we found that in our experiments, the cost of analyzing many programs with procedures
is smaller than the cost of analyzing the same programs with procedure bodies inlined.

Remark 1.3.6 Abstracting local-heaps instead of global-heaps can reduce the asymptotic complexity of the in-
terprocedural shape analysis. For example, when abstractingLSLCPF using canonical abstraction [SRW02] for
programs without global variables, the worst case time complexity of the analysis is doubly exponential in the
maximum number of local variables in a procedure, instead ofbeing doubly exponential in the overall number of
local variables (as in, e.g., [RS01]).

The material pertaining to our first framework is described in detail in Chapter 3. This material originally
appeared in [RSY05a, RSY05b]. The material pertaining to our second framework is described in detail in Chap-
ter 4. This material originally appeared in [RBR+05, RBR+04, RSY04]. Section 6.3 provides a bird’s-eye view
of existing techniques for interprocedural program analysis, concentrating on ones which have been used for
interproceduralshapeanalysis, and contrasts existing interproceduralshapeanalysis algorithms with ours.

1.3.3 Modular Shape Analysis for Dynamically EncapsulatedPrograms

Static analysis algorithms are chosen to offer a certain trade-off between the precision of the information extracted
from the program and the efficiency of the analysis algorithms [CC02]. Shape analysis is interested in very intri-
cate properties. Thus, it usually requires quite sophisticated and rather expensive algorithms. E.g., the algorithms
developed using canonical abstraction [SRW02] are doubly exponential in program size in the worst case. Such a
complexity can become prohibitive for large programs.

One possible solution to the above problem is that of compositional separate static analysis of program parts
where programs are analyzed by analyzing parts (such as libraries, modules, classes, procedures, etc.) separately
and then by composing the analyses of these program parts to get the required information on the whole program.
Indeed, modular analysis is attractive because it promisesscalability and reuse. An additional advantage of
modular analysis is that program parts can be analyzed with ahigh precision compared, e.g., to an abstraction that
we can afford to use in a whole program analysis [CC02].

Modular analysis, however, is challenging when the analysis has to consider the effects of one program part
on other parts. In particular, as the goal is to be able to consider the effects of a program part without reanalyzing
it. Modular analysis is particularly difficult in the presence of aliasing: The behavior of a module can depend on
the aliasing created by clients of the module and vice versa.Analyzing a module making worst-case assumptions
about the aliasing created by clients (or vice versa) can complicate the analysis and lead to imprecise results.
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Current approaches for modular shape analysis handle the challenging problem of obtaining a modular analy-
sis in the presence of a global-heap by either restricting the program to use a bounded number of non hierarchical
data structures [LKR05, WKL+06], not tracking properties of objects passed as parameters [Log03, Log04a], or
breaching layers of abstraction [YSRS05].

In Chapter 5, we present amodularstatic analysis which identifies structural (shape) invariants forpartsof
heap-manipulating programs.3 Our algorithm allows for modular analysis of hierarchical data structures without
breaching layers of abstraction for programs. The main ideais to concentrate on programs that use reference
parameters in a restricted way, as described below.

Instead of analyzing arbitrary programs, we restrict our attention to certain “well-behaved” programs. The
main idea behind our approach is to assume (and verify) a modularly-checkable program-invariant concerning
aliases of live intermodule references. More specifically,we refer to subheaps manipulated by different program
modules3 asheap components. The decomposition is based on the module structure of the program: Every heap
component is comprised of a maximal weakly connected component of objects whose types are defined in the
same module.4 We refer to the parent of a heap component in the component tree as theownerof the component.

We assume and verifythat (i) the intermodule live references between differentheap components form a tree
and (ii) all references to a component from its owner have thesame target object. (We refer to this target object
as the component’sheader).

Example 1.3.7 Figure 1.3(a) (b) show excerpt of a JAVA program comprised of two packages, pack-
ageRM, implementing a simpleresource manager, and packageRP, implementing resources and
resource pools.

A resource manager has two fields pointing topool managerobjects. Every pool manager has one
resource poolcontainingfresh resources and one containingusedresources. The resource pools
maintain a list of resources.

Figure 1.3(c) depicts a possible memory state of this program and its component decomposition.
Every allocated object is drawn as a shaded shape. The class of an object is depicted by its shape:
resource managers are depicted as diamonds, pool managers are depicted as octagons, resource pools
are depicted as pentagons, and resources are depicted as squares.

Objects that belong to packageRMare drawn heavily shaded. Objects that belong to packageRP

are drawn lightly shaded. Reference fields are depicted as arrows. Every heap component is cir-
cumscribed with a frame. The intercomponent references,fresh andused , pointing from subheaps
manipulated by packageRMto subheap manipulated by package RP are drawn as a wider arrow.
Header objects are depicted with a double line arrow pointing to them.

Before we describe the analysis, we explain the two key issues that motivate the constraints that we place
on sharing across modules. We describe these issues by posing two challenges that should be addressed by any
modular analysis:

1. How can we analyze a moduleM without using any information about the clients ofM (i.e., without using
information about the usage context ofM )?

2. When analyzing a client moduleC that makes use of another moduleM , how do we handleintermodule
calls fromC to M using only the analysis results for moduleM (i.e., without analyzing moduleM again)?

Informally, the requirement that the (live) inter-components references form a tree ensures that distinct com-
ponents do not share (live) state. Furthermore, the requirement that all references to a component have to point to
its header simplifies the aliasing that needs to be tracked between a component and its owner. These constraints
let us deal with the two issues mentioned above in a tractableway. The restriction on sharing between components
simplifies dealing with intermodule calls as they cannot have unexpected side-effects:e.g., an intermodule call
on one componentC1 cannot affect the state of another componentC2 that is accessible to the caller. As for the
first issue,we conservatively identify all possible input states for anintermodule call by iteratively identifying all
possible components that can be generated by a module.

3 Our analysis usesmodulesas program parts. Intuitively, a module can be thought of as apackagein JAVA : a collection of type-definitions
and procedures that manipulate objects of these types. (SeeSection 5.4).

4Note that multiple components belonging to the same module may co-exist.
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package RM;
public class ResourceManager {

// intramodule references
private PoolManager pm1;
private PoolManager pm2;
. . .

}

public class PoolManager {
// intramodule references
private ResourceManager rsm;

// intermodule references
private RPool fresh;
private RPool used;
. . .

}

package RP;
public class RPool {

// intramodule references
private R rs;

@transferred: { e }
public void release(R e) {

e.n=this.rs;
this.rs=e;

}

@transferred: { }
public R acquire() {

R r = this.rs;
if (r!=null) {

this.rs=r.n;
r.n = null;

}
else {

r = new R();
}
return r;

}
}

public class R {
R n; . . .

}

rs

rsx rsm

fresh

used

fresh

used

rs n

rsm

y n n

z

pm2

pm1

(c) Component decomposition

rsm

fresh

used

used

rsm
x
y

z

pm2
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(a) PackageRM (b) PackageRP (d) Trimmed state

Figure 1.3: A JAVA program comprised of two packages and a possible memory state of the program with its
component decomposition. (a) a package implementing a resource manager. (b) a package implementing a
resource pool. (c) a component decomposition of a memory state. (d) a trimmed memory state.

Our analysis employs a lightweight user specification. Thisspecification consists of: (i) amodule specification
that partitions a program’s types and procedures into modules; (ii) an annotation for every (public) procedure that
indicates for every parameter whether it is intended to be “transferred” to the callee or not; these annotations
are only considered in intermodule procedure calls. A component that is passed as atransferredparameter of
an intermodule call cannot be subsequently used by the calling module (e.g., to be passed as a parameter for a
subsequent intermodule call). This constraint serves to directly enforce the requirement that the heap forms a tree
of components.

The analysis treats each module separately: Given a module,and the user specification for the other modules
it uses, our analysis tries to verify that the given module is“well-behaved” (i.e., respects its specification and the
specification of the modules that it uses). If this verification is unsuccessful, the analysis gives up and reports that
the module may not adhere to our constraints. Otherwise, theanalysis computes invariants of the given module
that hold in any “well-behaved” program containing the module. A program comprised only of successfully
verified modules is guaranteed to be “well-behaved” (i.e., dynamically encapsulated). Furthermore, given the
above specification, our modular analysis can automatically detect the boundaries of the heap-components and
thus (conservatively) determine whether the program satisfies the constraints described above in an automatic
fashion.

Technically, we define the class ofdynamically encapsulatedprograms by means of a non-standard operational
semantics,DOS, which places certain restrictions on aliasing and sharingacross modules. More specifically,
in dynamically encapsulated programs, live references (i.e., used before set) between subheaps manipulated by
different modules form a tree. We say that a program is “well behaved” if it is dynamically encapsulated.

DOS supports a componentized view of the memory state: It decomposes the heap intoheap components,
where a heap component is a subheap. The decomposition is based on the module structure of the program as
described above.DOS represents the heap as anevolving and changingtree of heap components.

Based onDOS, we define a concrete module semantics which assigns a program-independent meaning to
every module. The module semantics is obtained using a noveltrimming abstractionwhich abstracts away heap
components that are not manipulated by the analyzed module.We develop conservative static analysis algorithms
by abstract interpretation of the module semantics.
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Figure 1.4: Module invariants of packageRP. (PackagesRP is shown in Figure 1.3(b)).

Example 1.3.8 Figure 1.3(d) depicts the trimmed memory state resulting from applying the trimming
abstraction to the memory state depicted in Figure 1.3(d). The trimmed memory state maintains
the information regarding the internal structure of the resource manager and that the intermodule
references leaving the component are not aliased. However,it loses the information regarding the
internal structure of the heap components that are managed by packageRP, which are depicted as
shadowed rectangles.

We then apply aboundedconservative abstraction of trimmed memory states. Ratherthan providing a new
intraprocedural abstraction, we show how tolift existingintraprocedural shape analyses, e.g., [SRW02, MYRS05,
DOY06, LAIS06], to obtain a modular shape abstraction. The common aspect of [MYRS05, DOY06, LAIS06] is
that they provide information regardingdomination from variableswhich is required by our analysis. Thus, our
analysis is parametric in the abstraction of trimmed memorystates and can use different (bounded) abstractions
when analyzing different modules.

Example 1.3.9 The specification of the resource pool manager, shown in Figure 1.3(b), ensures that
the resource pool’s client gets ownership of an acquired resource and transfers the ownership of a
released resource to the pool. As a result, a client cannot use an acquired resource after its release,
e.g., it cannot release it into another pool.

Figure 1.4 depicts the concrete module invariant of packageRP, i.e., all the resource components
and all the resource pool components that can arise in any dynamically encapsulated program. The
invariant contains component comprised of a single resource and components comprised of pools
with an acyclic and unshared list of nodes (of arbitrary size), andonly these pools. For this module,
our analysis computes a conservative description of the resource invariant. In particular, it shows that
the resource lists are always unshared and acyclic.

This material is described in detail in Chapter 5. It originally appeared in [RPHR+07, RPHR+06]. The idea
of a componentized heap abstraction was also used in [RRSY06] for static analysis of parametric data structures.
(See Section 6.3.5). In Section 6.4, we contrast our work with existing approaches for modular verification of
heap manipulating programs.



Chapter 2

Preliminaries

In this chapter, we introduceEAlgol, a simple imperative procedural language, and define for it two observation-
ally equivalent operational semantics:GSB (for Global-heap Store-Based), which we consider to be thestandard
semanticsof EAlgol, andLSB (for Local-heap Store-Based). We also summarize the parametric framework for
shape analysis via3-valued logic of [SRW02] by using it to sketch anintraprocedural shape analysis algorithm
for programs manipulating singly linked lists.

GSB andLSB are large-step (natural) [Kah87, NNH99] store-based [MS77, NNH99, Rey02] semantics.
However, whileGSB is a global-heap semantics, i.e., invoked procedures execute on a heap containing all allo-
cated objects,LSB is a local-heap semantics, i.e., procedures are invoked on alocal-heapcontaining only the
objects that are reachable from the actual parameters. (We refer to these objects as therelevant objects for the
invocation.) Nevertheless, a program cannot tell the two semantics apart, i.e., a program cannot observe whether
it is being executed according to theGSB semantics or according to theLSB semantics.

Outline. In Section 2.1, we define the syntax ofEAlgol. In Sections 2.2 and 2.3, we define theGSB semantics
and theLSB semantics, respectively. In Section 2.4, we show that thesetwo semantics are observationally
equivalent. In Section 2.5, we review the use of3-valued logic for shape analysis.

2.1 The Syntax ofEAlgol

EAlgol is a simple imperative procedural language. Programs inEAlgol consist of a collection of procedures
including amain procedure. The programmer can also define her own types (à laC structs) and refer to heap-
allocated objects of these types using pointer variables. Parameters are passed by value. Formal parameters
cannot be assigned to. Procedures return a value by assigning it to a designated variableret . Constants are
either integers or the designated valuenull .

The syntax ofEAlgol is defined in Figure 2.1. The notation̄z denotes a sequence ofz’s. We define the
syntactic domainsx, y ∈ V , f ∈ F , p ∈ FuncId , t ∈ T , andlb ∈ Labels of variables, field names, procedure
identifiers, type names, and program-labels, respectively. For a procedurep, Vp denotes the set of its local vari-
ables andFp denotes the set of its formal parameters. We assumeFp ⊆ Vp and that all the variables inVp \ Fp,
with the exception of the specially designated variableret , are declared at the beginning ofp’s declaration. For
simplicity, we assume that (i) variables, fields, procedures, types, and program-labels have unique identifiers in
every program; (ii) formal parameterscannotbe assigned to; (iii) a program has only local variables; and(iv) a
program manipulates only pointer-valued fields and variables.1

To simplify notation, we assume that we work with a fixed arbitrary programP .

1These assumptions are made to simplify the presentation. Inprinciple, different ones could be used with minor effects on the capabilities
of our approach. For clarity, our example programs do not adhere to these restrictions.

13
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P ∈ prog ::= rcdecl prdecl
rcdecl ::= record t := { tname f}
prdecl ::= tnamep(tnamex) := vdeclst
vdecl ::= tnamex
tname ::= int | ˇt

st ∈ stms ::= x=e | x=y.f | x.f=e | x = alloc t |
y=p(x) |
lb : st | st ; st | while (cnd) do st od |
if (cnd) then st fi | if (cnd) then st else st fi

e ∈ exp ::= c | x | e ⊗ e
⊗ ::= + | − | ∗ | /

cnd ∈ cond ::= x ⊲⊳ c | x ⊲⊳ y
⊲⊳ ::= = | 6= | < | ≤

c ∈ const ::= null | n

Figure 2.1: Syntax ofEAlgol. ˇt denotes the type of pointers to typet.

2.1.1 Running Example

Figure 2.2(a) shows a simple list-manipulating program inEAlgol, which we use as a running example in this
chapter. (Figure 2.2(b) provides, for reference, the same program written in JAVA ).

The program defines typeList of singly-linked lists. Itsmain procedure allocates three unshared, disjoint,
acyclic singly-linked lists (by invoking procedurecreate3 three times) and splices them together (by invoking
proceduresplice two times).

Procedurecreate3 allocates three list nodes; connects them into an acyclic list; and returns the resulting list
as its return value.

Proceduresplice gets two lists arguments,p andq, and recursively splices them together using destructive
updates. More specifically, it generates a list comprised ofthe nodes inp’s list and inq’s list where theith node
in p’s list is followed by theith node inq’s list. (In case one of the lists has more elements than the other, then
these elements are placed at the tail of the generated list).The behavior of proceduresplice depends on the
value ofp, its first argument: Ifp has a null value, then the execution ofsplice terminates and the list pointed
to byq, splice ’s second argument, is returned as the return value. Ifp has a non-null value, thensplice stores
a reference top’s tail in variablepn and disconnects the head ofp’s list (pointed to byp) from its tail (pointed to
by pn). It then recursively invokes itself passingq as thefirst parameter andpn as thesecondparameter. When
the recursive call terminates,splice stores the returned list in variabler ; connects the node pointed to byp to
the head ofr ’s list; and returns the resulting list.

2.1.2 Memory Deallocation

In this dissertation, we do not handle explicit memory deallocation. (Thus,EAlgol does not have afree or
dealloc statement). Instead, we make the simplifying assumption that there is an unbounded amount of memory
and thus memory allocation never fails. (Alternatively, one can think of a programming language with garbage
collection).

We note that our analyses (conservatively) identify when a program leaks memory, i.e., when an object (or
a set of objects) becomes unreachable from any program variable. This allows to use our analysis to discover
opportunities for compile time garbage collection [Bar77]for imperativelanguages with destructive updates, in
the spirit of [SYKS05].

2.2 GSB: A Global-Heap Store-Based Semantics

In this section, we define theGSB (for Global-heap Store-Based) semantics.GSB is a large-step (natural) [Kah87,
NNH99] store-based [MS77, NNH99, Rey02] semantics. It is a global-heap semantics in the following sense:
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record List := {
ˇList n;
int data

}

ˇList create3(int k) :=
ˇList t1,t2,t3;
t1 = alloc List;
t1.data = k;
t2 = alloc List;
t2.data = k+1;
t3 = alloc List;
t3.data = k+2;
t1.n = t2;
t2.n = t3;
ret = t1

ˇList splice(ˇList p, ˇList q) :=
ˇList w, pn, r;
w = q;
if (p != null) then

pn = p.n;
p.n = null;
r = splice(q,pn);
p.n = r;
w = p

fi;
r = null;
ret = w

int main():=
ˇList x,y,z,t,s;
x = create3(1);
y = create3(4);
z = create3(7);
t = splice(x,y);
s = splice(y,z);
ret = 0

(a) The running example written inEAlgol.

public class List {
List n = null;
int data;

static public List create3(int k) {
List t1, t2, t3;
List t1 = new List();
t1.data = k;
List t2 = new List();
t2.data = k+1;
List t3 = new List();
t3.data = k+2;
t1.n = t2;
t2.n = t3;
return t1;

}

public static List splice(List p, List q) {
List w, pn, r;
w = q;
if (p != null) {

pn = p.n;
p.n = null;
r = splice(q, pn);
p.n = r;
w = p;

}
r = null;
return w;

}
}

public class Main {
public static void main(String[] argv) {

List x = create3(1);
List y = create3(4);
List z = create3(7);
List t = splice(x, y);
List s = splice(y, z);

}
}

(b) The running example written in JAVA .

Figure 2.2: The running example (a) inEAlgol and (b) in JAVA .
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l ∈ Loc Locations
v ∈ Val = Loc ∪ {null} Values
ρ ∈ Envp = Vp → Val Environments
h ∈ HeapG = Loc ×F →֒ Val

sp
G, sG, 〈L, ρ, h〉 ∈ Sp

G = 2Loc × Envp × HeapG Memory states

Figure 2.3: Semantic domains of theGSB semantics.

Invoked procedures execute on a heap containing all allocated objects.

2.2.1 Simplifying Assumptions

For simplicity, the semantics tracks only pointer values and assumes that every pointer-valued field or variable is
assignednull before being assigned a new value.2 In addition, we assume that before a procedure terminates it
assigns anull value to every pointer variablev ∈ Vp \ (Fp ∪ {ret }).3 In the rest of the thesis, we assume these
simplifying assumptions in every semantics that we define.

2.2.2 Memory States

Figure 2.3 defines the semantic domains and the meta-variables ranging over them.Loc is an unbounded set of
memory locations. Amemory statefor a procedurep, sp

G ∈ Sp
G, keeps track of the allocated memory locations,

L, an environment mappingp’s local variables to values,ρ, and a mapping from fields ofallocatedlocations to
values,h.4 Due to our simplifying assumptions, a value is either a memory location ornull.

2.2.3 Operational Semantics

The meaning of statements of a procedurep is described by a transition relation
GSB
∽∽∽∽∽◮⊆ (Sp

G×stms)×Sp
G.

Figure 2.4 shows theaxiomsfor pointer assignments. Theinference rulefor procedure calls is given in Figure 2.5.
Note thatGSB treats the heap as a global resource which issharedby all procedures. Specifically, (i)he = hc,
i.e., the callee starts executing from the caller’s global-heap at the call-site, and (ii)hr = hx, i.e., the caller
continues its execution from the global-heap at the exit state of the callee.

All other statements are handled as usual using a two-level store semantics for pointer languages. (See,
e.g., [MS77, NNH99, Rey02]. Also, see Section B.1.)

Example 2.2.1 Figure 2.6 depicts four memory states that may arise during the first call tosplice
according to theGSB semantics. Allocated locations are depicted as rectangleslabeled by the loca-
tion name. The value of a non null-valued (pointer) variableis depicted as an arrow from the variable
name to the memory location it points-to.

Figure 2.6(sc2.6
G ) depicts a memory state that may arise at the call site of the first invocation of

splice . Figure 2.6(se2.6
G ) depicts the resulting entry memory state. The heap of the entry memory

state is identical to the one of the call state. The environment of splice at the entry memory state
maps the formal parametersp andq to the values of the actual parametersx andy at the call state,
respectively. The execution ofsplice ’s body ends withw pointing to the head of the spliced list.
Figure 2.6(sx2.6

G ) depicts the exit memory state. Figure 2.6(sr 2.6
G ) depicts the resulting return memory

state. Note that (i) the heap of the return state is identicalto the one atsplice ’s exit state and (ii) the
environment of the return state is as in the call state, except that the return value is assigned tot .

2For simplicity, we assume that the same variable cannot appear both in the left-hand-side and in the right-hand-side of an assignment.
3The latter assumption simplifies the definition of our semantics as it ensures that every object which is reachable by the callee at the exit

state is also reachable by the caller at the return state. However, this assumption, as well as the other simplifying assumptions made in this
section, are not required; in principle, different assumptions could be used with minor effects on the capabilities of our approach. For clarity,
our example programs do not adhere to these restrictions.

4We omit thep superscript whenp is clear from context.
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[NULLIFY ] 〈x = null, 〈L, ρ, h〉〉
GSB
∽∽∽∽∽◮ 〈L, ρ[x 7→ null], h〉

[COPYVAR] 〈x = y, 〈L, ρ, h〉〉
GSB
∽∽∽∽∽◮ 〈L, ρ[x 7→ ρ(y)], h〉

[DEREF] 〈x = y.f, 〈L, ρ, h〉〉
GSB
∽∽∽∽∽◮ 〈L, ρ[x 7→ h(ρ(y), f)], h〉 ρ(y) 6= null

[SETNULL ] 〈x.f = null, 〈L, ρ, h〉〉
GSB
∽∽∽∽∽◮ 〈L, ρ, h[(ρ(x), f) 7→ null]〉 ρ(x) 6= null

[SETVAR] 〈x.f = y, 〈L, ρ, h〉〉
GSB
∽∽∽∽∽◮ 〈L, ρ, h[(ρ(x), f) 7→ ρ(y)]〉 ρ(x) 6= null

[ALLOC] 〈x = alloc t, 〈L, ρ, h〉〉
GSB
∽∽∽∽∽◮ 〈L∪{lnew}, ρ[x 7→ lnew ], h∪I(lnew )〉 lnew 6∈ L

whereI(lnew ) = [lnew 7→ λf ∈ F .null]

Figure 2.4: Axioms for pointer assignments in theGSB semantics.I initializes all pointer fields atl to null.

〈body ofp, se
G〉

GSB
∽∽∽∽∽◮ sx

G

〈y = p(x1, . . . , xk), sc
G〉

GSB
∽∽∽∽∽◮ sr

G

where

Le = Lc Lr = Lx

ρe = λv.

{
ρc(xi) v = zi

null otherwise
ρr = ρc[y 7→ ρx(ret)]

he = hc hr = hx

Figure 2.5: Inference rule for procedure invocation in theGSB semantics, assuming the formal variables ofp
arez1, . . . , zk and thatp’s return value is a pointer.sc

G = 〈Lc, ρc, hc〉 is the call-state,se
G = 〈Le, ρe, he〉 is the

entry-state,sx
G = 〈Lx, ρx, hx〉 is the exit-state, andsr

G = 〈Lr, ρr, hr〉 is the resulting return-state.

call splice(x,y) entersplice(p,q) exit splice(p,q) returnt=splice(x,y)
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Figure 2.6: Concrete states for the invocationt = splice(x, y) in the running example according to the
GSB semantics.
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〈body ofp, se

L〉
LSB
∽∽∽∽∽◮ sx

L

〈y = p(x1, . . . , xk), sc

L〉
LSB
∽∽∽∽∽◮ sr

L

where

Le = Lc Lr = Lx

ρe = λv.

{
ρc(xi) v = zi

null otherwise
ρr = ρc[y 7→ ρx(ret)]

he = hc|Lrel
hr = hc|Lc\Lrel

∪ hx

Lrel = lfp λX.(X ∪ Lparams ∪ {l ∈ Lc | l′ ∈ X, f ∈ F , l = hc(l
′, f)})

Lparams = {ρc(xi) ∈ Lc | 1≤ i≤k}

Figure 2.7: Inference rule for procedure invocation in theLSB semantics, assuming the formal variables ofp are
z1, . . . , zk and thatp’s return value is a pointer.sc

L = 〈Lc, ρc, hc〉 is the call-state,se
L = 〈Le, ρe, he〉 is the entry-

state,sx
L = 〈Lx, ρx, hx〉 is the exit-state, andsr

L = 〈Lr, ρr, hr〉 is the resulting return-state.Lparams is the set of
locations pointed to by the actual parameters at the call state. Lrel is the set of relevant objects for the invocation,
i.e., the locations which are reachable fromLparams when the procedure is invoked. The operations·|·, · \ ·, and
lfp · are function restriction, set difference, and the least fixed point operator, respectively. (See Section A.1 for a
formal definition of these operations).

2.3 LSB: A Localized-Heap Store-Based Semantics

In this section, we define theLSB semantics.LSB is a large-step (natural) [Kah87, NNH99] store-based [MS77,
NNH99, Rey02] semantics. It is a local-heap semantics in thefollowing sense: Procedures are invoked on a
local-heapcontaining only the objects that are reachable from the actual parameters of the invocation. We refer
to these objects as therelevant objects for the invocation.5

2.3.1 Memory States

LSB uses the same semantic domains as theGSB semantics (see Figure 2.3). For clarity, we denoteLSB’s
domain ofmemory statesfor a procedurep by sp

L ∈ Sp
L.4

2.3.2 Operational Semantics

The meaning of statements of a procedurep is described by a transition relation
LSB
∽∽∽∽∽◮⊆ (Sp

L×stms)×Sp
L. The

meaning of intraprocedural statements inLSB is the same as inGSB (see Figure 2.4). Theinference rulefor
procedure calls is given in Figure 2.7.

Example 2.3.1 Figure 2.8 depicts four memory states that may arise during the first call tosplice
according to theLSB semantics, using the same graphical conventions introduced in Example 2.2.1.
Figure 2.8(sc2.8

L ) depicts the call memory state; Figure 2.8(se2.8
L ) depicts the entry memory state;

Figure 2.8(sx2.8
L ) depicts the exit memory state; and Figure 2.8(sr 2.8

L ) depicts the return memory
state.

The heap of the entry state is the restriction of the heap of the call state on the set of relevant objects
for the invocation. Specifically, the heap of the entry statedoes not contain the list pointed to byz at
the call state. (We only draw objects which are in the domain of the heap.) The heap of the return
state is comprised ofsplice ’s heap at the exit state combined with the list pointed byz at the call
state. (Note thatz ’s list could not have affectedsplice ’s behavior in its first invocation nor been
affected by it). The environment at the return state is as in the call-site, except that the return value is
assigned tot .

5We remind the reader that we keep making the simplifying assumptions listed in Section 2.2.1.
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call splice(x,y) entersplice(p,q) exit splice(p,q) returnt=splice(x,y)
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Figure 2.8: Concrete states for the invocationt = splice(x, y) in the running example according to the
LSB semantics.

Remark 2.3.2 It is interesting to note that the rule for combining the heapof the call state and the heap of the
exit state is rather simple because (i) the relevant objectsfor the invocation areidentified using the same location
namesin the call state of the caller and in the exit state of the callee; and (ii) havingLe = Lc ensures that
a procedure cannot allocate locations that are used to identify objects that were allocated before the procedure
was invoked, and which were irrelevant for the invocation. We note that the use of a “global” set to record the
locations of allocated objects is just a mechanism which ensures that locations of objects which are irrelevant for
the invocation are not used. Other mechanisms that achieve this goal could have been used instead. Specifically,
the local-heap of a procedure contains only the objects in the domain of its heap.

2.4 Observational Equivalence betweenLSB and GSB

In this section, we introduce the notion of observable properties and show that, with respect to these properties,
theGSB semantics and theLSB semantics areobservationally equivalent.

2.4.1 Observable Properties

In this section, we introduce access paths, which are the only means by which a program can observe a state.

Definition 2.4.1 (Field paths) A field pathδ ∈ ∆ = F∗ is a (possibly empty) sequence of field identifiers. The
empty sequence is denoted byǫ.

Definition 2.4.2 (Access paths)An access pathα = 〈x, δ〉 ∈ V × ∆ is a pair consisting of a local variable
x ∈ V and a field pathδ ∈ ∆. An access path〈x, δ〉 is anaccess path of a procedurep whenx is a local variable
of p. AccPathp = Vp × ∆ denotes the (infinite) set of all access paths of procedurep (i.e., the set of all access
paths starting at a local variable ofp). AccPathP denotes the union of all access paths of all procedures in a
programP .

Apart from the above formal definitions, we will sometimes use notations of the formx.n.n for access paths,
because their syntax is familiar from a number of programming languages, where it denotes a sequence of field
dereferences. Because states and access paths are always associated with a (unique) procedurep, in the rest of the
thesis we omitp whenever it is clear from the context.

Definition 2.4.3 Given a heaph ∈ HeapG = Loc ×F →֒ Val, theextension ofh to field paths, denoted bŷh, is
the total function

ĥ : Val × ∆ → Val such that

ĥ(v, δ) =





v if δ = ǫ

ĥ(h(v, f), δ′) if δ = fδ′, 〈v, f〉 ∈ dom(h)
null otherwise

Definition 2.4.4 (Value of Access paths inGSB) The value of an access pathα = 〈x, δ〉 according to theGSB
semantics in state〈L, ρ, h〉, denoted by[[α]]GSB〈L, ρ, h〉, is ĥ(ρ(x), δ).
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Definition 2.4.5 (Value of Access paths inLSB) The value of an access pathα = 〈x, δ〉 according to theLSB
semantics in state〈L, ρ, h〉, denoted by[[α]]LSB〈L, ρ, h〉, is ĥ(ρ(x), δ).

Note that the value of an access path that traverses anull-valued field is defined to benull. This definition
simplifies the notion of observational equivalence. Alternatively, we could have defined the value of such a path
to be⊥. We note that both theGSB semantics and theLSB semantics check that a null-dereference is not
performed (see the side-conditions of inference rules[DEREF], [SETNULL ], and[SETVAR] shown in Figure 2.4).

Definition 2.4.6 (Access-path equality inGSB) Access pathsα andβ are equalaccording to theGSB seman-
tics in a given statesG, denoted by[[α = β]]GSB(sG), if they have the same value in that state, i.e.,[[α]]GSB(sG) =
[[β]]GSB(sG). An access path isequal tonull, denoted by[[α = null]]GSB(sG), if [[α]]GSB(sG) = null.

Definition 2.4.7 (Access-path equality inLSB) Access pathsα andβ are equalaccording to theLSB seman-
tics in a given statesL, denoted by[[α = β]]LSB(sL), if they have the same value in that state, i.e.,[[α]]LSB(sL) =
[[β]]GSB(sL). An access path isequal tonull, denoted by[[α = null]]LSB(sL), if [[α]]LSB(sL) = null

2.4.1.1 Pending Access Paths

Our semantics are natural semantics; the stack of activation records is maintained implicitly. However, we need
the notion of an access path that starts at a variable of a pending call (i.e., not the current call). In a small-step
semantics, this would be an access path that starts at a variable allocated in the activation record of a pending call.
We use the term apending variablefor a local variable of a pending call, and apending access pathfor an access
path that starts at a pending variable. When we wish to emphasize that a variable (resp. access path) is of the
current call, we use the term acurrent variable(resp. acurrent access path). Note that a program cannot observe
the values of pending access paths.

For example, at the entry to the first invocation ofsplice the variablesx , y , andz are pending variables.
The access pathsx.n and z.n.n are pending access paths. The only non null-valued current variables are
p andq. The only non null-valued current access paths arep, p.n , p.n.n , q, q.n , andq.n.n . (See also
Example 1.3.1).

2.4.2 Observational Equivalence

The only means by which a program can observe a state is by evaluating equality between access paths or checking
whether their value is null. Thus, it cannot observe location names nor parts of the heap it cannot reach. This
limitation on the possible observations that a program can do allows us to establish that theLSB semantics is
observationally equivalent to theGSB semantics.

Definition 2.4.8 (Observational equivalence)Let p be a procedure. The statessL ∈ Sp
L and sG ∈ Sp

G are
observationally equivalent, denoted bysL

∼= sG, if for all α, β, γ ∈ AccPathp,

(i) [[α = β]]LSB(sL) ⇔ [[α = β]]GSB(sG), and

(ii) [[γ = null]]LSB(sL) ⇔ [[γ = null]]GSB(sG).

We also define observational equivalence between states inLSB (respectively states inGSB) in the same
way.

We denote bysL ≇ sG that two statessL ∈ Sp
L andsG ∈ Sp

G arenot observationally equivalent. We use a
similar notation to denote that two states inLSB (respectively inGSB) are not observationally equivalent.

Example 2.4.9 The twoLSB memory statess1 2.9
L ands2 2.9

L , depicted in Figure 2.9, are observa-
tionally equivalent: Every pair of access paths which are aliased in one memory state are also alias in
the other one. Note, however, that the two memory states are comprised of different locations.

The LSB memory states3 2.9
L , depicted in Figure 2.9, is not observationally equivalentto either

s1 2.9
L or s2 2.9

L : Note that while[[x = x.n]]LSB(s3 2.9
L ), neither[[x = x.n]]LSB(s1 2.9

L ) holds nor
[[x = x.n]]LSB(s2 2.9

L ).
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Figure 2.9: An example for observationally equivalent and non observationally equivalent memory states:s1 2.9
L

∼=
s2 2.9

L , buts1 2.9
L ≇ s3 2.9

L ands2 2.9
L ≇ s3 2.9

L .

The following theorem states thatLSB is equivalent toGSB, in the sense that both behave equivalently
with respect to termination (i.e., executing a statement ina given state terminates if and only if it terminates
when executed in any state which is observationally equivalent to it), and that execution of statements preserves
observational equivalence.

Theorem 2.4.10 (Observational equivalence betweenLSB and GSB) Letp be a procedure. LetsL ∈ Sp
L and

sG ∈ Sp
G be observationally equivalent states, i.e.,sL

∼= sG. Letst be an arbitrary statement inp. The following
holds:

〈st , sL〉
LSB
∽∽∽∽∽◮ s′L ⇐⇒ 〈st , sG〉

GSB
∽∽∽∽∽◮ s′G.

Furthermore,s′L ∼= s′G.

Sketch of Proof:The proof is done by induction on the shape of the derivation trees. Specifically, we establish that
(i) the two derivation trees are isomorphic and that (ii) every memory stateσL ∈ Sp

L is isomorphic (i.e., equivalent
up to location renaming) to its matching statesG ∈ Sp

G when the heap of the latter is projected on the set of objects
that belong to the local-heap of the currently executing procedure (i.e., on the set containing the locations of the
relevant objects for the invocation and of the objects that were allocated after the current procedure was invoked).

It is interesting to note that despite the fact thatLSB’s memory allocator allocates locations in a non-
deterministic manner, the same program always yields observationally equivalent memory states. It follows
immediately that theGSB semantics has the same property.

Theorem 2.4.11 (LSB is deterministic up to location renaming) Letp be a procedure. Lets1
L ∈ Sp

L ands2
L ∈

Sp
L be observationally equivalent states, i.e.,s1

L
∼= s2

L. Letst be an arbitrary statement inp. The following holds:

〈st , s1
L〉

LSB
∽∽∽∽∽◮ s1′

L ⇐⇒ 〈st , s2
L〉

LSB
∽∽∽∽∽◮ s2′

L .

Furthermore,s1′

L
∼= s2′

L .

Sketch of Proof:The proof is done by induction on the shape of the derivation trees. Specifically, we establish
that the two trees are isomorphic and that every pair of matching states are isomorphic.

2.5 A Primer on Parametric Shape Analysis via3-Valued Logic

Our shape analysis algorithms are expressed in terms of the3-valued-logic framework for program analysis
of [SRW02] and implemented using its realization in the TVLAframework for Kleene based static analy-
sis [LAS00].6 In this section, we provide a summary of their framework.

The3-valued-logic framework for program analysis of [SRW02] provides for the automatic generation of ab-
stract interpreters (i.e., analysis algorithms) based on aspecification of the programming language’s concrete (in-
strumented) semantics. The most demanding task imposed on the analysis designer is the choice of the memory-
state properties that the analysis should track. Essentially, once that choice is made, the rest of the algorithm is
synthesized in a provably-correct fashion. In our analyses, we fully utilize the framework of [SRW02] to ob-
tain shape analysis algorithms from a specification of the instrumented concrete semantics and the set of tracked
properties. In particular, we utilize their framework to obtain computable conservative abstract transformers.

6TVLA is an abbreviation forThree-Valued-Logic Analyzer.
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In this section, we summarize the framework of [SRW02]. Specificially, we demonstrate how3-valued logic
can serve as the basis for program analysis, by outlining thedesign of anintraprocedural shape analysis algorithm
for singly-linked list manipulating programs using their framework. The resulting (intraprocedural) shape analysis
is an abstract interpretation of theLSB semantics.7

2.5.1 Conservative Representation of Sets of Memory Statesvia 3-Valued Logical Struc-
tures

In this section, we explain how an unbounded set of unboundedmemory states can be conservatively represented
via a bounded set of bounded3-valued logical structures.

2.5.1.1 Kleene’s3-Valued Logic

Kleene’s3-valued logic is an extension of ordinary2-valued logic with the special value of1
2 (unknown) for cases

in which predicates could have either value, i.e.,1 (true) or0 (false). We say that0 and1 aredefinitevalues,
whereas12 is anindefinitevalue. The information partial order on the set{0, 1

2 , 1} is defined as0 ⊑ 1
2 ⊒ 1, and

0 ⊔ 1 = 1
2 . Kleene’s interpretation of the propositional operators is given in Appendix A.2.

Definition 2.5.1 (Logical Structures) A 3-valued logical structure over a set of predicatesP is a pair S =
〈US , ιS〉 where:

• US is the universe of the3-valued structure. The universe is comprised of a set of individuals (nodes).
• ιS is an interpretation function mapping predicates to their truth-value in the structure: for every predicate

p ∈ P of arity k, ιS(p) : (US)k → {0, 1
2 , 1}.

The set of3-valuedlogical structures is denoted by3Struct .
A 2-valued structure is a3-valued structure with an interpretation limited to{0, 1}. The set of2-valued

logical structures is denoted by2Struct .

Unless stated otherwise, we will implicitly assume the use of powerset domains and of set-union as our join
operator.8 Thus, to establish the Galois connection between the powerset domain of program states (ordered by set
inclusion) and the powerset domain of3Struct , it suffices to show arepresentation functionthat maps a program
state to its “most-precise representation” in3Struct .

In this section, we define a representation functionβLSB
L : SL → 3Struct , which maps a memory state of

theLSB semantics to its most precise representation as a3-valued logical structure, by a composition of two
functions:

(i) to2VLSLSB : SL → 2Struct , which maps a memory statesL ∈ SL to an unbounded2-valuedlogical
structureS, and

(ii) canonical abstraction[SRW02] : 2Struct → 3Struct which conservatively boundsS.
The induced Galois connection(2SL , α : 2SL → 23Struct , γ : 23Struct → 2SL , 23Struct ) is defined below,

whereβLSB
L (sL) ⊑ S♯ means thatS♯ conservatively representsβLSB

L (sL) (see Section 2.5.1.3):

α(ssL) = {βLSB
L (sL) | sL ∈ ssL} and γ(SS) = {sL ∈ SL | S♯ ∈ SS, βLSB

L (sL) ⊑ S♯},

2.5.1.2 Representing Memory States via2-Valued Logical Structures

The functionto2VLSLSB , defined in Figure 2.10, maps a memory statesL = 〈L, ρ, h〉 ∈ SL to a2-valuedlogical
structureS. Every locationl ∈ L is represented by a unique individual inUS . Tracked properties of the memory
state are recorded by thecore predicates(shown in Figure 2.11(a)) and theinstrumentation predicates(shown in
Figure 2.11(b)), which we gradually explain through Example 2.5.2. In this example, we applyto2VLSLSB to the
memory state depicted in Figure 2.8(sr 2.8

L ), which may arise at the return site of the first invocation ofsplice in
our running example.9

7The analysis described in this section is an intraprocedural analysis. Thus, it can be similarly casted as an abstract interpretation of the
GSB semantics.

8In our implementation, we use a more aggressive join operator than set union. See Sections 3.8.1 and 4.9.1. However, for simplicity,
unless stated otherwise, we will implicitly assume the use of set-union as the join operator.

9Functionto2VLSLSB , as defined in Figure 2.10, uses, as an example, predicates which are suitable for representing memory states of
procedures manipulating singly linked lists. In general, other predicates could have been used.
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to2VLSLSB : SL → 2Struct s.t.
to2VLSLSB (〈L, ρ, h〉) = 〈U, ι〉
where

U = L
ι :
(
({ils , c, x, rx | x ∈ dom(ρ)} → U) ∪ ({n, eq} → U2)

)
→ {0, 1} s.t.

ι(x)(l) = ρ(x) = l (for everyx ∈ dom(ρ))
ι(n)(l1, l2) = h(l1, n) = l2
ι(eq)(l1, l2) = l1 = l2

ι(rx )(l) = ∃lx ∈ L, δ ∈ ∆ s.t. ρ(x) = lx and ĥ(〈lx, δ〉) = l (for everyx ∈ dom(ρ))
ι(ils)(l) = ∃l1 ∈ L, l2 ∈ L s.t. l1 6= l2 , h(l1, n) = l , andh(l2, n) = l

ι(c)(l) = ∃δ ∈ ∆ s.t. δ 6= ǫ and ĥ(〈l, δ〉) = l

Figure 2.10: The functionto2VLSLSB maps states inSL to 2-valued logical structures using the predicates for
list-manipulating programs shown in Figure 2.11. (See Definition 2.4.3 for the definition of function(ĥ)).

Predicate Intended Meaning
x(v) The reference variablex points to the objectv
n(v1, v2) Then-field of objectv1 points to objectv2

eq(v1, v2) v1 andv2 are the same object
(a) Core predicates.

Predicate Intended Meaning
rx (v) v is reachable from variablex
ils(v) v is locally shared, i.e.,v is pointed-to by

a field of more than one object in the
local-heap

c(v) v resides on a directed cycle of fields
(b) Instrumentation predicates.

Figure 2.11: The predicates used in the analysis of list-manipulating programs. (a) The core predicates. There is
a separate predicatex for every local variablex used by the program. Note that predicaten is the only one that
is specific to the linked list data structure. The remaining predicates would play a rule in the analysis of any data
structure. When there is no risk of confusion, we sometimes use in our formulae the more intuitive infix notations
v1 = v2 andv1 6= v2 instead ofeq(v1, v2) and¬eq(v1, v2), respectively. (b) The instrumentation predicates. There
is a separate predicaterx for every local variablex used by the program.
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(sr 2.8
L ) (Sr

2.12)

(Sr
2.12) (to2VLSLSB : Lsr 2.8

L → USr
2.12)

Figure 2.12:(Sr
2.12): The2-valuedlogical structureSr

2.12 = 〈USr
2.12 , ιS

r
2.12〉 = to2VLSLSB (sr 2.8

L ) conservatively
represents the memory statesr 2.8

L shown in Figure 2.8. (Note thatSr
2.12 does not track the values oflocations

of objects). (to2VLSLSB : Lsr 2.8
L → USr

2.12): The mappingto2VLSLSB : Lsr 2.8
L → USr

2.12 is depicted by the
dotted arrows going from the locations ofsr 2.8

L to the individuals ofSr
2.12: The value ofto2VLSLSB at location

l ∈ Lsr 2.8
L is depicted as a dotted arrow emanating froml and pointing to the nodeu ∈ USr

2.12 .

Example 2.5.2 Figure 2.12(Sr
2.12) depicts the resulting2-valuedlogical structure whento2VLSLSB

is applied to the memory statesr 2.8
L depicted in Figure 2.8(sr 2.8

L ), i.e.,Sr
2.12 = to2VLSLSB (sr 2.8

L ).
Figure 2.12(to2VLSLSB : Lsr 2.8

L → USr
2.12) depicts the mapping induced byto2VLSLSB .

A 2-valuedlogical structureS = 〈ιS , US〉 is depicted as a directed graph. A directed edge between
nodesu1 andu2 that is labeled with binary predicate symbolp indicates thatιS(p)(u1, u2) = 1.
Also, for a unary predicate symbolp, we drawp inside a nodeu whenιS(p)(u) = 1; conversely,
when ιS(p)(u) = 0 we do not drawp in u. The universe of the2-valued logical structureSr

2.12

contains nine individuals representing the nine list nodes.

Core Predicates

Tracked properties of the memory state are recorded by thecore predicatesgiven in Figure 2.11(a).
The core predicates arex, t, y, z, n, andeq:

• For each pointer variablex , there is a unary predicatex. The value ofιS
r
2.12(x)(u) is 1 if

variablex points-to the list element represented byu in USr
2.12 . The value of thex-predicate is

depicted via an edge from the predicate namex to the node that represents the list element that
x points-to.

• The pointed-to-by-a-field relation between list elements is represented by the binary predicate
n, i.e., ιS

r
2.12(n)(u1, u2) = 1 if the n-field of the list element represented byu1 points-to the

list element represented byu2. Note that predicaten is the only one that is specific to the linked
list data structure. In general, we would have a binary predicatef for every fieldf defined in
the program.

• The binary predicateeq records the equality relation. We note that becauseSr
2.12 is a2-valued

logical structure, thenιS
r
2.12(eq)(u1, u2) = 1 if and only if u1 = u2. The main role of this pred-

icate is to simplify the definition of the bounded abstraction, as is shortly explained. The values
of the predicateeq are not depicted in the graphical depiction of2-valuedlogical structures.
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Instrumentation Predicates

The instrumentation predicates arerx , rq , andils , andc. They are an adaptation to local-heaps of
the standard predicates used in the analysis of singly linked lists [LARSW00, LAS00, SRW02]. The
predicates are shown in Figure 2.11(b).

The instrumentation principle[SRW02, Observation 2.8] states that it is sometimes advantageous
to explicitly “store” in a2-valuedlogical structure predicates that record information which can be
derived from the values of the core predicates. Intuitively, the reason is thatinstrumentingS with such
derived information can make itscanonical abstractionmore precise, as explained in Section 2.5.1.3.

• The unary predicaterx holds for list elements that are reachable by an access path that starts
at a local variablex of the current call. In sr 2.8

L , variablesx and t point to the (same) list
containing6 elements. Thus, inSr

2.12, the value of the predicatesrx andrt are1 for all the
nodes that represent the elements of this list. Variabley points to the second element in this list.
Thus, inSr

2.12, the value of the predicatery is 0 for the individual representing the head of that
list.

• The unary predicateils captureslocal-heapsharing information. The predicate has the value
1 at a nodeu that represents a list element that is pointed-to by then-fields of two or more
list elements in thelocal-heap. In sr 2.8

L , no list element is locally shared. Thus, the value of
ιS

r
2.12(ils) is 0 for all of the individuals inUSr

2.12 . (In this example, the list nodes are also not
globally shared. In Section 4.7 we give an example where there is a node which is globally
shared, but is not locally shared.)

• The unary predicatec holds at an individual that resides on a cycle ofn-fields. Because both
lists insr 2.8

L are acyclic,ιS
r
2.12 (c) is 0 for all the individuals.

2.5.1.3 Representing a Local-Heap by a3-Valued Logical Structure using Canonical Abstraction

The main idea in canonical abstraction is to represent several list elements by a single node, i.e., the mapping
from list elements to the universe of the3-valuedlogical structure is a surjective, but not necessarily an injective,
function. A node that may represent more than one list element is called asummarynode.

Definition 2.5.3 (Embedding [SRW02]) A 3-valuedlogical structureS♯ = 〈ιS
♯

, US♯

〉 is embeddedinto a 3-

valuedlogical structureS′♯ = 〈ιS
′♯

, US′♯

〉, denoted byS♯ ⊑ S′♯, if there exists a surjective functionf : US♯

→

US′♯

such that for all predicatesp ∈ P of arity k and for allk-tuplesu♯
1, u

♯
2, . . . , u

♯
k ∈ US♯

ιS
′♯

(p)(u♯
1, u

♯
2, . . . , u

♯
k) = ιS

♯

(p)(f(u♯
1), f(u♯

2), . . . , f(u♯
k)) or ιS

′♯

(p)(f(u♯
1), f(u♯

2), . . . , f(u♯
k)) = 1/2.

We say thatS′♯ conservatively representsS′♯and that a nodeu♯ ∈ US♯

representsnodeu ∈ U whenf(u) = u♯.

Informally, the 3-valued logical structureS♯ is the best conservative representation a memory-statesL

under canonical abstraction is obtained by “merging”all the nodes in the2-valued logical structureS =
to2VLSLSB (sL) that have the same values forall the unary predicates (and using these values for the unary
predicates at the “merged” node). The value of a binary predicateιS

♯

(p)(u♯
1, u

♯
2) is set to adefinitevalue (0 or 1)

only when the predicateιS(p)(u1, u2) has this value for all the nodesu1 andu2 in US that are “merged” intou♯
1

andu♯
2, respectively.

Definition 2.5.4 (Canonical Abstraction [SRW02]) A 3-valuedlogical structureS♯ is a canonical abstraction
of a 2-valuedlogical structureS if there exists a surjective functionf : US → US♯

satisfying the following
conditions:

(i) for all u1, u2 ∈ US , f(u1) = f(u2) iff for all unary predicatesp ∈ P , ιS(p)(u1) = ιS(p)(u2), and
(ii) for all predicatesp ∈ P of arity k and for allk-tuplesu♯

1, u
♯
2, . . . , u

♯
k ∈ US♯

,
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ιS
♯

(p)(u♯
1, u

♯
2, . . . , u

♯
k) =

⊔

u1,...,uk∈Us

f(ui)=u
♯
i

ιS(p)(u1, u2, . . . , uk).

Note that by definition, every2-valuedlogical structure has a3-valuedlogical structure that is its canonical
abstraction.

Example 2.5.5 The3-valuedlogical structureSr♯
2.13, depicted in Figure 2.13, is a canonical abstrac-

tion of the2-valuedlogical structureSr
2.12.

3-valuedlogical structures are also drawn as directed graphs. Definite values are drawn as for 2-
valued structures. Binary indefinite predicate values (1

2 ) are drawn as dotted directed edges. Summary
nodes are depicted by a double frame.

The universe ofSr
2.12 contains nine individuals. The individuals at the tail of the list pointed to by

y resp. byz have the same values for all the unary predicates. Thus, the universe ofSr♯
2.13 contains

five nodes. Figure 2.13 also depicts the mappingf : USr
2.12 → US

r♯
2.13 induced by the canonical

abstraction ofSr
2.12 by Sr♯

2.13. Note that the value of every unary predicate is the same for anode

u ∈ USr
2.12 and for the node that representsu in US

r♯
2.13 .

Sr♯
2.13 has two summary nodes: The summary node at the top part of the diagram represents all the

elements in the tail of the list pointed to byy . The other summary node represents all the elements in
the tail of the list pointed to byz . The fact that a node is a summary node is recorded by the predicate
eq, which has an indefinite value at a summary node, i.e.,ιS

r♯
2.13(eq)(u, u) = 1/2. The value of then-

field emanating from the list element pointed to byy and pointing to the summary node is indefinite
because then-field of the list element pointed to byy points-to its immediate successor in the list,
but not to the other list elements in the tail, which are also represented by that same summary node.
The value of then-field emanating from the summary node and also pointing to itis indefinite for
similar reasons.

The chosen predicates serve as examples to show that the abstraction maintains some sorts of infor-
mation and loses other. For example, we can see that in any memory state represented bySr♯

2.13 there
is no garbage (e.g., all the list elements are reachable fromeitherx or z , as indicated by the fact that
in every individual either predicaterx holds or predicaterz ); the list pointed-to byx (resp. z ) is
acyclic (predicatec does not hold in any node); and thatx andz point to disjoint lists (rx andrz do
not hold together in any list element). However, we no longerknow the number of elements in a list.

2.5.2 Abstract Interpretation of Program Statements

In this section, we explain how logical formulae can be used to extract information pertaining to a program
memory state from a3-valued logical structure that conservatively representsthis state. We then show how the
meaning of program statements as transformers from logicalstructures to logical structures can be defined by a
collection of first order formulae with transitive closure.

2.5.2.1 Expressing Properties via Formulae

Properties of structures can be extracted by evaluating formulae. We use first-order logic with transitive closure
and equality, but without function symbols and constant symbols. The formal definition for the syntax of formulae
and the definition for Kleene’s3-valued logic are shown in Appendix A.2.

For example, the formula

∃v1, v2 : ¬eq(v1, v2) ∧ n(v1, v) ∧ n(v2, v) (2.1)

expresses the fact that list elementv is pointed to by more than onen-field.
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Figure 2.13: The2-valuedlogical structureSr
2.12 = 〈USr

2.12 , ιS
r
2.12〉 = to2VLSLSB(sr 2.8

L ) conservatively rep-
resents the memory statesr 2.8

L shown in Figure 2.8. (Note thatSr
2.12 does not track the values oflocationsof

objects). The3-valuedlogical structureSr♯
2.13 = 〈US

r♯
2.13 , ιS

r♯
2.13 〉 is the canonical abstraction ofSr

2.12. The map-

pingf : USr
2.12 → US

r♯
2.13 induced by the canonical abstraction ofSr

2.12 by Sr♯
2.13 is depicted by the dotted arrows

going fromSr
2.12 to Sr♯

2.13: The value off at nodeu ∈ USr
2.12 is depicted as a dotted arrow emanating from

u ∈ USr
2.12 and pointing to the nodef(u) ∈ US

r♯
2.13 which representsu in Sr♯

2.13.

Predicate Defining Formula
rx (v) ∃vx : x(vx) ∧ n∗(vx, v)

ils(v) ∃v1, v2 : ¬eq(v1, v2) ∧ n(v1, v) ∧ n(v2, v)

c(v) ∃v1 : n(v, v1) ∧ n∗(v1, v)

Figure 2.14: The defining formulae for the instrumentation predicates used in the analysis of list-manipulating
programs. The intended meaning of the predicates is described in Figure 2.11(b).n∗ is a shorthand for the
reflexive transitive closure of the binary predicaten. (See Section A.2).

The Embedding Theorem (see [SRW02, Theorem 4.9]) states that any formula that evaluates to a definite
value in a3-valued structure evaluates to the same value in all of the2-valued structures which are conservatively
represented by that structure. The Embedding Theorem is thefoundation for the use of3-valued logic in
static-analysis: It ensures that it is sensible to take a formula that—when interpreted in2-valued logic—defines
a property, and reinterpret it on a3-valued structureS: The Embedding Theorem ensures that one must obtain a
value that is conservative with regard to the value of the formula in any2-valued structure represented byS.

Example 2.5.6 Consider the2-valued structureSr
2.12 shown in Figure 2.13. The formula (2.1) evaluates to0 at

all of the list nodes.

In contrast, consider the3-valued structureSr♯
2.13 shown in Figure 2.13. Formula (2.1) evaluates to1/2 at the

summary nodes. This is in line with the Embedding Theorem since1/2 is an indefinite value while0 is a definite
value. However, it is not very precise since the it loses the fact that no list element is shared.

Note, however, that by explicitly recording the values of the instrumentation predicates in the2-valuedlogical
structureSr

2.12, its canonical abstraction still maintains the information that no list node is locally shared. This is
one example for the way storing derived information in the concrete structure helps improve the precision of its
canonical abstraction. Formally, every instrumentation predicate is associated with a formula in first-order logic
with transitive closure which defines its intended meaning.Figure 2.14 provides the defining formulae for the
instrumentation predicates shown in Figure 2.11(b).
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〈st , SS〉
3V L♯

∽∽∽∽∽∽◮ {βL(s′L) | sL ∈ γ(SS), 〈st , sL〉
LSB
∽∽∽∽∽◮ s′L}

Figure 2.15: A specification of the abstract inference rulesfor atomic statements.

set of consistent
memory states

[[st]] // set of consistent
memory states

canonical abstraction

��
set of 3-valued

structures

concretization

OO

set of 3-valued
structures

Figure 2.16: The best abstract semantics of a statementst with respect to canonical abstraction.[[st]] is the
operational semantics ofst applied pointwise to every consistent memory state.

2.5.2.2 The Meaning of Program Statements

The meaning-functions for program statements are defined astransformers from2-valued structures to2-valued
structures. Properties of memory states can be obtained by evaluating first order logical formulae against the
representing structure (see Section A.2), thus, these transformers are defined by a collection of first order formulae
evaluated against the original structure. The value of every predicate is determined by a corresponding formula.
The main idea is that if a structureS♯ represents a set of memory states that arise before statement st , then
a structureS

′♯ that represents the corresponding set of memory states thatarise afterst can be obtained by
evaluating a suitable collection of formulae that capture the semantics ofst . We defer the explanation of the use
of logic to define the operational semantics of procedure calls to Chapter 3.

Consistent2-Valued Structures. Some2-valued structures cannot represent memory states, e.g., when a unary
predicatex holds at two different nodes for a local variablex . A 2-valued structure isconsistentif it can represent
a memory state. It turns out that the analysis can be more precise by eliminating inconsistent2-valued structures.

Declarative Definition of the Abstract Transformers. The specification of the abstract interpretation is given
by “abstract” inference rules in the same style as the natural semantics. The abstract inference rules operate on3-
valuedlogical structures. Figure 2.15 shows the specification of the abstract inference rules for atomic statements.
These rules are declarative in the style of the best abstracttransformer [CC79], where every abstract inference rule
emulates a corresponding concrete inference rule using represented states.

Conceptually, the most precise (also calledbestor induced) conservative effect of a program statement on a
set of3-valued logical structuresSS is defined in three stages, depicted in Figure 2.16:

(i) find each consistent memory statesL represented by a3-valued logical structureS ∈ SS (concretization);
(ii) apply the statement’s concrete operational semanticsto every such statesL, and

(iii) abstract each of the resulting memory states by a3-valued structure (canonical abstraction).

2.5.2.3 Implementation

Our analysis algorithms do not explicitly apply the concrete operational semantics to each of the (potentially
infinite number of unbounded) structures represented by a three-valued structureS. Instead, it applies it to
the bounded3-valuedlogical structures that arise during the anlaysis. In addition, it uses a partial concretiza-
tion [LAIS06, LASIR07] operation (Focus) and a semantic reduction operation based on the notion of consistent
2-valued logical structures (Coerce). These operations are part of the3-valued logical framework of [SRW02]
and its implementation in the TVLA system [LAS00].



Chapter 3

Interprocedural Local-Heap Shape
Analysis for Cutpoint-Free Programs

This chapter presents a framework for interprocedural shape analysis, which is context- and flow-
sensitive with the ability to perform destructive pointer updates. In this chapter, we limit our attention
to cutpoint-free programs—programs in which in every procedure invocation, the objects pointed to
by the actual parameters dominate the procedure’s local-heap (i.e., the part of the heap reachable
from the actual parameters).

Technically, our analysis computes procedure summaries astransformers from inputs to outputs while
ignoring parts of the heap not relevant to the procedure. This makes the analysis modular in the heap
and thus allows reusing the effect of a procedure at different call-sites and even between different
contexts occurring at the same call-site. We note that our analysis also verifies that a program is
cutpoint-free. This makes the analysis applicable for arbitrary programs (i.e., it does not require an
a priori classification of a program as cutpoint-free).

The material described in this chapter is largely based on the material that originally appeared
in [RSY05a, RSY05b].

3.1 Introduction

In this chapter, we introduce a new approach for shape analysis for a class of imperative programs. The main
idea is to restrict the “sharing patterns” occurring in procedure calls between the procedure’s local-heap and the
irrelevant context to include only the objects passed as parameters. This restriction, which we refer to ascutpoint-
freedom, simplifies the verification problem by allowing proceduresto be analyzed ignoring the parts of the heap
not reachable from actual parameters. Moreover, shape analysis can conservatively detect violations of the above
restrictions, thus allowing to treat existing programs.

Technically, in this chapter we presentLSLCPF, a non-standard concrete storeless semantics, whichchecks
that no procedure invocation in an execution yields a cutpoint. We then develop a framework for interprocedural
shape analysis by abstract interpretation ofLSLCPF.

We describe the algorithm in the context of the analysis of programs that manipulate singly linked lists.1

The algorithm finds a finite description of all the memory states that arise during program execution. Useful
information regarding the program’s behavior can be extracted from the computed descriptors. In addition, they
can be used to conservatively verify that a program is cutpoint-free. Consider, for example, the program used as
the running example of Chapter 2 (see Figure 2.2), and which is used as a running example in this chapter too.
Some of the properties that our analysis of this program successfully determines are that it does not dereference
null-valued pointers; does not create garbage; and that when, e.g., the first call tosplice returns, the variablesx
andt point-to an acyclic linked list whose second element is pointed to byy . In addition, the algorithm verifies
that this program is cutpoint-free, while its variant, shown in Figure 3.1(b), may not be.

1We note that we have applied our algorithm to analyze tree-manipulating programs and sorting programs. See Section 3.8.1.

29
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The analysis benefits from the fact that inLSLCPF the heap is localized, i.e., the behavior of a procedure only
depends on the contents of its local-heap. This allows analysis results to be reused for different contexts and
makes the analysis more likely to scale up.

Our algorithm is parametric in the heap abstraction and in the concrete effects of program statements, allowing
to experiment with different instances of interproceduralshape analyzers. For example, we can employ different
abstractions for singly-, doubly-linked lists, and trees.

The algorithm is presented in terms of the3-valued-logic framework for program analysis of [SRW02]. This
framework automatically generates abstract interpreters(i.e., analysis algorithms) based on a specification of the
programming language’s concrete (instrumented) semantics. Furthermore, the combination of the theorems given
in [SRW02] with our results guarantee the soundness of everyinstance of our analysis (see Section 3.7.3).

The most demanding task on the analysis designer is the choice of the memory-state properties that the anal-
ysis should track. Once the choice is made, the rest of the algorithm is synthesized in a provably-correct fashion.
Thus, we do not give the full details of the analyses. Instead, in Section 3.6, we focus on thecanonical abstrac-
tion [SRW02] (see Section 2.5.1.3) ofLSLCPF memory states; in Section 3.7, we describe the abstract semantics;
and in Section 3.8, we describe the tabulation-based implementation of our static analyzer.

This chapter consists of two main parts: The first part definesthe notion ofcutpoint-freedomand introduces
a non-standard concrete storeless semantics,LSLCPF, for Localized-heap Store-Less CutPoint-Free. In LSLCPF,
called procedures are only passedparts of the heap.LSLCPF forbids cutpoints: In every procedure invocation,
it checks whether the invocation yields a cutpoint, and, if so, it aborts the execution. The second part concerns
abstract interpretation ofLSLCPF. It develops new static-analysis algorithms using canonical abstraction [SRW02]
and uses these algorithms to verify interesting propertiesof cutpoint-free programs, including partial correctness
of a recursive quicksort implementation.

3.1.1 Cutpoint-Freedom

We introduce an analysis method in which procedures operateon local-heaps containing only the objects reachable
from actual parameters. One of the most complex aspects of local-heap shape analysis is the treatment of sharing
between the local-heap and the rest of the heap. The problem is that the local-heap can be accessed via access
paths which bypass actual parameters. Therefore, special care need to be given tocutpoints, objects in the local-
heap which separate the local-heap that can be accessed by a procedure from the rest of the heap which—from the
viewpoint of that procedure—is non-accessible and immutable. (See Definition 3.3.2). In this chapter, we simplify
the analysis problem by forbidding cutpoints: We develop shape analyses which are targeted at a restricted class
of programs which never have cutpoints.

We refer to a procedure invocation which does not yield a cutpoint object as acutpoint-free invocation. We
refer to an execution of a program in which all invocations are cutpoint-free as acutpoint-free execution, and to a
program in which all executions are cutpoint-free as acutpoint-free program.

While many programs are not cutpoint-free, we observe that areasonable number of programs, including
all examples used in [DRS00, RS01, JLRS04] are cutpoint-free, as well as many of the programs in [Deu94,
SYKS03]. One of the key observations in this chapter, is thatwe can benefit from cutpoint-freedom to construct
an interprocedural shape analysis algorithm that efficiently reuses procedure summaries.

Technically, in this section we presentLSLCPF, a non-standard concretestorelessoperational semantics that
efficiently handles cutpoint-free programs. This semantics is interesting because procedures operate on local-
heaps, thus supporting the notion of heap-modularity whilepermitting the usage of a global-heap and destructive
updates.2 LSLCPF checks that a program execution is indeed cutpoint-free andhalts otherwise. As a result, it
is applicable to any arbitrary program, and does not requirean a priori classification of a program as cutpoint-
free. We show that for cutpoint-free programs,LSLCPF is observationally equivalent to the standard global-heap
semantics.

3.1.2 LSLCPF: A Localized-Heap Storeless Cutpoint-Free Semantics

In this chapter, we present a first step towards a storeless semantics that allows representation of parts of the heap
andrelating properties before and after a call. Our storeless semantics addresses the problem of relating properties

2As we shall see in Chapter 4, the absence of cutpoints drastically simplifies the meaning of procedure calls.
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of memory cells before and after a call by placing certain restrictions on the allowed aliasing that may occur at
procedure calls. More specifically, every procedure call ischecked to be cutpoint-free.3 This ensures that for
computing the effect of the procedure, it suffices to only keep track of the objects which, at the entry state, are
pointed-to by a formal parameter.

3.1.3 Interprocedural Shape Analysis for Cutpoint-Free Programs

In this chapter, we present a framework for interproceduralshape analysis, which is context- and flow-sensitive
with the ability to perform destructive pointer updates. Our analysis computes procedure summaries as trans-
formers from input local-heaps to output local-heaps, thusabstracting away parts of the heap not relevant to the
procedure. This makes the analysis modular in the heap (heap modular) and thus allows reusing the effect of a
procedure at different call-sites and even between different contexts occurring at the same call-site.

The absence of cutpoints drastically simplifies the meaningof procedure calls (compare, e.g., the call rule in
Section 3.4.2.3 and in Section 4.4.2.3). A beneficial byproduct is that it also simplifies the task of designing an
interprocedural shape analysis algorithm. Indeed,LSLCPF gives rise to a simple interprocedural shape-analysis
for cutpoint-free programs.

Furthermore, restricting our attention to cutpoint-free programs reduces the asymptotic complexity of the
interprocedural shape analysis: For programs without global variables, the worst-case time complexity of the
analysis is doubly exponential in the maximum number of local variables in a procedure, instead of being doubly
exponential in the overall number of local variables [RS01].

Technically, our algorithm is built on top of the3-valued logical framework for program analysis of [LAS00,
SRW02]. Thus, it is parametric in the heap abstraction and inthe concrete effects of program statements, allowing
to experiment with different instances of interproceduralshape analyzers. For example, we can employ different
abstractions for singly-, doubly-linked lists, and trees.The soundness of our approach is immediate from the
soundness of the more general case of programs with cutpoints, presented in Chapter 4 (see Sections 3.5 and 3.7).

We implemented a prototype of our analysis and used to verifyproperties that could not be automatically
verified before. We provide an initial empirical evaluationof our algorithm. Our empirical evaluation indicates
that the analysis is precise enough to prove properties suchas the absence of null dereferences, preservation of
data structure invariants such as list-ness, tree-ness, and sorted-ness for iterative and recursive programs with deep
references into the heap and destructive updates (including the partial correctness of a recursive quicksort [Hoa61]
implementation, i.e., show that it returns an ordered permutation of its input). We observe that (in our experiments)
the cost of analyzing recursive procedures is comparable tothe cost of analyzing their iterative counterparts.
Moreover, the cost of analyzing a program with procedures issmaller than the cost of analyzing the same program
with procedure bodies inlined.

3.1.4 Main Results

The main results described in this chapter can be summarizedas follows:
• We define the notion of cutpoint-free programs, and show thatinteresting cutpoint-free programs can be

written naturally, e.g., all programs verified using shape analysis in [DRS00, RS01, JLRS04], and many of
those in [Deu94, SYKS03].

• We develop a non-standardstoreless concretesemantics,LSLCPF, for Cutpoint-Free Localized-heap Store-
Less. LSLCPF is a procedure local-heap semantics: a procedure is not passed parts of the heap which it
cannot reach.LSLCPF also checks that every procedure invocation is cutpoint-free.

• We present an interprocedural shape analysis for cutpoint-free programs by abstract interpretation of
LSLCPF.

• We empirically evaluated the analysis by implementing a prototype and experimenting with several small—
yet intricate—Java programs, including programs manipulating unshared trees and a recursive implemen-
tation of quicksort. Preliminary experimental results indicate that: (i) the cost of analyzing recursive pro-
cedures is similar to the cost of analyzing their iterative versions; (ii) our analysis benefits from procedural
abstraction; (iii) our approach compares favorably with [RS01, JLRS04].

3Note that in Chapter 4, we lift this restriction and develop a(more complicated) procedure local-heap storeless semantics for programs
with a (possibly unbounded) number of cutpoints.
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public class MainCutpointFree {
public static void main(String[] argv) {

List x = create3(1);
List y = create3(4);
List z = create3(7);
List t = splice(x, y);
List s = splice(y, z);

}
}

(a) A cutpoint-free Java program.

public class MainNotCutpointFree {
public static void main(String[] argv) {

List x = create3(1);
List y = create3(4);
List z = create3(7);
List t = splice(x, y);
List s = splice(t, z);

}
}

(b) A non cutpoint-free Java program.

Figure 3.1: Two JAVA programs that create and splice three singly-linked lists:(a) a cutpoint-free program. (b) a
program with cutpoints. The statement which differ the two programs is written in bold. TheList class is shown
in Figure 2.2(b).

Outline. The remainder of the chapter is organized as follows: Section 3.2 introduces our running example.
Section 3.3 discusses the notions of cutpoints and of cutpoint-freedom. Section 3.4 defines theLSLCPF semantics
and investigates its properties. Sections 3.6, 3.7, and 3.8present our interprocedural shape analysis.

3.2 Motivating Example

Figure 3.1 shows two JAVA programs that splice three unshared, disjoint, acyclic singly-linked lists using a recur-
sive splice procedure. (The code of theList class is shown in Figure 2.2). Figure 3.1(a) is, essentially, the
same program used as the running example in Chapter 2 (see Section 2.1.1). This program is cutpoint-free. We
use this program as the running example in this chapter too. Figure 3.1(b) is a variant of our running example
which is not cutpoint-free.

Our analyzer verifies that the program shown in Figure 3.1(a)is cutpoint-free. It also detects that its variant,
shown in Figure 3.1(b), may not be cutpoint-free.

For each invocation ofsplice in the running example, our analyzer verifies that the returned list is acyclic
and not heap-shared;4 that the first parameter is aliased with the returned reference; and that the second parameter
points to the second element in the returned list.

For this example, our algorithm effectively reuses procedure summaries, and only analyzessplice(p,q)

once for every possible abstract input. As shown in Section 3.8, this means thatsplice(p, q) will be only
analyzed a total number of9 times. This should be contrasted with [RS01], in which no summaries are computed,
and the procedure is analyzed66 times. Compared to [JLRS04], our algorithm can summarize procedures in a
more compact way (see Section 6.3).

4An object is heap-shared if it is pointed-to by a field of more than one object.
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call splice(y,z) returns=splice(y,z) call splice(t,z) returns=splice(t,z)
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Figure 3.2: Concrete states for: (a) the invocations = splice(y, z) in the program of Figure 3.1(a); (b) the
invocations = splice(t, z) in variant of our running example, shown at Figure 3.1(b).

3.3 Cutpoints and Cutpoint-Freedom

In this section, we define cutpoints and discuss the advantages of cutpoint-freedom for a storeless semantics. To
assist the reader, we provide some intuition by referring tothe global-heap and local-heap store-based semantics
(see Sections 2.2 and 2.3, respectively) and to a small-stepstack-based operational semantics.

3.3.1 Local-heaps, Relevant Objects, Cutpoints, and Cutpoint-freedom

In our semantics, procedures operate on local-heaps. The local-heap contains only the part of the program’s heap
accessible to the procedure. Thus, procedures are invoked on local-heaps containing only objects reachable from
actual parameters. We refer to these objects as therelevantobjects for the invocation.

Example 3.3.1 Figure 2.8 shows the concrete memory states that occur at thecall
t = splice(x, y) according to theLSB semantics (see Section 2.3). Figure 2.8(sc 2.8

L )
shows the state at the point of the call, and Figure 2.8(se2.8

L ) shows the state on entry tosplice .
Here,splice is invoked on local-heap containing the (relevant) objectsreachable either fromx or
from y .

The fact that the local-heap of the invocationt = splice(x, y) is separated from the rest of the heap by
the objects pointed to byx andy guarantees that destructive updates performed bysplice can only affect access
paths that pass through an object pointed to by eitherx or y . Similarly, the invocations = splice(y, z) in
the concrete memory statesc 3.2

L , shown in Figure 3.2(a), can only affect access paths that pass through an object
pointed to by eithery or z .

Obviously, this is not always the case. For example, consider a variant of the example program, shown in
Figure 3.1(b), in which the second calls = splice(y, z) is replaced by a calls = splice(t, z) . Fig-
ure 3.2(srcp 3.2

L ) depicts the concrete memory state which arises whens = splice(t, z) is invoked on the
concrete memory state shown in Figure 3.2(s

ccp 3.2
L ).

As shown in the figures, the destructive updates of thesplice procedure change not only paths fromt andz ,
but also change the (pending) access paths fromy (of length1 or more). This indirect change happens because
the object pointed-to byy at the calls = splice(t, z) (Figure 3.2(b)) is acutpoint.

Definition 3.3.2 (Cutpoints)A cutpoint for an invocation of procedurep is a heap-allocated object that, in the
program state in which the execution ofp’s body starts, is: (i) reachable from a formal parameter ofp (but not
pointed-to by one) and (ii) pointed-to by a pending access path that does notpass throughany object that is
reachable from one ofp’s formal parameters.

In other words, a cutpoint is a relevant object that separates the part of the heap which is passed to the callee
from the rest of the heap, but which is not pointed-to by a parameter.

For example, the list element pointed to byy is a cutpoint whens = splice(t, z) is invoked in memory
statesccp 3.2

L because it is pointed-to byy , a local variable of the caller, but it is not pointed to by either one of the
actual parameters,t or z . Thus, this invocation is notcutpoint-free. In contrast, the callt = splice(x, y) in
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sented by the concrete local-heapse 2.8

L , shown at Figure 2.8. The local-heap ofse 2.8
L is depicted in the global-heap

circumscribed with a dashed framed. Also, for clarity, we use the notationx to denote a reference variablex of a
pending call.

memory statesc 3.2
L , shown in Figure 3.2, does not have any cutpoints and is therefore cutpoint-free. In fact, all

invocations in the program shown in Figure 3.1(a), including recursive ones, are cutpoint-free, and the program is
a cutpoint-free program.

Our analyzer verifies that the running example is a cutpoint-free program. It also detects that in the variant of
our running example, shown in Figure 3.1(b), the calls = splice(t, z) is not a cutpoint-free invocation.5

3.3.2 A Global View of Cutpoint-Free Local-Heaps

The key reason for the soundness of our approach is that everylocal-heap represents all theglobal memory
configurations containing that local-heap. Figure 3.3 illustrates that for the local-heapse 2.8

L , shown at Figure 2.8.
We give two examples of potential global memory states represented by this local-heap and two examples which
are not represented by this local-heap. Note that here, we actually draw the global-heap, i.e., we draw all the
allocated objects.

The two left memory states are represented by the local-heapse 2.8
L . Memory states

cpf emp 3.3

G occurs when
there are no irrelevant objects, i.e.,splice ’s local-heap contains all the allocated objects. Memory state
s
cpf als 3.3
G is also possible. Note that the relevant object4 is pointed to by two variables, and by then-field

of object9. This sharing is allowed, i.e., object4 is not a cutpoint, because it is pointed to by an actual parameter.
Notice that here we have both stack sharing and heap sharing.The semantics treats both cases uniformly.

The two right stores represent impossible situations excluded by having a cutpoint. In memory states
cpvar 3.3
G

there is a cutpoint due to a local variable. In memory states
cpfld 3.3

G there is a cutpoint due to a field.

3.4 LSLCPF: A Localized-Heap Storeless Cutpoint-Free Semantics

In this section, we presentLSLCPF, the Localized-heap Store-Less Cutpoint-Free semantics and investigate its
properties. Similarly to theGSB semantics and theLSB semantics (see Sections 2.2 and 2.3, respectively),
LSLCPF is a natural semantics [Kah87]. However,LSLCPF is a storeless semantics, i.e., memory cells are not
identified by locations. Thus, we cannot talk about locations as in Sections 2.2 and 2.3. Instead, we use the term
objects.6

To define the semantics, we use the function·.·, defined in Figure 3.7. It is used as an infix operator. The
applicationα.δ concatenates the sequence of field identifiersδ to α. We say that an access pathα is aprefixof an
access pathβ, denoted byα ≤ β, when there is a field pathδ ∈ ∆, such thatβ = α.δ. We say thatα is aproper
prefixof β, denoted byα < β, whenδ 6= ǫ. The function·.· is lifted to handle sets of access paths and sets of
sequences of field identifiers.

5We note that the variant program can be effectively analyzedby the more general framework described in Chapter 4.
6We remind the reader that we keep making the simplifying assumptions listed in Section 2.2.1.
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r ∈ Rootp = Vp Roots of access paths
α, β ∈ AccPathp = Rootp × ∆ Access paths
o ∈ Obj

p
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= 2AccPathp Objects
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LCPF

= 2
Obj

p
LCP F Heaps

σLcpf
, σp

L, 〈Ap〉 ∈ Σp
LCPF

= Heap
p
LCP F

Memory states

Figure 3.4: Semantic domains of memory states for procedurep in LSLCPF. We use the syntactic domainsVp and
AccPathp as semantic domains, too (and use italics font to denote a semantics value.)

In addition, we make use of theflat functional, well-known from functional programming.flat M returns the

set of all elements ofM , if M is a set of sets. Formally,flat M
def
= {x | ∃A ∈ M : x ∈ A}.

3.4.1 Memory States

In this section, we define the representation of memory states in LSLCPF. Traditionally, a storeless semantics
represents the heap by an equivalence relation over a set of access paths, where equivalence classes (implicitly)
represent allocated objects. For readability, we use the equivalence classes directly.

Figure 3.4 defines the semantic domains used inLSLCPF and the meta-variables ranging over them. Amemory
stateσp

L = 〈Ap〉 for a procedurep is a single-element tuple containing a heap, denoted byAp.7 A heapAp ∈
Heap

p
LCPF

is a finite (but unbounded) set of objects. An object, denotedby o, is described by a (possibly infinite)
set of access pathsrootedat local variables ofp. (Specifically,∅ 6∈ Ap).

A memory stateσp
L = 〈Ap〉 at a given point in an execution is composed of a representation of the heap (Ap)

at that point in the execution. To exclude states that cannotarise in any program, we now define the notion of
admissible storeless memory stateswhich must satisfy certain conditions.8

Definition 3.4.1 (Admissible storeless memory states)A storeless memory state〈Ap〉 for a procedurep at a
given point in an execution isadmissibleiff

(i) An access path points-to (at most) one object, i.e.,∀o, o′ ∈ Ap if o 6= o′, theno ∩ o′ = ∅;
(ii) Ap is right-regular, i.e.,∀o1, o2 ∈ Ap if α, β ∈ o1 andα.δ ∈ o2 thenβ.δ ∈ o2; and
(iii) Ap is prefix-closed, i.e., ifα.f ∈ flat Ap, thenα ∈ flat Ap.

BecauseLSLCPF preserves admissibility of states (see Section 3.5), in thesequel, whenever we refer to an
LSLCPF state, we mean anadmissibleLSLCPF state.

Extraction of aliasing information. It is possible to extract aliasing relationships from the sets of access paths
that describe the objects in a heap, and in particular to observe the heap structure as follows: a current variablex
points-toan objecto iff the access path〈x, ǫ〉 is in o. The fieldf of an objecto1 points-toobjecto2 iff for every
access path〈r, δ〉 in o1, the access path〈r, δf〉 is in o2. An access pathα points-to(resp. passes through) an
objecto, if α ∈ o (resp.∃β < α such thatβ ∈ o). An objecto is reachablefrom a variablex, if there exists a
field pathδ ∈ ∆ such that〈x, δ〉 ∈ o.

Example 3.4.2 Memory stateσc 3.5
Lcpf

, shown at Figure 3.5(a), depicts the memory state of our running
example whensplice is invoked for the first time according to theLSLCPF semantics. It shows
nine sets of access paths. Each set represents one allocatedlist-element. Atσc 3.5

Lcpf
, each object is

pointed to by exactly one access path. For example, the first element, second element, and third
element atx ’s list, are represented by the sets of access paths{x}, {x.n}, and{x.n.n}, respectively.
In particular, this invocation ofsplice is cutpoint-free.

7A memory state is considered to be a single-element tuple forpresentation reasons only. Specifically, it helps elucidates the distinctions
between the memory states of theLSLCPF semantics and of theLSL semantics, defined in Chapter 4.

8These conditions are standard in storeless semantics. See,e.g., [Jon81, Deu92b, BIL03].
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(a) Concrete states for the invocationt = splice(x, y) in the running example according to theLSLCPF

semantics. We usex.nk as a shorthand for an access path rooted atx and traversingk n-fields. For example,
we usex.n3 as a shorthand forx.n.n.n.
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call splice(x,y) entersplice(p,q) exit splice(p,q) return t=splice(x,y)
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(c) The3-valued logical structure that results by applyingcanonical abstractionto the2-valued logical struc-
tures shown at Figure 3.5(b).

Figure 3.5: Memory states that may arise at the call-site, entry-site, exit-site, and return-site in the invocationt =
splice(x, y) in the running example according to (a) theLSLCPF semantics, (b) theLCPF semantics, and
(c) theLCPF♯ semantics.
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call splice(y,z) entersplice(p,q) exit splice(p,q) returns=splice(y,z)
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(a) Concrete states for the invocations = splice(y, z) in the running example according to theLSLCPF

semantics. We usex.nk as a shorthand for an access path rooted atx and traversingk n-fields. For example,
we usex.n3 as a shorthand forx.n.n.n.
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(b) The 2-valued logical structure that results by applyingto2VLScpf to the memory states shown at Fig-
ure 3.6(a).
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(c) The3-valued logical structure that results by applyingcanonical abstractionto the2-valued logical struc-
tures shown at Figure 3.6(b).

Figure 3.6: Memory states that may arise at the call-site, entry-site, exit-site, and return-site in the invocations =
splice(y, z) in the running example according to (a) theLSLCPF semantics, (b) theLCPF semantics, and
(c) theLCPF♯ semantics.
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. : AccPath × ∆ → AccPath s.t.

〈r, δ〉.δ′
def
= 〈r, δδ′〉

. : 2AccPath × ∆ → 2AccPath s.t.

a.δ
def
= {α.δ | α ∈ a}

. : 2AccPath × 2∆ → 2AccPaths.t.

a.D
def
= {α.δ | α ∈ a, δ ∈ D}

[] : AccPath × HeapLCPF
→ ObjLCPF

s.t.

[α]A
def
= {β ∈ a | a ∈ A, α ∈ a}

rem : HeapLCPF
× 2AccPath → HeapLCPF

s.t.

rem(A, a)
def
= (map(λo.o \ a.{δ ∈ ∆}) A) \ {∅}

add : HeapLCP F
× 2AccPath × AccPath → HeapLCPF

s.t.

add(A, a, α)
def
= map(λo. o ∪ a.{δ ∈ ∆ | α.δ ∈ o}) A

Figure 3.7: Helper functions.

Memory stateσe 3.5
Lcpf

, shown at Figure 3.5(a), depicts the memory state at the entry to the first invoca-

tion of splice . It differs fromσc 3.5
Lcpf

in two ways: (i) there are only six objects in the heap and (ii)
objects are represented in terms of the access paths that start either withp or q, the formal parameters
of splice .

3.4.2 Inference Rules

The meaning of statements is described by a transition relation
LSLCPF
∽∽∽∽∽∽◮⊆ (ΣLCP F

× stms) × ΣLCP F
. We

give axioms for assignments and an inference rule for procedure calls in Figure 3.8 and Figure 3.9, respectively.
All other statements are handled in the standard way. (See, e.g., [Kah87, NNH99]. Also, see Section C.1.) To
simplify notation, we assumeA with a certain index (resp. prime) to be the heap component ofa stateσLcpf

with
the same index (resp. prime).

3.4.2.1 Helper Functions

To define the inference rules, we use the following functions: [·]·, rem(·, ·) andadd(·, ·), which are defined in
Figure 3.7. We usea as a metavariable ranging over sets of access paths, which are not necessarily objects,
whereaso always stands for objects.

The function[α]A returns the object thatα points-to in heapA. Whenα does not point-to any object,[α]A
returns the empty set (which by definition never describes anobject pointed-to by a current, or even a pending,
access path).

The functionrem takes as its arguments a heapA and a set of access pathsa. It removes from the description
of every object in heapA all the access paths that have a prefix ina. Wheneverrem removes all the access
paths from the description of an object, that object is removed from the description of the heap. The function
add(A, a, α) yields a modified version of heapA, where to every objecto ∈ A reachable fromα by following
some field pathδ ∈ ∆, the access pathsa.δ are added.

In addition, we make use ofmap() , another well known functional from functional programming.
The functionalmap(f) M applies f to every element ofM and returns the resulting set. Formally,

map(f) M
def
= {f(x) | x ∈ M}.
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〈x = alloc t, 〈A〉〉
LSLCPF
∽∽∽∽∽∽◮ 〈A ∪ {{x}}〉

〈x = y, 〈A〉〉
LSLCPF
∽∽∽∽∽∽◮ 〈add(A, {x}, y)〉

〈x = null, 〈A〉〉
LSLCPF
∽∽∽∽∽∽◮ 〈rem(A, {x})〉

〈x = y.f, 〈A〉〉
LSLCPF
∽∽∽∽∽∽◮ 〈add(A, {x}, y.f)〉 y ∈ flat A

〈x.f = null, 〈A〉〉
LSLCPF
∽∽∽∽∽∽◮ 〈rem(A, [x]A.f)〉 x ∈ flat A

〈x.f = y, 〈A〉〉
LSLCPF
∽∽∽∽∽∽◮ 〈add(A, [x]A.f, y)〉 x ∈ flat A

Figure 3.8: Axioms for atomic statements in theLSLCPF. The side-conditionx ∈ flat A (resp. y ∈ flat A)
means thatx ’s (resp.y ’s) value is notnull.

3.4.2.2 Atomic Statements

Theaxiomsfor atomic statements are given in Figure 3.8 and explained below.6

The semantics of memory allocationx = alloc t adds a new object that is described by{x} to the heap.
Note that this definition (implicitly) initializes the fields of the new object tonull. Also note that in a storeless
semantics the semantics of object allocation is deterministic (cf. the semantics for object allocation inGSB and
LSB, our store-based semantics, defined in Figure 2.4.)

The semantics for the assignmentx = y copies the value of the variabley into x by adding an access path
〈x, δ〉 to any objecto that can be reached fromy by following a field pathδ, i.e., 〈y, δ〉 points-too. This is
accomplished by applyingadd to the given heap, the singleton set{x}, and the access pathy.

Assigningnull to a variablex does not modify the link structure of the heap. We only need toeliminate all
the access paths that start withx , using theremfunction.

The rule for field dereferencex = y.f is similar. It adds the access path〈x, δ〉 to any object that can be
reached fromy by following field f , and then continuing with field pathδ. Note, however, that the rule can be
applied only ify points-to an object, i.e., the semantics checks that a null-dereference is not performed.

A destructive updatex.f = null (potentially) modifies the link structure of the heap. Thus,every access
path that has a prefix aliased with〈x, f〉 is removed from the description of every object in the heap. Note, that
[x]A returns all the access paths that are aliased withx. Concatenating[x]A with f returns the set of prefixes of
affected access paths. Again, the rule can be applied only ifx points-to an object.

An assignmentx.f = y also has a (potential) effect on all the access paths that arealiased withx. After this
assignment, any objecto that can be reached by following the field pathδ from y, i.e.,〈y, δ〉 ∈ o, is also reachable
by traversing some access path aliased withx, followed by anf -field, and continuing withδ. As this is a place
where cycles can be created,adddoes not necessarily return a right-regular heap (see Definition 3.4.1). Therefore,
we apply the operator̄·. Ā is defined to be the set of equivalence classes obtained from the least right-regular,
prefix-closed, equivalence relation that is a superset of the equivalence relation induced byA.9 Note that this
definition may only add access paths to the description of existing objects.

Example 3.4.3 Consider the memory stateσ0
Lcpf

= 〈{}〉 in which the heap is empty. Executing the

statementy = alloc List results in memory stateσ1
Lcpf

= 〈{{y}}〉 containing a single allocated
node object which is pointed to by variabley .

Executing the statementz = alloc List onσ1
Lcpf

results in memory stateσ2
Lcpf

= 〈{{y}, {z}}〉
containing two allocated node objects, one is pointed to byy and the other is pointed to byz .

Executing the statementx = y on σ2
Lcpf

results in memory stateσ3
Lcpf

= 〈{{y, x}, {z}}〉 in which
the access pathx is added to the representation of the node pointed to byy .

Executing the statementy.n = z on σ3
Lcpf

results in memory stateσ4
Lcpf

=

〈{{y, x}, {z, y.n, x.n}}〉 in which the access pathsy.n and x.n are added to the representa-

9The operator̄· is similar to theρrstc operator in [Deu92b].
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tion of the node pointed to byz . (Note that[y]σ4
Lcpf

= {y, x}, thus[y]σ4
Lcpf

.n = {y.n, x.n}. Also

note that no cycles are created in the heap. Thus, the resulting heap is right-regular).

Executing the statementy = null on σ4
Lcpf

results in memory stateσ5
Lcpf

= 〈{{x}, {z, x.n}}〉 in
which any access path starting withy is removed from the representation of every object.

Executing the statementx.n = null on σ5
Lcpf

removes then-field between the object pointed to

by x and the object pointed to byz , and results in memory stateσ6
Lcpf

= 〈{{x}, {z}}〉 containing
two allocated node objects, one is pointed to byx and the other is pointed to byz .

Example 3.4.4 Consider a memory state〈{{x}}〉 containing a single allocated node object which is
pointed to by variablex . Executing the statementx.n = x on this memory state results in a memory
state in which then-successor of the object pointed to byx points to itself, thus creating a cycle.
Note that applyingadd({{x}}, [x]{{x}}.n, x) results in{{x, x.n}}, and that using the operator·̄, we

get the final description of the heap{{x, x.n}} = {{x, x.n, x.n.n, . . .}}.

3.4.2.3 Procedure Calls

The inference rulefor procedure calls is defined in Figure 3.9. The rule defines the program stateσr
Lcpf

that
results from an invocationy=p( x1, . . . , xk) at memory stateσc

Lcpf
, assuming that the execution of the body of

p at memory stateσe
Lcpf

results in memory stateσx
Lcpf

. The heapsAc andAr are described by sets of access
paths starting at the caller’s variables, whereas the heapsAe andAx are described by sets of access paths that
start at the callee’s formal parameters and return variable. The rule provides the means to reconcile the different
representations.

Our treatment of procedure call and return could be briefly described as follows:
(i) the call rule is applied, first checking that the invocation is cutpoint-free (by evaluating the side condition);
(ii) the memory state at the callee’s entry site (σe

Lcpf
) is constructed if the side condition holds; and

(iii) the caller’s memory state at the call site (σc
Lcpf

) and the callee’s memory state at the exit site (σx
Lcpf

) are used
to construct the caller’s memory state at the return site (σr

Lcpf
).

The main idea behind the rule is to utilize the fact that a procedure cannot modify objects that are not in its
local-heap (i.e., in the part of the heap that isnot reachable from any actual parameter when the procedure is
invoked). In particular, becauseLSLCPF describes objects in terms of the access paths that point-tothem, these
“inaccessible” objects have the same description before and after the call. Thus, only the description of the objects
in the function’s local-heap (i.e., in the part of the heap that the procedure can access) is (possibly) updated. The
update, is carried under the assumption that the invocationis cutpoint-free.10 This restriction is checked at the call
site by the side condition of the call rule.

Technically, the rule uses the functionscpfCall y=p(x1,...,xk)
q andcpfRety=p(x1,...,xk)

q , which are parameterized

for each call statement in the program.cpfCall y=p(x1,...,xk)
q computes the memory stateσe

Lcpf
that results at the

entry ofp, the callee, wheny = p(x1, . . . , xk) is invoked byq in memory stateσc
Lcpf

. The caller’s memory state

after the invocation is restored by the functioncpfRety=p(x1,...,xk)
q . This function computes the memory state ofq,

the caller, at the return-site (σr
Lcpf

) according toq’s memory state at the call-site (σc
Lcpf

) andp’s memory state at the
exit-site (σx

Lcpf
). In the rest of this section we describe the rule for an arbitrary call statementy = p(x1, . . . , xk) by

an arbitrary functionq. The rule utilizes additional helper functions, defined in Figure 3.10, which we gradually
explain. We now formally define and explain the way these functions implement the aforementioned three steps.

Verifying Cutpoint-Freedom

The semantics uses the side condition of the procedure call rule to ensure that the execution is cutpoint-free. The
side condition asserts that no object is a cutpoint. Specifically, it computes the setCutpointsof possiblecutpoints
of the invocation, and checks that it is empty.

The setCutpointsis computed using the auxiliary functionCPObjscpf
q , defined in Figure 3.10. The auxiliary

function CPObjsq determines the cutpoints for this procedure invocation. Its parameters are the caller’s (i.e.,

10The same mechanism is used to compute the description of objects that the callee allocates.
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〈body ofp, σe
Lcpf

〉
LSLCPF
∽∽∽∽∽∽◮ σx

Lcpf

〈y = p(x1, . . . , xk), σc
Lcpf

〉
LSLCPF
∽∽∽∽∽∽◮ σr

Lcpf

Cutpoints = ∅

where

σe
Lcpf

= cpfCally=p(x1,...,xk)
q (σc

Lcpf
)

σr
Lcpf

= cpfRety=p(x1,...,xk)
q (σc

Lcpf
, σx

Lcpf
)

Cutpoints = CPObjscpf
q (〈Ac〉) (Oargs

c , Opassed
c )

Oargs
c = PTo({x1, . . . , xk}) Ac

Opassed
c = RObjs(Ac) Oargs

c

bindargs = λo ∈ Oargs
c .{〈hi, ǫ〉 | 1 ≤ i ≤ k, xi ∈ o}

bind call = bindargs

cpfCall y=p(x1,...,xk)
q : Σq

LCPF
→ Σp

LCPF
s .t .

cpfCall y=p(x1,...,xk)
q (〈Ac〉)

def
= 〈map(sub(bind call)) Opassed

c 〉

cpfRety=p(x1,...,xk)
q : Σq

LCPF
× Σp

LCPF
→ Σq

LCPF
s .t .

cpfRety=p(x1,...,xk)
q (〈Ac〉, 〈Ax〉)

def
= 〈(Ac \ Opassed

c ) ∪ map(sub(bind ret)) Ax〉
where

bind ret = λa ∈ range(bindcall ) ∪ {{〈ret , ǫ〉}}.{
{〈y, ǫ〉} a = {〈ret , ǫ〉}
Bypass(Opassed

c ) ◦ bind−1
call(a) otherwise

Figure 3.9: The inference rule for procedure calls inLSLCPF. The rule is given for an arbitrary call statement
y = p(x1, . . . , xk) by an arbitrary procedureq. We assume that the formal parameters ofp areh1, . . . , hk. We
recall that according to our conventions,σc

Lcpf
= 〈Ac〉, σe

Lcpf
= 〈Ae〉, σx

Lcpf
= 〈Ax〉, andσr

Lcpf
= 〈Ar〉.
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PTo: 2V → HeapLCP F
→ 2ObjLCP F s.t.

PTo(V ) A
def
= {[x]A 6= ∅ | x ∈ V }

RObjs: HeapLCP F
→ (2ObjLCP F → 2ObjLCPF ) s.t.

RObjs(A) O
def
= {o ∈ A | o′ ∈ O, δ ∈ ∆, o′.δ ⊆ o}

Bypass : 2ObjLCP F → (ObjLCPF
→ 2AccPath) s.t.

Bypass(O) o
def
= {〈r, δ〉 ∈ o | ∀δ′ < δ. 〈r, δ′〉 6∈ flat O}

sub : (2AccPath → 2AccPath ) → (Obj LCPF
→ 2AccPath ) s.t.

sub(bind) o
def
= flat

{
bind(a).δ

∣∣∣∣
a ∈ dom(bind),
δ ∈ ∆, a.δ ⊆ o

}

CPObjscpf
q : Σq

LCPF
→ (2

Obj
q
LCPF × 2

Obj
q
LCPF → 2

Obj
q
LCPF ) s.t.

CPObjscpf
q (〈Ac〉) (Oargs

c , Opassed
c )

def
=

Let

Odeep = Opassed
c \ Oargs

c

Ovars = {[〈x, ǫ〉]Ac ∈ Odeep | x ∈ Vq}

Ofld =

{
o ∈ Odeep

∣∣∣∣
∃o′ ∈ Ac \ Opassed

c ,
∃f ∈ F , o′.f ⊆ o

}

in

Ovars ∪ Ofld

Figure 3.10: Helper functions for the procedure call rule. The functionCPObjsq is parameterized for every
functionq in the program. Recall thatVq is the set ofq’s local variables.

procedureq’s) heap at the call site (Ac), the objects pointed to by the actual parameters (Oargs
c ), and the relevant

objects for the invocation (Opassed
c ), i.e., the objects that are going to constitute the local-heap of the callee (i.e.,

procedurep). To find which objects are in the local-heap of the called procedure, i.e., the ones reachable from the
actual parameters (x1, . . . , xk), LSLCPF computes the set of objects that arepointed-toby p’s actual parameters
(Oargs

c ). The auxiliary functionPTo finds the objects pointed to by the caller’s actual parameters (Oargs
c ). We

refer to these objects as theparameter objects of the invocation. The auxiliary functionRObjsfinds the part of
the caller’s heap (Ac) that is reachable from the parameter objects of the invocation (Opassed

c ), i.e., the relevant
objects for the invocation.

FunctionCPObjsq determines the cutpoints for this procedure invocation, i.e., it computes the set of objects
that “separate”Opassed

c from the rest of the caller’s heap. Recall that we do not consider the parameter objects
of the invocation11 as cutpoints. Thus,CPObjsq considers only objects inOdeep = Opassed

c \ Oargs
c as possible

cutpoints. Following the intuition of cutpoints as “separating objects”, an objecto ∈ Odeep is qualified as a
cutpoint if (and only if) one of the following holds:

• o is pointed-to by a local variable of the caller (Ovars), or

• o is pointed-to by an object in the part of the caller’s heap that is not passed to the procedure (Ofld ).

Note that it is not possible thato separates the heap of thecaller from the heap of one of the pending calls,
without being pointed to by a formal parameter of the caller (recall that formal parameters are not modified),
because this would mean thato is a cutpoint of the invocation of the caller (Ocpl ).

Example 3.4.5 The parameter objects in the invocationt=splice(x, y); in our running example
are

Oargs
c = {{x}, {y}} .

11We remind the reader that a parameter object of an invocationis an object which is pointed-to by an actual parameter.
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The relevant objects for this invocation are

Opassed
c =

{
{x}, {x.n}, {x.n.n}, {y}, {y.n}, {y.n.n}

}
.

The parameter objects in the invocationt=splice(y, z); in our running example are

Oargs
c = {{y, x.n, t.n}, {z}} .

The relevant objects for this invocation are

Opassed
c =





{y.n, x.n2, t.n2}, {y.n3, x.n4, t.n4},
{y, x.n, t.n}, {y.n2, x.n3, t.n3}, {y.n4, x.n5, t.n5},

{z}, {z.n}, {z.n.n}



 .

Computing the Memory State at the Entry Site

The memory state at the entry site top (denoted byσe
Lcpf

) represents the local-heap passed top. It contains objects

in σc
Lcpf

which are relevant for the invocation (Opassed
c ). Functionbindargs , defined in Figure 3.9, and function

sub, defined in Figure 3.10, provide the means to reconcile the different representations of the heap by the caller
(procedureq) and by the callee (procedurep).

Functionbindargs maps objects pointed-to by actual parameters to the set of “trivial” access paths that are
made up of the corresponding formal parameters. Functionsub computes the callee’s heap in terms of access
paths that start at its formal parameters. It uses functionbindcall , which is identical tobindargs ,12 and replaces
every access path that starts with an actual parameter〈xi, δ〉 in the representation of a (relevant) objecto by an
access path〈hi, δ〉 that starts with the corresponding formal parameter. (All other access paths are removed).

Computing the Memory State at the Return Site

The memory state at the return-site (denoted byσr
Lcpf

) is constructed as a combination of the memory state in
which p was invoked (denoted byσc

Lcpf
) and the memory state atp’s exit-site (denoted byσx

Lcpf
). Informally,

σc
Lcpf

provides the information about the (unmodified) irrelevantobjects andσx
Lcpf

contributes the information
about the destructive updates and allocations made during the invocation.

The main challenge in computing the effect of a procedure is relating the objects at the call-site to the corre-
sponding objects at the return site. The fact that the invocation is cutpoint-free guarantees that the only references
into the local-heap (of the callee) are references to objects referenced by an actual parameter. This allows us to
reflect the effect ofp into the local-heap ofq by, essentially: (i) replacing the relevant objects inσc

Lcpf
with σx

Lcpf
,

the local-heap at the exit fromp; (ii) inverting the substitution done at the call-site, i.e., replacing the root of every
access path that starts with a formal parameter with the corresponding actual parameter, and handling the binding
of the return value in a similar way.

More technically, the description of the objects after the call should account for the mutations (destructive
updates) of the heap performed by the callee. However, because the invoked procedure cannot modify objects
that it cannot access, it can only modify fields of objects inOpassed

c . Thus, to compute the (possibly) updated
description of objects inOpassed

c (as well as of objects that the callee allocates) it is sufficient to have a description
of every object inOpassed

c (and of every object allocated by the callee) comprised of the access paths that start at
objects that separateOpassed

c from the rest of the caller’s heap: When the procedure returns, we just replace any
access path〈rp, δp〉 in the description of every object in the heap of the callee (Ax) that starts at a “separating
object”o′, by access paths of the caller〈rq, δqδp〉 such that〈rq , δq〉 points-too′, but does not pass throughOpassed

c

(and thus cannot be modified).
To handle the return of procedurep, we use an additional binding,bindret . This mapping is the in-

verse ofbindcall (hence getting back to the caller’s representation of the object) composed with the function
Bypass(Opassed

c ), which filters out access paths (of the caller) thatpass throughthe part of the heap thatp had

12We use functionbindcall for expository reasons only. Specifically, it helps elucidate the differences between the procedure call rule of
theLSLCPF semantics and that of theLSL semantics, defined in Chapter 4.
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access to (Opassed
c ). In addition, it also takes care of replacing access paths starting with special variableret with

the same access paths starting with result variabley.
The new heap is calledAr. It is derived by removing from the heap at the call-site the passed objects (Opassed

c ),
plugging in the heap that results from evaluatingp’s body (Ax), and substituting the description of all the objects
by applyingsub(bind ret) to every object inAx.

Example 3.4.6 Applying the procedure call rule for the invocationt = splice(x, y); in our
running example results in the following sets and mappings:

Oargs
c = {{x}, {y}}

Opassed
c = {{x}, {x.n}, {x.n.n}, {y}, {y.n}, {y.n.n}}

Cutpoints = ∅
bindargs = [{x} 7→ {p}, {y} 7→ {q}]
bind ret = {{x} 7→ {p}, {y} 7→ {q}, {ret} 7→ {t}}

Example 3.4.7 Applying the procedure-call rule for the invocations = splice(y, z); in our
running example results in the following sets and mappings:13

Oargs
c = {{y, x.n, t.n}, {z}}

Opassed
c =





{y.n, x.n2, t.n2}, {y.n3, x.n4, t.n4},
{y, x.n, t.n}, {y.n2, x.n3, t.n3}, {y.n4, x.n5, t.n5},

{z}, {z.n}, {z.n.n}





Cutpoints = ∅
bindargs = [{y, x.n, t.n} 7→ {p}, {z} 7→ {q}]
bind ret = {{y, x.n, t.n} 7→ {p}, {z} 7→ {q}, {ret} 7→ {s}}

Example 3.4.8 Applying the procedure-call rule for the invocations = splice(t, z); in the
variant of our running example results in the following setsand mappings:

Oargs
c = {{x, t}, {z}}

Opassed
c =





{x, t} {y.n, x.n2, t.n2}, {y.n3, x.n4, t.n4},
{y, x.n, t.n}, {y.n2, x.n3, t.n3}, {y.n4, x.n5, t.n5},

{z}, {z.n}, {z.n.n}





Cutpoints = {y, x.n, t.n}
bindargs = [{x, t} 7→ {p}, {z} 7→ {q}]

Note that〈y, ǫ〉 ∈ Odeep = Opassed \Oargs , thus{y, x.n, t.n} ∈ Cutpoints . Specifically,LSLCPF is
able to detect that this invocation is not cutpoint-free.

3.5 Properties of the Semantics

In this section, we investigate the properties of theLSLCPF semantics. In particular, we show thatLSLCPF can
detect cutpoint-freedom of executions. We also show that for cutpoint-free executions,LSLCPF is observationally
sound(see Section 3.5.1) with respect to the standard semantics.Thus, abstractions ofLSLCPF can be used to
conservatively verify properties of programs with respectto the standard semantics.

3.5.1 Observational Soundness

The only means by which a program can observe a state is by access paths. To state the theorems, we need some
preliminary definitions about access-path equality and observational equivalence. We use the same simplifying
notational conventions as in Section 2.4.1. Specifically, note that in both semantics an access path is equal to
null when it has a prefix which is equal tonull .

13The notationx.nk is explained in the caption of Figure 3.5.
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Definition 3.5.1 (Access path equality)Access pathsα and β are equal in a given stateσLcpf
, denoted by

[[α = β]]cpfL (σLcpf
), if ∀a ∈ A. α ∈ a ⇐⇒ β ∈ a. An access pathα is equal to null in stateσLcpf

, denoted

by [[α = null]]cpfL (σLcpf
), if α 6∈ flat A.

Definition 3.5.2 (Observational equivalence)Let p be a procedure. The statesσLcpf
∈ Σp

LCP F
andsG ∈ Sp

G

areobservationally equivalent, denoted byσLcpf
∼= sG, if for all α, β, γ ∈ AccPathp,

(i) [[α = β]]cpfL (σLcpf
) ⇔ [[α = β]]G(sG), and

(ii) [[γ = null]]cpfL (σLcpf
) ⇔ [[γ = null]]G(sG).

We also define observational equivalence between states inLSLCPF in the same way.

Theorem 3.5.3 is the main theorem in this chapter. It states thatLSLCPF (i) detects if an execution is cutpoint-
free, and (ii) for cutpoint-free executions, it is equivalent toGSB, in the sense that both behave equivalently w.r.t.
termination, and that execution of statements preserves observational equivalence.

Error state. Before defining the theorem, we slightly modify theLSLCPF semantics in the following way. The
semantics of procedure calls, as defined in Section 3.4.2.3,dictates that the procedure call rule cannot be used
when the invocation violates the cutpoint-restriction. Wechange this behavior by adding a specially designated
error state,Ecp , and assuming that the semantics goes into this state when itdetects a violation of the cutpoint-

freedom restriction. Once the semantics reaches the error state, it keeps on propagating it, i.e.,〈st , Ecp〉
Lcpf

∽∽∽∽∽◮
Ecp for everyst ∈ stms.

Theorem 3.5.3 (Observational Soundness)LetP be a program. Letp be a procedure inP . LetσLcpf
∈ Σcpf p

L

andsG ∈ Sp
G be observationally equivalent states, i.e.,σLcpf

∼= sG. Let st be an arbitrary statement inp. The
following holds:

〈st , sG〉
GSB
∽∽∽∽∽◮ s′G ⇒ 〈st , σLcpf

〉
LSL
∽∽∽∽∽◮ σ′

Lcpf
.

Furthermore, eitherσ′
Lcpf

∼= s′G or σ′
Lcpf

= Ecp .

Sketch of Proof:We prove thatLSLCPF is observationally sound with respect toLSB. From this proof together
with Theorem 2.4.10, which states thatLSB is observationally equivalent withGSB, the theorem follows imme-
diately.

The proof thatLSLCPF is observationally sound with respect toLSB is done by induction on the shape of the
derivation trees. Specifically, we show that for every derivation tree inLSB resp.LSLCPF there is a corresponding
derivation tree inLSLCPF resp. LSB with the same shape and, furthermore, corresponding memorystates are
either isomorphic or thatLSLCPF has reached the error state.

The key point in proof is identifying that in cutpoint-free invocations, the references going into the callee’s
local-heap (i.e., local variables of the caller or reference fields of objects outside the local-heap) can only point to
parameter objects (i.e., any such reference is an alias of one of the actual parameters). Thus, when the procedure
invocation returns, and the objects in the callee’s local-heap need to be described in terms of access paths starting
at local variables of the caller, the new description of the objects can be obtained from their description according
to the callee’s formal parameters and the return value.14

Theorem 3.5.3 ensures that abstract interpretation algorithms ofLSLCPF can be used to
(i) verify cutpoint-freedom, i.e., they are applicable to arbitrary programs and do not require an a-priori classi-

fication of a program as being cutpoint-free, and
(ii) compute conservative results withrespect to the standard heap semantics. For example, static analysis

algorithms which are based on theLSLCPF semantics can be used to (a) verify data-structure invariants that
are expressed by access-path equalities at a program point;(b) assert the absence ofnull-valued pointer
dereferences; and (c) detect memory leaks.

14An alternative proof for Theorem 3.5.3 can be done by using Theorem 4.5.3, stated in Section 4.5: Theorem 4.5.3 states that LSL, the
non standard semantics defined in Chapter 4, is observationally equivalent toGSB. Based on Theorem 4.5.3, the proof of Theorem 3.5.3 is
immediate, because, for cutpoint-free executions,LSLCPF produces the same derivation trees asLSL.
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Predicate Intended Meaning
inUc(v) v originates from the caller’s memory state at the call site

inUx(v) v originates from the callee’s memory state at the exit site

Figure 3.11: Predicates used to implement the procedure call inference rule.

Theorem 3.5.3 also ensures thatLSLCPF is heap-modularin the following sense: (i) a procedure has no effect on
the observable properties of the unreachable part of the heap, and (ii) a procedure cannot observe its context, i.e.,
that the execution of the function body is not affected by theirrelevant state.

The heap-modularity ofLSLCPF is quite expected because our semantics does not allow forcast statements.
Thus, a procedure can access (i.e., either observe or mutate) only these parts of the heap that it can reach by
traversing the link structure of the heap.

3.5.2 Admissibility

The following lemma ensures that theLSLCPF semantics preserves admissible states (see Definition 3.4.1).

Lemma 3.5.4 (Admissibility) Letst be a statement andσLcpf
∈ ΣLCPF

an admissible state. If〈st, σL〉
LSL
∽∽∽∽∽◮

σ′
L thenσ′

L is also an admissible state.

Sketch of Proof:Immediate by induction on the shape of the derivation tree.

3.6 A Shape Abstraction ofLSLCPF

In this section, we define a shape abstraction ofLSLCPF usingcanonical abstraction[SRW02]. The new abstrac-
tion forms the basis for a new interprocedural shape-analysis algorithm for cutpoint-free programs, described in
Sections 3.7 and 3.8.

Technically,3-valued logical structures are used to represent unboundedmemory states. The tracked proper-
ties are encoded as predicates.

We define a Galois connection between the powerset domain ofLSLCPF memory states and3Struct using
a representation function(see Section 2.5.1)βCPF

L : Σcpf
L → 3Struct which maps a program state to its “most-

precise representation” in3Struct . FunctionβCPF
L is a composition of two functions: (i)to2VLScpf : Σcpf

L →

2Struct , which maps a cutpoint-free local-heapσLcpf
∈ Σcpf

L to an unbounded2-valuedlogical structureS, and
(ii) canonical abstraction: 2Struct → 3Struct which conservatively boundsS. (cf. functionβLSB

L , defined in
Section 2.5). The Galois connection

(2Σcpf

L , α : 2Σcpf

L → 23Struct , γ : 23Struct → 2Σcpf

L , 23Struct )

is defined as:

α(CC) = {βCPF
L (σLcpf

) | σL ∈ CC} and γ(AA) = {σLcpf
∈ Σcpf

L | S♯ ∈ AA, βCPF
L (σLcpf

) ⊑ S♯},

whereβCPF
L (σLcpf

) ⊑ S♯ means thatS♯ ∈ 3Struct conservatively representsβCPF
L (σLcpf

) ∈ 2Struct . (See
Definition 2.5.4).

3.6.1 Representing Memory States ofLSLCPF by 2-Valued Logical Structures

Functionto2VLScpf , defined in Figure 3.12, maps a memory stateσLcpf
= 〈A〉 ∈ ΣLCP F

to a2-valuedlogical
structureS. Every objecto ∈ A is represented by a unique node inUS . Tracked properties of the memory state
are recorded by the predicates given in Figure 2.11, whose intended meaning is explained in Section 2.5.1.2. In
addition, we use the predicatesinUc andinUx , shown in Figure 3.11 to implement the call rule. The role of these
predicates is explained in Section 3.7.2.2.

We track properties of different procedures using different sets of predicates. To enable that, we assume that
all structures are using the same global set of predicatesP, and assume that every procedurep is associated with a
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to2VLScpf : ΣLCPF
→ 2-Structs.t.

to2VLScpf (〈A〉) = S where S = 〈US , ιS〉 and
US = A

ιS(x)(v) = v ∈ A andx ∈ v
ιS(n)(v1, v2) = v1 ∈ A, v2 ∈ A andv1.n ⊆ v2

ιS(eq)(v1, v2) = v1 = v2

ιS(rx )(v1) = ∃α ∈ v1 s.t. 〈x, ǫ〉 ≤ α
ιS(ils)(v) = ∃α.n ∈ v, β.n ∈ v s.t. [α]A 6= [β]A
ιS(c)(v) = ∃α ∈ v, β ∈ v s.t. α < β

Figure 3.12: The functionto2VLScpf maps states inΣL to 2-valued logical structures.

set of predicatesPp ⊆ P. The interpretation function of a structureS = 〈US , ιS〉 representing the memory state
of a procedurep is a total functionιS : Pp → {0, 1

2 , 1}, i.e.,ιS defines (only) the meaning of the subsetPp ⊆ P
of predicates. (Note thatιS is apartial function fromP).15

In the rest of this chapter, we assume to be working with a fixedarbitrary programP . The set of all reference
fields defined inP is denoted byFieldId⋆. For a procedurep, Vp denotes the set of its local reference variables,
including its formal parameters. The set of all the local (reference) variables inP is denoted byLocal⋆. For
simplicity, we assume formal parameters are not assigned and thatp always returns a value using a designated
variableretp ∈ Vp. For example,retsplice = w.

Example 3.6.1 Figure 3.5(b) shows the2-valued logical structures pertaining to the memory states
at the call-site, entry-site, exit-site, and return-site during the invocationt = splice(x, y)
in the running example, shown in Figure 3.5(a). Specifically, Sc

3.5 = to2VLScpf (σc 3.5
Lcpf

), Se
3.5 =

to2VLScpf (σe 3.5
Lcpf

), Sx
3.5 = to2VLScpf (σx 3.5

Lcpf
), andSr

3.5 = to2VLScpf (σr 3.5
Lcpf

). (2-valuedlogical struc-
tures are depicted as directed graphs using the graphical notations introduced in Example 2.5.2).

Example 3.6.2 Figure 3.6(b) shows the2-valued logical structures pertaining to the memory states
at the call-site, entry-site, exit-site, and return-site during the invocations = splice(y, z)
in the running example, shown in Figure 3.6(a). Specifically, Sc

3.6 = to2VLScpf (σc 3.6
Lcpf

), Se
3.6 =

to2VLScpf (σe 3.6
Lcpf

), Sx
3.6 = to2VLScpf (σx 3.6

Lcpf
), andSr

3.6 = to2VLScpf (σr 3.6
Lcpf

).

3.6.1.1 Admissible Memory States

Not all 2-valuedlogical structures represent memory states that are compatible with the semantics ofEAlgol (or
JAVA or C, for that matter). For example, inEAlgol, each pointer variable points to at most one heap-allocated
element. To exclude states that cannot arise in any program,we now define the notion ofadmissible2-valued
logical structures. This notion is similar to the notion ofadmissible storeless memory states(see Section 2.5.2.2)
and to the notion of structures that arecompatible with hygiene conditionsin [SRW02].

Definition 3.6.3 (Admissible 2-Valued Logical Structures)A 2-valuedlogical structureS = 〈U, ι〉 represent-
ing a cutpoint-free local-heap for a procedurep at a given point in an execution isadmissibleiff

(i) Only the local variables of the current call are represented, i.e.,ιS(x) is undefined for everyx ∈ Local⋆\Vp.
(ii) A variable points-to at most one node, i.e., for everyx ∈ Vp, there exists at most one individual such that

ιS(x)(u) = 1.
(iii) A field is a partial function, i.e., for every individual u1 and every fieldf ∈ FieldId ⋆, there exists at most

one individualu2 ∈ U such thatιS(f)(u1, u2) = 1.
(iv) The predicateeq records equality, i.e., for everyu1, u2 ∈ U , ιS(eq)(u1, u2) = 1 iff u1 = u2.

15Function to2VLScpf , as defined in Figure 3.12, uses, as an example, predicates which are suitable for representing memory states of
procedures manipulating singly linked lists. In general, other predicates could have been used. In contrast, predicates inUc and inUx are
never used to represent memory states. They are only used to define the return structure. See Section 3.7.2.2.
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〈st , S〉
LCPF♯

∽∽∽∽∽∽∽◮ {βL(σ′
Lcpf

) | σLcpf
∈ γ(S), 〈st , σLcpf

〉
LSLCPF
∽∽∽∽∽∽◮ σ′

Lcpf
}

Figure 3.13: A specification of the abstract inference rulesfor atomic statements.

3.6.2 Conservatively Representing Memory States ofLSLCPF by 3-Valued Logical
Structures using Canonical Abstraction

We obtain aboundedconservative representation of (unbounded)2-valuedlogical structures using canonical
abstraction. (See Section 2.5.1.3.)

Example 3.6.4 Figure 3.5(c) depicts the3-valued logical structure that results by applyingcanon-
ical abstractionto the 2-valued logical structures representing the memory statesat the call-site,
entry-site, exit-site, and return-site in the first call tosplice in the running example, shown in Fig-
ure 3.5(b). Specifically,Sc♯

3.5 is a canonical abstraction ofSc
3.5, Se♯

3.5 is a canonical abstraction ofSe
3.5,

Sx♯
3.5 is a canonical abstraction ofSx

3.5, andSr♯
3.5 is a canonical abstraction ofSr

3.5. (3-valuedlogical
structures are depicted using the graphical conventions introduced in Example 2.5.5.)

Example 3.6.5 Figure 3.6(c) depicts the3-valued logical structure that results by applyingcanon-
ical abstractionto the 2-valued logical structures representing the memory statesat the call-site,
entry-site, exit-site, and return-site in the second call to splice in the running example, shown in
Figure 3.6(b). Specifically,Sc♯

3.6 is a canonical abstraction ofSc
3.6, Se♯

3.6 is a canonical abstraction of
Se

3.6, Sx♯
3.6 is a canonical abstraction ofSx

3.6, andSr♯
3.6 is a canonical abstraction ofSr

3.6. (3-valued
logical structures are depicted using the graphical conventions introduced in Example 2.5.5.)

3.7 Abstract Transformers

In this section, we define the abstract transformers used by the analysis. In Section 3.7.1, we provide a declarative
specification of the abstract transformers in a non-algorithmic fashion: We specify the abstract semantics using
thebest abstract transformer[CC79] (see Section 2.5.2.2). In Sections 3.7.2 and 3.7.3, we utilize the framework
of [SRW02] to obtain conservative abstract transformers: We define the effect of intraprocedural statements as
well as call and return statements using first order formulaewith transitive closure and show how to compute the
(abstract) effect of program statements.

3.7.1 A Declarative Specification of the Abstract Transformers

The meaning of statements is described by a transition relation
LCPF♯

∽∽∽∽∽∽∽◮⊆ (3Struct × st) × 3Struct . In this
section, we provide a declarative specification of the meaning of statements, given by “abstract” inference rules
in the same style as the natural semantics. The abstract inference rules operate on3-valuedlogical structures.
(See Section 2.5.2.2). Figure 3.13 and Figure 3.14 show the specification of the abstract inference rules for
atomic statements and procedure-calls, respectively. These rules are given in the declarative style of the best
abstract transformer [CC79]: every abstract inference rule emulates a corresponding concrete inference rule using
represented states (see Figure 2.16).

Example 3.7.1 Figure 3.6(c) shows an application of the procedure-call inference rule from Fig-
ure 3.14 to the second invocation ofsplice in our running example. The logical structures are:
Sc♯

3.6, which arises at the call-site;Se♯
3.6, which arises at the entry tosplice ; Sx♯

3.6, which arises at the
exit-point ofsplice ; andSr♯

3.6, the structurecomputedat the return-site.

In Sx♯
3.6, the list pointed-to byp is spliced with the list pointed to byq. As a result, all the list elements

are now reachable fromp andq at the exit-site. Therefore, even though the list-element pointed-to by
x is not explicitly represented inSx♯

3.6, the inference rule allows us to conclude that atSr♯
3.6, the logical

structure at the return site, all the list elements become reachable fromx . To conclude, definite values
of many of the tracked properties ofx can be established after the function call returns.



3.7. ABSTRACT TRANSFORMERS 49

〈body ofp, XSp〉
LCPF♯

∽∽∽∽∽∽∽◮ XS′
p

〈y = p(x1, . . . , xk), XSq〉
LCPF ♯

∽∽∽∽∽∽∽◮ XS′
q

Cutpoints = ∅

where

{cpfCall y=p(x1,...,xk)
q (σc

L) | σc
Lcpf

∈ γ(XSq)} ⊆ γ(XSp)


cpfRety=p(x1,...,xk)

q (σc
Lcpf

, σx
Lcpf

)

∣∣∣∣∣∣

σc
Lcpf

∈ γ(XSq),

σx
Lcpf

∈ γ(XS′
p),

compatible(σc
Lcpf

, σx
Lcpf

),



 ⊆ γ(XS′

q)

compatible(σc
L, σx

L) ⇐⇒
(

∀h, h′ ∈ Fp.[[h = h′]]cpfL (σe
Lcpf

) ⇐⇒ [[h = h′]]cpfL (σx
Lcpf

) ∧

∀h ∈ Fp.[[h = null]]cpfL (σe
Lcpf

) ⇐⇒ [[h = null]]cpfL (σx
Lcpf

))

)

whereσe
Lcpf

= cpfCall y=p(x1,...,xk)
q (σc

Lcpf
).

Cutpoints = {o ∈ CPObjscpf
q (〈Ac〉) (Oargs

c , Opassed
c ) | 〈Ac〉 ∈ γ(XSq)}

Oargs
c = PTo({x1, . . . , xk}) Ac

Opassed
c = RObjs(Ac) Oargs

c

Figure 3.14: A specification of the abstract inference rulesfor procedure calls. The functionscpfCall y=p(x1,...,xk)
q

andcpfRety=p(x1,...,xk)
q are defined in Figure 3.9. Note that we applycpfRety=p(x1,...,xk)

q only for compatible
pairs of memory states. Memory statesσc

L andσx
L are compatible when they agree about the aliasing between and

the nullnesss of formal parameters. (Recall thatFp denotes the set of the formal parameters of procedurep.) The
rule requires that the invocation ofp on any memory state represented at the call-site be cutpoint-free.

3.7.2 LCPF : A Logic-based Concrete Localized-Heap Semantics for Cutpoint-Free
Programs

The framework of [SRW02] allows to automatically derive theabstract transformers from a specification of the
concrete semantics which uses logical formulae. Thus, we encodeLSLCPF in this form, Specifically, in this
section we presentLCPF , a non-standard large-step operational semantics which implementsLSLCPF using
logic formulae to specify the (concrete) meaning of statements.

LCPF , like LSLCPF, is interesting because procedures operate on local-heaps, thus supporting the notion
of heap-modularity while permitting the usage of a global-heap and destructive updates.LCPF , like LSLCPF,
checks that a program execution is indeed cutpoint-free andhalts otherwise. As a result,LCPF , like LSLCPF, is
applicable to any arbitrary program, and does not require ana priori classification of a program as cutpoint-free.
LCPF is defined to be observationally equivalent withLSLCPF. Thus, by construction,LCPF is observationally
sound with respect to the standard global-heap semantics (see Theorem 3.5.3).

3.7.2.1 Concrete Memory States

We represent concrete memory states using2-valued logical structures: each individual in the universe repre-
sents a heap-allocated object and every predicate corresponds to a tracked property of heap-allocated objects.
(See Section 3.6.1).

3.7.2.2 Inference Rules

The meaning of statements is described by a transition relation
LCPF
∽∽∽∽∽∽◮⊆ (2Struct×st)×2Struct that specifies

how a statementst transforms an incoming logical structure into an outgoing logical structure. For assignments,
this is done primarily by defining the values of the predicates in the outgoing structure using first-order logic
formulae with transitive closure over the incoming structure [SRW02]. The inference rules for assignments are
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Shorthand Intended Meaning Defining Formula
F (v1, v2) v1 has a field that points tov2

∨
f∈FieldId⋆

P
f(v1, v2)

ϕ∗(v1, v2) the reflexive transitive closure ofϕ v1 = v2 ∨ (TC w1, w2 : ϕ(w1, w2))(v1, v2)
R{x1,...,xk}(v) v is reachable fromx1 or . . . or xk

∨
x∈{x1,...,xk}

∃v1 : x(v1) ∧ F ∗(v1, v)

isCP q,{x1,...,xk}(v) v is a cutpoint R{x1,...,xk}(v) ∧
(¬x1(v) ∧ . . . ∧ ¬xk(v)) ∧(∨

y∈Vq
y(v) ∨ ∃v1 : ¬R{x1,...,xk}(v1) ∧ F (v1, v)

)

Figure 3.15: Formulae shorthands and their intended meaning. Recall thatFieldId ⋆
P is the (necessarily bounded)

set of the fields of types defined in programP . Thus, the formulaF (v1, v2), which holds whenv1 has a field
pointing tov2, is well defined. Formulaϕ∗(v1, v2) uses the transitive closure operatorTC , formally defined in
Appendix A.2. FormulaeR{x1,...,xk}(v) holds whenv is reachable from a local variablex in {x1, . . . , xk}, i.e.,
v can be reached by following a (possibly empty) path of fields starting at the object pointed to byx. Formula
isCP q,{x1,...,xk}(v) is explained in Section 3.7.2.2.

〈body ofp, Se〉
LCPF
∽∽∽∽∽∽◮ Sx

〈y = p(x1, . . . , xk), Sc〉
LCPF
∽∽∽∽∽∽◮ Sr

Sc |= ∀v : ¬isCP q,{x1,...,xk}(v)

where

Se = 〈Ue, ιe〉 where
Ue = {u ∈ USc | Sc |= R{x1,...,xk}(u)}

ιe = updCall y=p(x1,...,xk)
q (Sc)

Sr = 〈Ur, ιr〉 where
Let U ′ = {u.c | u ∈ Uc} ∪ {u.x | u ∈ Ux}

ι′ = λp ∈ P .





ιc[inUc 7→ λv.1](p)(u1, . . . , um) : u1 = w1.c, . . . , um = wm.c
ιx[inUx 7→ λv.1](p)(u1, . . . , um) : u1 = w1.x, . . . , um = wm.x
0 : otherwise

in Ur = {u ∈ U ′ | 〈U ′, ι′〉 6|= inUc(u) ∧ R{x1,...,xk}(u)}

ιr = updRety=p(x1,...,xk)
q (〈U ′, ι′〉)

Figure 3.16: The inference rule for a procedure cally = p(x1, . . . , xk) by a procedureq. Sc = 〈Uc, ιc〉. The
functionsupdCally=p(x1,...,xk)

q andupdRety=p(x1,...,xk)
q are defined in Figure 3.17. The rule is explained in

Section 3.7.2.2.

rather straightforward and can be found in Appendix C.2.1. For control statements, we use the standard rules of
natural semantics, see, e.g., [Kah87, NNH99].

Our treatment of procedure call and return inLCPF follows their treatment inLSLCPF, and could be briefly
described as follows: (i) the call rule is applied, first checking that the invocation is cutpoint-free (by evaluating
the side condition), and (ii) proceeding to construct the memory state at the callee’s entry site (Se) if the side
condition holds; (iii) the caller’s memory state at the callsite (Sc) and the callee’s memory state at the exit site
(Sx) are used to construct the caller’s memory state at the return site (Sr). We now formally define and explain
these steps.

Figure 3.16 specifies the procedure call rule for an arbitrary call statementy = p(x1, . . . , xk) by an arbitrary
procedureq. The rule is instantiated for each call statement in the program, and gradually explained below.

Verifying Cutpoint-freedom

The semantics uses the side condition of the procedure call rule to ensure that the execution is cutpoint-
free. The side condition asserts that no object is a cutpoint. This is achieved by verifying that the formula
isCP q,{x1,...,xk}(v), defined in Figure 3.15, does not hold for any object atSc, the memory state that arises when
p(x1, . . . , xk) is invoked byq.
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a. Predicate update formulae forupdCally=p(x1,...,xk)
q

z′(v) =

{
xi(v) : z = hi

0 : z ∈ Vp \ {h1, . . . , hk}

b. Predicate update formulae forupdRety=p(x1,...,xk)
q

z′(v) =





retp(v) : z = y

inUc(v) ∧ z(v) ∧ ¬R{x1,...,xk}(v) ∨ : z ∈ Vq \ {y}

∃v1 : z(v1) ∧ match{〈h1,x1〉,...,〈hk,xk〉}(v1, v)

f ′(v1, v2) = inUx(v1) ∧ inUx(v2) ∧ f(v1, v2) ∨

inUc(v1) ∧ inUc(v2) ∧ f(v1, v2) ∧ ¬R{x1,...,xk}(v2) ∨

inUc(v1) ∧ inUx (v2) ∧ ∃vsep : f(v1, vsep) ∧ match{〈h1,x1〉,...,〈hk,xk〉}(vsep , v2)

where match{〈h1,x1〉,...,〈hk,xk〉}(v1, v2) =
∨k

i=1 inUc(v1) ∧ xi(v1) ∧ inUx(v2) ∧ hi(v2)

inUc′(v) = 0

inUx ′(v) = 0

Figure 3.17: Predicate-update formulae for the core predicates used in the procedure call rule ofLCPF . We
assume that thep’s formal parameters areh1, . . . , hk. There is a separate update formula for every local variable
z ∈ Local⋆ and for every fieldf ∈ FieldId ⋆. We remind the reader that according to our assumptions, procedure
p always returns a value using the designated variableretp ∈ Vp.

The formulaisCPq,{x1,...,xk}(v), holding whenv is a cutpoint object, is comprised of three conjuncts. The
first conjunct, requires thatv be reachable from an actual parameter. The second conjunct,requires thatv not be
pointed-to by an actual parameter. The third conjunct, requires thatv be an entry point intop’s local-heap, i.e., is
pointed-to by a local variable ofq (the caller procedure) or by a field of an object not passed top.

Example 3.7.2 The structureSc
3.5, shown at Figure 3.5, depicts the memory state at the point ofthe

call t = splice(x, y) . In this state, the formulaisCPmain,{x,y}(v) does not hold for any ob-
ject. Indeed, this invocation is cutpoint-free. Similarly, the invocations = splice(y, z) on the
memory state depicted by structureSc

3.6, shown at Figure 3.6, is also cutpoint-free. Again, formula
isCPmain,{y,z}(v) does not hold for any object in this memory state. In particular, whenv is bound to
the object pointed to byx andt , the first conjunct of formulaisCPmain,{y,z}(v), i.e.,R{y,z}(v), does
not hold because this object is not reachable from eithery or z . Whenv is bound to the object pointed
to by y , formulaisCPmain,{y,z}(v) does not hold either, although formulaR{y,z}(v) holds as well
as the second disjunct in the third conjunct ofisCPmain,{y,z}(v), i.e.,∃v1 : ¬R{y,z}(v1)∧ F (v1, v).
However this object is not a cutpoint because it is pointed toby the actual parametery , as detected
by the second conjunct ofisCPmain,{y,z}(v), i.e.,¬y(v) ∨ ¬t(v).

On the other hand, whens = splice(t, z) is invoked atSc
3.6, the object pointed-to byy is a

cutpoint. Note, that the formulaisCPmain,{t,z}(v) evaluates to1 whenv is bound to this object: the
formulaR{t,z}(v) holds for every object int ’s list. In particular, it holds for the second object which
is pointed-to by a local variable,y , but not by either one of the actual parameters,t or z .

Note thatLCPF considers only the values of variables that belong to the current call when it detects cutpoints.
This is possible because all pending calls are cutpoint-free.16

16We note that exploiting the fact that every pending call is guaranteed to be cutpoint-free greatly simplifies the cutpoint detection compared
to the method explained in Chapter 4.
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Computing The Memory State at the Entry Site

The memory state at the entry site top (denoted bySe) represents the local-heap passed top. It contains only these
individuals inSc that represent objects that are relevant for the invocation. The formal parameters are initialized
by updCall y=p(x1,...,xk)

q , defined in Figure 3.17(a). The latter, specifies the value ofthe predicates inSe using
predicate-update formulae evaluated overSc. We use the convention that the updated value ofx is denoted by
x′. Predicates whose update formula is not specified, are assumed to be unchanged, i.e.,x′(v1, . . .) = x(v1, . . .).
Note that only the predicates that represent variable values are modified. In particular, field values, represented
by binary predicates, remain inp’s local-heap as inSc.

Example 3.7.3 The structureSe
3.5, shown at Figure 3.5, depicts the memory state at the entry-site

to splice when t = splice(x, y) is invoked at the memory stateSc
3.5. Note that the list

referenced byz is not passed tosplice . Also note that the element which was referenced byx is
now referenced byp. This is the result of applying the update formulap′(v) = x(v) for the predicate
p in this call. Similarly, the element which was referenced byy is now referenced byq.

Example 3.7.4 The structureSe
3.6, shown at Figure 3.6, depicts the memory state at the entry-site to

splice whens = splice(y, z) is invoked at the memory stateSc
3.6. Note that the list element

pointed to byx and t is not passed tosplice . Also note that the element which was referenced
by y is now referenced byp. This is the result of applying the update formulap′(v) = y(v) for the
predicatep in this call. Similarly, the element which was referenced byz is now referenced byq.

Computing The Memory State at the Return Site

The memory state at the return-site (denoted bySr) is constructed as a combination of the memory state in whichp
was invoked (denoted bySc) and the memory state atp’s exit-site (denoted bySx). Informally,Sc provides the
information about the (unmodified) irrelevant objects andSx contributes the information about the destructive
updates and allocations made during the invocation.

The main challenge in computing the effect of a procedure is relating the objects at the call-site to the corre-
sponding objects at the return site. The fact that the invocation is cutpoint-free guarantees that the only references
into the local-heap are references to parameter objects.17 This allows us to reflect the effect ofp into the local-
heap ofq by: (i) replacing the relevant objects inSc with Sx, the local-heap at the exit fromp; (ii) redirecting
all references to an object referenced by an actual parameter to the object referenced by the corresponding formal
parameter inSx.

We compute the pointer redirection on an intermediate structure, 〈U ′, ι′〉, which contains a copy ofSc =
〈Uc, ιc〉, the memory state at the call site, and ofSx = 〈Ux, ιx〉, the memory state at the exit site.

Every individual inU ′, the universe of the intermediate structure, “stands” for exactly one individual from
eitherUc or Ux.

The interpretation function of the intermediate structure, ι′, provides meaning for the auxiliary predicates
inUc andinUx as well as for every predicatep ∈ P . The auxiliary predicates are used to distinguish between
individuals according to their origin:ι′ setsinUc to hold (only) for individuals that originate fromUc. Similarly,
it setsinUx to hold (only) for individuals that originate fromUx. For the other predicates,ι′ is defined in such a
way that it creates disjoint isomorphic18 copies ofSc andSx within 〈U ′, ι′〉: Informally, removing from〈U ′, ι′〉
the individuals that originate fromUc results in a structure which is isomorphic toSx. Similarly, the removal of
the individuals that originate fromUc results in a structure which is isomorphic toSx.

Pointer redirection is specified by means of predicate update formulae, as defined in Figure 3.17(b). The
most interesting aspect of these update-formulae is the formulamatch{〈h1,x1〉,...,〈hk,xk〉}, defined in Figure 3.17.
This formula matches an individual that represents an object which is referenced by an actual parameter at the
call-site, with the individual that represents the object which is referenced by the corresponding formal parameter
at the exit-site. Our assumption that formal parameters arenot modified allows us to match these two individuals
as representing the same object. Once pointer redirection is complete, the updated memory state of the caller is
constructed by removing all the individuals originating fromSc and representing relevant objects of the invocation.

17We remind the reader that a parameter object is an object which is pointed to by an actual parameter when the procedure is invoked.
18Two structures are isomorphic is they are identical up to renaming of individuals.
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Note that while〈U ′, ι′〉, the intermediate structure, may not be an admissible memory state, the resulting
memory state at the return site is admissible.

Example 3.7.5Sc
3.5 andSx

3.5, shown in Figure 3.5, represent the memory states at the call-site and
at the exit-site of the invocationt = splice(x, y) , respectively. Their combination according to
the procedure call rule isSr

3.5, which represents the memory state at the return site. Note that the lists
of x andy from the call-site were replaced by the lists referenced byp andq. The list referenced by
z was taken as is from the call-site.

Example 3.7.6Sc
3.6 andSx

3.6, shown in Figure 3.6, represent the memory states at the call-site and at
the exit-site of the invocations = splice(y, z) , respectively. Their combination according to the
procedure call rule isSr

3.6, which represents the memory state at the return site. Note that the lists of
x andy from the call-site were replaced by the lists referenced byp andq. The list element pointed
to by x andt was taken from the call-site. Then-field from this element to the head of the returned
list is created because the list element pointed to byy at the call state matches the list element pointed
to byq at the exit state.

3.7.3 LCPF ♯: A Logic-based Abstract Localized-Heap Semantics for Cutpoint-Free
Programs

In this section, we presentLCPF ♯, a conservative abstract semantics abstractingLCPF .

3.7.3.1 Abstract Memory States

We conservatively represent multiple concrete memory statesSS ⊂ 2Struct by a single3-valued logical structure
S♯ ∈ 3Struct using canonical abstraction [SRW02]. (See Definition 2.5.4). Recall that in canonical abstraction
each individual from the (concrete) state is mapped into an individual in the abstract state. An abstract memory
state may includesummary nodes, i.e., an individual which corresponds to one or more individuals in a concrete
state represented by that abstract state. (We remind the reader that the Galois connection(2Σcpf

L , α : 2Σcpf

L →

23Struct , γ : 23Struct → 2Σcpf

L , 23Struct ) between memory states ofLSLCPF and abstract states, represented using
3-valued logical structures, is obtained by composingβCPF

L , which maps memory states ofLSLCPF to 3-valued
logical structures, and canonical abstraction. See Section 3.6.)

Example 3.7.7 Figure 3.5 and Figure 3.6 show the abstract states (as3-valuedlogical structures)
representing the concrete states of Figure 3.5 and Figure 3.6, respectively.

Note that only the local variablesp andq are represented inside the call tosplice(p, q) . Rep-
resenting only the local variables inside a call ensures that the number of unary predicates to be
considered when analyzing the procedure is proportional tothe number of its local variables. This
reduces the overall complexity of our algorithm to be worst-case doubly-exponential in the maximal
number of local variables rather than doubly-exponential in their total number (as in e.g.,[RS01]).

The Importance of Reachability Recording derived properties by means ofinstrumentation predicatesmay
provide additional information that would have been otherwise lost under abstraction. In particular, because
canonical abstraction is directed by unary predicates, adding unary instrumentation predicates may further refine
the abstraction. This is called theinstrumentation principlein [SRW02]. In our framework, the predicates that
record reachability from variables play a central role. They enable us to identify the individuals representing
objects that are reachable from actual parameters. For example, in the3-valuedlogical structureSc♯

3.5 depicted
in Figure 3.5, we can detect that the top two lists represent objects that are reachable from the actual parameters
because eitherrx or ry holds for these individuals. None of these predicates hold for the individuals at the
(irrelevant) list referenced byz . We believe that these predicates should be incorporated inany instance of our
framework.
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3.7.3.2 Inference Rules

The meaning of statements is described by a transition relation
LCPF♯

∽∽∽∽∽∽∽◮⊆ (3Struct × st)× 3Struct . Because
our framework is based on [SRW02], the specification of the concrete operational semantics for program state-
ments (as transformers of 2-valued structures) in Section 3.7.2, also defines the corresponding abstract semantics
(as transformers of 3-valued structures). This abstract semantics is obtained by reinterpreting logical formulae
using a 3-valued logic semantics and serves as the basis for an abstract interpretation. In particular, reinterpret-
ing the side condition of the procedure call rule conservatively, verifies that theprogramis cutpoint-free. In this
chapter, we directly utilize the implementation of these ideas available in TVLA [LAS00].

In principle, the effect of a statement on the values of the instrumentation predicates can be evaluated using
their defining formulae and the update formulae for the core predicates. In practice, this may lead to imprecise
results in the analysis. It is far better to supply the updateformula for the instrumentation predicates too. In this
chapter, we manually provide the update formulae of the instrumentation predicates (as done e.g., in [SRW02,
LARSW00, RS01]). Automatic derivation of update formulae for the instrumentation predicates [RSL03] is
currently not implemented in our framework. We note that update formulae are provided at the level of the
programming language, and are thus applicable to arbitraryprocedures and programs. Predicate update-formulae
for the instrumentation predicates are provided in Appendix C.2.1.2.

The soundness of our abstract semantics is guaranteed by thecombination of Theorem 3.5.3, and the theorems
in [SRW02]

• Theorem 3.5.3 shows thatLSLCPF is observationally sound with respect to the standard semantics.
• Sagiv et. al. [SRW02] show that every program-analyzer which is an instance of their framework is sound

with respect to the concrete semantics it is based on.

3.8 Interprocedural Functional Analysis via Tabulation of Cutpoint-Free
Abstract Local-Heaps

In this section, we present a framework for interproceduralshape analysis, which is context- and flow-sensitive
with the ability to perform destructive pointer updates. Specifically, we fill the algorithmic details left open in
Sections 3.6 and 3.7, which mainly address semantic issues.In particular, we define the effect of call and return
statements using first order formulas with transitive closure and show how to compute the effect of program
statements.

Our algorithm computes procedure summaries by tabulating input abstract memory-states to output abstract
memory-states. The algorithm computes apartial summaryof every procedure, i.e., the computed tabulation is
restricted to abstract memory-states that occur in theanalyzedprogram. However, the tabulated abstract memory-
states represent local-heaps, and are therefore independent of the context in which a procedure is invoked. As a
result, the summary computed for a procedure could be used atdifferent calling contexts and at different call-sites.

Our interprocedural tabulation algorithm is a variant of the IFDS-framework [RHS95] adapted to work with
local-heaps. The main difference between our framework and[RHS95] is in the way return statements are han-
dled: In [RHS95], the dataflow facts that reach a return-sitecome either from the call-site (for information per-
taining to local variables) or from the exit-site (for information pertaining to global variables). In our case, the
information about the heap is obtained bycombiningpairwise the abstract memory states at the call-site with their
counterparts at the exit-site. A detailed description of our tabulation algorithm can be found in Appendix F.

Example 3.8.1 Figure 3.18 shows a partial tabulation of abstract local-heaps for thesplice proce-
dure of the running example. As we have already mentioned, the splice procedure is only analyzed9
times before its tabulation is complete, producing a summary that is then reused whenever the effect
of splice(p, q) is needed. The figure shows all9 possible input states.

3.8.1 Prototype Implementation

We have implemented a prototype of our framework using TVLA [LAS00]. The framework is parametric in
the heap-abstraction and in the operational semantics. We have instantiated the framework to produce a shape-
analysis algorithm for analyzing Java programs that manipulate (sorted) singly-linked lists and unshared trees. To
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Figure 3.18: The tabulation of abstract states for thesplice procedure as computed by our analysis in the running
example. (In the seventh row, eighth row, and ninth row, the value of the formal parameterp is null, and thus it is
not shown. For similar reasons,q is not shown in the third row, sixth row, and ninth row. Specifically, in the ninth
row, when the both arguments tosplice have anull value, the return value ofsplice is alsonull.) We note that
in this program, the analysis actually computed a complete tabulation for (cutpoint-free invocations of)splice .
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Iterative vs. Recursive Programs
Implementation Iterative Recursive

a. List manipulating programs Space Time Space Time
createcreates a list 2.5 11.5 2.3 9.3
find searches an element in a list 3.2 23.7 3.6 37.1
insert inserts an element into a sorted list 5.1 50.1 5.4 46.8
deleteremoves an element from a sorted list 3.7 41.7 3.9 35.8
appendappends two lists 3.7 18.4 3.9 22.5
reversedestructive list-reversal 3.6 26.9 3.4 21.0
revApp reverses a list by appending its head to its reversed tail 4.3 43.6 4.3 41.7
mergemerges two sorted lists 12.5 585.1 5.4 87.1
splicesplices two lists 4.9 76.5 4.8 33.6
running the running example 5.2 80.5 5.0 36.5

b. Tree manipulating programs Space Time Space Time
createcreates a full tree - - 2.6 14.3
insert inserts a node 5.4 98.1 5.6 49.6
removeremoves a node usingremoveRoot andspliceLeft 9.6 480.3 6.6 167.5
find finds a node with a given key 4.9 53.4 6.5 105.7
height returns the tree’s height - - 5.4 76.1
spliceLeft a tree as the leftmost child of another tree 5.3 51.6 5.3 35.7
removeRootremoves the root of a tree 6.1 107.8 6.1 73.9
rotate rotates the left and right children of every node - - 4.9 57.1

c. [RS01] (Call String) vs. [JLRS04] (Relational) vs.
our method

Method Call String Relational Our method
Procedure Space Time Space Time Space Time
insert 1.8 20.8 6.3 122.9 3.5 20.0
delete 1.7 16.4 6.8 145.7 2.8 14.9
reverse 1.8 13.9 4.0 6.4 2.8 7.5
reverse8 2.7 123.8 9.1 14.8 2.8 21.7

d. Inline vs. Procedural Abstraction
Inline Proc. Call

Program Space Time Space Time
crt1x3 2.5 5.1 2.5 6.0
crt2x3 4.5 12.5 2.8 7.3
crt3x3 6.4 22.6 3.1 8.6
crt4x3 8.1 38.6 3.3 9.9
crt8x3 17.3 133.4 4.0 15.6

Table 3.1: Experimental results. Time is measured in seconds. Space is measured in megabytes. Experiments
performed on a machine with a1.5 Ghz Pentium M processor and1 Gb memory.

translate Java programs we have extended an existing Soot-based [VRCG+99] front-end for Java developed by
R. Manevich.

The join operator in our framework can be either set-union ora more “aggressive” partial-join opera-
tion [MSRF04]. The former ensures that the analysis is fully-context sensitive. The latter exploits the fact that
our abstract domain has a Hoare order and returns an upper approximation of the set-union operator.19 Our
experiments were conducted with the partial-join operator.

Our analysis was able to verify that all the tested programs are cutpoint-free andclean, i.e., do not perform
null-dereference and do not leak memory. For singly-linked-list-manipulating programs (Table 3.1.a), we also
verified that the invoked procedures preserve list acyclicity. The analysis of the tree-manipulating programs
(Table 3.1.b) verified that the tree invariants hold after the procedure terminates. For these programs we assume
(and verify) that the trees are unshared.

19Informally, the partial join operator merges together3-valued logical structures according to a partial isomorphism similarity criteria. The
resulting structure conservatively represents each of themerged structure. The operator considers two3-valued structuresS = 〈U, ι〉 and
S′ = 〈U ′, ι′〉 to be partially isomorphic (and thus merges them) when (i)ι(p) = ι′(p) for all predicatesp ∈ P with arity 0, and (ii) for
every individualu ∈ U there exists an individualu′ ∈ U ′ such thatι(p)(u) = ι(p)(u′) for every unary predicatep ∈ P , and vice versa.
Predicates of arity2 or more are given a definite value (0 or 1) only when it is consistent with all the merged structures, i.e., when the resulting
structure conservatively represents each of the merged structures, and an indefinite value (1/2) otherwise. For further details, see [MSRF04].
The information loss incurs by the partial-join operator can be formalized as the most abstract stage in the approximation hierarchy of abstract
interpretations which is used to derive our analysis. See, e.g., [Cou97].
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Procedure Space (MB) Time (sec)
createLayer1 2.1 3.6
createLayer2 2.5 7.4
createLayer4 2.9 15.5
createLayer8 3.8 34.7
createLayer16 5.5 83.6
createLayer32 9.0 230.0
createLayer64 15.5 664.9

Procedure Space (MB) Time (sec)
NTypesAltenate1 2.0 2.5
NTypesAltenate2 2.5 8.2
NTypesAltenate4 3.3 21.9
NTypesAltenate8 5.4 61.6
NTypesAltenate16 10.5 232.1

Table 3.2: Cost of the analysis for programs that invokes procedures in many irrelevant contexts.

3.8.1.1 Cost of Analysis

Table 3.1a-b and Table 3.3a-b compare the cost of analysis for iterative and recursive implementations of a given
program.20 For these programs, we found that the cost of analyzing recursive procedures and iterative procedures
is comparable in most cases. We note that our tests were ofclient programs and not a single procedure, i.e., in all
tests, the program also allocates the data structure that itmanipulates.

Table 3.1.c shows that our approach compares favorably withexisting TVLA-based interprocedural shape
analyzers [RS01, JLRS04]. The experiments measure the costof analyzing4 recursive procedures that manipulate
singly linked lists. For fair comparison with [RS01] and [JLRS04], we follow them and do not measure the cost
of list allocation in these tests. All analyzers successfully verified that these (correct) procedures are clean and
preserve list acyclicity. [JLRS04] was able to prove thatreverse reverses the list and to pinpoint the location in
the list thatdelete removed an element from. However, the cost of analysis forinsert anddelete in [JLRS04]
was higher than the cost in [RS01] and in our analysis. Procedurereverse8 reverses the same list 8 times. The
cost of its analysis indicates that our approach, as well as [JLRS04], profits from being able to reuse the summary
of reverse , while [RS01] cannot.

In addition, we examined whether our analysis benefits from reuse of procedure summaries. Table 3.1.d
shows the cost of the analysis of programs that allocate several lists. ProgramcrtYx3 allocates Y lists. The table
compares the cost of the analysis of programs that allocate alist by invoking create3 (right column) to that
of programs that inlinecreate3 ’s body. The results are encouraging as they indicate (at least in these simple
examples) that our analysis benefits from procedural abstraction.

Table 3.2 demonstrates how our approach benefits from ignoring irrelevant parts of the heap. Procedure
createLayerY creates a full binary tree of depthY . It operates this by first creating two full trees of depth
X = Y − 1 by invoking the procedurecreateLayerX twice; and then it sets these trees as the children of a
tree node that it allocates. Because thecreateLayer procedures are parameterless, none of the objects that are
allocated when it is invoked is relevant. In particular, thelocal-heap at the entry to the procedure is always empty,
thus we analyze the body of every one of these procedures onlyonce. Using the method [JLRS04], we would
have to analyze every procedure at least twice: one time whenit is invoked when the rest of the heap is empty and
once when it is invoked when the rest of the heap contains someobjects. Using the method [RS01], we would
have to analyze procedurecreateLayerX at leastZ − X times when allocating a tree of depthZ because the
analysis distinguishes between memory states in which the pending activation records already have a reference to
a tree or not. The method of [CR03] does not handle trees.

ProcedureNTypesAltenateY allocates a list withY elements, where thei-th element is of classNTypesI .
This procedure allocates the list by non deterministicallychoosing whether to first allocate the head of the list first
and then invokingNTypesAltenateX (for X = Y −1) to allocate the list’s tail or vice versa. Again, because these
procedures are parameterless our method analyzes every procedure only once. However, the methods of [JLRS04]
and [RS01] will analyze procedurecreateLayerX at least2Z−X times when allocating a list of lengthZ, once
for every possible combination of objects allocated by the pending calls. We believe that the method of [CR03]
would also analyze these procedures only once.

20revApp is a recursive procedure. We analyzed it once with an iterative append procedure and once with a recursive append. Tail sort is
a recursive procedure. We analyzed it once with an iterativeinsert procedure and once with a recursive insert.
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Implementation Iterative Recursive

a. Sorted list manipulating programs Space Time Space Time
createcreates a list 2.6 15.0 2.4 12.3
find searches an element in a list 4.1 42.2 4.6 60.7
insert inserts an element into a sorted list 4.7 67.7 4.9 69.5
deleteremoves an element from a sorted list 4.7 75.1 4.8 70.4
reversedestructively reverses a sorted list 4.5 54.8 4.4 47.6
revApp reverses a sorted list by appending its head to the 4.8 74.8 4.8 70.5
reversed tail
mergemerges two sorted lists 11.7 1115.1 5.8 131.2
last returns the last element in a sorted list 4.2 43.3 4.5 47.3
maxFirst returns the first maximal element in an unsorted list 3.6 71.3 3.5 51.6
maxLast returns the last maximal element in an unsorted list 3.6 83.5 3.5 59.0
minFirst returns the first minimal element in an unsorted list 3.5 64.1 3.5 51.1
minLast returns the last minimal element in an unsorted list 3.9 76.3 3.5 59.0

b. Sorting programs Space Time Space Time
IinsertionSort moves the list elements into a sorted list 8.6 449.8 7.3 392.2
TailSort inserts the list head to its (recursively) sorted tail 4.9 101.6 4.9 103.4
QuickSort quicksorts a list - - 13.5 1017.1

Table 3.3: Experimental results for additional sorting programs. Time is measured in seconds. Space is measured
in megabytes. Experiments performed on a machine with a1.5 Ghz Pentium M processor and1 Gb memory.

3.8.1.2 Analyzing Sorting Programs

The analysis presented in [LARSW00] allows to prove partialcorrectness of sorting and list manipulating pro-
cedures. The main idea [LARSW00] is to track the relative order between the data components of list elements
using a binary core relation. Section C.3 describes our adaptation of their abstraction to local-heaps. It also pro-
vides a rather detailed description of the analysis ofquicksort . (We note that prior attempts to verify the partial
correctness ofquicksort using TVLA were not successful.)

We applied our analysis to verify the iterative and recursive sorting programs listed in Table 3.3. Our analysis
was able to verify that these programs are clean and preservelist acyclicity. Furthermore, it verified that:

(i) find , last , insert , anddelete preserve list sorted-ness.
(ii) merge merges two sorted lists into one sorted list.

(iii) Reversing a sorted list by eitherreverse or revApp , results in a list in reversed order.
(iv) MaxFirst returns the list element with the highest data value in the list, and that its value isstrictly greater

than that of any preceding element. Similar properties wereverified for the proceduresMaxLast , MinFirst ,
andMinLast .

(v) The sorting programs (Table 3.1.c) return a sorted permutation of their input.
For further details pertaining to the analysis of sorting programs, and in particular of the analysis of

quicksort , see Section C.3.

3.8.1.3 Dead Cutpoints

For two of our example programs (quicksort and reverse8 ), cutpoints were created as a result of objects
pointed-to by a dead variable or a dead field at the point of a call. We manually rewrote these programs to
eliminate these dead references, thus making the programs cutpoint-free.



Chapter 4

Interprocedural local-heap Shape
Analysis for Programs with Cutpoints

This chapter presents an approach to the interprocedural local-heap shape analysis of imperative
languages with procedures and dynamically allocated storage. It develops shape analysis algorithms
which are context- and flow-sensitive with the ability to perform destructive pointer updates. The
developed algorithms are abstract interpretations ofLSL, a novel non-standardstorelesssemantics
which is shown to beobservationally equivalentto the standard semantics of heap manipulating
programs.

The distinguishing aspect ofLSL, and of its abstractions, is that they compute a characterization of a
procedure’s behavior which abstracts away thecontentsof the parts of the heap which are irrelevant
to the procedure: Only the contents of the procedure’s local-heap and its(arbitrary) sharing patterns
with the rest of the heapare recorded.

The material described in this chapter is largely based on the material that originally appeared
in [RBR+05, RBR+04, RSY04].

4.1 Introduction

This chapter presents a framework for interprocedural shape analysis, which is context- and flow-sensitive with
the ability to perform destructive pointer updates. In thischapter, we do not place ana priori restriction on the
class of programs that can be effectively analyzed. Specifically, we are interested in analyzing programs with
cutpoints (cf. the interprocedural framework presented inChapter 3, in which we restricted our attentiona priori
to the specific class of cutpoint-free programs). In particular, the analysis algorithms developed in this chapter are
capable of conservatively representing arbitrary sharingpatterns between the part of the heap which is relevant
to the procedure and the other, irrelevant, parts.

Technically, our analysis computes procedure summaries astransformers from inputs to outputs whilerecord-
ing only the sharing patterns with parts of the heap not relevant to the procedure and abstracting away the
contents of the irrelevant parts. This makes the analysis modular in the heap and thus allows reusing the effect of
a procedure at different contexts in which the irrelevant parts of the heap inducesimilar sharing patterns.

This chapter consists of two main parts: The first part introduces a non-standard concrete semantics,LSL,
for Localized-heap Store-Less. In LSL, called procedures are only passedpartsof the heap.LSL can handle
programs with arbitrary sharing patterns between the local-heap and the irrelevant heap contextby providing a
special treatment for cutpoints.LSL is shown to beobservationally equivalentto a standard store-based seman-
tics. The second part of this chapter concerns abstract interpretation ofLSL and develops new static-analysis
algorithms using canonical abstraction [SRW02]. Specifically, our analysis allows for a parametric abstraction of
the sharing patterns.

59
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4.1.1 LSL: A Localized-Heap Storeless Semantics

In Section 4.4, we introduceLSL, a non-standard concrete semantics.LSL is a storelesssemantics [Jon81]:
Every dynamically allocated objecto is represented by the set ofaccess pathsthat reacho. In particular, un-
reachable objects are not represented.LSL is a local-heapsemantics: It does not represent access paths that start
from variables of pending calls in the “local state” of the current procedure. This means that a procedure has a
local view that only includes objects that are reachable from the procedure’s parameters (and, in addition, any
objects that it allocates). In this aspect,LSL is similar toLSLCPF and differs from existing storeless semantics
for procedural programs [Deu92a, Ven99], which explicitlyrepresent the global-heap and, in particular, represent
the values of pending variables.

In contrast to theLSLCPF semantics,LSL allows cutpoints. The main challenge in handling procedurecalls
with cutpoints in a storeless semantics is that the “same object” can be represented differently at different program
states. In particular,cutpoints, the objects which separate the “local-heap” that can be accessed by a procedure
from the rest of the heap, can be represented differently at the entry state and at the exit state.

Our main observation in the design ofLSL is thatfor the purpose of applying the effect of a procedure call,
it suffices toonly match the representation of the parameter objects (i.e., the objects pointed to by the formal
parameters) and thecutpointsof the invocation at the entry state and at the exit state. In particular, there is no
need to match the representation ofeveryobject at the entry state with its representation at the exitstate.

Technically,LSL addresses the problem of relating objects at the caller’s call state with objects at the callee’s
exit state in a storeless semantics in two complementary ways:
- LSL matches the (possibly different) representation of the parameter objects using the (immutable) values of

the formal parameters.1 Thus, like inLSLCPF, a formal parameter serves as an immutable marker which keeps
labeling the same (parameter) object throughout the execution of the procedure.

- LSL matches the (possibly different) representation of the parameter objects usingcutpoint-labels: LSL labels
every cutpoint with acanonicimmutablecutpoint-label, which is incorporated in the representation of the object
in the memory state.

The main technical novelty ofLSL is the use ofcutpoint-labels. Technically, a cutpoint-label is the set of
access paths that point to the (cutpoint) object at the entryto the procedure. As a result, cutpoint-labels allow to
record the sharing patterns between the procedure’s local-heap and the rest of the heap in acanonicand context-
independent manner. Specifically, cutpoint-labels address the problem of relating properties before and after a call
in a storeless semantics by labeling every cutpoint with acanonicimmutablecutpoint-label; when a procedure
returns, the cutpoint-labels are used to match the cutpointobject of the invocation at the entry state and at the exit
state. This allows to update the caller’s local-heap with the effect of the call. (See Section 4.3)

We study the properties ofLSL: We show thatLSL is observationallyequivalentwith a standard store-based
semantics. We also show that it has a number of standard properties, including full abstraction and determinism.
(See Section 4.5).

4.1.2 Interprocedural Shape Analysis

We develop interprocedural shape analysis algorithms by abstract interpretation ofLSL. The latter was designed
with its precise and efficient abstractions in mind: information about the context provided by the rest of the heap
is isolated to the sharing patterns of the cutpoints—which are expressible in a context-independent manner. The
analysis benefits from the fact that the heap is localized: the behavior of a procedure only depends on the part of
the heap that is reachable from actual parameters, and on thesharing patterns that create cutpoints. Furthermore,
because our analyses exploit the aforementioned beneficialaspects ofLSL, their results can be reused for different
contexts that have similar sharing patterns.

The interprocedural algorithms developed in this chapter follow the functional approach [CC78, SP81] (see
Section 6.3.1.2): They tabulate abstractions of memory configurations before and after procedure calls. However,
these abstractions are represented in a non-standard wayabstracting away parts of the heap not relevant to the
procedure. This reduces the complexity of the analysis because the analysis of procedures does not represent
information on references and the heap from calling contexts. Indeed, this makes the analysis modular in the heap
context (heap modular), and thus allows reusing the effect of a procedure at different calling contexts.

1Recall that by our simplifying assumptions, formal parameters are never assigned. (See Section 2.2.1).
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One of the most subtle issues in our analysis is the treatmentof sharing between the local-heap and the rest
of the heap. The problem is that, unlike in cutpoint-free programs, here the local-heap can be accessed via access
paths which bypass actual parameters. Therefore, cutpoints are treated differently than other objects: Our analyses
allow the specifier to define the expected sharing patterns. (We note that the analysis may become imprecise, and
expensive, in programs in which several cutpoints are summarized together).

Indeed, it is instructive to distinguish between two dimensions of heap abstractions: (i) The abstraction of the
local-heap which discriminates between different kinds ofaliases inside the part of the reachable part of the heap.
For example, a node which is pointed-to by two or more selectors from the local-heap can be treated differently.
(ii) The abstraction of thesharing patternsbetween the local-heap and the rest of the heap. For example,in some
of our experiments our analyses lose all distinctions between the different cutpoints. In other experiments, the
analyses distinguish only between cutpoints with different types. We note that using these schemes leads to a loss
of precision when more than one cutpoint (of the same type) iscreated. (See Section 4.10.4.1).

We developconservativealgorithms: they compute a conservative description of every memory state that can
arise (at any program point) in any execution. This means that we can conservatively determine properties of the
program such as the absence of null-dereferences, absence of garbage, preservation of data-structure invariants,
and validity of assertions by checking these properties on the (generated) abstract states. However, because the
description isconservative, the algorithms might represent concrete states that are infeasible according to the
concrete semantics. This leads to incompleteness in the sense that we may fail to establish assertions that hold for
every execution.

Technically, iterative abstract-interpretation algorithms ofLSL are used to automatically compute a safe
approximation to the set of possible program states. The main idea is that every abstract state finitely represents a
potentially infinite number of concreteLSL states. The program is interpreted according to an abstractsemantics
that over approximates the concrete transition relation. Termination of the abstract-interpretation algorithms is
guaranteed by the finiteness of the set of abstract states.

Our analyses extend the3-valued logical framework for program analysis of [LAS00, SRW02] to the interpro-
cedural setting. Furthermore, they leverage the parametric nature of this framework and are parametric in the heap
abstraction and in the concrete effects of program statements, allowing to experiment with different instances of
interprocedural shape analyzers. For example, we can employ different abstractions for singly-, doubly-linked
lists, and trees. (See Section 4.9.1).

Perhaps the main technical challenge in encoding local-heaps with cutpoints using the framework of [LAS00,
SRW02] is the (conservative) representation of theaccess paths comprisingcutpoint-labels. We address this issue
by “freezing” the entry memory states (whose structure defines the cutpoints) in the current memory state of the
procedure. Effectively, our analysis abstracts every memory state that occurs during the execution of a procedure
togetherwith the memory state that occur at the entry to the procedure. The “frozen” entry memory state is used
to encode the cutpoint-labels.

The soundness of our algorithms is guaranteed by a combination of the theorems given in this chapter and the
ones given in [SRW02]. (See Section 4.8.3).

4.1.3 Main Results

The main contributions presented in this chapter can be summarized as follows:

• We introduce the novel notion ofcutpoint-labels, which allow to record the sharing patterns between the
procedure’s local-heap and the rest of the heap in a context-independent manner.

• We developLSL, a non-standard concrete procedure local-heapstorelesssemantics.LSL utilizes cutpoint-
labels to handle procedure calls with arbitrary cutpoints.We show thatLSL is observationally equivalent
to a standard store-based semantics.2

• We present a framework for interprocedural shape analysis that does not impose an a priori restriction on
the allowed sharing patterns. In particular, the frameworkdescribed in this section can handle programs
that are not cutpoint-free.

2Compare, in contrast,LSLCPF which isobservationally soundwith respect to a standard store-based semantics.
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• We implemented our framework and used it to prove the absenceof program errors such as null dereferences
and memory leaks, and to verify conformance to API specifications in several small heap-intensive Java
programs.

Remark 4.1.1 We note that abstract interpretation ofLSL can also provide insights into Deutsch’s work on
static may-alias analyses based on pointer-access paths [Deu94]. In particular, a may-alias abstraction ofLSL
provides insights into the treatment of variables of pending calls, which is one of the most complicated aspects
of [Deu94]. For instance, a surprising aspect of the method given in [Deu94] is that recursive procedures are
handled in a more precise way than loops. The intuitive reason is that the abstraction of values of variables in the
current procedure differs from the abstraction used for values of variables in pending procedures. It is possible to
understand the technical reasons for this behavior of the analysis by formalizing the abstract domain of [Deu94]
as an abstraction of (the power domain of)LSL memory states. (See Section D.4).

Outline. The remainder of the chapter is organized as follows: Section 4.2 introduces our running example.
Section 4.3 defines the notion of cutpoint-labels and describes their use inLSL. Section 4.4 presents theLSL
semantics and Section 4.5 investigates its properties. Sections 4.7–4.9 present our interprocedural shape analysis:
Section 4.6 presents an informal overview of the analysis. Section 4.7 describes a shape abstraction ofLSL,
Section 4.8 describes the abstract transformers, and Section 4.9 presents our implementation and experimental
evaluation.

4.2 Motivating Example

In this chapter, we continue using as our running example thetwo programs using proceduresplice , shown
in Figure 3.1, which also served as the running example of Chapter 3. For each invocation ofsplice in these
programs, our analyzer verifies that the returned list is acyclic and not heap-shared;3 that the first parameter is
aliased with the returned reference; and that the second parameter points to the second element in the returned
list.

Example 4.2.1 Figure 4.1(a) depicts four memory states that may arise during the invocationt
= splice(x, y); according to theLSB semantics (see Section 2.3) using the same graphi-
cal conventions introduced in Example 2.2.1. Figure 4.1(sc4.1

L ) depicts the call memory state; Fig-
ure 4.1(se4.1

L ) depicts the entry memory state; Figure 4.1(sx4.1
L ) depicts the exit memory state; and

Figure 4.1(sr 4.1
L ) depicts the return memory state.

Recall that inLSB, the heap at the entry state is a restriction of the heap at thecall state on the set of
relevant objects for the invocation. For this invocation ofsplice , only the elements inx ’s list and
in y ’s list are relevant. Thus, the entry state of this invocation (se 4.1

L ) does not represent the elements
in z ’s list.

The heap of the return state is comprised ofsplice ’s heap at the exit state combined with the parts
of the heap that were irrelevant for the call. Specifically, it containsz ’s list. The environment at the
return state is as in the call-site, except that the return value is assigned tot .

Note that the invocation in Example 4.2.1 is cutpoint-free.In this chapter, we concentrate on the non cutpoint-
free program shown in Figure 3.1(b), and in particular on theinvocations = splice(t, z) , which is not
cutpoint-free.

Example 4.2.2 Figure 4.2(a) depicts four memory states that may arise during the invocations
= splice(t, z); according to theLSB semantics (see Section 2.3) using the same graphi-
cal conventions introduced in Example 2.2.1. Figure 4.2(sc4.2

L ) depicts the call memory state; Fig-
ure 4.2(se4.2

L ) depicts the entry memory state; Figure 4.2(sx4.2
L ) depicts the exit memory state; and

Figure 4.2(sr 4.2
L ) depicts the return memory state.

Recall that inLSB, the heap at the entry state is a restriction of the heap at thecall state on the set
of relevant objects for the invocation. In this invocation,all the allocated objects are relevant for the

3An object is heap-shared if it is pointed-to by a field of more than one object.
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invocation. Thus, in this invocationsplice ’s local-heap at the entry state is identical tomain ’s local-
heap at the call state. (Note that, in this invocation,splice ’s local-heap contains all the allocated
objects.)

The heap of the return state is comprised ofsplice ’s heap at the exit state combined with the
(empty) irrelevant parts of the heap at the call state. The environment at the return state is as in the
call-site, except that the return value is assigned tos .

Note that at the call state,y points to the second list element int ’s list. Thus, this element is a
cutpoint. As expected,y points to the same list element and the return state. The semantics can have
y maintain in the return state the value that it had at the call state because the location (i.e., address)
identifying an object is immutable (see Section 2.3). Note,however, that after this invocation returns,
the tail of the list pointed-to byy has changed.

4.3 Cutpoints and Cutpoint-Labels

In this section, we define the notion of cutpoint-labels and describe their use inLSL. To assist the reader,
we provide some intuition by referring to the global store-based semantics (see Section 2.2) and to a small-
step [Plo81, NNH99] stack-based operational semantics.LSL is a storeless semantics, i.e., memory cells are not
identified by locations. Thus, we cannot talk about locations as in Sections 2.2 and 2.3. Instead, as in Chapter 3,
we use the termobjects.

In LSL, every dynamically allocated objecto is represented by the set of pointer-access paths that reacho.
LikeLSLCPF, and unlike other storeless semantics, e.g., [Deu92a], inLSL, pending access paths are not explicitly
represented as parts of the local state of the current procedure.

The advantage of our approach is that when a procedure is invoked, it operates only on a part of the heap,
namely, the objects that are reachable from the procedure’sactual parameters. This allows analyses that abstract
LSL to capture procedural abstraction in a context independentway by inferring the effect of the procedure as a
transformer of parts of heaps and not as a transformer of whole heaps.

The downside of this approach is that the memory state just after the call cannot always be defined in terms of
the state prior to the call. The intuitive reason for this deficiency is that the description of an object may change
due to destructive updates. For example, in the running example, to determine that the pointer-access pathsy and
x.n.n are aliased after the second invocation ofsplice in Figure 3.1(b), we need to know that the list element
pointed-to byp.n when the execution ofsplice begins, is pointed-to byw.n.n when the execution ends. To
capture this kind of temporal relationship,LSL tracks the effect of a procedure oncutpoints(see Definition 3.3.2).

4.3.1 Cutpoint-Labels

Technically,LSL usescutpoint-labelsto relate the post-state of the procedure with its pre-state. Cutpoint-labels
mark the cutpoints at—and throughout—an invocation.

Definition 4.3.1 (Cutpoint-Labels)A cutpoint-labelcpl ∈ 2Fp×∆ for procedurep is a set of access paths that
start at a formal parameter ofp. The set2Fp×∆ is denoted byCPLbsp.

In every procedure invocation,LSL labels all the cutpoints. A cutpoint-label is the set of all access paths that
start with a formal parameter (of the invoked procedure) andpoint-to the cutpoint when the procedure execution
starts. The label of a cutpoint does not change throughout the execution of the procedure’s body, even if the heap
is modified by destructive updates.

For example, the second list element inx ’s list is a cutpoint for the invocations = splice(t, z); . The
label of this cutpoint is{p.n} becausep.n is the (only) access path that points-to the cutpoint at the entry to the
procedure. A good analogy for the role of cutpoint-labels inour semantics is the use of auxiliary variables in
formal verification. Auxiliary variables are used to recordvariable values at the entry to a procedure; a cutpoint-
label is used to record the access paths that reach a cutpointat procedure entry. To emphasize this similarity, we
use the notation̂a wherea ∈ CPLbsp for cutpoint-labels for procedurep.

LSL can infer the effect of an invoked procedure on the heap of itscaller by including in the representation
of an object all the field paths that reach it and start at a cutpoint.
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call splice(x,y) entersplice(p,q) exit splice(p,q) return t=splice(x,y)
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Figure 4.1: Concrete states for the invocationt = splice(x, y) in the running example according to the
(a)LSB semantics, (b)LSL semantics, (c)LCP semantics, and (d)LCP♯ semantics. We usex.nk as a shorthand
for an access path rooted atx and traversingk n-fields. For example, we usex.n3 as a shorthand forx.n.n.n.
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call splice(t, z) entersplice(p, q) exit splice(p, q) returns = splice(t, z)
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Figure 4.2: Concrete states for the invocations = splice(t, z) in the running example according to the
(a)LSB semantics, (b)LSL semantics, (c)LCP semantics, and (d)LCP♯ semantics. We usex.nk as a shorthand
for an access path rooted atx and traversingk n-fields. For example, we usex.n3 as a shorthand forx.n.n.n.

Also, cpl is a shorthand for̂{p.n}.
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Definition 4.3.2 (Cutpoint-anchored paths) A cutpoint-anchored pathα = 〈cpl, δ〉 ∈ CPLbsp × ∆ for a
procedurep is a cutpoint-label for procedurep and a (possibly empty) sequence of fields.

For example, at the exit memory state of the invocations = splice(t, z); , the cutpoint-anchored path

{̂p.n} is aliased with the access pathw .n.n. From this information, our semantics can infer that in themain
procedure, at the state after the invocation ofsplice , the caller’s local variabley is aliased witht.n.n.

Technically, during the invocation of a procedure, an object is represented by the access paths and cutpoint-
anchored paths that point-to it.

Definition 4.3.3 (Generalized access paths)Ageneralized access pathfor a procedurep is either an access path
of p or a cutpoint-anchored path ofp. GAccPathp denotes the set of all access paths of procedurep. GAccPath

denotes the union of all access paths of all procedures in a program.

When there is no risk of confusion, we abbreviate a generalized access path of the form〈r, ǫ〉 by r. Note that
r can be either a variable, or a cutpoint-label.

Remark 4.3.4 Cutpoint-labels isolate the information about the part of the heap that a procedure cannot access,
to thesharing patternof the cutpoints, i.e., to the set of access paths that—at theentry to the procedure—point-to
a cutpoint. Furthermore, the isolation is achieved in a parametric way: although a cutpoint-label expresses the
fact that an object is also pointed-to by a pending access path, it is described in terms of the invoked procedure’s
formal parameters. This allows us to infer the meaning of a cutpoint-label in a context-independent way.

Remark 4.3.5 Note that because of the “garbage-collecting nature” of storeless semantics, there is a non-trivial
technical difficulty in obtaining a local semantics for the storeless model. If a garbage-collection scan was to
collect the heap using only the procedure’s local variablesas the roots, then elements would be garbage collected
that are accessible in the global state; adding the cutpoint-labels to the set of “roots” prevents this potential
source of unsoundness. In theory, this idea can be used to develop different garbage collection algorithms for
sequential programs.

4.4 LSL: A Localized-Heap Storeless Semantics

In this section, we defineLSL, a Localized-heap Store-Less semantics. The semantics is anatural semantics and,
as before, tracks only pointer values.

To define the semantics, we extend the infix operator·.·, defined in Figure 3.7 and explained in Section 3.4,
to generalized access paths in the obvious way. (See Figure 4.5). Following the conventions of Section 3.4, we
say that a generalized access pathα is aprefixof a generalized access pathβ, denoted byα ≤ β, when there is a
field pathδ ∈ ∆, such thatβ = α.δ. We say thatα is aproper prefixof β, denoted byα < β, whenδ 6= ǫ. The
function·.· is lifted to handle sets of generalized access paths and setsof sequences of field identifiers.

In addition, we make use of theflat functional, well-known from functional programming.flat M returns the

set of all elements ofM , if M is a set of sets. Formally,flat M
def
= {x | ∃A ∈ M : x ∈ A}.

4.4.1 Memory States

In this section, we define the representation of memory states inLSL. Traditionally, a storeless semantics rep-
resents the heap by an equivalence relation over a set of access paths, where equivalence classes (implicitly)
represent allocated objects. For readability, we use the equivalence classes directly, as we did in Section 3.4.

A memory statefor a functionp is a pair〈CPLp, Ap〉 of a set of cutpoint-labels, (denoted byCPLp) and a
heap (denoted byAp). A heap is a finite (but unbounded) set of objects. An object (denoted byo) is described
by a (possibly infinite) set ofgeneralizedaccess paths. Figure 4.3 gives the semantic domains used inLSL for a
memory state of a functionp.

A memory state〈CPLp, Ap〉 at a given point in an execution is composed of the labels of all the cutpoints of
the current invocation (CPLp) and a representation of the heap (Ap) at that point in the execution. To exclude
states that cannot arise in any program, we now define the notion ofadmissible states.
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r ∈ Rootp = Vp ∪ CPLbsp Roots of generalized access paths
α, β ∈ GAccPathp = Rootp × ∆ Generalized access paths
o ∈ Obj

p
L = 2GAccPathp Objects

A, Ap ∈ Heap
p
L = 2Obj

p
L Heaps

σL, 〈CPLp, Ap〉 ∈ Σp
L = 2CPLbsp × Heap

p
L Memory state

Figure 4.3: Semantic domains of memory states for procedurep in LSL. We use the syntactic domainsVp,
CPLbsp, andGAccPathp as semantic domains, too (and use italics font to denote a semantics value.)

Definition 4.4.1 (Admissible memory states)A memory state〈CPLp, Ap〉 for a functionp at a given point in an
execution isadmissibleiff

(i) A generalized access path points-to (at most) one object, i.e.,∀o, o′ ∈ Ap if o 6= o′, theno ∩ o′ = ∅;
(ii) Ap is right-regular, i.e.,∀o1, o2 ∈ Ap if α, β ∈ o1 andα.δ ∈ o2 thenβ.δ ∈ o2;
(iii) Ap is prefix-closed, i.e., ifα.f ∈ flat Ap, thenα ∈ flat Ap; and
(iv) a root of every access path in the description of any object is either a local variable ofp or a label of one of

the cutpoints, i.e., if〈r, δ〉 ∈ flat Ap then eitherr ∈ Vp or r ∈ CPLp;
(v) ∅ 6∈ A;
(vi) CPLp satisfies the following requirements:

(a) the cutpoint-labels inCPLp are mutually disjoint,
(b) CPLp is right-regular (but not necessarily-prefix closed),
(c) ∅ 6∈ CPLp.

The first three conditions are standard in storeless semantics, and were already used in Definition 3.4.1. The
fourth condition limits the set of cutpoint-anchored pathsthat are tracked during an invocation to be rooted at a
cutpoint of the invocation. The fifth condition is because weonly represent objects that are pointed-to by a current
or a pending access path. The sixth requirement captures thefact that the set of cutpoints is actually a subset of
the objects in the heap when the function is invoked. Thus,CPLp satisfies the first two requirements of heaps.
However, because it is only a subset, it is not necessarily prefix-closed. The fact that the empty set is never in
CPLp is immediate once we recall that cutpoint-labels are generated only for objects that can be reached from the
actual parameters when the function is invoked.

BecauseLSL preserves admissibility of states (see Lemma 4.5.6), in thesequel, whenever we refer to an
LSL state, we mean anadmissibleLSL state.

It is possible to extract aliasing relationships from the sets of generalized access paths that describe the objects
in a heap, and in particular to observe the heap structure as follows: a current variablex points-toan objecto iff
the access path〈x, ǫ〉 is in o. Similarly, cutpoint-labelcpl labelsobjecto iff 〈cpl, ǫ〉 is in o. The fieldf of an
objecto1 points-toobjecto2 iff for every generalized access path〈r, δ〉 in o1, the generalized access path〈r, δf〉
is in o2. A generalized access pathα points-to(resp.passes through) an objecto, if α ∈ o (resp.∃β < α such
thatβ ∈ o). An objecto is reachablefrom a variablex, if there exists a field pathδ ∈ ∆ such that〈x, δ〉 ∈ o.

Example 4.4.2 The heap of the running example at the state in whichsplice(t, z) is invoked
is shown in Figure 4.2(σc 4.2

L ). It shows nine sets of generalized access paths. Each set represents one
allocated list-element. AtAc, the caller’s heap, access pathsx.n, t.n, andy point-to the same object.
The set of cutpoint-labels at the call site is empty. This is always the case for the main procedure.
The second element inx ’s list is a cutpoint for this invocation ofsplice : it is reachable from an
actual parameter (its representation includest.n) and by a local variable which is not aliased with an
actual parameter (its representation includesy, but does not include eithert or z).

The heap at the entry state tosplice , shown in Figure 4.2(σe 4.2
L ), differs fromAc in two ways:

(i) the set of cutpoint-labels containŝ{p.n}, which labels the fourth element in the list; and (iii)
objects are represented in terms of the generalized access paths that start either withp, q, or with

cpl = {̂p.n}.
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G ) (s

cpfld 4.4

G ) (s
cpemp 4.4

G ) (s
cpwrong 4.4
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Figure 4.4: Potentialglobal-heapsrepresented by the concrete local-heapσe 4.2
L , shown at Figure 4.2. The local-

heap ofσe 4.2
L is depicted in the global-heap circumscribed with a dashed frame. Also, for clarity, we use the

notationx to denote a reference variablex of a pending call.

4.4.1.1 A Global View of Local-Heaps

The key reason for correctness of the semantics is that everylocal-heap represents all theglobalmemory config-
urations containing that local-heap. Figure 4.4 illustrates that for the entry local-heap, shown at Figure 4.2(σe 4.2

L ).
We give two examples of potential global memory states represented by this local-heap and two examples which
are not represented by this local-heap. Note that here, likein Section 3.3.2, we actually draw the global-heap,
i.e., we draw all the allocated objects and we donot draw their storeless representation. We draw a dashed frame
around the local-heap. Also, we use the notationx to denote a reference variablex of a pending call.

The two left memory states are represented by the entry local-heap, shown at Figure 4.2(σe 4.2
L ). Memory state

s
cpvar 4.4
G is the one which actually occurs at the running example program. Memory states

cpfld 4.4

G is possible
because the cutpoint is pointed-to by then-field of the object pointed-to bys.n.n , an object which is irrelevant
for the invocation. Notice that here the cutpoint is createdvia heap sharing and not stack sharing.

The two right stores represent impossible situations excluded by the cutpoint representation. In memory state
s
cpemp 4.4

G , there are no cutpoints. In memory states
cpwrong 4.4

G , there is one cutpoint but it is not the object pointed
to byp.n at the procedure entry.

4.4.2 Inference Rules

The meaning of statements is described by a transition relation
LSL
∽∽∽∽∽◮⊆ (ΣL × stms) × ΣL. We give axioms

for assignments and an inference rule for procedure calls inFigure 4.6 and Figure 4.7, respectively. All other
statements are handled in the standard way. (See, e.g., [Kah87, NNH99]. Also, see Section D.1.)

To simplify notation, we assumeA with a certain index (resp. prime) to be the heap component ofa stateσL

with the same index (resp. prime). We use the same conventionfor indexed (or primed) versions ofCPL and a
state’s cutpoint-labels component.

4.4.2.1 Helper Functions

We extend the functions[·]·, rem(·, ·), andadd(·, ·), defined in Figure 3.7 and explained in Section 3.4.2.1, to
generalized access paths in the obvious way. (See Figure 4.5).

4.4.2.2 Atomic Statements

The axiomsfor atomic statements are given in Figure 4.6. We simplify the semantics by making the same as-
sumptions as in Section 2.2.1.

The axioms for atomic statements inLSL are similar to the axioms in theLSLCPF semantics (see Sec-
tion 3.4.2.2), with the exception that they operate onLSL’s memory states and not onLSLCPF’s memory states.
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. : GAccPath × ∆ → GAccPath s.t.

〈r, δ〉.δ′
def
= 〈r, δδ′〉

. : 2GAccPath × ∆ → 2GAccPath s.t.

a.δ
def
= {α.δ | α ∈ a}

. : 2GAccPath × 2∆ → 2GAccPaths.t.

a.D
def
= {α.δ | α ∈ a, δ ∈ D}

[] : GAccPath × HeapL → ObjL s.t.

[α]A
def
= {β ∈ a | a ∈ A, α ∈ a}

rem : HeapL × 2GAccPath → HeapL s.t.

rem(A, a)
def
= (map(λo.o \ a.{δ ∈ ∆}) A) \ {∅}

add : HeapL × 2GAccPath × GAccPath → HeapL s.t.

add(A, a, α)
def
= map(λo. o ∪ a.{δ ∈ ∆ | α.δ ∈ o}) A

Figure 4.5: Helper functions of the operational semantics of LSL.

〈x = alloc t, 〈CPL, A〉〉
LSL
∽∽∽∽∽◮ 〈CPL, A ∪ {{x}}〉

〈x = y, 〈CPL, A〉〉
LSL
∽∽∽∽∽◮ 〈CPL, add(A, {x}, y)〉

〈x = null, 〈CPL, A〉〉
LSL
∽∽∽∽∽◮ 〈CPL, rem(A, {x})〉

〈x = y.f, 〈CPL, A〉〉
LSL
∽∽∽∽∽◮ 〈CPL, add(A, {x}, y.f)〉 y ∈ flat A

〈x.f = null, 〈CPL, A〉〉
LSL
∽∽∽∽∽◮ 〈CPL, rem(A, [x]A.f)〉 x ∈ flat A

〈x.f = y, 〈CPL, A〉〉
LSL
∽∽∽∽∽◮ 〈CPL, add(A, [x]A.f, y)〉 x ∈ flat A

Figure 4.6: Axioms for atomic statements in the local-heap semantics. Note that the set of cutpoint-labels is not
changed. The side-conditionx ∈ flat A (resp.y ∈ flat A) means thatx ’s (resp.y ) value is notnull.
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Note that the set of cutpoint-labels does not affect nor is affected by these axioms. Thus, we omit the description
of the axioms. (A detailed description of the axioms is givenin Section 3.4.2.2).

4.4.2.3 Procedure Calls

The inference rulefor procedure calls is defined in Figure 4.7. The rule defines the program stateσr
L that results

from an invocationy=p( x1, . . . , xk) at memory stateσc
L, assuming that the execution of the body ofp at memory

stateσe
L results in memory stateσx

L. The heapsAc andAr are described by sets of generalized access paths starting
at the caller’s variables and cutpoint-labels, whereas theheapsAe andAx are described by sets of generalized
access paths that start at the callee’s formal parameters, cutpoint-labels, and return variable. The rule provides the
means to reconcile the different representations.

The rule uses the functionsCall y=p(x1,...,xk)
q andRety=p(x1,...,xk)

q , which are parameterized for each call

statement in the program.Cally=p(x1,...,xk)
q computes the memory stateσe

L that results at the entry ofp when
y = p(x1, . . . , xk) is invoked byq in memory stateσc

L. The caller’s memory state after the invocation is restored
by the functionRety=p(x1,...,xk)

q . This function computes the memory state of the caller at thereturn-site (σr
L)

according toq’s memory state at the call-site (σc
L) andp’s memory state at the exit-site (σx

L). In the rest of this
section we describe the rule for an arbitrary call statementy = p(x1, . . . , xk) by an arbitrary procedureq. The
rule utilizes additional helper functions, defined in Figure 4.8, which we gradually explain.

The main idea behind the rule is to utilize the fact that a procedure cannot modify objects that are not in its
local-heap (i.e., in the part of the heap that isnot reachable from any actual parameter when the procedure is
invoked). In particular, becauseLSL describes objects in terms of the (generalized) access paths that point-to
them, these “inaccessible” objects have the same description before and after the call. Thus, only the description
of the objects in the procedure’s local-heap (i.e., in the part of the heap that the procedure can access) is (possibly)
updated. The update is carried out using thecutpoints of the invocation.4 In essence, the semantics freezes the ini-
tial descriptions of the cutpoints and arranges for them to persist throughout the execution of the called procedure.
This sets up a relation between values on entry to values on exit. At the return, the frozen information is used to
update the description of objects in the called procedure’slocal-heap via an operation that is (roughly) similar to
a relational join [Cod70]. (The operation is not a “pure” relational join because of some name adjustments that
are needed due to the different representation of objects bythe caller and by the callee.)

To find which objects are in the local-heap of the called procedure, i.e., reachable from the actual parameters
(x1, . . . , xk), we first compute the set of objects that arepointed-toby p’s actual parameters (Oargs

c ). Then, the
auxiliary functionRObjsfinds the part of the caller’s heap (Ac) that is reachable from these objects (Opassed

c ).
The description of the objects after the call should accountfor the mutations (destructive updates) of the heap

performed by the callee. However, because the invoked procedure cannot modify objects that it cannot access,
it can only modify fields of objects inOpassed

c . Thus, to compute the (possibly) updated description of objects
in Opassed

c (as well as of objects that the callee allocates) it is sufficient to have a description of every object
in Opassed

c (and of every object allocated by the callee) comprised of the (generalized) access paths that start at
objects that separateOpassed

c from the rest of the caller’s heap: When the procedure returns, we just replace any
(generalized) access paths〈rp, δp〉 in the description of every object in the heap of the callee (Ax) that start at a
“separating object”o′, by access paths of the caller〈rq, δqδp〉 such that〈rq, δq〉 points-too′, but does not pass
throughOpassed

c (and thus cannot be modified). Technically, this is done as described below.
The auxiliary functionCPObjsq (cf. Figure 4.8) determines the cutpoints for this procedure invocation (Ocp

c ).
Cutpoints are the objects that “separate”Opassed

c from the rest of the caller’s heap. Recall that we do not
consider objects that are pointed-to by actual parameters as cutpoints.5 Thus, the functionCPObjsq, which is
passed the caller’s memory state as well as the previously computedOargs

c andOpassed
c , considers only objects in

Odeep = Opassed
c \ Oargs

c as possible cutpoints. Following the intuition of cutpoints as “separating objects”, an
objecto ∈ Odeep is qualified as a cutpoint if (and only if) one of the followingholds:

• o is pointed-to by a local variable of the caller (Ovars), or

• o is pointed-to by an object in the part of the caller’s heap that is not passed to the function (Ofld ), or

4The same mechanism is used to compute the description of objects that the callee allocates.
5The reason that we do not want to consider objects that are pointed-to by actual parameters as cutpoint is because we want to distinguish

between the handling of updates through parameter objects,which is the simpler case which was already discussed in Chapter 3, to the
handling of updates through the other objects which separates the callee’s heap from that of the caller’s.
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〈body ofp, σe
L〉

LSL
∽∽∽∽∽◮ σx

L

〈y = p(x1, . . . , xk), σc
L〉

LSL
∽∽∽∽∽◮ σr

L

where

σe
L = Cally=p(x1,...,xk)

q (σc
L)

σr
L = Rety=p(x1,...,xk)

q (σc
L, σx

L)

Oargs
c = {[xi]Ac | 1 ≤ i ≤ k, [xi]Ac 6= ∅}

Opassed
c = RObjs(Ac) Oargs

c

Ocp
c = CPObjsq(〈CPLc, Ac〉) (Oargs

c , Opassed
c )

bindargs = λo ∈ Oargs
c .{〈hi, ǫ〉 | 1 ≤ i ≤ k, xi ∈ o}

bindcp = λo ∈ Ocp
c .{〈sub(bindargs) o, ǫ〉}

bindcall = λo ∈ Oargs
c ∪ Ocp

c .

{
bindargs(o) o ∈ Oargs

c

bind cp(o) o ∈ Ocp
c

Cally=p(x1,...,xk)
q : Σq

L → Σp
L s .t .

Cally=p(x1,...,xk)
q (〈CPLc, Ac〉)

def
= 〈map(sub(bindargs)) Ocp

c , map(sub(bindcall)) Opassed
c 〉

Rety=p(x1,...,xk)
q : Σq

L × Σp
L → Σq

L s .t .

Rety=p(x1,...,xk)
q (〈CPLc, Ac〉, 〈CPLx, Ax〉)

def
= 〈CPLc, (Ac \ Opassed

c ) ∪ map(sub(bindret)) Ax〉

where

bindret = λa ∈ range(bind call) ∪ {{〈ret , ǫ〉}}.{
{〈y, ǫ〉} a = {〈ret , ǫ〉}
Bypass(Opassed

c ) ◦ bind−1
call(a) otherwise

Figure 4.7: The inference rule for procedure calls inLSL. The rule is given for an arbitrary call statement
y = p(x1, . . . , xk) by an arbitrary procedureq. We assume that the formal parameters ofp areh1, . . . , hk.
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RObjs: HeapL → (2ObjL → 2ObjL) s.t.

RObjs(A) O
def
= {o ∈ A | o′ ∈ O, δ ∈ ∆, o′.δ ⊆ o}

Bypass : 2ObjL → (Obj L → 2GAccPath) s.t.

Bypass(O) o
def
= {〈r, δ〉 ∈ o | ∀δ′ < δ. 〈r, δ′〉 6∈ flat O}

sub : (2GAccPath → 2GAccPath ) → (Obj L → 2GAccPath ) s.t.

sub(bind) o
def
= flat

{
bind(a).δ

∣∣∣∣
a ∈ dom(bind),
δ ∈ ∆, a.δ ⊆ o

}

CPObjsq : Σq
L → (2Obj

q
L × 2Obj

q
L → 2Obj

q
L) s.t.

CPObjsq(〈CPLc, Ac〉) (Oargs
c , Opassed

c )
def
=

Let

Odeep = Opassed
c \ Oargs

c

Ovars = {[〈x, ǫ〉]Ac ∈ Odeep | x ∈ Vq}

Ofld =

{
o ∈ Odeep

∣∣∣∣
∃o′ ∈ Ac \ Opassed

c ,
∃f ∈ F , o′.f ⊆ o

}

Ocpl = {[〈cpl , ǫ〉]Ac ∈ Odeep | cpl ∈ CPLc}
in

Ovars ∪ Ocpl ∪ Ofld

Figure 4.8: Helper functions for the procedure-call rule. The functionCPObjsq is parameterized for every pro-
cedureq in the program. Recall thatVq is the set ofq’s local variables. The functionsRObjs, Bypass , andsub

are the extension to generalized access paths in the obviousway of the functions with the same names defined in
Figure 3.10.

• o separates the heap of thecaller from the heap of one of the pending calls, i.e.,o is a cutpoint of the
invocation of the caller (Ocpl ).

Back in Figure 4.7 we define several binding mappings to bridge the gap between the two different represen-
tations of objects (in terms of access paths of the caller andin terms of access paths of the callee). The function
bindargs maps objects pointed-to by actual parameters to the set of “trivial” access paths that are made up of
the corresponding formal parameters. The functionbindcp maps every cutpoint (in the caller representation) to
the set of access paths that start with a formal parameter of the caller and point-to that cutpoint at the entry to
the procedure, i.e.,bind cp maps a cutpoint to its label (see Section 4.3). To compute thelabel of a cutpointo,
we applysub(bindargs). The latter denotes a function that replaces every access path that starts with an actual
parameter〈xi, δ〉 in the representation ofo by an access path〈hi, δ〉 that starts with the corresponding formal
parameter. (sub is defined in Figure 4.8.) Thebindcall combines the previous two mappings trivially as they have
disjoint domains.

Having defined these mapping functions, computing the memory state ofp in which its body will be evaluated
(i.e., the description of the heap at the procedure entry) isstraightforward. The set of cutpoint-labels (CPLe) is
computed by applyingbindcp to every cutpoint. The heap component (Ae) is constructed by applyingbind call

to every object inOpassed
c . Note that in the resulting description, objects are described by the set of (generalized)

access paths that point-to them and start either at a formal parameter or at a cutpoint object.
To handle the return of procedurep, we use an additional binding,bindret . This mapping is the in-

verse ofbindcall (hence getting back to the caller’s representation of the object) composed with the function
Bypass(Opassed

c ), which filters out generalized access paths (of the caller) thatpass throughthe part of the heap
thatp had access to (Opassed

c ). In addition, it also takes care of replacing access paths starting with special variable
ret with the same access paths starting with result variabley. Note that applyingbindret is well defined because
CPLx andCPLe are equal (the callee cannot modify the set of objects that separate its own local-heap from the
local-heap of of some pending call6).

6Note that in any transition〈σL, st〉
LSL

∽∽∽∽∽∽◮ σ′

L
, the cutpoint-labels inσL andσ′

L
are the same.
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The cutpoint-labels component of the state after the returnof p is the same as before the invocation (CPLc)
because the callee (p) cannot modify the set of objects that separate the heap of its caller (q) from the heap of some
other (earlier) pending-call. The new heap is calledAr. It is derived by removing from the heap at the call-site
the passed objects (Opassed

c ), plugging in the heap that results from evaluatingp’s body (Ax), and substituting the
description of all the objects by applyingsub(bindret) to every object inAx.

Example 4.4.3 Applying the procedure call rule for the invocationt = splice(x, y); in our
running example results in the following sets and mappings:

Oargs
c = {{x}, {y}}

Opassed
c = {{x}, {x.n}, {x.n.n}, {y}, {y.n}, {y.n.n}}

Ocp
c = = ∅

bindargs = [{x} 7→ {p}, {y} 7→ {q}]
bind cp = []
bind ret = {{x} 7→ {p}, {y} 7→ {q}, {ret} 7→ {t}}

Note that this invocation is cutpoint-free, thusOcp
c is empty andbindcp is undefined. The computed

values of the other sets and mappings is identical to their computed values in Example 3.4.6.

Example 4.4.4 Applying the procedure-call rule for the invocations = splice(t, z); in our
running example results in the following sets and mappings:7

Oargs
c = {{x, t}, {z}}

Opassed
c =





{x, t} {y.n, x.n2, t.n2}, {y.n3, x.n4, t.n4},
{y, x.n, t.n}, {y.n2, x.n3, t.n3}, {y.n4, x.n5, t.n5},

{z}, {z.n}, {z.n.n}





Ocp
c = {{y, x.n, t.n}}

bindargs = [{y, x.n, t.n} 7→ {p}, {z} 7→ {q}]

bind cp = [{x.n, t.n, y} 7→ {{̂p.n}}]

bind ret = {{x, t} 7→ {p}, {z} 7→ {q}, {w} 7→ {s}, {{̂p.n}} 7→ {x.n, t.n, y}}

Note that〈y, ǫ〉 ∈ Odeep = Opassed \ Oargs , thus{y, x.n, t.n} ∈ Cutpoints . This cutpoint is labeled by

{̂p.n}, which provides a heap-context independent label for that cutpoint.

4.5 Properties ofLSL

In this section, we investigate the properties of theLSL semantics. In particular, we show thatLSL is observa-
tionally equivalent to the standard semantics. Thus, abstractions ofLSLCPF can be used to conservatively verify
properties of programs with respect to the standard semantics.

4.5.1 Observational Equivalence

The only means by which a program can observe a state is by access paths. In particular, the program cannot
refer to the cutpoint-labels component of the state. To state the theorems, we need some preliminary definitions
about access-path equality and observational equivalence. We use the same simplifying notational conventions as
in Section 2.2.1. Note that in both semantics an access path is equal tonull when it has a prefix which is equal
to null .

Definition 4.5.1 (Access path equality)Access pathsα and β are equal in a given stateσL, denoted by
[[α = β]]LSL(σL), if ∀a ∈ A. α ∈ a ⇐⇒ β ∈ a. An access pathα is equal to null in stateσL, denoted by
[[α = null]]LSL(σL), if α 6∈ flat A.

7The notationx.nk is explained in the caption of Figure 3.5.
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Definition 4.5.2 (Observational equivalence)Let p be a procedure. The statesσL ∈ Σp
L and sG ∈ Sp

G are
observationally equivalentif for all α, β, γ ∈ AccPathp,

(i) [[α = β]]L(σL) ⇔ [[α = β]]G(sG), and

(ii) [[γ = null]]L(σL) ⇔ [[γ = null]]G(sG).

We also define observational equivalence between states inLSL in the same way.

The following theorem states thatLSL is equivalent toGSB, in the sense that both behave equivalently w.r.t.
termination, and that execution of statements preserves observational equivalence.

Theorem 4.5.3 (Equivalence)Let p be a procedure. LetσL ∈ Σp
L andsG ∈ Sp

G be observationally equivalent
states. Letst be an arbitrary statement inp. The following holds:

〈st , σL〉
LSL
∽∽∽∽∽◮ σ′

L ⇐⇒ 〈st , sG〉
GSB
∽∽∽∽∽◮ s′G.

Furthermore,σ′
L ands′G are observationally equivalent.

We prove Theorem 4.5.3 by establishing a stronger property of the LSL semantics: the preservation of
Context-Aware Equivalence. Informally, theContext-Aware Equivalencetheorem shows that the cutpoints are,
in a sense, the “store-based part” ofLSL: they are used to label and fix certain objects, something that is done
automatically if we have locations. The theorem is formallystated and proved in Section D.2.2.

The following theorem states thatLSL can be used to: (i) verify data-structure invariants that are expressed by
access-path equalities at a program point; and (ii) assert the absence ofnull-valued pointer dereferences. Formally,
a property is an invariant at a (labeled) statement if is satisfied in any memory-state that occurs just before the
(labeled) statement is executed.

Corollary 4.5.4 Let P be a program,p a procedure ,lb a program point inp. For any α, β ∈ AccPathp,
[[α = β]]L is an invariant ofP at lb iff [[α = β]]G is an invariant ofP at lb.

The following theorem states thatLSL can detect memory leaks8 without investigating reachability from
rootsof pending access paths. A memory leak can occur only when a variable or a field is assignednull . The
“leaked objects” are the ones that are not pointed-to only bysuffixes of the nullified variable (or field).

Corollary 4.5.5 A memory leak can occur only when a variable or a field is assignednull . Furthermore,

• Executing a statementx = null in a memory state〈CPL, A〉 leaks an objecto iff o ⊆ x.∆.

• Executing a statementx.f = null in a memory state〈CPL, A〉 leaks an objecto iff o ⊆ [〈x, ǫ〉]A.f .∆.

4.5.2 Standard Properties

The following theorems state that theLSL semantics has certain standard properties.

The following lemma ensures that theLSL semantics preserves admissible states.

Lemma 4.5.6 (Admissibility) Letst be a statement andσL an admissible state. If〈st , σL〉
LSL
∽∽∽∽∽◮ σ′

L thenσ′
L

is also an admissible state.

Furthermore,LSL is a deterministic semantics; this holds because memory allocation is deterministic. (In con-
trast, most store-based semantics do not have a deterministic memory-allocation mechanism.)

8By a memory leak we mean an object that is not pointed-to by anyaccess path; i.e., neither by an access path of the current call nor by
one of a pending call.
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Lemma 4.5.7 (Determinism) Let st be a statement andσL an admissible state. If〈st , σL〉
LSL
∽∽∽∽∽◮ σ′

L and

〈st , σL〉
LSL
∽∽∽∽∽◮ σ′′

L, thenσ′
L = σ′′

L.

The following lemma states thatLSL is fully abstract. To state this property, we use the notation P [·] for
program contexts. The denotation[[st]]L of a statement is defined to be the (partial) functionλσL.σ′

L where

〈σL, st〉
LSL
∽∽∽∽∽◮ σ′

L. This lemma holds becauseLSL has a canonic representation for memory states. Fur-
thermore, the memory states are defined by terms of an equivalence relation between access paths. Thus, they
represent only reachable parts of the memory state. As a result, if two memory states differ, then there exist certain
access paths, includingnull , which are equal in one state, but not equal in the other.

Lemma 4.5.8 (Full Abstraction) Let st1 andst2 be two statements such that for all program contextsP [·] and
all statesσL the states[[P [st1]]]L(σL) and[[P [st2]]]L(σL) are observationally equivalent. Then[[st1]]L = [[st2]]L.

4.5.3 Heap Modularity

The following theorems state thatLSL manipulates the heap in a “modular” way. Thanks to these properties, the
analysiscan also be heap-modular.

The following theorem states that a procedure has no effect on the observable properties of the unreachable
part of the heap.

Theorem 4.5.9 (Framed Execution)Let q be a procedure. Letσc
L, σr

L ∈ Σq
L be states of procedureq such that

〈σc
L, y = p(x1, . . . , xk)〉

LSL
∽∽∽∽∽◮ σr

L. LetOpassed
c be the objects inσc

L that are reachable fromx1, . . . , xk. Let
α, β, γ ∈ GAccPathq \ y.∆ be arbitrary generalized access paths of procedureq that do not start withy and do
notpass throughobjects inOpassed

c . The following properties hold:

(i) [[α = β]]LSL(σc
L) ⇐⇒ [[α = β]]LSL(σr

L), and

(ii) [[γ = null]]LSL(σc
L) ⇐⇒ [[γ = null]]LSL(σr

L).

Note that the above theorem is also applicable for access paths thatpoint-toobjects in the part of the heap that the
procedure can access, but do not pass through this part.9

The following theorem states that a procedure cannot observe its context, i.e., that the execution of the proce-
dure body is not affected by the cutpoint-labels component of the state.

Theorem 4.5.10 (Context Indifference)Let p be a procedure. Letσ1
L, σ2

L ∈ Σp
L be observationally equivalent

states ofp. Letst be an arbitrary statement inp. The following holds:

〈σ1
L, st〉

LSL
∽∽∽∽∽◮ σ1′

L ⇐⇒ 〈σ2
L, st〉

LSL
∽∽∽∽∽◮ σ2′

L .

Furthermore,σ1′

L andσ2′

L are observationally equivalent.

The following theorem states that a procedure has a similar effect on contexts that differ only by thecontents
of the part of the heap that is not reachable from actual parameters. Practically speaking, this theorem justifies the
reuse of the results of an analysis of a procedure invocationin “similar” contexts.

Theorem 4.5.11 (Heap Modularity) Let p be a procedure. Fori = 1, 2, let qi be a procedure,σci

L ∈ Σqi

L be a

state of procedureqi, yi = p(xi
1, . . . , x

i
k) be a statement in procedureqi, andσei

L = Cally
i=p(xi

1,...,xi
k)

qi
(σci

L ) ∈ Σp
L

be the state that results at the entry to procedurep when it is invoked atσci

L . If σe1

L andσe2

L are observationally
equivalent then the following properties hold:

(i) 〈σc1

L , y1 = p(x1
1, . . . , x

1
k)〉

LSL
∽∽∽∽∽◮ σr1

L ⇐⇒ 〈σc2

L , y2 = p(x2
1, . . . , x

2
k)〉

LSL
∽∽∽∽∽◮ σr2

L , and

9Recall that an access pathα passes throughan objecto if there exists a proper prefixα′ < α such thatα′ points-too.
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(ii) if CPLe2 ⊆ CPLe1 and〈σe1

L , body ofp〉
LSL
∽∽∽∽∽◮ σx1

L , then

σr2

L
= gc(Rety2=p(x2

1,...,x2
k)

q2
(σc2

L , σx1

L
)), wheregc(〈CPL, A〉)

def
= 〈CPL, A\∅〉.

We need to applygc to the heap produced byRety2=p(x2
1,...,x2

k)
q2

(σc2

L , σx1

L
) because of the following technical

reason: it is possible that some of the objects inAx1 are reachable only from objects that are cutpoints whenp
is invoked atσc1

L but not when it is invoked atσc2

L . Thus, some objects that are reachable (i.e., pointed-to bya
current or a pending access path) atσr1

L might not be reachable atσr2

L .

4.6 Interprocedural Shape Analysis: An Overview

This section provides an informal overview of our approach for interprocedural functional shape analysis. The
presentation is given at a semi-technical level; a more detailed treatment of this material, as well as several
elaborations on the ideas covered here, is presented in the later parts of this chapter: Section 4.7 describes a shape
abstraction ofLSL; Section 4.8 describes the abstract transformers; and Section 4.9 presents our implementation
and experimental evaluation.

Our algorithm tabulates abstract memory configurations before and after procedure calls. Our algorithm is an
extension of the framework of [SRW02]. Technically, abstract memory configurations are represented by3-valued
logical structures and the abstract transformers are derived from their specification in theconcretesemantics. (See
Section 2.5).

4.6.1 Handling Cutpoint-Free Procedure Calls

In this section, we describe the way cutpoint-free invocations are handled by the interprocedural shape analysis.
We note that for cutpoint-free invocations, the algorithm presented in this chapter is quite similar to the algorithm
presented in Chapter 3.

4.6.1.1 Concrete States

Concrete memory configurations (concrete states) are represented by2-valued logical structures. They are drawn
as directed graphs, following the graphical notations introduced in Section 2.5.1.3.

Example 4.6.1 Figure 4.1(c) shows the concrete memory states that occur atthe invocationt =

splice(x, y); from main . (At this point, please ignorêp, q̂, n̂, and the circle nodes. Their role is
explained later on in this section.)

Our concrete semantics uses procedure local-heaps, thus itdoes not pass the linked list pointed-to by
z to the procedure because the latter is not reachable from either one of the actual parameters:x or y .
As we have already seen, the use of local-heaps allows the analyzer to infer the effect of a procedure
in a context independent way, and thus to potentially increase the scalability of the analysis.

4.6.1.2 Abstract States

Abstract states are3-valued logical structures. They are drawn as directed graphs, following the graphical nota-
tions introduced in Section 2.5.1.3.

Nodes in abstract states are shown annotated by properties of represented allocated objects. Moreover, con-
crete objects with different properties are represented bydifferent nodes. The propertyrx holds for objects that
are reachable from a variablex via a sequence of pointer fields. Thus, e.g., at the call stateto t = splice(x,

y); , depicted in Figure 4.1(σc 4.1
L ), the second and the third concrete elements of the list pointed-to byx are

represented by the summary node annotated byrx in the abstracted state. We can see that the abstract memory
state abstract the actual data values and the lengths of the lists.
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Example 4.6.2 Figure 4.1(d) shows the abstract memory states which conservatively represent the
concrete memory states which may occur at the invocationt = splice(x, y); , depicted in Fig-
ure 4.1(c). (Again, for now, please ignorep̂, q̂, n̂, and the circle nodes):

- Figure 4.1(Sc4.1♯) depicts the abstract call memory state. This abstract memory state represents all
memory state containing three disjoint lists of length2 or more with heads,x , y , andz , respectively.

- Figure 4.1(Se4.1♯) depicts the relevant part of the heap at the entry to the callee: two disjoint lists
of length2 or more pointed to byp and byq, respectively.

- Figure 4.1(Sx4.1♯) depicts the store at the exit—q points to the second element of the list pointed
to byp. Note how the tail of the list is reachable from bothp andq.

- Figure 4.1(Sr 4.1♯) depicts the memory state upon return.

4.6.1.3 Discussion

Because the number of properties such asrx is finite for a given program, so is the number of nodes and shape-
graphs. Therefore, by simple tabulation of input/output shape-graphs, we obtain a context- and flow-sensitive
analysis which enforces matching calls and returns even in the presence of recursion. Moreover, the fact that on
a procedure call, we only represent the local-heap reachable from actual parameters allows us to abstract facts
at the caller which are irrelevant to the callee. For example, the memory states shown in Figure 4.1(Se4.1♯)
resp. Figure 4.1(Sx4.1♯) also represents entry resp. exit memory states that occur in recursive calls. (Note that
the recursive calls are invoked whenpn points to the second element of the list pointed to byp. This allows
the analyzer to increase reuse of procedure summaries because it does not discriminate between contexts with
different irrelevant parts of the heap. In fact, the cost of handling recursivesplice is propositional to the cost
of handling the iterative version and in both cases we can prove that the result is indeed an unshared acyclic list
(see Section 4.9.1).

4.6.2 Handling Procedure Calls with Cutpoints

We are now ready to explain our treatment of cutpoints, and the role ofp̂, q̂, and the circle nodes. Figure 4.2(c)
shows the concrete memory states that occur at the invocation s = splice(t, z); from main . Figure 4.2(d)
shows the corresponding abstract memory states.

This call differs from the first call becausey points-to the second element in the list which was passed to
the procedure. Therefore, destructive updates in the procedure may make nodes (un)reachable fromy and thus
change thery property. In other words,y creates stack sharing into the local-heap. The challenge isfinding a way
to update properties such as reachable-from-y without explicitly representingy . The ability to do so is crucial for
reusing the analysis of the procedure body across differentprocedure invocations.

Our solution uniformly treats stack sharing and sharing of fields from the rest of the heap by recordingsharing
patternsinto the local-heap. The main idea is to give special treatment to cutpoints(see Definition 3.3.2). Our
analysis followsLSL, and labels cutpoints with access paths that points to them and start with formal parameters
at procedure-entry. This provides a naming scheme for the cutpoint-labels (recording the sharing pattern) which
is independent of the irrelevant context. For example, we label the list-element pointed-to byy with p.n .

We use circle nodes, which we refer to asobject-labels, to represent the values of access paths emanating from
formal parameters at procedure entry. Every objecto in the local-heap passed to the callee has a corresponding
“shadow” circle node which freezes the values ofo’s pointer-fields. The value of pointer variablep at procedure-
entry is denoted bŷp. The value of pointer fieldf at procedure-entry is denoted bŷf . The “shadow” of a cutpoint
is connected to the cutpoint object with anlbl-labeled edge. For readability, we depict cutpoint objectswith an
incoming double-line arrow. Note that our labeling scheme records the sharing pattern in a way which ignores the
contentsof irrelevant context. This ensures that the analysis results are applicable for every calling context which
generates the same sharing pattern.

4.6.2.1 Concrete States

Consider the concrete state at the entry state of the invocation s = splice(t, y); , depicted in Figure 4.2(c).
The second node inp’s list is a cutpoint. Its label is the second circle node onp̂ ’s list (the asterisk marks the fact
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that this label corresponds to a cutpoint). Thelbl -edge connects the label to the cutpoint node. This signifiesthat
the access pathp.n points-to a cutpoint object. It is used to relate the access-path’s value between the call and
the return.

Now the code at the procedure body is executed without the need to explicitly representy or any other irrele-
vant part of the global-heap but instead with labels markingthe cutpoint objects.

Cutpoint-labels are frozen between procedure entry and procedure exit. Moreover, without loss of generality
we assume that formal parameters refer to the same objects before and after the call. Therefore, the semantics can
reconnecty to the second node from̂p when the procedure exits. Thus, the mutation of the heap is transmitted to
the caller while correctly updatingy .

4.6.2.2 Abstract States

In the interprocedural shape analysis we tabulate shape-graphs with special summary labels potentially represent-
ing multiple cutpoints. In the example, there are no (circle) summary object-labels nodes. Specifically, because
the procedure only includes one cutpoint object, the latteris not summarized. Therefore, upon exit, the abstract
transformer can precisely update reachability fromy .

In those cases where cutpoint objects are summarized, our analysis is sound but may be overly conservative.
Moreover, this may also degrade performance.

4.7 A Shape Abstraction ofLSL

In this section, we define a shape abstraction ofLSL usingcanonical abstraction[SRW02]. The new abstraction
forms the basis for a new interprocedural shape analysis algorithm for programs with cutpoints, described in
Sections 4.8 and 4.9.

An interesting aspect of our abstraction is that it does not abstract single memory states, butpairs of memory
states. Specifically, it abstracts every memory state that occurs during the execution of a procedurep together
with the memory state that occurs at the entry to the procedure. Technically, the entry memory state is “freezed”
and used to encode the cutpoint-labels and it is not modified throughout the execution of the procedure. (We note
that our choice to record the cutpoint-labels by the “freezed” entry state comes from a pragmatic reason explained
in Remark 4.7.4).

Technically,3-valued logical structures are used to represent (pairs of)unbounded memory states. The tracked
properties are encoded as predicates.

We define a Galois connection between the powerset domain of pairs ofLSL memory states and3Struct

using arepresentation function(see Section 2.5.1)βL : ΣL × ΣL → 3Struct , which maps apair of program
states to asingle 3-valuedlogical structure which conservatively representsbothstates.

FunctionβL is a composition of two functions:
(i) to2VLS: ΣL × ΣL → 2Struct , which maps a pair of local-heap (possibly with cutpoints)σe

L ∈ ΣL and
σL ∈ ΣL to an unbounded2-valuedlogical structureS. (The memory stateσe

L = 〈CPLe, Ae〉 is expected
to be the memory state at the entry to the procedure in whichσL = 〈CPL, A〉 occurs. Thus, it is expected
thatCPL = CPLe ⊆ simple(Ae), wheresimple(A) removes the cutpoint-anchored access paths from the
representation of every object inA.)

(ii) canonical abstraction: 2Struct → 3Struct , which conservatively boundsS.
The Galois connection

(2ΣL×ΣL , α : 2ΣL×ΣL → 23Struct , γ : 23Struct → 2ΣL×ΣL , 23Struct )

is defined as:

α(CC) =



βL(σe

L, σL) ∈ 3Struct

∣∣∣∣∣∣

〈σe
L, σL〉 ∈ CC,

σe
L = 〈CPLe, Ae〉, σL = 〈CPLe, A〉,

CP e ⊆ simple(Ae)





γ(AA) =



 〈σe

L, σL〉 ∈ ΣL × ΣL

∣∣∣∣∣∣

βL(σe
L, σL) ⊑ S♯ ∈ AA,

σe
L = 〈CPLe, Ae〉, σL = 〈CPLe, A〉,

CP e ⊆ simple(Ae)
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to2VLSp : Σp
L × Σp

L → 2Structp s.t.
to2VLSp〈CPLe,Ae〉(〈CPL, A〉) = 〈U, ι〉

where
U = A ⊎ simple(Ae)

wheresimple(Ae) = map(λo.o ∩ (Fp.∆)) Ae

ι(x)(v) = v ∈ A andx ∈ v
ι(f)(v1, v2) = v1 ∈ A, v2 ∈ A andv1.f ⊆ v2

ι(eq)(v1, v2) = v1 = v2

ι(rx )(v) = v ∈ A and∃α ∈ v s.t. 〈x, ǫ〉 ≤ α
ι(ils)(v) = v ∈ A and∃α.n ∈ v, β.n ∈ v s.t. [α]A 6= [β]A
ι(c)(v) = v ∈ A and∃α ∈ v, β ∈ v s.t. α < β

ι(isObj )(v) = v ∈ A
ι(isLabel )(v) = v ∈ simple(Ae)
ι(x̂)(v) = v ∈ simple(Ae) andx ∈ v

ι(f̂)(v1, v2) = v1 ∈ simple(Ae), v2 ∈ simple(Ae) andv1.f ⊆ v2

ι(lbl )(v1, v2) = v1 ∈ simple(Ae), v1 ∈ CPLe, and〈v1, ǫ〉 ∈ v2

ι(cp)(v) = ∃r ∈ simple(Ae) s.t. r ∈ CPLe and 〈r, ǫ〉 ∈ v
ι(rcp)(v) = ∃r ∈ simple(Ae), δ ∈ ∆ s.t. r ∈ CPLe and 〈r, δ〉 ∈ v

Figure 4.9: The functionto2VLSp maps (pairs of) memory states of procedurep in Σp
L to 2-valued logical struc-

tures. The memory stateσe
L = 〈CPLe, Ae〉 is expected to be the memory state at the entry to the procedure in

whichσL = 〈CPL, A〉 occurs. Thus, it is expected thatCPL = CPLe ⊆ simple(Ae), wheresimple(A) removes
the cutpoint-anchored access paths from the representation of every object inA.

whereβL(σe
L, σL) ⊑ S♯ means thatS♯ ∈ 3Struct conservatively representsβL(σ,

LσL) ∈ 2Struct . (See Defini-
tion 2.5.4).

4.7.1 Representing Pairs ofLSL Memory States by2-Valued Logical Structures

The functionto2VLS, defined in Figure 4.9, maps a pair of memory states〈σe
L, σL〉 = 〈〈Ue, ιe〉, 〈U, ι〉〉 of a

procedurep to a2-valuedlogical structureS.
Heap allocated objects are represented by individuals. We note that the main reason for recording heap

allocated objects from the entry state (σe
L) is as a way to represent the (sets of access paths comprisingthe)

cutpoint-labels of thecurrentprogram state (σL).
Tracked properties of the memory state are recorded by predicates. We allow every procedurep to be associ-

ated with a set of predicatesPp ⊆ P. We track properties for every procedure using this set of predicates, i.e., a
logical structure representing a memory state of a procedurep defines (only) the meaning of the predicates in the
setPp ⊆ P. (See Section 4.7.1.2).

In this chapter, we use the predicates given in Figure 4.10 and Figure 4.11, which we gradually explain. In
addition, we use the predicatesinUc andinUx , new , andinstance, shown in Figure 4.12 to implement the call
rule. The role of these predicates is explained in Section 4.8.2.2.10

4.7.1.1 Representing Cutpoint-Labels

We represent pairs of memory states〈σe
L, σL〉 = 〈〈CPLe, Ae〉, 〈CPL, A〉〉 ∈ ΣL × ΣL using a first-order2-

valued logical structureS = 〈U, ι〉 ∈ 2Struct . The main challenge here is the representation of theaccess paths

10Recall that the link structure of the entry state defines the cutpoint-labels of the invocation. Also, see Remark 4.7.4.
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Predicate Intended Meaning

x(v) reference variablex points to objectv

f(v1, v2) f -field of objectv1 points to objectv2

eq(v1, v2) v1 andv2 are the same object or the same label

isObj (v) v is a heap-allocated object

isLbO (v) v is an object-label

isLbCP (v) the object-labelv is acutpoint-label

x̂(v) v labels the object that is pointed-to by the formal parameterx

when thecurrentprocedure is invoked

f̂(v1, v2) v2 labels the object that is thef -successor of the object labeled

by v1 when thecurrent procedure is invoked

lbl(v1, v2) objectv2 is labeled by cutpoint-labelv1

Figure 4.10: Predicates used to represent memory states.

Predicate Intended Meaning Defining Formula
robj (v1, v2) v2 is reachable from objectv2 by following isObj (v1) ∧ isObj (v2) ∧ F ∗(v1, v2)

some field path

ils(v) v is locally shared. i.e.,v is pointed-to by isObj (v) ∧ ∃v1, v2 : v1 6= v2 ∧

a field of more than one object in thelocal-heap isObj (v1) ∧ isObj (v2) ∧ F (v1, v) ∧ F (v2, v)

c(v) v resides on a directed cycle of fields ∃v1 : F (v, v1) ∧ F ∗(v1, v)

rx (v) v is reachable from variablex isObj (v) ∧ ∃vx : isObj (vx) ∧ x(vx) ∧ F ∗(vx, v)

cp(v) v is a cutpoint ∃vl : isLbCP (vl) ∧ lbl(vl, v)

rcp(v) v is reachable by following some field-path from a∃vl : isLbCP (vl) ∧ isObj (v) ∧

cutpoint ∃vcp : isObj (vcp) ∧ lbl(vl, vcp) ∧ F ∗(vcp , v)

Figure 4.11: The instrumentation predicates. Predicatesrobj , ils , c, andrx have similar meaning to the corre-
sponding predicates in Figure 2.11(a). Their defining formulae utilizes the predicateisObj as a way to emphasize
that it may hold only for objects, and not for object-labels.(Technically, in addition, predicateisObj is used to
ensure that predicaterobj holds for(u, u) iff u represents a heap-allocated object).

Predicate Intended Meaning
new(v) v is a newly created individual
instance(v1, v2) v1 is an instance ofv2

inUc(v) v is a member of the caller’s call-site universe
inUx (v) v is a member of the callee’s exit universe

Figure 4.12: Auxiliary predicates for universe-altering operations.
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comprisingevery cutpoint-label. We address this issue by “freezing” the entry memory state (σe
L) in the current

memory state of the procedure (σL).10

4.7.1.2 Tracked Properties

We represent memory states using the predicates shown in Figure 4.10 and Figure 4.11. The predicates listed
above the double line in Figure 4.10 resp. Figure 4.11 are a rather straightforward adaptation of the predicates
listed in Figure 2.11(a) resp. Figure 2.11(b), and were described in Section 2.5.1.2.11

We explain the role of the other predicates in the following paragraphs.

Core Predicates. Figure 4.10 lists the core predicates that we use.
- The predicatesisObj (v), isLbCP (v), andisLbO(v) distinguish individuals that represent heap-allocated ob-

jects, cutpoint-labels, and access paths, respectively. (Note that predicateisObj holds for an individualu iff
the predicateisLbO does not hold foru. We chose to use both predicates for clarity. Also note that if the pred-
icateisLbCP holds foru then the predicateisLbO also holds foru). In the following, we refer to individuals
used to represent access paths asobject-labels.

- A predicatex̂(v) records the object that was pointed-to by a formal parameterx when the current procedure
was invoked. Similarly, a predicatêf(v1, v2) records the value of anf -field when the current procedure was
invoked.

- The binary predicatelbl (v1, v2) relates a nodev1 that represents a cutpoint-label to the nodev2 that represents
the corresponding cutpoint.

Instrumentation Predicates. Instrumentation predicates record derived properties of individuals, and are de-
fined using a logical formula over core predicates. They are used to refine the abstract semantics (see Sec-
tion 2.5.1). Figure 4.11 lists the instrumentation predicates used in this section.
- We use F̂ (v1, v2) as a shorthand notation for

∨
f∈FieldId⋆

P
f̂(v1, v2) in addition to the shorthand nota-

tionsF (v1, v2) andϕ∗(v1, v2), which were introduced in Figure 3.15.12

- The unary predicatecp records the property that a list element is a cutpoint. The unary predicatercp records
the property that a list element is reachable by a cutpoint-anchored path.

- The predicatescp andrcp are used to record information regarding cutpoint-anchored paths in a similar manner
to the wayh andrh record information regarding access-paths. However, unlike local variables, the number
of cutpoints is unbounded. Thus, we cannot have a predicate recording the reachable list-elements from every
cutpoint. Instead, we use individuals to represent cutpoint-labels, and “mark” cutpoint objects with thecp
predicate.

Example 4.7.1 2-valuedlogical structures are depicted as directed graphs. We use the following
graphical notations, in addition to the ones described in Example 2.5.2. A directed edge between
nodesu1 andu2 that is labeled with binary predicate symbolp indicates thatιS(p)(u1, u2) = 1. We
draw a nodeu that represents an object (i.e.,ιS(isObj )(u) = 1) as a box and a node that represents
a label (i.e.,ιS(isLabel )(u) = 1) as a circle. We draw cutpoint objects with an incoming double-
line arrow. Cutpoint-labels are marked with an asterisk. Wedepict the value of a pointer variablex
by drawing an edge fromx to the node that represents the object thatx points-to. For a pointer
parameterq, we also draw an edge from̂q to theobject-labelof the object thatq points-to.

Figure 4.1(c) shows the2-valued logical structures pertaining to theLSL memory states at the
call-site, entry-site, exit-site, and return-site duringthe invocationt = splice(x, y) in the
running example, shown in Figure 4.1(b). Specifically,Sc 4.1 = to2VLS

σ∅
L

(σc 4.1
L ), Se 4.1 =

to2VLSσe 4.1
L

(σe 4.1
L ), Sx 4.1 = to2VLSσe 4.1

L
(σx 4.1

L ), andSr 4.1 = to2VLS
σ∅

L

(σr 4.1
L ).

11In addition to the instrumentation predicates listed in Figure 2.11(b), we also use the binary instrumentation predicate robj (v1, v2) which
records reachability between objects.

12We remind thatF (v1, v2) is a shorthand for
∨

f∈FieldId⋆
P

f(v1, v2) and that for a formulaϕ with two free variables, the notation

ϕ∗(v1, v2) is a shorthand for the reflexive transitive closure ofϕ, i.e.,ϕ∗(v1, v2)
def
= eq(v1, v2) ∨ (TC w1, w2 : ϕ(w1, w2))(v1, v2).
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The call state and the return state are memory states of themain procedure. They are abstracted
together with the (empty) memory stateσ∅

L = 〈∅, ∅〉 at the entry tomain .

The invocationt = splice(x, y); is cutpoint-free. Thus, the set of cutpoint-labels is emptyin
every memory state that arises during the invocation. (Consider, for example, the entry memory state
and the exit memory state, depicted in Figure 4.1(σe 4.1

L ) and Figure 4.1(σx 4.1
L ), respectively). As a

result, in any2-valued memory state that represents a pair of memory state that arises during cutpoint-
free invocation, the individuals representing objects from the different memory states are separated.
Specifically, there are nolbl -edges.

Example 4.7.2 Figure 4.2(c) shows the2-valued logical structures pertaining to the memory states
at the call-site, entry-site, exit-site, and return-site during the invocations = splice(t, z) in
the running example, shown in Figure 4.2(b). Specifically,Sc 4.2 = to2VLS

σ∅
L

(σc 4.2
L ), Se 4.2 =

to2VLSσe 4.2
L

(σe 4.2
L ), Sx 4.2 = to2VLSσe 4.2

L
(σx 4.2

L ), andSr 4.2 = to2VLS
σ∅

L

(σr 4.2
L ).

The invocations = splice(t, y); is not cutpoint-free. Specifically, the second element int ’s
list is a cutpoint. Thus, the set of cutpoint-labels in, e.g., the entry memory state, depicted in Fig-
ure 4.2(σe 4.2

L ) contains the cutpoint-labelcpl = {p̂.n}.

Cutpoint-labels are represented in2-valuedlogical structures by individuals. These individuals are
depicted as circle node labeled with an asterisk (∗).

The (only) access patĥp.n leading to the cutpoint is represented by a chain of nodes. Each node
in the chain is depicted by a circle. The first circle in the chain represents the (object-label of the)
list element pointed to byp at the entry state. It is depicted by an edge emanating from the p̂. It’s
n̂-successor point to the node representing the (cutpoint-label of the) cutpoint. The labeling of the
cutpoint object is depicted by anlbl -labeled edge emanating from the cutpoint-label to the cutpoint
object.

The unary predicatecp records the property that a list element is a cutpoint. The unary predicatercp
records the property that a list element is reachable by a cutpoint-anchored path.

For example,rcp holds for all the nodes in the tail ofp’s list at the entry state and for the tail ofq’s
list at the exit state.

4.7.1.3 Admissible Memory States

Not all 2-valuedlogical structures represent memory states that are compatible with the semantics ofEAlgol (or
JAVA or C, for that matter). For example, inEAlgol, each pointer variable points to at most one heap-allocated
element. To exclude states that cannot arise in any program,we now adapt the notion ofadmissible2-valued
logical structures, introduced in Definition 3.6.3, to local-heaps with cutpoints.

Definition 4.7.3 (Admissible 2-Valued Logical Structures)A 2-valuedlogical structureS = 〈U, ι〉 represent-
ing a local-heap for a procedurep at a given point in an execution isadmissibleiff

(i) S is admissible according to Definition 3.6.3.
(ii) Every nodeu ∈ U represents either anobjector an object-label, i.e., S |= isObj (u) ⇐⇒ ¬isLbO(u).

Furthermore,cutpoint-labelsmust beobject-labels, i.e.,S |= isLbCP (u) =⇒ isLbO(u).
(iii) A frozen variable points to at most one node, i.e., for all nodesu, u1, u2 ∈ U , S |=

∨
x∈Fp

x̂(u1) ∧

x̂(u2) =⇒ eq(u1, u2). Furthermore, variables only point to objects whilefrozenvariables only point
to object-labels, i.e.,S |=

∨
x∈Vp

x(u) =⇒ isObj (u) andS |=
∨

x∈Fp
x̂(u) =⇒ isLbO(u).

(iv) A frozen field is a partial function, i.e., for every triple of nodesu, u1, u2 ∈ U , S |=
∨

f∈FieldId⋆
P

f̂(u, u1)∧

f̂(u, u2) =⇒ eq(u1, u2). Furthermore, a field maps objects to objects and objet-labels to object-labels,
i.e., S |=

∨
f∈FieldId⋆

P
f(u1, u2) =⇒ (isObj (u1) ∧ isObj (u2)) andS |=

∨
f∈FieldId⋆

P
f̂(u1, u2) =⇒

(isLbO (u1) ∧ isLbO (u2)).
(v) lbl is a function that maps cutpoint-labels to objects, i.e., for every nodesu, u1, u2 ∈ U , S |=

lbl(u1, u2) =⇒ isLbCP (u1) ∧ isObj (u2). Furthermore, lbl is an injective function, i.e.,S |=
lbl(u, u1) ∧ lbl(u, u2) =⇒ eq(u1, u2) andS |= lbl(u1, u) ∧ lbl(u2, u) =⇒ eq(u1, u2). In addition
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lbl |{u∈U :ι(isLbCP )(u)=1} is a surjective function, i.e., ifS |= isLbCP (u) then there exists a nodeucpo ∈ U
such thatS |= lbl(ucpo, u).

(vi) Every object-label is reachable from at least one frozen variable, i.e., for every nodeulbl ∈ U , if S |=
isLbO(ulbl) then there exists a nodêu such that̂u is an object-label, i.e.,S |= û, andS |=

∨
x∈X x̂(û) ∧

F̂ ∗(û, ulbl).

Remark 4.7.4 We note that the reason we record the cutpoint-labels by “freezing” the entry state is a pragmatic
one: We wish not to lose information when we encode anLSL memory state using a2-valued logical structure.
In particular, we wish not to lose information regarding thecontents of cutpoint-labels. The content of a cutpoint-
label forms a regular language. Thus, we record it using a finite-state-machine-like construction comprised of
object-labels. We chose to implement this construction by freezing the link structure of the entry state. This choice
gives us asimple and deterministicway to define the mapping from (pairs of)LSL memory states to2-valued
logical structures. (We note, however, that alternative choices exist. For example, it is possible to record every
cutpoint-label using the minimal deterministic finite state machine which accepts its contents.)

4.7.2 Conservatively Representing Memory States ofLSL by 3-Valued Logical Struc-
tures using Canonical Abstraction

We obtain aboundedconservative representation of (unbounded)2-valuedlogical structures using canonical
abstraction. (See Section 2.5.1.3.)

Example 4.7.5 Figure 4.1(d) depicts the3-valued logical structure that results by applyingcanonical
abstractionto the2-valued logical structures representing the memory statesat the call-site, entry-
site, exit-site, and return-site at the invocationt = splice(x, y); in the running example, shown
in Figure 4.1(c). Specifically,Sc♯

4.1 is a canonical abstraction ofSc
4.1, Se♯

4.1 is a canonical abstraction
of Se

4.1, Sx♯
4.1 is a canonical abstraction ofSx

4.1, andSr♯
4.1 is a canonical abstraction ofSr

4.1.

(3-valued logical structures are depicted using the graphical conventions introduced in Exam-
ple 2.5.5.)

The universe ofSe
4.2 contains12 nodes. The only nodes that have the same values for all the unary

predicates are the last two nodes in the tail ofp’s list and the two nodes in the tail of the list pointed
to by q. In addition, all the objects-labels that are not pointed toby frozen formal parameters have
the same unary properties. Thus, the universe ofSe♯

4.2 contains7 nodes: 4 nodes pointed to by
parameters resp. frozen parameters,2 summary nodes representing list elements and1 summary
node representing object-labels.

We see, in two ways, that any memory state represented bySe♯
4.2 results from a cutpoint-free invoca-

tion: (i) the lbl does not relate any object-label with this list-element, and (ii) the unary predicatecp
does not hold for any list element.

Example 4.7.6 Figure 4.2(d) depicts the3-valued logical structure that results by applyingcanonical
abstractionto the2-valued logical structures representing the memory statesat the call-site, entry-
site, exit-site, and return-site at the invocations = splice(t, z); in the running example, shown
in Figure 4.2(c). Specifically,Sc♯

4.2 is a canonical abstraction ofSc
4.2, Se♯

4.2 is a canonical abstraction
of Se

4.2, Sx♯
4.2 is a canonical abstraction ofSx

4.2, andSr♯
4.2 is a canonical abstraction ofSr

4.2.

The universe ofSe
4.2 contains18 nodes. The only nodes that have the same values for all the unary

predicates are the last four nodes in the tail ofp’s list and the two nodes in the tail of the list pointed to
by q. In addition, besides the object-labels pointed to by frozen formal parameters and the cutpoint-
label, all the other6 objects-labels have the same unary properties. Thus, the universe ofSe♯

4.2 contains
one more node than the universe ofSe♯

4.1, the additional node represents the cutpoint object.

We see that in any memory state represented bySe♯
4.2 there is one cutpoint. The fact that the second

element inp’s list is a cutpoint is recorded in two ways: (i) thelbl related the cutpoint-label (depicted
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〈st, XS〉
LCP ♯

∽∽∽∽∽∽◮ {βL(σe
L, σ′

L) | 〈σe
L, σL〉 ∈ γ(XS), 〈st, σL〉

LSL
∽∽∽∽∽◮ σ′

L}

Figure 4.13: A specification of the abstract inference rulesfor atomic statements.

by the circle node labeled with an asterisk) with this list-element, and (ii) the unary predicatecp holds
(only) for this list element. (A double-line arrow marks nodes for which the predicatecp holds).

4.8 Abstract Transformers

In this section, we define the abstract transformers used by the analysis. Following the presentation in Section 3.7,
we first provide in Section 4.8.1 a declarative specificationof the abstract transformers in a non-algorithmic
fashion: We specify the abstract semantics using thebest abstract transformer[CC79] (see Section 2.5.2.2). In
Sections 4.8.2 and 4.8.3, we utilize the framework of [SRW02] to obtain conservative abstract transformers: We
define the effect of intraprocedural statements as well as call and return statements using first order formulas with
transitive closure and show how to compute the (abstract) effect of program statements.

4.8.1 A Declarative Specification of the Abstract Transformers

The meaning of statements is described by a transition relation
LCP ♯

∽∽∽∽∽∽◮⊆ (3Struct × st) × 3Struct . In this
section, we provide a declarative specification of the meaning of statements, given by “abstract” inference rules in
the same style as the natural semantics. The abstract inference rules operate on3-valuedlogical structures. (See
Section 2.5.2.2).

Figure 4.13 and Figure 4.14 show the specification of the abstract inference rules for atomic statements and
procedure-calls, respectively. These rules are given in the declarative style of the best abstract transformer [CC79]:
Every abstract inference rule emulates a corresponding concrete inference rule using represented states (see Fig-
ure 2.16).

Remark 4.8.1 Note the first component of the pair of memory states is computed once a procedure is invoked and
never changes until it terminates.

Example 4.8.2 Figure 4.2(d) shows an application of the procedure-call inference rule from Fig-
ure 4.14 to the invocations = splice(t, z); in our running example on the (singleton) set
XSq = {Sc 4.2♯}:

(i) Sc 4.2♯ conservatively represents all the memory states that may arise at the call site to the invo-
cations = splice(t, y); . (More preciselySc 4.2♯ represents all pairs ofLSL memory
states whose first component is the empty memory state and whose second component is a
memory state in whichz points to an acyclic list with3 or more elements andx andt point to
another acyclic list which has4 or more elements and whose second element is pointed to by
y ).

(ii) Se 4.2♯ conservatively represents all pairs of memory states〈σf
L, σe

L〉 where (i)σf
L is an entry

state in whichq points to a list with1 or more elements andp points to a list with2 or more
elements whose second element is a cutpoint, and (ii)σe

L = Call s=splice(t,y)
q (σc

L) is a memory
state that may arise at the entry tosplice when invoked on a call stateσc

L represented by
Sc 4.2♯.

(iii) Sx 4.2♯ conservatively represents all pairs〈σf
L, σx

L〉 such that (i)σf
L is as described above and

(ii) σx
L represents an exit state that may arise when splice starts executing from an entry state

σe
L such that〈σL, σe

L〉 ∈ γ(Se 4.2♯).
(iv) Sr 4.2♯, the structurecomputedat the return-site, which represent all memory states that may

arise afters=splice(t, y) is invoked on a memory state represented bySc 4.2♯.
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〈body ofp, XSp〉
LCP ♯

∽∽∽∽∽∽◮ XS′
p

〈y = p(x1, . . . , xk), XSq〉
LCP ♯

∽∽∽∽∽∽◮ XS′
q

where

XSp =

{
βL(σe

L, σe
L)

∣∣∣∣
〈σeq

L , σc
L〉 ∈ γ(XSq)

σe
L = Cally=p(x1,...,xk)

q (σc
L)

}

XS′
q =





βL(σeq

L , σr
L)

∣∣∣∣∣∣∣∣

〈σeq

L , σc
L〉 ∈ γ(XSq)

σe
L = Cally=p(x1,...,xk)

q (σc
L)

〈σe
L, σx

L〉 ∈ γ(XS′
p)

σr
L = Rety=p(x1,...,xk)

q (σc
L, σx

L)





Figure 4.14: A specification of the abstract inference rulesfor procedure calls. The functionsCally=p(x1,...,xk)
q

andRety=p(x1,...,xk)
q are defined in Figure 4.7. Note that we applyRety=p(x1,...,xk)

q only for compatiblepairs of
memory states. Two pairs of memory states〈σeq

L , σc
L〉 and〈σe

L, σx
L〉 are compatible when the sharing pattern that

results from the invocation ofp at σc
L (as recorded inσx

L) matchesσe
L, the description of the context inσx

L, the
state ofp at the exit-site.

In Sx 4.2♯, the lists pointed to byp andq are spliced together. As a result, at the exit-site the cutpoint
object is now reachable fromq and the tail ofq’s list is now reachable from the cutpoint. Specifically,
the cutpoint becomes then-successor ofq. Therefore, even thoughy is not explicitly represented
in Sx 4.2♯, the inference rule allows us to conclude that atSr 4.2♯, the return-site’s logical structure,
the list element pointed to byy becomes then-successor ofq. Similarly, the list-element pointed to
by y remains reachable fromp, but it is no longer itsn-successor. To conclude, definite values of
many of the tracked properties ofy can be established after the procedure call returns.

4.8.2 LCP: A Concrete Localized-Heap Semantics based on2-Valued Logic

In this section, we presentLCP, a concrete semantics that serves as the basis for our abstraction. The semantics
records object-labels and cutpoint-labels as introduced in Section 4.6.2. Technically, we use first-order logical
structures to represent local-heaps, and show how to realize the declarative definition of the abstract semantics,
given in Section 4.8.1, as operations on first-order logicalstructures. For simplicity, we do not provide full formal
details of these operations here. The formal details are given in Section D.3.1.

LCP represents pairs of memory states: It represents every memory state that may occur during the execution
of a procedurep together with the memory state that occurs at the entry to theprocedure when it was invoked.
The entry memory state is used to encode the cutpoint-labelsand it is not modified throughout the execution of
the procedure.

The meaning of statements is described by a transition relation
LCPF♯

∽∽∽∽∽∽∽◮⊆ (3Struct × st) × 3Struct that
specifies how a statementst transforms an incoming logical structure into an outgoing logical structure.

4.8.2.1 Atomic Statements

The meaning of assignments is specified, primarily, by defining the values of the predicates in the outgoing struc-
ture using first-order logic formulae with transitive closure over the incoming structure [SRW02]. The inference
rules for assignments are rather straightforward and can befound in Appendix D.3.1. For control statements, we
use the standard rules of natural semantics, see, e.g., [Kah87, NNH99].
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4.8.2.2 Procedure Calls

The procedure call rule for an arbitrary call statementy = p(x1, . . . , xk) by an arbitrary procedureq is given
in Section D.3. The rule is instantiated for each call statement in the program. The rule is quite technically
complicated, thus here we only describe its operation in a more informal way.

Our treatment of procedure calls and returns inLCPF follows their treatment inLSL, and could be briefly
described as follows:

(i) the call rule constructs the memory state at the callee’sentry site (Se) and
(ii) the caller’s memory state at the call site (Sc) and the callee’s memory state at the exit site (Sx) are used to

construct the caller’s memory state at the return site (Sr).
We now formally define and explain these steps.

Computing the Entry State

When a procedurep is called, the semanticsextractsa relevant object-labeled local-heap from the heap provided at
the call-site. To realize this operation using logical structures, our semantics takes the following steps: (i) creates
new object-labels for all relevant objects (objects reachable from actual parameters ofp). This is done by using
the functionclone defined in Figure 4.17 to clone all objects reachable from parameters ofp. (ii) adjusts the
values of label-predicates of the form̂x(v) and f̂(v1, v2). (iii) adjusts the values of cutpoint-labels predicate.
(iv) removes all irrelevant objects by using the functionremove defined in Figure 4.17.

Example 4.8.3 Figure 4.1(Se4.1) depicts the2-valuedlogical structure at the entry to the invoca-
tion t = splice(x, y); resulting during the application of the call rule to the callmemory state,
depicted in Figure 4.1(Sc 4.1). (See Example 4.7.1).

Example 4.8.4 Figure 4.2(Se4.2) depicts the2-valuedlogical structure at the entry to the invoca-
tion s = splice(t, z); resulting during the application of the call rule to the callmemory state,
depicted in Figure 4.2(Sc 4.2). (See Example 4.7.2).

Computing the Return State

Returning from a call to procedurep, the semanticscombinesthe structure representing the caller memory-state at
the call-site and the structure representing the memory-state of the callee at the exit-site. To realize this operation
using logical structures, our semantics takes the following steps:
(i) it combines the structure representing the local-heap at the exit fromp with the structure at the call site. This

is done by using the functioncombine defined in Figure 4.17.
(i) uses cutpoints to merge the local-heap back into the global-heap by finding matching individuals. Technically,

this is achieved by using extended transitive closure (transitive closure of pairs) to traverse matching paths in
the caller’s heap and the callee’s local-heap. (See SectionD.3.1.2).

(i) removes all labels of the local-heap, retaining only those labels originally present in the caller’s heap.
Step (i) above is accomplished using thecombine function. Figure 4.15 depicts the combined structures

resulting during the application of the procedure call rulefor the invocationst = splice(x, y); and s =

splice(t, y); in our running example.
Step (ii) above is accomplished using the formulae shown in Figure 4.18. The formulamatch is of special

importance. It holds only for nodesv1 andv2 that meet the following conditions:
• v1 andv2 represent the same objecto: v1 representso in the caller’s local-heap at the memory-state in

which the function was invoked;v2 representso in memory-state at the exit-site of the callee.
• o separates the caller’s local-heap from the callee’s local-heap, i.e., eithero is pointed-to by a parameter

(match ) or it is a cutpoint of the invocation (matchCP ).
Note that the formulasamePath (used bymatchPaths ) is theonly extended-transitive-closure formula that we
use.

The following example demonstrates how the formulae of Figure 4.18 are used to combine structures upon
return of of the invocations = splice(t, y) in the running example.

Figure 4.2(c)(Se4.2) depicts the2-valuedlogical structure at the entry to the invocations = splice(t,

z); resulting during the application of the call rule to the callmemory state, depicted in Figure 4.2(c)(Sc4.2).
(See Example 4.7.2).
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(a)combine(Sc 4.1, Sx 4.1) (b) combine(Sc 4.2, Sx 4.2)

Figure 4.15: Combined structures. Individuals originating from the same state are circumscribed with a rectangu-
lar frame. Individuals originating from the call state are depicted against a shaded background. (a) the combined
structures resulting from applyingcombine to the call state tot = splice(x, y); , Sc 4.1, and the resulting
exit stateSx 4.1. Both structures are depicted in Figure 4.1. (b) the combined structures resulting from applying
combine to the call state tos = splice(t, y); , Sc 4.2, and the resulting exit stateSx 4.2. Both structures are
depicted in Figure 4.2.

Example 4.8.5 Consider the exit memory state to the invocations = splice(t, z); shown in
Figure 4.2(Sx4.2). Upon return, this structure is combined with the structure at the caller’s call-site,
shown in Figure 4.2(Sc4.2), resulting with the return memory state, shown in Figure 4.2(Sr 4.2).

Our operational semantics for procedure return updates thevalue of the predicatey(v) (corresponding
to a reference variablesy ) using the following update formulae:

y′(v) = isObj (v) ∧ ((inUc(v) ∧ y(v) ∧ ¬R{t,z}(v)) ∨
(inUx (v) ∧ ∃v1 : y(v) ∧ inUc(v1) ∧ R{t,z}(v1) ∧

matchmain,{〈p,t〉,〈q,z〉}(v1, v))

where RX(v)
def
=

∨
x∈X ∃v1.x(v1) ∧ F ∗(v1, v).

In the2-valued logical which results from the combination of structuresSc 4.2 andSx 4.2, this formula
holds for the third individual of the list starting fromp, as we are able to match the paths from the
cutpoint-label and the paths fromy .

The predicatesx(v), z(v), and t(v) are updated similarly, but fall to the simpler matching case
(matchbind (v1, v2)).

Note that the operations used to model procedure call and return are operations that change the universe of
a logical structure. We call such operations “universe altering”. The universe altering functions use the helper
functionsextend andproject, defined in Figure 4.17. The operationextend extends the partial interpretation
mapping by providing a default value of0 for objects inO for which ι is undefined. The operationproject

restricts the interpretation to be defined only for objects in a given setO.
The effects of the universe-altering functions are as follows:
• clone, duplicates all individuals that satisfy a given formula, and extends the interpretation accordingly. To

record information about the newly allocated individuals,we use two additional auxiliary predicatesnew

andinstance (defined in Figure 4.12). These predicates record newly created individuals and the source
object for each cloned object, respectively.

• remove, removes all individuals that satisfy a given formula, and restricts the interpretation accordingly.
• combine, combines two given structures into a single structure and extends the interpretation accord-

ingly. To distinguish individuals that come from differentuniverses we use the auxiliary predicatesinUc

andinUx , defined in Figure 4.12.
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extend(ι, O)(pk)(u1, . . . , uk)
def
=




ι(p)(u1, . . . , uk) : 〈u1, . . . , uk〉 ∈ dom(ι(p))
0 : ui ∈ O for some0 < i ≤ k and

for all 0<j≤k, uj ∈O∪dom(ι(p))
undefined : otherwise

project(ι, O)(pk)(u1, . . . , uk)
def
={

ι(p)(u1, . . . , uk) : {u1, . . . , uk} ⊆ O
undefined : otherwise

Figure 4.16: Interpretation manipulating functions.

clone : WFF1 × 2Struct → 2Struct s.t.

clone(ϕ, 〈U, ι〉)
def
= 〈U ′, ι′〉 where

Odup = {u.2 | u ∈ U, [[ϕ(v)]]
〈U,ι〉
2 (〈v 7→ u, ∅〉) = 1}

U ′ = {u.1 | u ∈ U} ∪ Odup

ι′′(p)(u.1, . . . , uk.1) = ι(p)(u1, . . . , uk)

ι′ = extend(ι′′, Odup)[
ι′(new )(v)

def
= v = u,

ι′(instance)(w, v)
def
= w = u.1 andv = u.2

]

combine : 2Struct × 2Struct → 2Struct s.t.

combine(〈U1, ι1〉, 〈U2, ι2〉)
def
= 〈U1.1 ∪ U2.2, ι′〉 where

U1.1 = {u.1 | u ∈ U1}

ι1.1(p)(u1.1, . . . , uk.1) = ι1(p)(u1, . . . , uk)

U2.2 = {u.2 | u ∈ U2}

ι2.2(p)(u1.2, . . . , uk.2) = ι2(p)(u1, . . . , uk)

ι′ = (extend(ι1.1, U2.2) ∨ extend(ι2.2, U1.1))[
inUc(u)

def
= u = w.1, inUx(u)

def
= u = w.2

]

remove : WFF1 × 2Struct → 2Struct s.t.

remove(ϕ, 〈U, ι〉)
def
= 〈U \ O, ι′〉 where

O = {u ∈ U | [[ϕ(v)]]
〈U,ι〉
2 (〈v 7→ u, ∅〉) = 1}

ι′ = project(ι, U \ O)

Figure 4.17: Universe altering functions.WFF1 denotes the set of well-formed formulae in first-order logicwith
transitive closure that have a single free variablev.
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Shorthand Formula
matchp,bind (v1, v2) inUc(v1) ∧ isObj (v1) ∧ inUx(v2) ∧ isObj (v2) ∧

(matchbind (v1, v2) ∨ matchCPp,bind (v1, v2))

matchbind (v1, v2)
∨

〈h,z〉∈bind

z(v1) ∧ h(v2)

matchCPp,bind (v1, v2) isCPp,{z|〈h,z〉∈bind}(v1) ∧
∧

〈h,z〉∈bind

(R{z}(v1) =⇒ matchPathsh,z(v1, v2))

matchPathsh,z(v1, v2) ∀vz : inUc(vz) ∧ isObj (vz) ∧

∀lh : inUx(lh) ∧ isLbO(lh) ∧ ∀l2 : inUx(l2) ∧ isLbCP (l2)∧

(z(vz) ∧ ĥ(lh) ∧ lbl (l2, v2) =⇒ samePath(vz , v1, lh, l2))

samePath(vx, vcp , lx, lcp) (TC v1, v2; w1, w2 :
∨

f∈FieldId⋆
P

f(v1, v2) ∧ f̂(w1, w2)) ( vx, vcp ; lx, lcp)

isCPp,X(v) RX(v) ∧
∧

x∈X ¬x(v) ∧

(
∨

y∈Vp

y(v) ∨ ∃v1.¬RX(v1) ∧ F (v1, v) ∨ ∃v1.isLbCP (v1) ∧ lbl(v1, v))

Figure 4.18: Shorthand notations for formulae used to matchindividuals and paths when combining structures
on procedure return.FieldId ⋆

P denotes the set of all the pointer-valued fields that are usedin the program.Vp

denotes the set of all local-variables (including formal parameters) of procedurep.

4.8.3 LCP♯: An Abstract Localized-Heap Semantics based on3-Valued Logic

In this section, we present a conservative abstract semantics abstracting theLCP concrete semantics introduced
in Section 4.8.2.

4.8.3.1 Abstract States

We conservatively represent multiple concrete memory statesSS ⊂ 2Struct by a single3-valued logical structure
S♯ ∈ 3Struct using canonical abstraction [SRW02]. (See Definition 2.5.4).

We conservatively represent all object-labels resp. cutpoint-labels using a single abstract object-label resp.
abstract cutpoint-label, with the exception of the object-labels pointed-to by (frozen) formal parameters, which
are represented by a unique node.

We remind the reader that the Galois connection(2ΣL×ΣL , α : 2ΣL×ΣL → 23Struct , γ : 23Struct →
2ΣL×ΣL , 23Struct ) between pairs of memory states ofLSL and3-valued logical structures is obtained by com-
posingβL, which maps pairs of memory states ofLSL to 3-valued logical structures, and canonical abstraction.
See Section 4.7.

Remark 4.8.6 We note that for the rather crude cutpoint-abstraction thatwe suggest in this section, the infor-
mation used for theboundedabstraction of cutpoint-labels is readily available in theabstracted state (the second
component of the abstracted pair). Thus, it is possible to define this abstraction using a Galois connection be-
tween the powerdomain ofLSL memory states and the powerdomain of3-valued logical structures instead of
using a Galois connection between the powerdomain ofpairsof LSL memory states and the powerdomain of
3-valued logical structures. (See, e.g., the shape abstraction suggested in [RBR+05, Sec. 5.1].)

Instrumentation Predicates As mentioned before, theinstrumentation principlein [SRW02] ensures that it
is possible to refine the abstraction by usinginstrumentation predicatesthat may provide additional information
that might be lost under abstraction. In particular, it is possible to refine the abstraction of cutpoints by adding
additional unary instrumentation predicates.

4.8.3.2 Abstract Operational Semantics

Because our framework is based on [SRW02], the actions we used to define the concrete operational semantics
for program statements (as transformers of 2-valued structures) in Section 4.8.2, also define the corresponding
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abstract semantics (as transformers of 3-valued structures). This abstract semantics is obtained by reinterpreting
logical formulae using a 3-valued logic semantics and serves as the basis for an abstract interpretation.

We manually provide the update formulae of the instrumentation predicates (as done e.g., in [SRW02,
LARSW00, RS01, Yah01]). Automatic derivation of update formulae for the instrumentation predicates [RSL03]
is currently not implemented for the types of structure manipulation employed by theclone andremove.

The reader may wonder how can we update the information aftera call given the fact that we allow arbitrary
number of cutpoints. The truth is that the transitive closure formulae are evaluated to indefinite1/2 values when-
ever the cutpoint objects become summary nodes. Therefore,our analysis becomes imprecise in these cases. (We
note, however, that it is possible to match cutpoints precisely when they are not summarized. In our experiments
we employed this optimization.)

The soundness of our abstract semantics is guaranteed by thecombination of the theorems in Section 4.5,
and [SRW02]:

• In Section 4.5, it is shown that theLSL semantics isobservationally equivalentto a standard store-based
global-heap semantics.

• In [SRW02], it is shown that every program-analyzer which isan instance of their framework is sound with
respect to the concrete semantics it is based on.

4.9 Interprocedural Functional Analysis via Tabulation of Abstract
Local-Heaps

Our algorithm computes partial procedure summaries by tabulating input abstract memory-states to output abstract
memory-states. (As in Section 3.8, the tabulation is restricted to abstract memory-states that occur in theanalyzed
program). However, the tabulated abstract memory-states (conservatively) represent local-heaps and usesabstract
cutpointsto represent the sharing patterns of the local-heap with itslocal context. Therefore, the tabulated abstract
states are independent of the context in which a procedure isinvoked. As a result, the summary computed for a
procedure could be used at different calling contexts and atdifferent call-sites.

Our interprocedural tabulation algorithm is a variant of the IFDS-framework [RHS95] adapted to work with
local-heaps. The tabulation algorithm is described in Appendix F. This is the same tabulation algorithm used in
Section 3.8, with different instantiations of the call and return rules. (See Appendix F for details.)

Example 4.9.1 Figure 4.19 shows a partial tabulation of abstract local-heaps for thesplice pro-
cedure of the running example. The figure shows3 possible input states of the list pointed-to byp
where the second list element is a cutpoint.

4.9.1 Prototype Implementation

We have implemented a prototype of our framework using TVLA [LAS00]. To translate Java programs and their
specifications to TVP (TVLA input language) we have extendedan existing Soot-based [VRCG+99] front-end
for Java developed by R. Manevich.

We handle dynamic-dispatch by selectively propagating3-valuedlogical structure over an interprocedural
edge according to the type of the receiver object (information maintained in our analysis, by instrumenting our
semantics to also track the types of objects. In our implementation, we do not use set-union as join-operator.
Instead, we use a more “aggressive” partial-join operation[MSRF04]. This operation exploits the fact that our
abstract domain has a Hoare order and returns an upper approximation of the set-union operator.

Our framework allows control over the heap-abstraction andthe cutpoint abstraction in the instantiated algo-
rithms. We have instantiated the framework to produce a shape-analysis algorithm for analyzing general heap-
manipulating programs. In our experiments we used a class-based abstraction for cutpoints, i.e., we do not dis-
tinguish between different cutpoints of the same type. Thismeans that we lose precision when a procedure is
invoked with two or more cutpoint objects of the same class.

We applied our framework to verify various correct list-manipulating programs and to verify client confor-
mance with API specification. Our measurements were obtained on a machine with a1.5 Ghz Pentium M proces-
sor and1 Gb memory.
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Figure 4.19: Partial tabulation of abstract states for the splice for an invocation with a single cutpoint. (In the third
row the value of the formal parameterq is null, and thus it is not shown). For similar reasons,q is not shown in
the third row, the sixth row, and the ninth row.
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a. Program Iterative Recursive
Space Time Space Time
(MB) (Sec) (MB) (Sec)

createcreates a list 19.7 10.9 19.3 9.3
find searches an element in a list 22.3 21.3 23.5 35.8
insert allocates and inserts an 23.3 41.2 23.3 41.2
element into a sorted list
deleteremoves an element from 23.2 42.0 24.8 45.3
a sorted list
appendappends two lists 25.1 17.2 25.6 20.2
reversedestructive list-reversal 23.6 23.7 24.0 33.7
revApp reverses a list by appending 26.0 45.7 26.5 46.8
its head to the reversed tail
mergemerges two sorted lists 25.9 579.7 27.8 91.9
splicesplices two lists 25.5 70.1 26.1 36.9
running the running example 27.7 160.0 28.3 45.7

b. Code fragment Code Inline Proc. Calls
crt3 creates a list of length 3 22.3 5.4 22.0 6.4
crt3x3 creates 3 lists of length 3 50.7 27.0 26.2 9.2

Table 4.1: Analysis cost for list-manipulating programs.

Program Line Space Time Rep. / Act.
No. (MB) (Sec) Errors

ISPath 71 24.9 1378.0 0/0
InputStream5 64 61.8 2484.4 0/0
InputStream5b 64 61.7 2550.5 1/1

JDBC Example fixed 153 191.0 25213.0 0/0
JDBC Example 149 191.9 25261.3 1/1

Table 4.2: Analysis results and cost for verifying client conformance with API specification.

Our analysis was able to verify that the list-manipulating programs do not perform null-dereferences and that
the lists they manipulate are acyclic. Measurements of analysis cost for these programs are shown in Table 4.1(a).
The table compares the cost of the analysis of a program whichinvokes an iterative procedure (first column) with
the cost of the analysis of the same program, except that the invoked procedure is recursive13 (second column). For
these programs, we found that the cost of analyzing recursive procedures and iterative procedures is comparable
in most cases. We note that our tests were ofclient programs and not a single procedure, i.e., in all tests, the
program also allocates the list it manipulates. In addition, we compared the cost of the analysis of the three calls
to crt3 in our running example to the cost analyzing this code fragment when the body ofcrt is inlined in the
main procedure (see Table 4.1(b)). We are encouraged by these results, as they indicate (at least in this simple
example) that our analysis benefits from procedural abstraction.

We also applied our framework to verify correct usage of theIO -stream and theJDBCinterfaces. In particular,
we verified that closed files are not read (IO -streams) and that clients use database connections correctly (JDBC-
client). The analysis cost and results are shown in Table 4.2. The column “Rep. / Act. Error” shows the number
of reported errors, compared to the number of actual errors.ISPath is a simple correct program manipulating
input streams.InputStream5 is a program that stores input-streams at arbitrarily deep recursive data structures.
InputStream5b is an erroneous version ofInputStream5 containing a single error.JDBC Example is an
erroneous program which manipulates5 database connection.JDBC Example fixed is a correct version of the
last program. These programs were part of the benchmarks used in [YR04]. Our analysis verifies the correct
use of the API with the same precision as the separation-based approach, butwithout the need for specification.
However, the cost of the analysis was higher than the cost of the analysis in [YR04]. We attribute these to the fact
that our heap analysis is more precise than the one used in [YR04].

13revApp is a recursive procedure. We analyzed it once one withan iterative append procedure and once with a recursive append.
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4.10 Discussion:LSLCPF vs.LSL

In this section, we contrastLSLCPF with LSL and discuss their advantages and the disadvantages with respect to
shape analysis.

We note that bothLSLCPF andLSL are procedure local-heap storeless semantics: when a procedure is in-
voked, it operates only on a part of the heap, namely, the objects that are reachable from the procedure’s actual
parameters. Thus, both semantics (and their abstractions)have the advantage that their memory states do not rep-
resent parts of the heap which are not relevant to the currentprocedure. However, as a result, both semantics (and
their abstractions) do not preserve properties of the partsof the heap which are irrelevant to the current procedure.

The two semantics differ in the access paths that they use: InLSLCPF, every dynamically allocated objecto is
represented by the set of pointer-access paths thatstart at a local variable of the current procedureand reacho.
In contrast, inLSL, every dynamically allocated objecto is represented by the set of pointer-access paths that
reacho and start at a local variable of the current procedureor at one of its cutpoints.

4.10.1 Advantages ofLSLCPF

The main advantage of the approach taken byLSLCPF is its simplicity which stems from the fact that it represents
objects using standard access paths, i.e., access paths that start at variables. Furthermore, because every memory
state is represented by access paths starting at the (local)variables of a single procedure, shape abstractions used
for intraprocedural shape analysis, e.g., [DRS00, MYRS05, DOY06, LAIS06], can be lifted to the interprocedural
setting: Memory states can be abstracted using the shape abstraction used for the intraprocedural analyses. Fur-
thermore, intraprocedural statements are handled as in theoriginal analysis. To handle interprocedural call and
return statements, the abstract domain needs to be augmented to support some additional operations: (i) carve out
subheaps reachable from variables (i.e., restricting an abstract heap to the subset of its domain which is reachable
from the actual parameters); (ii) combining disjoint subheaps; and (iii) modifying pointers (in the abstract state)
that point to objects which are pointed to by variables (the actual parameters).

It is quite straightforward to add the aforementioned operations to the abstract domains of [DRS00, MYRS05,
DOY06, LAIS06] because these domains recordreachability-from-variablesandsharing information, which is
the information required to apply these operations. For a similar reason, it is quite straightforward to adapt abstract
domains that were developed using the framework of [SRW02] which also record similar information.

4.10.2 Disadvantages ofLSLCPF

The downside of theLSLCPF’s approach is that the memory state just after the call cannot always be defined in
terms of the state prior to the call. The intuitive reason forthis deficiency is that the description of an object may
change due to destructive updates.

Example 4.10.1Figure 3.6(a) depicts memory states that may occur, according to theLSLCPF se-
mantics, during the second cutpoint-free invocation ofsplice in the running example of Chapter 3.
(Recall that this invocation is cutpoint-free). The figuresdepicts the memory states that might arise
at the call-site (σc 3.6

Lcpf
), at the entry-site (σe 3.6

Lcpf
), at the exit-site (σx 3.6

Lcpf
), and at the return-site (σr 3.6

Lcpf
).

Note that every object is represented in terms of access paths starting at local variables of procedure
splice . As a result, the representation of the objects at the call site differs from their representation
at the entry site. NeverthelessLSLCPF can construct the memory state at the return site because
(i) the representation of the irrelevant objects did not change, thus their representation can be taken,
as is, from the call site; and (ii) by our simplifying assumptions, the formal variables could not have
been assigned to; thus they point at the exit site to the same objects they pointed to at the entry site.
Because the invocation is cutpoint-free, the object pointed to by parameters are the only objects that
separate the local-heap of the callee from the rest of the heap. Thus, the semantics needs only to
match the representation of the object pointed to by parameters at the exit site and at the return site.
For example, the objects pointed to byp resp.q at the entry state remain to be pointed to byp resp.
q at the exit state.

Note that a shape abstraction that distinguish between objects that are reachable from different vari-
ables partitions the allocated objects in a way which allowsto readily apply the additional operations
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Figure 4.20: Memory states thatshould have occurredat the call-site, entry-site, exit-site, and return-site in the
invocations = splice(t, z) in the variant of the running example of Chapter 3 according to theLSLCPF

semanticshad it been allowed to execute: (σc 4.20
Lcpf

) the call state, (σe 4.20
Lcpf

) the entry state, (σx 4.20
Lcpf

) the exit state,
and (σr 4.20

Lcpf
) the return state.

required for handlingcutpoint-freeprocedure invocations. For example, consider the shape abstrac-
tion described in Section 3.6 whose application for the invocations = splice(y, z); is depicted
in Figure 3.6(c).

In contrast, consider a non-cutpoint-free procedure invocation: Figure 4.20 depicts theLSLCPF mem-
ory states thatshould have occurredduring a non-cutpoint-free invocationhad it been allowed to exe-
cute. Specifically, Figure 4.20 depicts theLSLCPF memory states corresponding to theLSB memory
states depicted in Figure 4.2(a). (These are memory states that may arise during the invocations =

splice(t, z); in the variant of the running example of Chapter 3).

Note that the object pointed to byy at the call state (σc 4.20
Lcpf

) has an entirely different representation
at the entry state (σe 4.20

Lcpf
) and at the exit state (σx 4.20

Lcpf
): At the entry state it is represented by{p.n}

and at the exit state it is represented by{w.n.n, p.n.n, q.n}. Specifically, the memory state does not
carry enough information for the semantics to determine that the two representations pertain to the
same (cutpoint) object at different times.

LSLCPF is able to use the standard notion of access paths because it avoids tracking the kind of temporal
relationship which allows to match cutpoint objects at the entry state and at the exit state. Thus,LSLCPF forbids
cutpoints. As a result, any shape analysis based onLSLCPF is required to detect t he possibility of a non cutpoint-
free invocation. Specifically, the abstract domain should be able to answer queries regarding domination by
variables. Such information is available in the aforementioned abstract domains.

4.10.3 Advantages ofLSL

The main advantage of the approach taken byLSL over the one taken byLSLCPF is that it can handle arbitrary
cutpoints. (See Example 4.4.4). This ability makes it observationally equivalent to the standard heap semantics.
(See Theorem 4.5.3). (In contrast,LSLCPF is observationally sound with respect to the standard heap semantics.
See Theorem 3.5.3).

4.10.4 Disadvantages ofLSL

The main disadvantage ofLSL is that it is rather complicated due to its use of non standardnotion ofgeneralized
access paths. (See Definition 4.3.3). These access path are used to record temporal relationship which allows
to match cutpoint objects at the entry state and at the exit state. As a result, when abstractingLSL one needs
to devise abstractions for cutpoint-labels (the “sharing patterns”). In Section 4.7, we show how memory states
of LSL can be represented using2-valued logical structures. This allows to develop abstractions parametrically
using canonic abstraction [SRW02], however, the designer of the analysis needs to specify the instrumentation
predicates that determine the abstraction. Also, the designer of the analysis needs to specify the effect of program
statements regarding cutpoint-specific information, e.g., reachability from cutpoints.
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4.10.4.1 Abstraction of Cutpoints

We experimented with type-based abstraction, i.e., the abstraction may merge cutpoints of the same type. As a
result the abstraction becomes imprecise (and inefficient)when there are more than one cutpoint of the same type.

A different approach which allows for multiple cutpoints for procedures with multiple formal arguments is to
discriminate cutpoints reachable from different formal parameters. This will improve the precision of handling
procedures that are passed multiple lists.

In [GBC06], a different approach is taken to abstract cutpoints: The analysis allows for procedure invocations
as long as the number of cutpoints does not exceed a certain a priori fixed threshold. If the procedure has more
cutpoints then allowed, the analysis does not represent thecutpoints at all. Instead, it verifies that all the references
to the cutpoints aredead. (See Sections 6.3.3 and 7.2.2).



96 CHAPTER 4. INTERPROCEDURAL LOCAL-HEAP SHAPE ANALYSIS FOR PROGRAMS WITH CUTPOINTS



Chapter 5

Modular Shape Analysis for Dynamically
Encapsulated Programs

This chapter presents a novel method for automatically verifying properties of heap manipulating
programs in amodularfashion: We consider a program to be a collection of modules and develop
a shape (heap) analysis which treats each module separately. Our approach is focused on analyzing
dynamically encapsulated programs: programs in which live references (i.e., used before set) between
subheaps manipulated by different modules form a tree. Our (modular) analysis also conservatively
verifies that the analyzed program is dynamically encapsulated.

We formally define the set of dynamically encapsulated programs by means of a non-standard oper-
ational semantics (DOS) which places certain restrictions on aliasing and sharingacross modules.
We useDOS as a basis for a concrete module semantics which assigns a program-independent mean-
ing to every module. We develop conservative static analysis algorithms by abstract interpretation of
the module semantics.

Our analysis ismodular in the program code: it analyzes each module separately and determines
properties of the data structures manipulated by the modulethat hold in any dynamically encapsu-
lated program. The analysis is alsomodular in the heap: when analyzing a module, the analysis
explicitly represents only the data structure which are manipulated by that module.

The material described in this chapter is largely based on the material that originally appeared
in [RPHR+07, RPHR+06].

5.1 Introduction

This chapter presents a novel approach for modular shape analysis. In our approach, each module of a program is
analyzed separately. Modular shape analysis is a particularly difficult problem due to aliasing: The behavior of a
module can depend on the aliasing created by clients of the module and vice versa. Analyzing a module making
worst-case assumptions about the aliasing created by clients (or vice versa) can complicate the analysis and lead
to imprecise results.

Instead of analyzing arbitrary programs, we restrict our attention to certain “well-behaved”dynamically en-
capsulatedprograms, and describe an analysis that checks that the program is dynamically encapsulated and
computes an over-approximation of the heap. The main idea behind our approach is toassume and modularly
verify a (modularly-checkable) program-invariant concerning aliases of live intermodule references.

5.1.1 Main Results

The main contributions of this chapter can be summarized as follows:
(i) We introduce an interesting class of dynamically encapsulated programs;
(ii) We define a natural notion of module invariant for dynamically encapsulated programs;

97
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(iii) We show how to utilize dynamic encapsulation to enablemodular shape analysis; and
(iv) We present a modular shape analysis algorithm which (conservatively) verifies that a program is dynamically

encapsulated and identifies its module invariants.

A distinguishing aspect of our work is that we integrate a shape analysis with encapsulation constraints. Our
work presents a nice interplay between encapsulation and modular shape analysis: it uses dynamic encapsulation
to enable modular shape analysis, and uses shape analysis todetermine that the program is dynamically encapsu-
lated. Thus, in this chapter, we discuss not only how shape analysis can be used to verify dynamic encapsulation,
but also how dynamic encapsulation helps enabling modular shape analysis.

Partial Procedure Summaries vs. Full Procedure Summaries. The analysis algorithms presented in Chap-
ters 3 and 4 are modular in the program’sheap,1 but not in the program’scode, i.e., they analyzewholeprograms.
In contrast, the analyses described in this chapter are modular in the program code, they analyze eachpart of the
program separately.

In addition, the analyses described in Chapters 4 and 3 compute only partial summaries(see Section 3.8):
they analyze procedures while considering only calling contexts that occur in the analyzed program. Thus, while
it is possible to use the computed summaries across different programs, the analysis should always be ready
to reanalyze the procedure in a calling context which was notalready considered. In contrast, the approach
presented in this chapter, computesfull summaries (for dynamically-encapsulated programs), every procedure
is analyzed in every possible calling context that might arise in any dynamically-encapsulated program. As a
result, the analysis described in this chapter can establish properties that hold for the module inanydynamically-
encapsulated program.

Specification. Our modular analysis requires some lightweight user specification. More specifically, the user
is expected to define the partitioning of the program into modules and to provide information on the transfer of
ownership. Informally, the ownership-transfer specification determines which references are not expected to be
used (See Sections 1.3.3, 5.3.1.3, and 5.4.2).

Outline. The remainder of the chapter is organized as follows: Section 5.2 introduces our running example.
Section 5.3 presents an informal overview of our approach. Section 5.4 formalizes our programming model and
the specification language. Section 5.5 presents theDOS semantics and Section 5.6 investigates its properties.
Section 5.7 formalizes the notion of conditional module invariants. Our modular shape analysis is presented in
two main stages: In the first stage, Section 5.8 presents a concrete module semantics and in the second stage,
Section 5.9 presents an abstract module semantics.

5.2 Motivating Example

Figure 5.1(b) shows the code of a module,mRP , which serves as our running example. The code is written in a
Java-like language. ModulemRP contains two classes: ClassR is a class of resources to be used by clients of the
module. A resource has a recursive field,n, which is used to link resources in an internal list.2 ClassRPool is
a pool of resources which stores resources using their internal list. We assume that then-field is read or written
only by RPool ’s methods:acquire , which gets a resource out of the pool, andrelease , which stores a
resource in the pool. The@transferred annotations, used to specify the transfer of ownership, areexplained in
Sections 5.3.1.3 and 5.4.2. (An informal explanation of these annotations can be found in Section 1.3.3, which
also uses the resource pool module as an example).

Typical properties we want to verify modularly are that forany well behavedprogram that usesmRP , the
methods ofRPool never leak resources3 and never give an acquired resource to a client before it is released.4

1See Sections 3.5 and 4.5.
2Analogous fields can be found,e.g., in the Linux kernel timers [BC05].
3By never leaking a resource, we mean that once a resource is placed in a pool, it remains in the pool until it is acquired.
4Similarly, in the analysis of a client ofmRP , we would like to verify that the client does not use a dangling reference to a released resource.

Our analysis can establish this property.
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module mRP;

record RPool := {
ˇR rs;

}

@transferred: { e }
int release(ˇR e) {

e.n=this.rs;
this.rs=e;
ret = 0

}

@transferred: { }
ˇR acquire() {

R r = this.rs;
if (r!=null) {

this.rs=r.n;
r.n = null;

}
else {

r = new R();
}
ret = r;

}

record R := {
ˇR n;
...

}

(a) The running example written inEAlgolM .

package mRP;

public class RPool {
private R rs;

@transferred: { e }
public void release(R e) {

e.n=this.rs;
this.rs=e;

}

@transferred: { }
public R acquire() {

R r = this.rs;
if (r!=null) {

this.rs=r.n;
r.n = null;

}
else {

r = new R();
}
return r;

}
}

public class R {
R n;
...

}

(b) The running example written in JAVA .

Figure 5.1: The running example (a) inEAlgolM and (b) in JAVA .
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Note that the aforementioned properties do not hold for arbitrary programs because of possible aliasing in the
module induced by the client behavior: Consider an invocation of p.release(r) in a memory state in which
p points to a non-empty resource pool.
- If r points to the head of a resource list containing more than oneresource, then the tail of the list might be

leaked.
- If, after being released into the pool thatp points to,r is released into other pools, then these pools, along with

the one pointed-to byp share (parts of) their resource lists. Note that after a shared resource is acquired from
one pool, it can still be acquired from the other pools.

- Finally, if the resource thatr points to is already inp’s pool, thenp’s resource list becomes cyclic. A resource
which is acquired from a pool whose list is cyclic, stays in the pool.5

5.3 Overview

In this section, we provide an informal overview of our approach for modular shape analysis.

5.3.1 DOS: A Non-standard Dynamic Ownership Semantics

The basis for our approach is anon-standard semanticsthat captures the aliasing constraints mentioned above.
In this chapter, a module is a collection of type-definitionsand procedures, and a component is a subheap. Our
semantics represents the heap as an evolving collection of (heap)components. Every component is comprised of
objects whosetypes are defined in the same module. (We say that a componentbelongs tothat module). Note that
multiple components belonging to the same module may co-exist. References between components belonging to
differentmodulesare allowed, however, theinternal structureof a componentcan be accessed or modified only
by the (procedures in the) module to which it belongs.6

Components can be in two different states:sealedandunsealed. Sealed components represent encapsulated
data returned by a module to its callers (and, hence, are expected to satisfy certainmodule invariants). In contrast,
unsealed components are components that are currently being modified and may be in an unstable state.

At any point during program execution, the internal structure of only one component is “visible” and can be
accessed or mutated,i.e., only one unsealed component is “visible”. We refer to this component as thecurrent
component. The only way a sealed component can becomeunsealed(permitting its internal structure to be
examined and modified) is to pass it as a parameter of an appropriate intermodule procedure call so that the
component becomes part of the current component for the called procedure. Our semantics requires that all
parameters and the return value(s) of intermodule procedure calls must be sealed components. For simplicity, we
do not consider primitive values here.

Example 5.3.1 Example 1.3.7 describes the component decomposition of a memory state, depicted
in Figure 1.3(c), that might result in a program comprised oftwo modules: a resource manager and a
resource pool. (In Example 1.3.7 we used the termpackageinstead of a module).

Assuming that the memory state depicted in Figure 1.3(c) occurs during an execution of one of the
resource manager procedure, then the heap component containing the objects the resource manager
and the two pool managers is unsealed, and can be mutated by the procedure. The other five compo-
nents are sealed components. Their internal structure can be accessed only when they are passed as
parameters to a procedure of the resource pool module.

5.3.1.1 Constraints

So far we have not really placed any constraints on the program. The above are standard “good modularity
principles” and most programs will fit this model with minor adjustments. Before we describe the constraints we
place on sharing across modules, we describe the two key challenges that motivate these constraints:

5Based on a bug we found in LEDA [MN99] while working on an earlier version of our approach [Rin01]. The bug (reported and fixed)
was that concatenating a list to itself created a cycle.

6A modulem can manipulate a component of a modulem′ by invoking an intermodule procedure call to a procedure of modulem′.
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Challenge I: How can we analyze a moduleM without using any information about the clients ofM (i.e.,
without using information about the usage context ofM )?

Challenge II: When analyzing a client moduleC that makes use of another moduleM , how do we handle
intermodulecalls from C to M using only the analysis results for moduleM (i.e., without analyzing
moduleM again)?

We say that a componentownsanother component if it has alive reference (i.e., used before set) to the
other component. The most important constraint we place is that a component cannot be owned by two or more
components. As a result, the heap (or the program state) may be seen as a tree of components. Informally,
this ensures that distinct components do not share (live) state. Furthermore, we require that all references to a
component from its owner have the same target object. We callthis object the component’sheader.7 We refer to
a program which satisfies these constraints as adynamically encapsulatedprogram. Recall that our analysis also
verifies that a program isdynamically encapsulated.

Example 5.3.2 The memory state depicted in Figure 1.3(c) is dynamically encapsulated: The inter-
component references form a tree. (In Section 5.5, we show anexample for a memory state which is
dynamically encapsulated because thelive inter-component references form a tree).

We require that the module dependency relation (see Section5.4) be acyclic. This constraint simplifies our
semantics (and analysis) as module reentrancy does not needto be considered: When a module is invokedall of
its components are guaranteed to be sealed.

5.3.1.2 Benefits

The above constraints let us deal with the two challenges mentioned above in a tractable way. The restriction on
sharing between components simplifies dealing with intermodule calls (Challenge II) as they cannot have unex-
pected side-effects:e.g., an intermodule call on one componentC1 cannot affect the state of another component
C2 that is accessible to the caller. As for the first challenge,we conservatively identify all possible input states for
an intermodule call by iteratively identifying all possible sealed components that can be generated by a module.

5.3.1.3 Specification

We now describe the extra specification a user must provide for the modular analysis. This specification consists
of: (i) a module specificationthat partitions a program’s types and procedures into modules; (ii) an annotation for
every procedure that indicates for every parameter whetherin an intermodule procedure invocation it is intended
to be “transferred” to the callee or not; these annotations are only considered in intermodule procedure calls. A
sealed component that is pointed to by atransferredparameter of an intermodule call cannot be subsequently used
by the calling module (e.g., to be passed as a parameter for a subsequent intermodule call). This constraint serves
to directly enforce the requirement that the heap forms a tree of components.

Example 5.3.3 The resource parameter of procedurerelease is annotated as a transferred param-
eter. Consider a program which uses modulemRP and contains a proceduregoo , defined in another
module. Assumegoo contains an invocation of procedurerelease using a pool parameterp and
a resource parameterr . First, note that becausegoo is not part of modulemRP , bothp andr point to
sealed components whose content is “invisible” from the point of view ofgoo . Second, note that the
invocation ofrelease also transfers ownership of the resource pointed to byr to the pool pointed
to byp. Specifically,goo cannot continue to use any reference it has to the transferred resource (i.e.,
any alias ofr ). However,goo still owns the pool pointed to byp, and thus can continue to use it.

Given the above specification, our modular analysis can automatically detect the boundaries of the heap-
components and (conservatively) determine whether the program satisfies the constraints described above.

7Note the slight difference in terminology: In ownership type systems, owners are objects and do not belong to their ownership contexts.
In our approach, components are the owners; the component header belongs to the component that is dominated by the header.
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5.3.2 Conditional Module Invariants

Module invariants are properties of the module that hold in any program that respects the specification of the mod-
ule. (I.e., these invariants hold in any program in which theprocedures of the module are invoked only when their
preconditions hold.) Our modular analysis conservativelyidentifiesmodule invariantsthat hold in any program
when it is executed according to theDOS semantics. However, when the program is executed according to the
standard semantics, the determined invariants are guaranteed to hold only whenthe program isdynamically en-
capsulated. (In particular, it can be the case that these invariants maynot hold in anon-dynamically encapsulated
program, although this program respects the specification of the module.) To emphasize that according to the
standard semantics the determined invariants are guaranteed to hold only fordynamically encapsulatedprograms,
we refer to them asconditional module invariants. (See Section 5.7). We remind the reader that our analysis
verifies that a program is dynamically encapsulated in amodularfashion. (See Sections 5.3.4 and 5.9).

We distinguish between two types of module invariants,external conditional module invariantsandinternal
conditional module invariants:

• An (external) conditional module invariantof a modulem (in dynamically encapsulatedprograms) is a
property that holds for all the components that belong tom when theyare notbeing used (i.e., for sealed
components).

• Internal conditional module invariantdescribes properties of the parts of the memory manipulatedby mod-
ule m when theyare being used, i.e., properties of unsealed components. (Thus, we also refer to internal
conditional module invariant asconditional module implementation invariants). These invariants are rela-
tional: they conservatively record for every procedurep the input/output relation between the parts of the
memory manipulated byp’s module whenp is called from another module.

5.3.3 Concrete Module Semantics

We use theDOS semantics as a basis for a module semantics which assigns a program-independent meaning
for every module. (Our modular analysis is obtained as an abstract interpretation of the module semantics). The
module semantics is obtained by applying a noveltrimming abstractionwhich abstracts away the contents of
sealed components when analyzing a module. Loosely speaking, only the heap structure of the current compo-
nent, and the aliasing relationships between intermodule references leaving the current component, are tracked.
(Technically, the trimming abstraction is achieved by firstapplying the componentized heap abstraction, and then
abstracting away the information regarding the contents ofsealed components).

The module semantics is defined as a least fixpoint solution which is associated with every module. The main
novel aspect of the module semantics is that it uses the constraints imposed by theDOS semantics to anticipate
all possible calling contexts to the module.

5.3.4 Abstract Module Semantics

Our modular analysis is obtained as an abstract interpretation of the module semantics. We obtain an ab-
stract module semantics by applying aboundedconservative abstraction of trimmed memory states. Rather
than providing a new intraprocedural abstraction, we show how to lift existing intraprocedural shape analyses,
e.g., [MYRS05, DOY06, LAIS06], to obtain a modular shape abstraction (see Section 5.9). Our analysis is para-
metric in the abstraction of trimmed memory states and can use different (bounded) abstractions when analyzing
different modules.

5.3.4.1 Modular Shape Analysis for Dynamically Encapsulated Programs

Our static analysis is conducted in an assume-guarantee manner allowing each module to be analyzed separately.
The analysis, computes a conservative representation of every possible sealed components of the analyzed module
in dynamically encapsulated programs. This process identifies conditionalstructural invariants of the sealed
components of the analyzed module,i.e., it infers module invariants for dynamically encapsulatedprograms.

Given a module, and the user specification for the other modules it uses, our analysis tries to verify that the
given module is “well-behaved”. If this verification is unsuccessful, the analysis gives up and reports that the
module may not adhere to our constraints. Otherwise, the analysis computes invariants of the given module that



5.4. PROGRAM MODEL AND SPECIFICATION LANGUAGE 103

hold in any “well-behaved” program containing the module. Aprogram comprised only of successfully verified
modules is guaranteed to be “well-behaved”.

5.4 Program Model and Specification Language

In this section, we introduceEAlgolM , a simple imperative procedural object-based (i.e., without subtyping)
language.EAlgolM is an extension ofEAlgol, introduced in Section 2.1, with a module system. The syntax
of EAlgolM is similar to that ofEAlgol, defined in Figure 2.1, except that the grammatical rule for programs is
defined as below:

P ∈ prog ::= module m; rcdecl prdecl

Programs inEAlgolM consist of a collection of modules. Every module is a collection of procedures and
user-defined type definitions. One module includes amain procedure, from which the execution of the program
starts.

Example 5.4.1 Figure 5.1(a) shows the running example written inEAlgolM .

Syntactic Domains. In addition to the semantic domains ofEAlgol, defined in Section 2.1, we assume the
syntactic domain ofm ∈ M of module identifiers. As inEAlgol, we assume that variables, fields, procedures,
types, program-labels andmoduleshave unique identifiers in every program. We denote the type of a variablex
resp. fieldf by t(x) resp.t(f).

Modules. We denote the module that a procedurep belongs to bym(p) and the module that a type identifierT
belongs to bym(T ).

We say that modulem1 dependson modulem2 if m1 6= m2 and one of the following holds: (i) a procedure
of m1 invokes a procedure ofm2; (ii) a procedure ofm1 has a local variable whose type belongs tom2; or (iii) a
type ofm1 has a field whose type belongs tom2.

Procedures. A procedurep has local variables (Vp) and formal parameters (Fp), which are considered to be
local variables,i.e., Fp ⊆ Vp. Only local variables are allowed. A procedure returns a value by assigning it to a
designated variableret . Parameters are passed by value.

5.4.1 Simplifying Assumptions

We assume that procedure invocations should becutpoint-free(see Section 3.3). We explain the reasons for this
assumption, and a possible relaxation, in Section 5.5.2.2.

To simplify the presentation, we make the following assumptions, in addition to the ones stated in Section 2.1:
(a) Objects of typeT can be allocated and references to such objects can beused as l-valuesby a procedurep

only if m(p) = m(T );
(b) Actual parameters to an intermodule procedure call should not be aliased and should point to a component

owned by the caller. In addition, we assume that parameters for inter-module procedure calls should have a
non-null value.8

(c) The caller always becomes the owner of the return value ofan intermodule procedure call.

5.4.2 Specification Language

We expect to be given a partitioning of the program types and procedures into modules.
Every procedure should have an ownership transfer specification given by a setF t

p ⊆ Fp of transferred
(formal) parameters. (A formal parameter is a transferred parameter if it pointsto a transferred component in an
intermodule call.) For example,e is release ’s only transferred parameter, andacquire has none.

8This assumption simplifies the analysis by allowing us to avoid considering the different cases where different parameters have anull-
value and non-null value when we determine the possible input states for intermodule procedure calls. See Section 5.8.4.
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l ∈ Loc Locations
v ∈ Val = Loc ∪ {null} ∪ {⊖} Values
ρ ∈ E = V →֒ Val Environments
h ∈ H = Loc →֒ F →֒ Val Heaps
t ∈ T = Loc →֒ T Type maps
σ ∈ ΣD = E×2Loc×H×TM×M Memory states

Figure 5.2: Semantic domains of theDOS semantics.

We define the setF nt
p = Fp \ F t

p to be the set of non-transferred (formal) parameters of procedurep. For
simplicity, we assumeret ∈ F nt

p in case the procedure returns a value. (Recall that by our simplifying as-
sumptions, the caller always becomes the owner of the returnvalue). For example,F nt

release = {this} and
F nt

acquire={this, ret}.

5.5 DOS: The Concrete Dynamic-Ownership Semantics

In this section, we defineDOS, a non-standard semantics which checks whether a program executes in confor-
mance with the constraints imposed by the dynamic encapsulation model. (DOS stands fordynamic-ownership
semantics).

DOS is a store-basedsemantics (see,e.g., [MS77, NNH99, Rey02]). A traditional aspect of a store-based
semantics is that a memory state represents a heap comprisedof all the allocated objects.DOS, on the other
hand, is alocal-heapstore-based semantics (see Section 2.3): A memory state which occurs during the execution
of a procedure does not represent objects which, at the time of the invocation, were not reachable from the actual
parameters.

DOS is a small-step operational semantics [Plo81]. Instead of encoding a stack of activation records inside
the memory state, as traditionally done,DOS maintains astack of program states: Every program state contains
a program point and a memory state. The program state of thecurrent procedureis stored at the top of the stack,
and it is the only one which can be manipulated by intraprocedural statements. When a procedure is invoked, the
entry memory stateof the callee is computed by aCall operation according to the caller’s current memory state,
and pushed into the stack. When a procedure returns, the stack is popped, and the caller’sreturn memory state
is updated using aRet operation according to its memory state before the invocation (thecall memory state) and
the callee’s (popped)exit memory state.9

The use of a stack of program states allows us to represent in every memory state the (values of) local variables
and the local-heap of just one procedure. An execution traceof a programP always begins withP ’s main
procedure starts executing on aninitial memory statein which all variables have anull value and the heap is
empty. We say that a memory state isreachablein a programP if it occurs as the current memory state in an
execution trace ofP .

For a formal definition of the notions ofstacks of program statesand ofreachable memory states, see Ap-
pendix E.1.

5.5.1 Memory States

Figure 5.2 defines the concrete semantic domains inDOS and the meta-variables ranging over them. We assume
Loc to be an unbounded set of locations. A valuev ∈ Val is either a location,null, or⊖, the inaccessible value
used to represent references which should not be accessed.

A memory state in theDOS semantics is a5-tupleσ = 〈ρ, L, h, t, m〉:
• The first three components comprise, essentially, a2-level store, as introduced in Sections 2.2 and 2.3:

– ρ ∈ E is an environment assigning values for the variables of thecurrentprocedure.
– L ⊂ Loc contains the locations of allocated objects. (An object is identified by its location. We

interchangeably use the terms object and location.)
– h ∈ H assigns values to fields of allocated objects.

9We note that our idea of using stacks of program states in theconcretesemantics is heavily influenced by the formulation of aninterpro-
cedural analysisusing a stack ofabstractmemory states in [KS92].
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Figure 5.3:DOS memory states occurring in an invocation ofx.release(y) on σc and the component de-
composition ofσc.

• t ∈ T M maps every allocated object to the type-identifier of its (immutable) type. Implicitly,t associates
every allocated location to a module: The module that a location l ∈ L belongs to in memory stateσ,
denoted bymσ(l), is m(t(l)). (When clear from context, we omit theσ subscript.)

• m ∈ M is the module of the current procedure. We refer tom as thecurrent moduleof σ.

For convenience, we define selectors for memory states. Given aDOS memory stateσ = 〈ρ, L, h, t, m〉, we
defineρ(σ) = ρ, L(σ) = L, h(σ) = h, t(σ) = t, andm(σ) = m.

Note that inDOS, reachability, and thus domination,10 are defined with respect to theaccessible heap, i.e.,
⊖-valued references do not lead to any object.

Example 5.5.1 Figure 5.3 (σc) depicts a possibleDOS memory state that may arise in the execution
of a program using the modulemRP . The state contains aclientobject (shown as an hexagon) pointed-
to by variablec and having apl -field pointing to a resource pool (shown as a pentagon).

The resource pool, containing two resources (shown as squares) is also pointed-to by a variablex .
In addition, a local variabley points to a resource outside the pool. (The numbers attachedto nodes
indicate the location of objects. The value of a (non-null) pointer variable is shown as an edge from
a label consisting of the variable name to the object pointed-to by the variable.null-valued variables
are not shown in the figure. The value of a (non-null) fieldf of an object is shown as anf -labeled
edge emanating from the object. The lack of such an edge indicates that the field has anull value.
Other graphical elements can be ignored for now.)

The statesσc andσe (also shown in Figure 5.3), depict, respectively, the call-and the entry-memory
states of an invocation ofx.release(y) which we use as an example throughout this section.
Note thatσe represents only the values of the local variables ofrelease and does not represent
the (unreachable) client-object. Note that in the return memory state of the invocation, depicted in
Figure 5.3 (σr), the referencey has the⊖-value, and that the resource pool dominates the resources
in its list. Note, in particular, that the return statey does nothave the value that it had before the
call. (In Example 5.5.6, we explain how this return state is computed by the semantics).

10 An objectl2 is reachable from(resp.connected to) an objectl1 in a memory stateσ if there is a directed (resp. undirected) path in the
heap ofσ from l1 to l2. An objectl is reachablein σ if it is reachable from a location which is pointed-to by somevariable. An objectl is a
dominatorif every access path pointing to an object reachable froml, must traverse throughl. (See Section E.2.1.)
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5.5.1.1 Components

Intuitively, a component provides a partial view of aDOS memory stateσ. A component ofσ consists of a set
of reachable objects inσ, which all belong to the same module, and records their types, their link structure, and
theirspatial interface i.e., references to and from immediately connected objects and variables.

More formally, a componentc ∈ C = 2Loc×2Loc×2Loc×H×TM×M is a 6-tuple. A componentc =
〈I, L, R, h, t, m〉 is acomponent ofaDOS memory stateσ if the following holds:

(i) L, the set ofc’s internal objects, contains only reachable objects inσ.
(ii) I ⊆ L andR ⊆ Loc \ L constitutec’s spatial interface:

• I records theentry locationsinto c. An object insidec is anentry locationif it is pointed-to by a
variable or by a field of areachableobject outsidec.

• R is c’s rim. An object outsidec is in c’s rim if it is pointed-to by a field of an object insidec.
(iii) h defines the values of fields for objects insidec. We refer to a field pointing to an internal object as an

intra-component reference. We refer to a field pointing to a rim object as aninter-component reference.h
should be the restriction ofσ’s heap onL.

(iv) t defines the types of the objects insidec and in its rim.t should be the restriction ofσ’s type map onL∪R.
(v) m is c’s component module. We say that componentc belongs tom. The type of every object insidec must

belong tom. (If L is empty thenm must be the current module ofσ.) Note that a componentc records
(among other things) all the aliasing information available inσ pertaining to fields ofc’s internal objects.

(vi) For reasons explained below, we treat a variable pointing to a location outside the current component as
an inter-component reference leaving the current component, and add that location to its rim (and relax the
definition of a component accordingly).

For a formal definition of components, see Definition E.2.6.

Example 5.5.2 The call-memory stateσc = 〈ρc, Lc, hc, tc, mc〉, depicted in Figure 5.3, is comprised
of three components. A rectangular frame encompasses the internal objects of every component. The
current component, marked with a star, belongs tomc, the client’s module. The sealed components,
drawn shaded, belong to modulemRP .

Figure 5.3(c⋆) depictsc⋆ =〈I⋆, L⋆, R⋆, h⋆, t⋆, mc〉, the current component of the call-memory state,
σc, separately fromσc. The client-object is the only object insidec⋆. It is also an entry location,i.e.,
I⋆ =L⋆ ={1}. An entry location is drawn with a double-line arrow pointing to it. The resource pool
and the resource are rim objects,i.e., R⋆ ={2, 5}. (Note that location5 is in the rim ofc⋆ because of
the relaxation mentioned in point (vi) above.) Rim objects are drawn opaque. Thepl -labeled edge
depicts the only (inter-component) reference inc⋆. Note thath⋆ =hc|{1} andt⋆ = tc|{1,2,5}.

Figure 5.3 (cP ) and (cR) depict the sealed components of the call-memory state,σc, separately
from σc.

The types of the reachable objects in a memory stateσ induce its (unique)implicit component decomposition:
(i) a singleimplicit current component, denoted byc⋆(σ), containing all thereachableobjects inσ that belong

to σ’s current module and
(ii) a set ofimplicit sealed components, denoted byC(σ), containing (disjoint subsets of) all theotherreachable

objects. Two objectsreside withinthe same implicit sealed component if they belong to the samemodule
ms 6=m(σ) and are connected inσ’s heap via anundirected heap pathwhich only goes through objects that
belong to modulems.

The component decomposition of a memory stateσ induces animplicit component (directed) graph. The
nodes of the graph are the implicit components ofσ. The graph has an edge fromc1 to c2 if there is a rim object in
c1 which is an entry location inc2, i.e., if there is a reference from an object inc1 to an object inc2. For simplicity,
we assume that the graph is connected, and treat local variables in a way that ensures that.

Example 5.5.3 Componentc⋆, cP , andcR are the implicit components ofσc, from Figure 5.3. I.e.,
c⋆ = c⋆(σc) and{cP , cR} = C(σc). Double-line arrows depict the edges of the component graph.
This graph is connected becausec⋆’s rim contains the resource pointed-to byy.

From now on, whenever we refer to a component of a memory stateσ, we mean an implicit component
of σ, and use the termimplicit componentonly for emphasis. (For a formal definition of component graphs,
see Definition E.2.9.)
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5.5.1.2 Dynamically Encapsulated Memory States

We define the constraints imposed on memory states by the dynamic encapsulation model by placing certain
restrictions on the allowed implicit components and induced implicit component graphs.

Definition 5.5.4 (Dynamic encapsulation)A DOS memory stateσ ∈ ΣD is said to bedynamically encapsu-
lated, if (i) the implicit component graph ofσ is a directed tree and (ii) every (implicit) sealed component in σ
has exactly one entry location.

We refer to the parent (resp. child) of a componentc in the component tree as theowner of c (resp. a
subcomponent ofc). We refer to the single entry location of a sealed componentc in a dynamically encapsulated
memory stateσ asc’s header, and denote it byhdr (c). We denote the module of a componentc by m(c).

Invariant 1 The following properties hold in every dynamically encapsulatedDOS memory stateσ ∈ ΣD:
(i) A local variable can only point to a location insidec⋆(σ), the current component ofσ, or to the header of

one ofc⋆(σ)’s subcomponents.
(ii) For every component, every rim object is the header of a sealed component ofσ.
(iii) A field of an object in a component ofσ can only point to an object insidec, or to the header of one ofc’s

subcomponents.
(iv) All the objects in a sealed component are reachable fromthe component’s header.
(v) A header dominates its reachable heap.10

(vi) Every reachable object is inside exactly one component.
(vii) All the locations in one component are of the same module. The locations in the current component belong

to the current module ofσ.
(viii) If c1 ∈ C(σ) ownsc2 ∈ C(σ) thenm(c1) dependsonm(c2).

DOS preserves dynamic encapsulation. Furthermore, Invariant1 holds in every memory state which arises
during any execution of any program according to theDOS semantics. Thus, from now on, whenever we refer
to aDOS memory state, we mean adynamically encapsulatedDOS memory state. As a consequence of our
simplifying assumptions and the acyclicity of the module dependency relation, the following holds for everyDOS
memory stateσ:

(i) The internal objects ofc⋆(σ) are exactly those that the current procedure can manipulatewithout an (indirect)
intermodule procedure call.

(ii) The rim of c⋆(σ) contains all the objects which the current procedure can pass as parameters to an intermod-
ule procedure call.

5.5.2 Operational Semantics

In this section, we defineDOS ’s operational semantics. Formally, the semantics is specified as a relation between
stacks of program states. Effectively, intraprocedural program statements and procedure call statements can affect
only the top most memory state in the stack and interprocedural return statements can affect only the two top-most
memory states in the stack. Thus, to define the meaning of an intraprocedural statementst , it suffices to specify
the relation between the pre-state and the post-state

[[st ]] ⊆ ΣD×ΣD ,

to specify the meaning of a procedure call statement, it suffices to specify the relation between the call-state and
the entry-state

[[Cally=p(x1,...,xk)]] ⊆ ΣD×ΣD

and to specify the meaning of a procedure return statement, it suffices to specify the relation between the call- and
-exit- states and the return-state

[[Rety=p(x1,...,xk)]] ⊆ (ΣD×ΣD)×ΣD .

(For a more formal explanation of the lifting of process, seeSection E.1.)
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〈x = null, σ〉
D
 〈ρ[x 7→null], L, h, t, m〉

〈x = y, σ〉
D
 〈ρ[x 7→ρ(y)], L, h, t, m〉 ACC ρ(y) 6= ⊖

〈x = y.f, σ〉
D
 〈ρ[x 7→h(ρ(y), f)], L, h, t, m〉 ACC ρ(y) 6= ⊖

CUR mσ(ρ(y)) = m

〈y.f = x, σ〉
D
 〈ρ, L, h[(ρ(y), f) 7→ρ(x)], t, m〉 ACC ρ(y) 6= ⊖

CUR mσ(ρ(y)) = m
ACC ρ(x) 6= ⊖

〈x = alloc T, σ〉
D
 NEW l∈Loc \ L

〈ρ[x 7→ l], L∪{l}, h[l 7→I], t[l 7→T ], m〉 TYP m(T )=m

〈assume(x ⊲⊳ y), σ〉
D
 σ CMP ρ(x) ⊲⊳ ρ(y)

ACC ρ(x) 6= ⊖, ρ(y) 6= ⊖

Figure 5.4: Axioms for intraprocedural statements.σ = 〈ρ, L, h, t, m〉. TheI function nullifies the fields of a
newly allocated location.⊲⊳ stands for either= or 6=. When convenient, we sometimes treath as an uncurried
function, i.e., as a function fromLoc ×F to Val . (assume statements are used to implement conditionals).

5.5.2.1 Intraprocedural Statements

Figure 5.4 defines the axioms for intraprocedural statements. The meaning of intraprocedural statements is de-

scribed by a transition relation
D
 ⊆ (ΣD × stms) × ΣD.

Essentially, intraprocedural statements are handled as usual in a two-level store semantics for pointer pro-
grams. All other statements are handled in the standard way.(See Sections 2.2 and 2.3). The only unique aspect
of DOS is that it aborts if an inaccessible-valued pointer is accessed. More specifically, the main difference
between the semantics of intraprocedural statements inDOS and in the standard2-level store semantics is in the
(ACC) side-condition of the rules pertaining to the manipulation of pointer fields. In short, the side-conditions
ensure that:
(ACC) inaccessible values are not accessed;
(CUR) only fields of objects in the current component can be manipulated; and
(TYP) only types of the current module can be instantiated.

5.5.2.2 Interprocedural Statements

DOS is a local-heap store-based semantics (see Section 2.3): when a procedure is invoked, it starts executing
on aninput heapcontaining only the set ofavailable objects for the invocation. An object isavailable for an
invocationif it is a parameter object, i.e., pointed-to by an actual parameter, or if it is reachable from one. We
refer to a component whose header is a parameter object as aparameter component.

A local-heap semantics and its abstractions benefit from nothaving to explicitly represent unavailable objects.
However, in general, the semantics needs to take special care ofcutpoints, available objects that are pointed-to by
an access path which bypasses the parameters (see Definition3.3.2). In this chapter, we do not wish to handle the
problem of analyzing programs with an unbounded number of cutpoints, which we consider a separate research
problem (see Section 7.2.2). Thus, for simplicity, we require thatintramoduleprocedure calls should becutpoint-
free (see Section 3.3), i.e., the parameter objects should dominate the available objects for the invocation.10 (In
general, we can handle aboundednumber of cutpoints.11)

Figure 5.5 defines the meaning of theCall and Ret operations pertaining to an arbitrary procedure
call y = p(x1, . . . , xk):

• The meaning of a call statement is described using a transition relation
D
 ⊆ (ΣD×Cally=p(x1,...,xk))×ΣD.

11We can treat a bounded number of cutpoints as additional parameters: Every procedure is modified to havek additional (hidden) formal
parameters (wherek is the bound on the number of allowed cutpoints). When a procedure is invoked, the (modified)semanticsbinds the
additional parameters with references to the cutpoints. This is the essence of [GBC06]’s treatment of cutpoints.
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• The meaning of a return statement is described using a transition relation
D
 ⊆ (ΣD × ΣD × Rety=p(x1,...,xk)) × ΣD.

5.5.2.3 Procedure Calls

TheCall operation computes the callee’sentry memory state(σe). First, it checks whether the call satisfies our
simplifyingassumptions. In case of an intramodule procedure invocation, the caller’s memory state (σc) is required
to satisfy the domination condition (CPF) ensuring cutpoint-freedom. Intermodule procedure callsare invoked
under even stricter conditions which are fundamental to ourapproach: Every parameter object must dominate
the subheap reachable from it. This ensures that distinct components are unshared. However,there is no need
to check these conditions as they are invariants in our semantics: Invariant 1(i,iv,v) ensures that every parameter
object to an intermodule procedure call is a header which dominates its reachable heap. (Note that Invariant 1(iv)
can be exploited to check whether an object is a dominator byonly inspecting access paths traversing through
its component.) Thus, only our simplifying assumptions pertaining to non-nullness (LOC) and non-aliasing of
parameters (DIF) need to be checked.

The entry memory state is computed by binding the values of the formal parameters in the callee’s environment
to the values of the corresponding actual parameters; projecting the caller’s heap and type map on the available
objects for the invocation; and setting the module of the entry memory state to be the module of the invoked
procedure.

Note that in intermodule procedure calls, the change of the current module implicitly changes the component
tree: all the available objects for the invocation which belong to the callee’s module constitute the callee’s current
component. By Invariant 1(vi,viii) and the acyclicity of the module dependency relation, these objects must come
from parameter components.

Example 5.5.5 Figure 5.3 (σe) shows the entry memory state resulting from applying theCall op-
eration pertaining to the procedure callx.release(y) on the call memory stateσc, also shown
in Figure 5.3. All the objects inσe belong tomRP , and thus, to its current component. Note that the
latter is, essentially, a fusion ofcP andcR, the sealed components inσc.

Note: The current component of aDOS memory stateσ ∈ ΣD is the root of the component tree induced by
the local-heaprepresented inσ. In aglobal-heap, this current component might have been one or more non-root
subcomponents of a larger component-tree which is only partially visible to the current procedure. For example,
the current component of the client procedure is not visibleduring the execution ofrelease .

5.5.2.4 Procedure Returns

The caller’s return memory state (σr) is computed by aRet operation. When anintermoduleprocedure invocation
returns,Ret first checks that in the exit memory state (σx) every non-transferred formal parameter points to an
object (OWN) which dominates its reachable subheap (DOM). This ensures that returned components are disjoint
and, in particular, that the procedure’s execution respected its ownership transfer specification. (Here we exploit
the simplifying assumption that formal parameters cannot be assigned to).

Ret updates the caller’s memory state (which reflects the program’s state at the time of the call) by carving
out the input heap passed to the callee from the caller’s heapand replacing it instead with the callee’s (possibly)
mutated heap. InDOS, an object never changes its location and locations are never reallocated. Thus, any pointer
to an available object in the caller’s memory state (either by a field of an unavailable object or a variable) points
after the replacement to an up-to-date version of the object.

Most importantly, the semantics ensures that any future attempt by the caller to access a transferred component
is foiled: We say that a local variable of the caller isdanglingif, at the time of the invocation, it points to (the
header of) a component transferred to the callee. A pointer field of an object in the caller’s memory state which
was unavailable for the invocation is considered to bedanglingunder the same condition. The semantics enforces
the transfer of ownership byblocking: assigning the special value⊖ to every dangling reference in the caller’s
memory state. (Blocking also occurs when anintramodule procedure invocation returns to propagate ownership
transfers done by the callee.)

Note that cutpoint-freedom ensures that the only object that separate the callee’s heap from the caller’s heap
are parameter objects. Thus, in particular, the only references that might be blocked point to parameter objects.



110 CHAPTER 5. MODULAR SHAPE ANALYSIS FOR DYNAMICALLY ENCAPSULATED PROGRAMS

〈Cally=p(x1,...,xk), σc〉
D
 σe CPF mc =m(p) ⇒ Dρc,hc

(dom(ρc), {x1, . . . , xk})
σe = 〈ρe, Lc, hc|Lrel

, tc|Lrel
, m(p)〉 DIF mc 6=m(p) ⇒ ∀1≤ i<j ≤ k : ρc(xi) 6= ρc(xj)

ρe = [zi 7→ ρc(xi) | 1≤ i≤k] LOC ∀1≤i≤k : ρc(xi) ∈ Loc

where: Lrel = Rhc
({ρc(xi) ∈ Loc | 1≤ i≤k})

〈Rety=p(x1,...,xk), σc, σx〉
D
 σr OWN mc 6=m(p) ⇒ ∀z ∈ F nt

p : ρx(z) ∈ Loc

σr = 〈ρr, Lx, hr, tr, mc〉 DOM ∀z ∈ F nt
p : Dρ⊖

x ,hx
(F nt

p , {z})

ρr = (block ◦ ρc)[y 7→ρx(ret)]
hr = (block ◦ hc|Lc\Lrel

) ∪ hx

tr = tc|Lc\Lrel
∪ tx

where: Lrel = Rhc
({ρc(xi) ∈ Loc | 1≤ i≤k})

ρ⊖

x = ρx[z 7→ ⊖ | mc 6=m(p), z ∈ F t
p]

block = λv ∈ Val .

{
ρ⊖

x (zi) v = ρc(xi), 1 ≤ i ≤ k
v otherwise

Figure 5.5: Call andRet operations for an arbitrary procedure cally = p(x1, . . . , xk) assumingp’s formal
variables arez1, . . . , zk. σc = 〈ρc, Lc, hc, tc, mc〉. σx = 〈ρx, Lx, hx, tx, mx〉. F nt

p = {ret}∪(Fp \F t
p). Variable

ret is used to communicate the return value. We use the followingfunctions and relations:Rh(L) computes the
locations which are reachable in heaph from the set of locationsL. The auxiliary relationDρ,h(VI , VD) holds
if the set of objects pointed-to by a variable inVD, according to environmentρ, dominates the part of heaph
reachable from them, with respect to the objects pointed-toby the variables inVI .

When an intermodule call returns, and the current module changes, the component tree is changed too: The
callee’s current component may be split into different components whose headers are the parameter objects
pointed-to by non-transferred parameters. These components may differ from the (input) parameter components.

Example 5.5.6 Figure 5.3 (σr) depicts the memory state resulting from applying theRet operation
pertaining to the procedure callx.release(y) on the memory stateσc andσx, also shown in
Figure 5.3. The insertion of the resource pointed-to byy at the call-site into the pool has (implicitly)
fused the twomRP-components. Note that according to the standard semantics, y should point to
the first resource in the list. This would violate dynamic encapsulation.DOS, however, utilizes the
ownership specificationto blocky thus preserving dynamic encapsulation.

5.6 Properties ofDOS

In this section, we investigate the properties of theDOS semantics. More specifically, we show thatDOS is
observationally sound with respect to the standard semantics. Thus abstractions ofDOS can be used to conser-
vatively verify properties of programs with respect to the standard semantics. We also show that despite the fact
thatDOS is defined using a2-level store, it has a storeless nature as it does not distinguish between isomorphic
memory states.

5.6.1 Executions, Paths, and Reachable States

Before we review the properties of theDOS semantics, we introduce some standard notions regarding the (inter-
procedural) executions, paths, and reachable states of programs inDOS. In this section, we provide an informal
description of these notions, which are formally defined in Section E.1.4.

Stacks. Recall thatDOS actually manipulatesstacks of program states. A stackstk is a sequence of program
states, i.e., a sequence12 of pairs of a program point and a memory state. We denote theheight of stackstk by
|stk |. We denote thetop program state of stackstk by top(stk) ∈ PP × ΣD.

12See Definition A.1.7.
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Executions. An executionπ in DOS is a sequence ofstacks. We denote thelength ofπ by |π|. We denote the
i-th stack that arises in an executionπ (where for0 ≤ i ≤ |π|) by π(i). We refer to the top memory state in the
first stack of program states of an executionπ, asπ’s initial memory state, and denote it byin(π). Similarly, we
refer to the top memory state in the last stack of program states of an executionπ, asπ’s final memory state, and
denote it byout(π).

Paths. We denote the sequence of program points induced by the program points at the top of every stack in an
executionπ by path(π), i.e.,path(π) = [i 7→ ppi | 〈ppi, σi〉 = top(π(i))].

Feasible Executions. We say that an executionπ is feasiblefor a programP is there is an execution ofP
starting from the initial memory state (see Section 5.5). Wedenote the set of feasible executions ofP by ΠP .

Reachable Memory States. We say that an memory stateσ ∈ ΣD is reachableby reachable executionπ ∈ ΠP

of a programP , and denote it byout(π), if 〈pp, σ〉 = top(π), for some program pointpp.

Error state. Before continuing, we slightly modify theDOS semantics in the following way.DOS dictates
when dynamic encapsulation is violated, and gets into an error state. We change this behavior by adding a specially
designated error state,EDOS , and assuming that the semantics goes into this state when isdetects a violation of
the dynamic encapsulation restriction. Once the semanticsreaches the error state, it keeps on propagating it, i.e.,

〈st , EDOS 〉
d
→ EDOS for everyst ∈ stms.

5.6.2 Observational Soundness

In this section, we formally define the notions ofobservational soundnessbetween theDOS semantics and the
standard heap semantics.

In DOS, as well as inGSB, the only means by which a program can observe a state are access paths. (See
Definition 2.4.2). We say that two values arecomparablein DOS if neither one is⊖, the inaccessible value. We
say that a memory stateσ in theDOS semantics isobservationally soundwith respect to memory statesG in the
GSB memory state, if every pair of access paths that have comparable values inσ, has equal values inσ iff they
have equal values insG.

By definitionDOS mimicsGSB: Executing the same sequence of statements in theDOS semantics and
in the standard semantics either results in aDOS memory state which is observationally sound with respect to
the resulting standard memory state, or theDOS execution gets into an error state due to a constraint breach
(detected byDOS). A program isdynamically encapsulatedif it does not have an execution which gets into an
error state. (Note that the initial state of an execution inDOS is observationally sound with respect to its standard
counterpart).

Our goal is to detect structural invariants that are true according to thestandard semantics. DOS acts like
the standard semantics as long as the program’s execution satisfies certain constraints.DOS enforces these
restrictions by blocking references that a program should not access. Similarly, our analysis reports an invariant
concerning equality of access paths only when these access paths have comparable values.

An invariant concerning equality of access paths inDOS for a dynamically encapsulated program is also an
invariant in the standard semantics. This makes abstract interpretation algorithms ofDOS suitable, for example,
for verifying data structure invariants, for detecting memory error violations, and for performing compile-time
garbage collection.

Definition 5.6.1 (Value of access paths in theDOS semantics) The value of an access pathα = 〈x, δ〉 in state
σ = 〈ρ, L, h, t, m〉 of theDOS semantics, denoted by[[α]]DOS(σ), is defined to bêh(ρ(x), δ), where

ĥ : Val × ∆ →֒ Val such that

ĥ(v, δ) =





v if δ = ǫ (note thatv might be⊖ )
ĥ(h(v, f), δ′) if δ = fδ′, v ∈ Loc

⊥ otherwise (note thatv might be⊖ )
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Note that traversal of the inaccessible value is not defined.

Definition 5.6.2 (Comparable values)A pair of values of theDOS semanticsv1, v2 ∈ Val is comparable,

denoted byv1
?
⊲⊳ v2, v1 6= ⊖ andv2 6= ⊖.

We define the notion ofobservational soundnessbetween aDOS memory stateσ and a standard2-level
storesG as the preservations insG of all equalities and inequalities which hold inσ. Note that the preservation in
the other direction is not required. Also note that an equality resp. inequality between access paths holds inσ only
when the two access paths have comparable values. For simplicity, we define[[null]]DOS(σ) = [[null]]GSB(σ) =
null.

Definition 5.6.3 (Observational soundness)The memory stateσ ∈ ΣD is observationally soundwith respect
to memory statesG ∈ SG, denoted bysG ≦ σ, if for everyα, β ∈ AccPath ∪ {null} it holds that

if [[α]]DOS
?
⊲⊳ [[β]]DOS then [[α]]DOS(σ) = [[β]]DOS(σ)⇔ [[α]]GSB(sG) = [[β]]GSB(sG)

We define the notion of observational soundness between twoDOS memory states (resp. two standard mem-
ory states) in a similar manner.

Theorem 5.6.4 states thatDOS (i) detects if an execution is dynamically-encapsulated, and (ii) for dynami-
cally encapsulated executions, execution of statements preserves observational equivalence. The theorem follows
from having the definition of theDOS semantics mimic a standard store-based semantics with someadditional
assignments of the inaccessible value at procedure returns. However, once this value is observed, theDOS
semantics moves into an error state.

Before stating the theorem, we introduce the notion ofpairs of program states producible by a same level
execution, i.e., pairs of states that occur in the same invocation of a procedure in a particular execution: We say
that a pair of program states〈〈pp, σ〉, 〈pp′, σ′〉〉 is producible by a same level executionof P if there exists an
reachable executionπ ∈ ΠP of P and0 ≤ i < j ≤ |π| such that (i)|π(i)| = |π(j)|, (ii) 〈pp, σ〉 = π(i),
(iii) 〈pp ′, σ′〉 = π(j), and (iv)|π(i)| ≤ |π(k)| for everyi ≤ k ≤ j. (For a formal definition, see Section E.1.4).

Theorem 5.6.4 (Observational Soundness)Letst be a statement andσ be aDOS memory state which is obser-

vationally sound with respect to a memory statesG of theGSB semantics, i.e.,sG ≦ σ. If 〈st , sG〉
GSB
∽∽∽∽∽◮ sG

′

then there is a same-level execution ofst in DOS starting from memory stateσ ends in a memory stateσ′ such
thatsG

′ ≦ σ′ or σ′ = EDOS .

The following lemma falls out from Theorem 5.6.4. The theorem states that for dynamically-encapsulated
programsDOS can be used to: (i) verify data-structure invariants that are expressed by access-path equalities at a
program point; and (ii) assert the absence ofnull-valued pointer dereferences. Formally, a property is an invariant
at a (labeled) statement if it is satisfied in any memory-state that occurs just before the (labeled) statement is
executed.

Lemma 5.6.5 Let P be a dynamically encapsulated program. An invariant concerning equality of access paths
in theDOS semantics is an invariant inGSB.

The following lemma states that for dynamically-encapsulated programsDOS can detect memory leaks13

without investigating reachability fromroots of pending access paths. A memory leak can occur only when a
variable or a field is assignednull .

Lemma 5.6.6 LetP be a dynamically encapsulated program. If a reference has the inaccessible value at a given
program point in every execution ofP , then this reference is not live (i.e., used before set) at that program point
according to the standard semantics.

13By a memory leak we mean an object that is not pointed-to by anyaccess path; i.e., neither by an access path of the current call nor by
one of a pending call.
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5.6.3 Storelessness

We say that twoDOS memory states are observationally equivalent if they are observationally sound with respect
to each other. Note that, in particular, given two observationally equivalentDOS memory states, an access path
has an undefined value in one state if and only if it has an undefined value in the other.

Definition 5.6.7 (Observational equivalence)TheDOS memory statesσ1, σ2 ∈ ΣD areobservationally equiv-
alent, denoted byσ1 ≶ σ2, if σ1 ≦ σ2 andσ2 ≦ σ1.

The following lemma shows thatDOS is indifferent to location names. In this respect,DOS has the flavor
of a storeless semantics.

Theorem 5.6.8 (DOS is indifferent to location names) Let π1, π2 be executions of a programP according
to the DOS semantics. If |π1(0)| = |π2(0)| = 1, in(π1) ≶ in(π2) and path(π1) = path(π2) then
out(π1) ≶ out(π2).

The following lemma, shows that theDOS semantics does not depend on the immutability of locations of
allocated objects. In particular, it shows that it is possible to replace the exit state of an invoked procedure with
any observationally equivalent state. However, here we have to be a bit careful not to introduce clashes between
location names in the call- and exit- states. Specifically, we need to make sure that memory locations which are
used by the caller, but were irrelevant for the call were not allocated by the callee.

Definition 5.6.9 TwoDOS memory statesσc andσx arepossible call- and exit- memory states for an arbitrary
intramodule procedure invocationy = p(x1, . . . , xk) if:

(i) Lc ⊆ Lx and
(ii) (Lc \Lrel)∩Lx = ∅, wereLrel is as defined in Figure 5.5, i.e., the set of locations which are relevant to the

invocation.

Lemma 5.6.10Let σc, σx
1 , and σx

2 be DOS memory states such that (i)σx
1 ≶ σx

2 , (ii) the invocationy =
p(x1, . . . , xk) is dynamically encapsulated inσc, and (iii) σc andσx

i (for i = 1, 2) are possible call- and return-
memory states for this invocation.

〈σc, σx
1 , Rety=p(x1,...,xk)〉

DOS
∽∽∽∽∽∽◮ σr

1 ⇐⇒ 〈σc, σx
2 , Rety=p(x1,...,xk)〉

DOS
∽∽∽∽∽∽◮ σr

2

andσr
1 ≶ σr

2 .

Sketch of Proof:The core of the proof relies on the following observation: When a procedure returns, theblocking
operation has two effects: (i) Itblocksdangling reference to components whose ownership was transferred, and
(ii) it redirectsany dangling reference which is aliased with an actual parameter at the call site to the value of
the corresponding formal parameter at the exit state. (InDOS, the value of an accessible formal parameter is the
same as that of its actual parameter, howeverDOS does not depend on this property).

5.7 Conditional Module Invariants

Our modular analysis identifies conservativemodule invariants. These invariants are true inanyprogram accord-
ing to theDOS semantics and inany dynamically encapsulated programaccording to the standard semantics.
Thus, our module invariants areconditional, they are guaranteed to hold only fordynamically encapsulatedpro-
grams.

We distinguish between two types of module invariants:external conditional module invariantsandinternal
conditional module invariants. The external conditional module invariants of modulem (which we usually refer
to as themodule invariants of modulem) are invariants pertaining to sealed components of modulem. The
internal conditional module invariants of modulem (which we also refer to as theimplementation invariants of
modulem) are invariants pertaining to unsealed components of modulem.14

14Recall that when a procedure of modulem executes, the (single) component of modulem is unsealed. In contrast, when a procedure of
modulem does not execute, all components of modulem aresealed.
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5.7.1 External Conditional Module Invariants

An (external) conditional module invariantof a modulem (in dynamically encapsulatedprograms) is a property
that holds for all the components that belong tom when theyare notbeing used (i.e., for sealed components).

More formally, themodule invariant of modulem for typeT , denoted by[[Invm T ]] ⊆ 2C, is a set of sealed
components of modulem whose header is of typeT : a sealed componentc is in [[Invm T ]] iff there exists a
reachableDOS memory stateσ in some program such thatc ∈ C(σ).

Definition 5.7.1 (Conditional (External) Module Invariant s) Theconditional (external) module invariant of
typeT of modulem, denoted by[[Invm T ]] ⊆ 2C , is the set containing every sealed component of modulem
whose header is of typeT in any memory state that may arise during an execution of any programP that usesm.

[[Invm T ]] =
{
c ∈ C(σ)

∣∣ σ ∈ ΠP , m(σ) = m, t(hdr (c)) = T
}

.

We say that a setS is asound external module invariant of modulem for a typeT of modulem if [[Invm T ]] ⊆ S.

Example 5.7.2 The module invariant of modulemRP for typeRPool in our running example is the
set containing all resource pools with a (possibly empty)acyclicfinite list of resources.

The module invariant of modulemRP for typeR is the singleton set containing a single resource with
a nullified n-field: An acquired resource always has anull-valuedn-field and a released resource is
inaccessible. (See also Example 1.3.9).

5.7.2 Internal Conditional Module Invariants

Internal conditional module invariantsdescribe properties of the parts of the memory manipulated by modulem
when theyare being used, i.e., properties of unsealed components. (Thus, we also refer to internal conditional
module invariants asconditional module implementation invariants).

To formally define the domain of internal conditional moduleinvariants, we introduce the notion oftrimmed
memory states.

5.7.2.1 Trimmed States

A trimmed stateis a pair of an environment and the current component. Intuitively, a trimmed memory state can
be thought of as a conservative approximation of aDOS memory state which abstracts away all the information
regarding the shape of the sealed components and the structure of the component tree.

More technically, thedomain of trimmed states is σ⋆, 〈ρ, c⋆〉 ∈ Σ⋆ = E × C. A trimmed state
σ⋆ = 〈ρ, c⋆〉 = 〈ρ, 〈I, L, R, h, t, m〉〉 ∈ Σ⋆ is a pair of an environment and an unsealed component. The only
locations that the environment may map variables to are the entry-locations ofc⋆ and the locations of its rim-
objects, i.e.,range(ρ) ⊆ I ∪ R ∪ {null,⊖}.

Remark 5.7.3 Note that by Invariant 1(i), a local variable in a (dynamically encapsulated) memory state can
point only to an object which is inside the current componentor in its rim.

Example 5.7.4 Figure 5.3 (σ⋆) depicts the trimmed memory state induced by theDOS memory
state shown in Figure 5.3 (σc).

Given aDOS memory stateσ ∈ ΣD, we denote bytrim(σ) = 〈ρ, c⋆(σ)〉 the trimmed state induced byσ.
Similarly, given a setDOS memory stateS ⊆ ΣD, we denote bytrim(S) = {trim(σ) | σ ∈ S} the set of
trimmed state induced byS.

5.7.2.2 Relational Internal Conditional Module Invariants

Internal conditional module invariants at a program pointpp in a procedurep of a modulem (in dynamically
encapsulatedprograms) is a relation that holds between the values of the environment and the current component
at the entry top and atpp.
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Definition 5.7.5 (Internal conditional module invariants) The internal conditional module invariant at pro-
gram pointpp in procedurep of modulem, denoted by[[Inv imp

m pp]] ⊆ Σ⋆ × Σ⋆, is the set of pairs of trimmed
states such that〈σ⋆

e , σ⋆′

〉 ∈ [[Inv imp
m pp]] iff there exists a programP which usesm, and twoDOS memory states

σe andσ′ such that
(i) σe = 〈ρe, Le, he, te, m〉 such thatσ⋆

e = trim(σe);
(ii) σ′ = 〈ρ′, L′, h′, t′, m〉 such thatσ⋆′

= trim(σ′); and
(iii) 〈〈entryp, σe〉, 〈pp′, σ′〉〉, whereentryp is the entry site of procedurep, are producible by a same level

execution ofP .

We definethe program independent meaning of a procedure, denoted by[[Inv imp
m p]], to be the module imple-

mentation invariant at the exit-site ofp.

Definition 5.7.6 (Program independent meaning of a procedure) The program independent meaning of a
procedurep of modulem, denoted by[[Inv imp

m p]], is [[Inv imp
m p]] = [[Inv imp

m exitp]], whereexitp is the exit
point of procedurep.

We say that a setS of pairs of trimmed memory states of a procedurep is asound internal module invariant
at program pointpp in procedurep of modulem if [[Inv imp

m pp]] ⊆ S. We say that a setS is asound modular
meaning of a procedurep if [[Inv imp

m p]] ⊆ S.

5.8 Concrete Module Semantics

Our goal in this chapter is to define a modular analysis which (conservatively) computes (external and inter-
nal) module invariants. To achieve this goal, we first define aprogram-independentconcrete module semantics.
The concrete module semantics associates every module withits internal and external module invariants. These
invariants are defined as the least fixed point solution of an equation system. The solution may, in general, be un-
computable. Thus, in Section 5.9, we present an abstract module semantics which over-approximates the concrete
module semantics and allows tocomputeconservative module invariants.

Memory states. We define the module semantics overtrimmed memory states. (The domain of trimmed mem-
ory states was already defined in Section 5.7.2.1). Thus, we refer to the concrete module semantics as thetrimming
semantics(T SS⋆).

Operational Semantics. We do not explicitly define the operational semantics over trimmed memory states.
Instead, we reuse the definition ofDOS ’s operational semantics byfabricatingaDOS memory state for every
trimmed memory state. We apply theDOS operational semantics to the fabricatedDOS memory state and trim
the resulting state to obtain the effect of the statement.

Outline. The rest of this section is organized as follows: In Section 5.8.1, we provide some preliminary def-
initions regarding similarity between components and memory states. In Section 5.8.2, we define the meaning
of intramodule operations (i.e., intraprocedural statements andintramodule procedure calls.). In Section 5.8.3,
we define the meaning ofintermodule procedure calls madeby the module. This allows us to handle the second
challenge posed in Section 5.3, i.e., how to handle invocations to other modules without reanalyzing them. In
Section 5.8.4, we show how we determine all calling contextsto a module without knowing its clients. In par-
ticular, we provide a possible answer to the first challenge posed in Section 5.3, i.e., how to determine all calling
contexts to a module without knowing its clients. In Section5.8.5, we define the system of equations whose least
fixpoint is the module semantics.

5.8.1 Component Similarity and Trimmed State Similarity

Two components are similar if they are of the same module and one component can be produced from the other
one by consistently renaming the locations of the other component.
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Definition 5.8.1 (Location renaming function) A location renaming functionis a bijective total functioni :
Loc ∪ {null,⊖} → Loc ∪ {null,⊖} which maps null to null and⊖ to⊖, i.e.,i(null) = null andi(⊖) = ⊖.

Definition 5.8.2 (Component Similarity) Componentc1 andc2 =〈I2, L2, R2, h2, t2, m2〉 aresimilar according
to a renaming functioni, denoted byc1

c
∼i c2, if

• I1 = {i(l) | l ∈ I2},
• L1 = {i(l) | l ∈ L2},
• R1 = {i(l) | l ∈ R2},
• h1 = i◦h2◦i−1,
• t1 = t2◦i−1, and
• m1 = m2.

Componentsc1 andc2 aresimilar, denoted byc1
c
∼c2, if there exists a renaming functioni such thatc1

c
∼i c2.

Two trimmed states are said to be similar if both the component andthe environment of one trimmed memory
state can be produced from the other by the same location renaming function.

Definition 5.8.3 (Trimmed-states Similarity) Trimmed-statesσ⋆
1 = 〈ρ1, c

⋆
1〉 andσ⋆

2 = 〈ρ2, c
⋆
2〉 are similar ac-

cording to a renaming functioni, denoted byσ⋆
1

t
∼i σ⋆

2 , if ρ1 = i◦ρ2 andc⋆
1

c
∼i c⋆

2. Trimmed-statesσ⋆
1 andσ⋆

2

aresimilar, denoted byσ⋆
1

t
∼ σ⋆

2 , if there exists a renaming functioni such thatσ⋆
1

t
∼i σ⋆

2 .

We say that twoDOS memory statesσ1, σ2 ∈ ΣD aresimilar under the trimming abstraction, denoted by

σ1
t
∼ σ2, if trim(σ1)

t
∼ trim(σ2). We say that two set ofDOS memory statesS1, S2 ⊆ ΣD aresimilar under

the trimming abstraction, denoted byS1
t
∼ S2, if for every stateσ1 ∈ S1 there exists a stateσ2 ∈ S2 such that

σ1
t
∼ σ2, and vice versa.

5.8.2 Meaning of Intramodule Statements

In this section, we define the meaning of intramodule programstatements in the trimming semantics. The seman-

tics is defined using a transition relation
⋆
∽∽∽◮⊆ Σ⋆×Stmt×Σ⋆. We define the meaning of intramodule statements

by constructingfor every trimmed stateσ⋆ ∈ Σ⋆ aDOS memory stateσ ∈ ΣD for whichσ⋆ t
∼ trim(σ), which

we refer to as theminimalDOS state abstracted byσ⋆, and applying theDOS operational semantics to this state.
Interestingly, we can define the effect of an intra-module statementst in the trimming semantics on an arbitrary

trimmed stateσ⋆ ∈ Σ⋆ by applyingst to any of theDOS memory statesσ ∈ ΣD for which σ⋆ t
∼ trim(σ).

Intuitively, we can do so because intramodule statements are insensitive to the contents of the heapoutsidethe
current component.

5.8.2.1 MinimalDOS States

We construct the minimalDOS memory state which abstracted by a given trimmed memory stateσ⋆ = 〈ρ, c⋆〉 by,
basically, constructing aDOS memory stateσ in which all the locations insidec⋆ are inσ’s current component
and every location in the rim ofc⋆ is placed in its own sealed component.

Definition 5.8.4 (Minimal DOS states) Theminimal DOS memory state corresponding to a trimmed memory
stateσ⋆ = 〈ρ, 〈I, L, R, h, t, m〉〉 ∈ Σ⋆, denoted bydos(σ⋆), is dos(σ⋆) = 〈ρ, L ∪ R, h, t, m〉.

Remark 5.8.5 Note that a minimalDOS state may never arise inany program. However, it is a dynamically
encapsulatedDOS memory state which satisfies all the requirements of Invariant 1.

5.8.2.2 The Meaning of Intraprocedural Statements

The effect of an intraprocedural statementst on a trimmed stateσ⋆ ∈ Σ⋆ is defined by the effect ofst according
to theDOS semantics ondos(σ⋆), the minimalDOS memory state pertaining toσ⋆, i.e.,

〈σ⋆, st〉
⋆
∽∽∽◮ trim(σ′) ⇐⇒ 〈dos(σ⋆), st〉

DOS
∽∽∽∽∽∽◮ σ′
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The following lemma shows that the meaning of intraprocedural statements in the trimming semantics pro-
vides the same meaning (up to similarity) for every twoDOS memory state which are similar under the trimming
abstraction. The lemma follows immediately from a case analysis of the definition of the different intraprocedural
statements in theDOS semantics (see Section 5.5) and the trimming abstraction (see Section 5.7.2.1).

Lemma 5.8.6 Let st ∈ Stmt be an intraprocedural program statement. For anyσ1, σ2 ∈ ΣD such thatσ1
t
∼ σ2

it holds that

{σ′
1 | 〈σ1, st〉

DOS
∽∽∽∽∽∽◮ σ′

1}
t
∼ {σ′

2 | 〈σ2, st〉
DOS
∽∽∽∽∽∽◮ σ′

2} .

5.8.2.3 The Meaning of Intramodule Procedure Invocation:Call

We define the meaning of an intramodule procedure of an arbitrary procedure invocationy = p(x1, . . . , xk)

according to the trimming semantics using a transition relation
⋆
∽∽∽◮⊆ Σ⋆ × Cally=p(x1,...,xk) × Σ⋆.

The effect of a call statementCally=p(x1,...,xk) on a trimmed (call) stateσ⋆c ∈ Σ⋆ is defined by the effect of
st according to theDOS semantics ondos(σ⋆c), the minimalDOS memory state pertaining toσ⋆c, i.e.,

〈σ⋆c, Cally=p(x1,...,xk)〉
⋆
∽∽∽◮ trim(σe) ⇐⇒ 〈dos(σ⋆c), Cally=p(x1,...,xk)〉

DOS
∽∽∽∽∽∽◮ σe

The following lemma shows that the meaning of aCall operation pertaining to an intramodule procedure call
in the trimming semantics provides the same meaning (up to similarity) for every twoDOS memory states which
are similar under the trimming abstraction. The lemma follows immediately from the definition of theDOS
semantics (see Section 5.5) and the trimming abstraction (see Section 5.7.2.1).

Lemma 5.8.7 Let y = p(x1, . . . , xk) be an arbitrary procedure invocation. For anyσc
1, σ

c
2 ∈ ΣD such that

σc
1

t
∼ σc

2 it holds that

{σe
1 | 〈σc

1, Cally=p(x1,...,xk)〉
DOS
∽∽∽∽∽∽◮ σe

1}
t
∼ {σe

2 | 〈σc
2, Cally=p(x1,...,xk)〉

DOS
∽∽∽∽∽∽◮ σe

2} .

5.8.2.4 The Meaning of Intramodule Procedure Invocation:Ret

We define the meaning of a return statement from an intramodule procedure invocation of an arbitrary
procedure invocationy = p(x1, . . . , xk) according to the trimming semantics using a transition relation

⋆
∽∽∽◮⊆ Σ⋆ × Σ⋆ × Rety=p(x1,...,xk) × Σ⋆.

The effect of a return statementRety=p(x1,...,xk) on a trimmed call stateσ⋆c ∈ Σ⋆ and a trimmed exit state
σ⋆x ∈ Σ⋆ is defined by the effect ofst according to theDOS semantics ondos(σ⋆), the minimalDOS memory
state pertaining toσ⋆. However, here we have to be careful not to introduce clashesbetween location names in the
call- and exit- states. Specifically, we need to make sure that memory locations which are used by the caller, but
were irrelevant for the call were not allocated by the callee. (See also Section 5.6.3). Thus, we define the effect
of a return statementRety=p(x1,...,xk) on a trimmed call stateσ⋆c ∈ Σ⋆ and a trimmed exit stateσ⋆x ∈ Σ⋆ by
applying the meaning of theRet in theDOS semantics to (any) minimalDOS states which are (i) possible call-
and exit- states to the memory states for the invocation (seeDefinition 5.6.9) and (ii) pertain to trimmed memory
states which are similar toσ⋆c andσ⋆x.

〈σ⋆c, σ⋆x, Rety=p(x1,...,xk)〉
⋆
∽∽∽◮ trim(σr) ⇐⇒ 〈dos(σ̃⋆c), dos(σ̃⋆r), Rety=p(x1,...,xk)〉

DOS
∽∽∽∽∽∽◮ σr

where

σ̃⋆c t
∼ σ⋆c,

σ̃⋆x t
∼ σ⋆x,

dos(σ̃⋆c) anddos(σ̃⋆r) are possible call- and exit- states for the intramodule invocationy = p(x1, . . . , xk).
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The following lemma shows that the meaning of aRet operation pertaining to an intramodule procedure call
in the trimming semantics provides the same meaning (up to similarity) for every twoDOS memory states which
are similar under the trimming abstraction (and possible call- and return- states for the invocation). The lemma
follows immediately from the definition of theDOS semantics (see Section 5.5) and the trimming abstraction
(see Section 5.7.2.1) using the same observations as in Lemma 5.6.10.

Lemma 5.8.8 Let y = p(x1, . . . , xk) ∈ Stmt be an arbitrary intra-module procedure invocation. For any
σc

1, σ
x
1 , σc

2, σ
x
2 ∈ ΣD such that: (i)σc

i andσx
i are possible call- and exit- memory states forst (for i = 1, 2),

(ii) σc
1

t
∼ σc

2, and (iii) σx
1

t
∼ σx

2 . it holds that

{σr
1 | 〈σc

1, σ
x
1 , Rety=p(x1,...,xk)〉

DOS
∽∽∽∽∽∽◮ σr

1}
t
∼ {σr

2 | 〈σc
2, σ

x
2 , Rety=p(x1,...,xk)〉

DOS
∽∽∽∽∽∽◮ σr

2} .

5.8.3 The meaning of Intermodule Procedure Calls Made by theModule

In this section, we define the meaning of intermodule procedure calls madeby the module. Recall that we assume
that the module dependency graph is acyclic. Thus, we can assume that the semantics of the module of the invoked
procedure is already computed.

At this point, we might be tempted to use the internal invariants of the invoked module which summarizes its
procedure for every possible calling context that might arise in a dynamically encapsulated execution. However,
this approach has one caveat: The implementation invariants of a module are expressed using trimmed memory
states of that module. Thus, using them directly would undermine our goal to define the module semantics in
such a way that it is not aware of the contents of the parts of the heap manipulated by other modules. (Informally,
this situation arises because in theDOS semantics, executing theRet operation pertaining to an intermodule
procedure invocation requires considering information about the contents of heap parts manipulated bydifferent
modules. Specifically, theRet operation is aware of thecontents of the current componentsof both the caller and
of the callee).

Instead of using the internal module invariants of the invoked module, we compute the effect of an intermodule
call in the trimming semantics using a “shallow” summary of the invoked procedure. This summary records only
the effect of the procedure invocation on the caller’s without exposing the internal structure of the components of
the invoked module. More specifically, we exploit the limited effect of intermodule procedure invocations on the
caller’s current component: The only effect an intermoduleprocedure call has on the current component of the
caller is that (i) dangling references are blocked and (ii) the return value is assigned to a local variable.15 Thus,
we extract out of the internal module invariants of the callee a “shallow” summary which suffice to capture these
effects.

5.8.3.1 Shallow Procedure Summaries

In this section, we define a semantic notion of shallow memorystates and shallow procedure summaries.
We construct the shallow trimmed memory state corresponding to a trimmed memory state by, essentially,

restricting the trimmed memory state to contain only objects which are pointed to by variables.

Definition 5.8.9 (Shallow Trimmed Memory States)A shallow trimmed memory stateis a trimmed memory
state in which every object is pointed to by a variable and theheap is undefined. Theshallow trimmed mem-
ory state corresponding to a trimmed memory stateσ⋆ = 〈ρ, 〈I, L, R, h, t, m〉〉, denoted byshallow (σ⋆) is
〈ρ, 〈I ∩ E, L ∩ E, R ∩ E,⊥, t|E , m〉〉 whereE = {ρ(x) ∈ Loc | x ∈ dom(ρ)}.

Definition 5.8.10 (Shallow procedure specification)Given a procedurep of a modulem theShallow procedure
summaryfor a procedurep, denoted by[[p]]s⋆, is

[[p]]s⋆ =



〈σ⋆, σ⋆′〉

∣∣∣∣∣∣

〈σ, σ′〉 ∈ [[Inv imp
m p]],

σ⋆ = shallow(trim(σ)),
σ⋆′ = shallow(trim(σ′))



 .

15By our simplifying assumptions, the return value must pointeither to a parameter object or to a component not previouslyowned by the
caller. The latter case amounts to a new object in the rim of the caller’s current component.
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Any setS ⊆ Σ⋆ × Σ⋆ which is a superset of[[p]]s⋆ is a sound trimmed shallow specification of a procedurep.

The shallow procedure specification records all possible pre and post shallow trimmed states that may occur
in any dynamically encapsulated program.

We assume that we can construct arbitrary shallow memory states. Thus, given the specification, as defined in
Section 5.4.2, of an arbitrary procedurep, we can construct a sound shallow specification of procedurep.

5.8.3.2 Using the Shallow Procedure Summaries

We compute the effect of an intermodule procedure invocation on the caller’s trimmed memory state using the
shallow procedure specification of the callee. Specifically, the effect of an intermodule procedure invocation
y = p(x1, . . . , xk) on a trimmed (call) stateσ⋆c ∈ Σ⋆ is defined by computing the entry state according to the
DOS semantics which results when the call is invoked ondos(σ⋆c), the minimalDOS memory state pertaining
to σ⋆c, and using the shallow procedure summary to determine the resulting exit state. Note that by definition of
a minimalDOS memory state, trimming the computed entry state results in ashallow trimmed memory state.
Thus, we use the shallow procedure summary of the invoked procedure to determine the exit state.

〈σ⋆c, Cally=p(x1,...,xk)〉
⋆
∽∽∽◮ trim(σr) ⇐⇒

〈dos(σ⋆c), Cally=p(x1,...,xk)〉
DOS
∽∽∽∽∽∽◮ σe

〈trim(σe), σx
s 〉 ∈ [[p]]s⋆

〈dos(σ⋆c), dos(σx
s ), Rety=p(x1,...,xk)〉

DOS
∽∽∽∽∽∽◮ σr

The following lemma formalizes the soundness of using the procedure summaries. It follows immediately
from the definition of theDOS semantics and the above observations.

Lemma 5.8.11Letp be a procedure of modulem. LetP be a program usingm. Letσc, σe, σx, andσr beDOS
memory states that arise during an intermodule invocation of p. The following holds:

(1) 〈dos(trim(σc)), Cally=p(x1,...,xk)〉
DOS
∽∽∽∽∽∽◮ σe

s andtrim(σe
s) = shallow (trim(σe)).

(2) 〈shallow (trim(σe)), shallow (trim(σx))〉 ∈ [[p]]s⋆.

(3) 〈dos(trim(σc)), dos(shallow (trim(σx))), Rety=p(x1,...,xk)〉
DOS
∽∽∽∽∽∽◮ dos(trim(σr))

Lemma 5.8.11 states that: (1) applying theCall rule for the trimmed call memory state results in the shallow
memory state pertaining to the entry state; (2) the shallow states pertaining to the pair of entry and exit state is in
the shallow procedure summary; and (3) combining the trimmed call memory state with the exit state results in
the trimmed return memory state.

5.8.4 The Meaning of Intermodule Procedure Calls to the Module

In this section, we show how to determine all possible calling contexts (i.e., input memory states) that can arise in
an intermodule procedure call to a procedure of the module inany dynamically encapsulated program. Thus, we
provide a possible answer to the first challenge posed in Section 5.3.

The main idea is to utilize the following properties of theDOS semantics:
• In an intermodule procedure invocation, the actual parameters can only point to sealed components. Thus,

the current component of an entry memory state in an intermodule procedure call is comprised of a disjoint
union ofalready generated sealed componentsof the module.

• The only way a sealed component of modulem can be created is when a procedure of a module returns.
Similarly, such a component can be mutated only when it is being passed as a parameter to a procedure of
of modulem.

Informally, the above properties allow us toanticipate the possible entry memory states of an intermodule proce-
dure callby collecting all possible sealed components that are generated at the exit-sites of intermodule procedure
calls and use them tofabricatethe input states to the intermodule procedure calls.
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5.8.4.1 Fabricating Memory States

We now define certain predicates and operations which operate on components and trimmed memory states. These
operations allow us to explicitly fabricate memory state.

Definition 5.8.12 (Disjointness of components)Componentsc1 andc2 are disjoint, denoted byc1♯ c2, if (L1 ∪
R1) ∩ (L2 ∪ R2) = ∅.

Definition 5.8.13 (Combination of components)Thecombinationof disjoint componentsc1 andc2 denoted by
c1 ⊕ c2, is the component〈I1 ∪ I2, L1∪ L2, R1 ∪ R2, h1 ∪ h2, t1 ∪ t2, m〉.

Definition 5.8.14 (Empty component)The empty component of modulem, denoted bycm
∅ , is cm

∅ =
〈∅, ∅, ∅,⊥,⊥, m〉,

Definition 5.8.15 (Rim component)The rim componentof a locationl, a typeT , and modulem, such that
m(T ) 6= m, denoted bycm

rim (l, T ), is cm
rim(l, T ) = 〈{l}, ∅, {l},⊥, [l 7→ T ], m〉.

We say that a componentc ∈ C(σ) is thecomponent of a (reachable) locationl ∈ R(σ) in memory stateσ,
denoted bycσ(l), if l is insidec.

Definition 5.8.16 (M-projected component) TheM-projected componentof a variablex in a DOS memory
stateσ = 〈ρ, L, h, t, m〉 with respect to modulem′ such thatm(t(x)) 6= m, denoted bycm′

σ (x), is

cm′

σ (x) =





cσ(ρ(x)) m(t(x)) = m′ andρ(x) ∈ Loc

cm′

rim(ρ(x), t(x)) m(t(x)) 6= m′ andρ(x) ∈ Loc

cm′

∅ otherwise.

TheM-projected component of a variablex in memory state is:
• the sealed component whose header,ρ(x), is pointed to byx , if x points to a location of modulem′ 6= m;
• the rim component of the location pointed to byx , ρ(x), andx ’s type,t(ρ(x)), if t(ρ(x)) 6= m′; or
• the empty component of modulem′, otherwise (i.e., ifx does not point to a location).

Definition 5.8.17 (Projection of Components)Theprojectionof componentc = 〈I, L, R, h, t, m〉 on an entry-
location l ∈ I, denoted byc|l, is the component〈I∩Lrel , L∩Lrel , R∩Lrel , h|Lrel

, t|Lrel
, m〉, whereLrel =

Rh({l}).

5.8.4.2 Fabricating Input Memory States

Lemma 5.8.18 formalizes the intuition that we discussed above, i.e., that the current component of every entry
state to an intermodule procedure call is comprised of some sealed components at the call state.

Lemma 5.8.18 (Inter-module entry state fabrication) Letσc ∈ ΣD be a possible call memory state for a pro-
cedure invocationy = p(x1, . . . , xk) such thatm(σc) 6= m(p). Letci = c

m(p)
σc (ρc(xi)), for i = 1, . . . , k. Letσe

be the entry state resulting from the invocationy = p(x1, . . . , xk) onσc, i.e.,〈σc, Cally=p(x1,...,xk)〉
DOS
∽∽∽∽∽∽◮ σe.

Letσ⋆
e = 〈[zi 7→ ρc(xi) | 1≤i≤k], c1 ⊕ . . . ⊕ ck〉 be a fabricated memory state. Then,σ⋆

e = trim(σe).

Sketch of Proof:The proof is based on the following properties of theDOS semantics: every formal parameter
in an entry memory stateσe resulting from an inter-module procedure call dominates its reachable subheap.
In addition, inσe, different formal parameters point to disjoint subheaps. Also procedures of modulem can
manipulate only memory states whose current component is ofmodulem.

Thus, in any trimmed memory stateσ⋆
e such thattrim(σe)

t
∼ σ⋆

e , a formal parameter whose type is not of
modulem, points to an isolated object whose fields are undefined. The current component is the only component
of modulem. It is implicitly created by reassigning to the current component of the entry memory state all the
locations inside the subcomponents of the current component of the call memory state whose headers are by an
actual parameter. In particular, the subheap comprising every such subcomponent is not mutated.
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We utilize Lemma 5.8.18 to conservatively determine every possible input state to a procedure. We assume
that we can fabricate empty components and rim components ofarbitrary modules. The challenge is to determine
the possible sealed components of (the analyzed) modulem. Lemma 5.8.19 shows that in any program, such
components were sealed when a preceding inter-module procedure call was invoked. Furthermore, no other
module could have modified these components, as guaranteed by the program model (see Section 5.4).

Lemma 5.8.19 (Consistency of sealed components)Letπ ∈ ΠP
DOS be a feasible execution of an arbitrary pro-

gramP according to theDOS semantics. Letc ∈ C(σ) be a sealed component of modulem in theDOS memory
stateσ = out(π). Then, there exists a prefixπ′ of π such that

(i) 〈ep, σx〉 = top(π(|π′|)) is an exit program state of some procedurep of modulem.
(ii) m(curproc(pop(π(|π′|)))) 6= m, the caller ofp is not of modulem.
(iii) There exists a locationl which in memory stateσx is pointed to by a non-transferred formal variable or by

theret variable (the return value),l ∈ {ρx(ret), ρx(zi) | 1≤i≤k}∩Loc (assuming thatp’s formal variables
arez1, . . . , zk), such thatcσ(l) ∼ c⋆(σx)|l.

5.8.5 A Least Fixpoint Definition of the Module Semantics

In this section, we present an equation system whose (fixpoint) solution defines the program independent meaning
of an arbitrary modulem. The equation system is specified based on the trimming semantics and thebodiesof the
procedures of modulem (Section 5.4). The effect of intermodule procedure calls made by procedures of module
m is determined using the (pre-computed) shallow summaries of the invoked procedures (Section 5.4.2).

The equation system is, in most parts, a standard data-flow-like based equation system, aimed at determining
the collecting semantics (relational trimming-semantics, in our case) of a program. The challenge is that we do
not want to analyze the module in the context of aspecificprogram but in the context ofany program, nor do
we want to analyze the procedures of modules used bym. Section 5.8.4 describes how we achieve the above by
fabricating every possible entry memory state to any procedure of modulem in any program. Section 5.8.3.1
describes how we utilize pre-computed shallow procedure summaries to handle intermodule procedure calls.

Figure 5.6 provides an equation system whose least fixpoint solution determines the module semantics. For
simplicity, and without loss of generality, we assume that the procedures of modulem are eitherinterface pro-
cedures, which may be invoked by procedures from modules other thanm, or private procedureswhich may be
invoked only by procedures from modulem.

The equation system utilizes trimmed shallow procedure summaries to handle inter-module procedure calls.
It determines all possible entry memory states for every procedure of modulem by combining, in every possible
way, the sealed components that were already found. Lemma 5.8.11 ensures soundness of the utilization of the
procedure specification. Lemma 5.8.18 and Lemma 5.8.19 ensure that all possible input states are found.

Note that the ownership transfer specification of procedures of modulem (Section 5.4.2) can beconservatively
verifiedusing any given fixpoint solution to the equation system shown in Figure 5.6.

We note that although the equation system is defined in terms of trimmed memory states of (only) module
m. It does not lead to aneffectivemodular analysisalgorithm: In general, trimmed memory states might be of
an unbounded size. Thus, an algorithmic solution might be out of hand. However, one can be derived, if the
trimming semantics is replaced by a semantics which approximates it in a bounded way, e.g., see Section 5.9.

5.9 Abstract Module Semantics

This section presents an approach for a static analysis which conservatively identifiesconditional module invari-
antsand verifies that the procedure of a module resects their ownership transfer specification inany dynamically
encapsulatedprograms.

The analysis is derived by two (successive) abstractions ofthe DOS semantics: Thetrimming semantics
provides the basis of ourmodularanalysis by explicitly representing only components of theanalyzed module.
Theabstract trimming semanticsallows for an effective analysis by providing aboundedabstraction of trimmed
memory states (utilizing existingintraprocedural abstractions).
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Intraprocedural
[[n′]]⋆ =

⋃
〈n,n′〉∈Ep

[[n]]⋆ ◦ [[stmtGp
(〈n, n′〉)]]⋆ n′ 6= sp, n

′ 6= ep, n
′ is not a return-site

Interprocedural Intra-module (invocation of private procedures)
[[sp]]

′
⋆ =

⋃
〈n,n′〉∈Eq

{〈σ⋆′′, σ⋆′′〉 | 〈σ⋆, σ⋆′′〉 ∈ [[n]]⋆ ◦ [[Cally=p(x1,...,xk)]]⋆} m(q) = m(p) = m, stmtGp
(〈n, n′〉) = invoke

[[n′]]⋆ = [[n]]⋆ ◦

{
〈σ⋆, σ⋆′〉

∣∣∣∣
σ⋆′ ∈ [[Rety=p(x1,...,xk)]]⋆(σ

⋆, σ⋆′′),
σ⋆′′ ∈ [[ep]]⋆([[Cally=p(x1,...,xk)]](σ

⋆))

}
〈n, n′〉 ∈ Eq, m(p) = m(q) = m
stmtGp

(〈n, n′〉) = invoke

Interprocedural Inter-module (calls to lower modules)

[[n′]]⋆ = [[n]]⋆ ◦

{
〈σ⋆, σ⋆′〉

∣∣∣∣
σ⋆′ ∈ [[Rety=p(x1,...,xk)]]⋆(σ

⋆, σ⋆′′),
σ⋆′′ ∈ [[p]]s⋆([[Cally=p(x1,...,xk)]](σ

⋆))

}
〈n, n′〉 ∈ Eq, m(p) 6= m
stmtGp

(〈n, n′〉) = invoke

Interprocedural Inter-module (simulating external callsto interface procedures)

[[sp]]⋆ =

{
〈σ⋆, σ⋆〉

∣∣∣∣
ci ∈ [[tp(zi)]]⋆ for i = 1, . . . , k,

σ⋆ = 〈[zi 7→ hdr (ci) | 1≤i≤k], c1 ⊕ . . . ⊕ ck〉

}
m(p) = m

Sealed microheaps

[[T ]]⋆ =
⋃

m(q)=m

{
c′|l

∣∣∣∣
〈σ⋆, σ⋆′〉 ∈ [[ep]]⋆, σ⋆′ = 〈ρ′, c′〉, t′(l) = T,

l ∈ {ρ′(ret), ρ′(x) | x ∈ Fq} ∩ Loc

}
m(T ) = m

Figure 5.6: An equation system whose (fixpoint) solution determines sound module invariants for modulem. We assumep is a procedure withk formal parameters,
z1, . . . , zk. invoke ≡ y = p(x1, . . . , xk). c = 〈I, L, R, h, t, m〉. We assume that[[T ]]⋆ = {cm

rim(l, T ) | l ∈ Loc} for all typesT such thatm usesm(T ). We denote
the type of a local variablex of a procedurep by tp(x).
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5.9.1 Abstract Trimming Semantics

We provide an effective conservative abstract interpretation [CC77] algorithm which determines module invari-
ants by devising a bounded abstraction of trimmed memory states. Rather than providing a new intraprocedural
abstraction and analyses, we show how tolift existingintraprocedural shape analyses to obtain a modular shape
abstraction.

An abstraction of a trimmed memory state, being comprised ofan environment of a single procedure and a
subheap, is very similar to an abstraction of a standard two-level store. The additional elements that the abstraction
needs to track is a bounded number of entry-locations and a distinction between internal objects and rim objects. In
addition, the abstract domain, expected to support operations pertaining to basic pointer manipulating statements,
should also allow for:

1. the operations required for cutpoint-free local-heap analysis: carving out subheaps reachable from variables
and combining disjoint subheaps;

2. the ability to answer queries regarding domination by variables;
3. checking if a⊖-valued reference is accessed; and
4. setting the values of all reference pointing to a given variable-pointed object to⊖ (i.e., theblockingopera-

tion).
The abstract domains of [LAIS06, MYRS05, DOY06], which already support the operations required for

performing standard cutpoint-free local-heap analysis (see Section 4.10.1) handle the first two operations and can
be easily extended to support the other two.

Example: Abstract Trimming Semantics via Canonical Abstraction

In this section, we sketch, as an example, how to define aboundedparametric abstraction for trimmed memory
states using canonical abstraction.

We abstract sets of trimmed memory states by a point-wise application of anextraction functionβ⋆ : Σ⋆ →
3Struct (e.g., see [NNH99]) mapping a trimmed memory stateσ⋆ to itsbestrepresentation by anabstract trimmed
memory stateσ⋆♯. An abstract stateσ⋆♯ provides a conservative bounded representation for the unbounded number
of locations in every trimmed-state. We use set-union as thejoin-operator. Technically, abstract trimmed memory
states are represented using3-valued logical structures. The tracked properties are encoded as predicates.

We define a Galois connection between the powerset domain of trimmed memory states and3Struct using a
representation function(see Section 2.5.1)β⋆ : Σ⋆ → 3Struct which maps a program state to its “most-precise
representation” in3Struct . Functionβ⋆ is a composition of two functions:

1. trimmedTo2VLS: Σ⋆ → 2Struct which maps a trimmed memory state to an unbounded2-valued logical
structure S, representing it.

2. canonical abstractionwhich conservatively bounds the resulting2-valued logical structure by a3-valued
logical structure.

The Galois connection between the power-domain of trimmed memory states and the power-domain of3-
valued logical structures(2ΣD , α : 23Struct → 23Struct , γ : 23Struct → 23Struct , 23Struct ) is defined in a standard
manner:

α(S) = {β⋆(σ⋆) | σ⋆ ∈ S⋆} and γ(SS) = {σ⋆ ∈ S⋆ | S♯ ∈ SS, β⋆(σ⋆) ⊑ S♯} .

The functiontrimmedTo2VLSis defined in a similar manner to theto2VLScpf function, defined in Figure 3.12.
This function maps a trimmed memory stateσ⋆ = 〈ρ, c⋆〉 ∈ ΣLCP F

to a 2-valuedlogical structureS. Every
objecto ∈ A is represented by a unique node inUS. Tracked properties of the memory state are recorded by
the predicates given in Figure 2.11, whose intended meaningis explained in Section 2.5.1.2. We also use the
predicatesinUc andinUx , shown in Figure 3.11 to implement the call rule as explainedin Section 3.7.2.2.

For brevity, we do not repeat all the details of the definitionof the set of properties or of the mapping of a
trimmed memory state into a3-value logical structure. We only note the additional predicates required to record
the trimmed memory states. Specifically, these predicates,shown in Figure 5.7, record the type objects. (This
information also allows us to distinguish between objects inside the components and objects at its rim and whether
a reference parameter of a field is accessible or not.)

Abstracting sealed components. In addition, the abstraction needs to abstract (sets of) sealed components. To
do so, we abstract sealed components in the same way that we abstract trimmed memory states, and referring to
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Predicate Intended Meaning
T (v) v is an object of typeT
x⊖ Reference variablex has an inaccessible value
f⊖(v) Reference fieldf of objectv has an inaccessible value

Figure 5.7: Additional core predicates used to represent a trimmed memory state using a3-valued logical structure.

the header pointer, as essentially, a reference variable pointing into the component.



Chapter 6

Related Work

In this chapter, we review closely related work and contrastit with the results presented in this thesis.

6.1 Storeless Semantics and its Use in Program Analysis

In this section, we review existing storeless semantics andtheir use in program analysis.

6.1.1 Storeless Semantics

Storeless semantics was first introduced by Jonkers [Jon81]. The original motivation was to develop anabstract
model[Ber79] for specifying the representation of abstract datatypes. The goal was to design anabstract storage
structurewhich allows to specify representation of (unbounded) datastructures in a level which is abstract enough
to ignore low level concepts such as pointers and garbage collection, but at the same time general enough to allow
description of arbitrary sharing and cyclicity. The main observation in [Jon81] is that a storage structure can
be completely characterized by two things: the collection of its access paths and an equivalence relation which
indicates whether two access paths lead to the same substructure. Jonkers has also envisioned that such structures
can be used to specify the semantics of imperative programming languages with aliasing, sharing, and dynamic
allocation. Indeed, this is the way in which we utilize his work.

Jonkers’s storeless semantics does not handle procedure calls. A storeless semantics that handles procedure
calls is defined by Deutsch in [Deu92a, Deu92b]. In Deutsch’ssemantics, the entire heap is explicitly represented
in every state. Specifically, pending access paths are explicitly represented. In contrast, the storeless semantics
presented in this thesis,LSLCPF (see Section 3.4) andLSL (see Section 4.4), explicitly represent only a part of
the heap (the procedure’s local-heap). Specifically, neitherLSLCPF norLSL explicitly represent pending access
paths.

The development of a storeless semantics that represents only the procedure’s local-heap (and, specifically,
does not represent pending access paths) is challenging. Instoreless semantics, allocated objects do not have
unique immutable identifiers (e.g., an address). Instead, every dynamically allocated objectO is represented
by the set of pointer-access paths whoseR-value equalsO’s L-value. In languages with destructive updates, a
procedure can modify theR-value of access paths that start at variables of pending calls (i.e., pending access
paths).

Deutsch’s storeless semantics [Deu92a, Deu92b] handles the aforementioned problem by representing access
paths that start from pending variables. Technically, the stack of activation records is represented as part of the
state. (The stack is encoded, essentially, as a list). In contrast, our semantics only represents access paths that
start from current variables. As a result, our semantics captures the procedure’s local view of the memory, a view
that includes only the procedure’s local variables and onlythe objects that are reachable from these variables.1

Our main insight in the development ofLSLCPF andLSL is that the side-effects of a procedure invocation on
R-values of pending access paths can be delayed to the procedure return—even though the memory cells do not

1Recall that we forbid global variables. The latter can be treated as value result parameters which are passed to every procedure.
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have unique identifiers, e.g., locations.2 The main idea is to track the effect of destructive updates onaccess paths
that start with the set of objects that separate the part of the heap which the procedure can reach from the rest of the
heap (objects that we call thecutpointsof the invocation). This allows our semantics to explicitlyrepresent only
current access paths (and to avoid explicitly representingpending access paths). A similar observation regarding
the uniform effect of a procedure on pending access paths wasmade by [LR92, Deu94] for pointer analysis. We
believe that our work is the first to explore the usage of this observation in semantics.

6.1.2 The Use of Storeless Semantics in Program Analysis

Venet [Ven99] presents an intraprocedural static pointer analysis for untyped languages which is based on storeless
semantics. The analysis is capable of discovering potential sharing relationships among the data structures created
by an imperative program. The analysis is able to distinguish between elements in inductively defined structures
and does not require any explicit data type declaration by the programmer in order to construct the abstract
interpretation. The price for the generality of the approach is in its precision. For example, it cannot capture the
fact that a sorting algorithm does not create aliasing in thesorted list.

Intraprocedural storeless semantics is also used in [BIL03] to develop a logic that allows to express regular
properties of unbounded data structures.

The interprocedural may-alias algorithm of [Deu94] uses a storeless representation of the heap. The algorithm
is polynomial and can handle procedure calls, dynamic memory allocation and destructive updates. The algorithm
is not shown to be an abstract interpretation of the storeless semantics defined in [Deu92a, Deu92b]. However,
one can define a Galois connection between memory states inLSL with the abstract domain of [Deu94]; see Ap-
pendix D.4.

6.2 Shape Analysis

Shape analysis algorithms produce in compile time a description of the program’s store at each program point.
The description is conservative, i.e., it is valid for all possible executions of the program. For example, the
analysis may reveal whether, at a certain program point, twoor more pointers may point to the same memory
object. In order to represent the structure of the program store, many shape analysis techniques useshape-graphs,
e.g., [JM81, JM82, LH88, CWZ90, AW93, PCK93, SRW98, LARSW00, Yah01, SRW02]. Each node of ashape-
graphrepresents one or more memory locations and each edge standsfor one or more pointers. All the statements
of the program are augmented with sets ofshape-graphs. For each statement, every possible “shape” of the
program’s memory when the control reaches that statement ismodeled by one of theshape-graphsin the set
of shape-graphswhich is associated with it. Thus, the entire set ofshape-graphsassociated with a statement
constitutes a conservative approximation of all the possible “shapes” that the program memory can take at that
point. (See [RSW04] for an introduction to shape analysis).

Parametric Shape Analysis

Shape analysis concerns the problem of determining shape invariants for programs that perform destructive up-
dating on dynamically allocated storage. The complexity ofthe problem usually requires that algorithm be tuned
for a specific class of data structures, e.g., lists or trees.(Specializing the analysis to handle specific data structure
is especially useful when the analysis attempts to establish intricate reachability-based properties [LAIS06].) A
parametric framework for shape analysis can be instantiated in different ways to create shape-analysis algorithms
that provide different degrees of precision.

A parametric framework for shape analysis based on3-valued logic was presented in [SRW02]. The frame-
work can be instantiated in different ways by varying the tracked properties. We express our analyses in the
framework of [SRW02], and realize them using its implementation in the TVLA system [LAS00].

2Having unique immutable addresses identifying objects greatly simplifies the task of designing a local-heap semantics. See, for example,
theLSB semantics, defined in Section 2.3. Note, however, that an abstraction of an (unbounded) store-based heap is most likely to lose
information pertaining to the (unbounded) number of addresses.
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6.3 Interprocedural Shape Analysis

In this section, we review existing approaches for interprocedural shape analysis and contrast existing approaches
for interprocedural shape analysis with ours. In Section 6.3.1, we provide a bird’s-eye view of existing tech-
niques for interprocedural program analysis which have been used for interproceduralshapeanalysis. In Sec-
tions 6.3.2, 6.3.3, we describe existing interproceduralshapeanalysis algorithms which are based on thecall
string approachand on thefunctional approachfor interprocedural program analysis, respectively, and contrast
them with our work. In Section 6.3.4, we discuss the (common aspects of the) shape abstractions which have
been used by existing interprocedural, and in Section 6.3.5, we examine the notion ofheap modularity, which is
a common aspect of interprocedural shape analysis that are based on the functional approach.

6.3.1 Interprocedural Program Analysis

Static program analysis algorithms determine statically (i.e., without the programs being actually executed) dy-
namic properties of programs (i.e., properties of program executions). Interprocedural analysis concerns the static
examination of programs consisting of multiple procedures. In contrast with intraprocedural dataflow analysis,
where “precise” means “meet-over-all-paths” [Kil73], a precise interprocedural dataflow–analysis algorithm must
provide the “meet-over-all-valid-paths” solution [SP81,RHS95].3 Note that even a precise solution (i.e., the
“meet-over-all-valid-paths” solution) may still includeinfeasible paths.

In the following, we review several standard techniques forinterprocedural program analysis. Interprocedu-
ral shape analysis algorithms have been implemented using the call string [SP81] approach and thefunctional
approach[SP81]. In our work, we use the functional approach.

6.3.1.1 The Call String Approach

The call string approach [SP81] approximates a small-step semantics. It separates call chains (and the related data
flow information) that differ in a suffix of a fixed length. Thus, precision may increase with longer call strings.
The maximally useful length for nonrecursive programs is the height of the call-graph. For recursive programs
the number of possible call strings is infinite. Even if thereare no recursive procedures, the number of call strings
can be exponential in the number of procedures. Thus the callstring length has to be limited [Mar99]. For
infinite domains, in general, it is not possible to obtain aprecisesolution using this approach [SP81, Section 7.6].
However, for finite domains it is possible to obtain such a solutioneven if the analyzed program is recursive[SP81,
Section 7.5].

6.3.1.2 The Functional Approach

The functional approach [CC78, SP81] approximates a large-step semantics (see, e.g., [Kah87, NNH99]). It
computes a function for each procedure describing the “abstract” effect of the procedure. These functions are then
used in a standard (intraprocedural-like) algorithm. Technically, this is achieved by lifting the dataflow problem
from determining abstract values, i.e., dynamic properties, to finding a function that describes the accumulated
abstract effect of all the valid paths from the entry of everyprocedure to each one of its statements. In particular,
this approach requires an (efficient) composition of abstract functions [Mar99].

The functional approach allows computing a precise solution even when the abstract domain is infinite. Ter-
mination can be ensured by requiring that the lattice ofabstract functionshas a finite height. A common instance
of the functional approach when the abstract domain is finiteis to tabulate the procedure’s input-output relation
(see, e.g., [SP81, Section 7.3]).

6.3.1.3 Context Free Reachability

This approach is an efficient instantiation of the functional approach for certain types of problems, e.g., when
using a powerset domain. In this approach, interproceduralanalysis problems are converted into a special kind
of graph-reachability problem: reachability along interprocedurally realizable paths. In contrast with ordinary

3A path is valid if it respects the fact that when a procedure finishes it returns to the site of the most recent call [SP81, Cal88, LR91, KS92,
RHS95, SRH96].
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reachability problems in directed graphs, realizable-path reachability problems involve some constraints in terms
of which paths are considered. A realizable path mimics the call-return structure of a program execution, and only
paths in which returns can be matched with corresponding calls are considered [RHS95, HRS95, SRH96].

Context free reachability was used, for example, in theIFDS framework, presented in [RHS95], for solving
interprocedural problems where the abstract domain is finite and the transfer functions are distributive. The
essence of their approach is the construction of anexploded supergraph. The exploded graph has|D| nodes
for every node in the program control flow graph (CFG), where Dis the set of possible dataflowfacts. Every
edgee in the program (CFG) is replaced by a set of edges that explicitly represents the abstract effect of the
statement annotatinge (i.e., an edgee is replaced by thegraphof the function of the statement annotating it).
In this approach, an algorithm computes a precise solution to the dataflow problem by finding which nodes in
the exploded supergraph are reachable from the nodes at the program start node. The nodes have to be reachable
along paths that respect the context-free language of matching calls and returns (and hence the name “context-free
reachability”).

The iterative tabulation algorithm that we employ to implement our interprocedural shape analyses, as de-
scribed in Sections 3.8 and 4.9, are based on the tabulation algorithm of theIFDS framework. We extended
their tabulation algorithm to handle the case where procedures are passed only parts of the global state. (See
Appendix F).

6.3.2 Interprocedural Shape Analysis using Call Strings

In our earlier work [RS01], we extended the3-valued logic framework of [SRW02] to handle procedure calls in
recursive programs manipulating singly linked lists usingthe call string approach. The main idea in [RS01] is to
explicitly represent the runtime stack and to abstract it asa linked list. Despite the summarization of the values
of local variables, the analysis is able to handle return statements from recursive calls rather precisely by tracking
certain relationships between the stack and the heap pertaining to (all) pending variables.

We note that because the analysis of [RS01] represents the entire heap at every program point, the abstraction
may lose information about properties of the heapfor parts of the heap that cannot be affected by the procedure
at all. In addition, the analysis of [RS01] requires the use of special predicates to record stack-heap relationship.
In contrast, in our current work, we only record more “localized” relations pertaining to thesharing patterns
between the irrelevant heap and the procedure’s local-heap. Specifically, we never record relationships between
pending variables and the irrelevant parts of the heap.

At the concretelevel, our current analysis is indeed more local than [RS01], and thus expected to manipulate
more compact memory states [RS01]. However,under abstraction, and in particular if there is a structure (which
is trackable by the analysis) in the relations between the global-heap and the pending variables, aglobal-heap
abstraction in the style of [RS01] might turn out to be more precise than an abstraction of alocal-heap with an
unbounded number of cutpoints.

6.3.3 Interprocedural Shape Analysis using the FunctionalApproach

Interprocedural shape analysis which uses the functional approach has been studied in [RS01, CR03, JLRS04,
HR05, GBC06]. These analyses summarize the behavior of a procedure by tabulating input-output relations.
They mainly differ in the representation of the abstract value and in the granularity of the tabulation.

The original motivation for our interprocedural analyses comes from our attempt to obtain a heap-modular
interprocedural shape analysis in [Rin01, Chap. 6]. There,this objective was achieved, but based on a weaker
technique: (i) a procedure operates on the part of the heap that is reachable from the actual parameters, where
the heap is treated as anundirectedgraph; and (ii) pending access paths that point-to objects in the passed part of
the heap are represented. In this thesis, the heap is treatedas a directed graph and pending access paths are not
represented. In addition, [Rin01, Chap. 6] does not handle recursive procedures.

Chong and Rugina [CR03] present a heap-modular interprocedural shape-analysis algorithm. The main idea
there is to record for every object both its current properties and the properties it had at the time the procedure
was invoked. More specifically, a procedure is analyzed onlyin the part of the heap that is reachable from its
parameters. The algorithm is able to (conservatively) relate sets of abstract objects at the exit memory state with
the set of abstract objects that represent the same concreteobjects at the entry state by (immutably) labelingevery
abstract object with its properties at the entry state.
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Jeannet et al. [JLRS04] present an approach to extend the framework of [SRW02] to handle procedure calls
based on two-vocabulary stores. In their approach, procedures are considered as transformers from the (entire)
heap before the call, to the (entire) heap after the call. Every heap-allocated object is represented at every program
point; on the other hand, only the values of the local variables of the current procedure are represented, which
means that the irrelevant parts of the heap are summarized toa few (usually a single) summary nodes during the
analysis of an invoked procedure. The relevant objects for the invocation are summarized using a two-vocabulary
store. One vocabulary records the current properties of theobject. The other vocabulary encodes the properties
that the object had when the procedure was invoked. The latter vocabulary allows to match objects at the call-site
to objects at the exit-site. Note that this scheme never summarizes together objects that were not summarized
together when the procedure was invoked.

By using a two-vocabulary store, the analysis of [JLRS04] isable to achieve a finer grained tabulation and
prove, for example, that reversing a list twice restores theoriginal list.4 However, the mapping is determined by
the sharing pattern within the part of the heap that is passedto the procedure, and not by the sharing pattern with
the context—which is independent of the internal structureof the local-heap. On the other hand, the approach
of [JLRS04] may lead to needlessly large summaries. Consider for example a procedure that operates on several
lists and nondeterministically replaces elements betweenthe list tails. The method of [JLRS04] will not summa-
rize list elements that originated from different input lists. Thus, it will generate exponentially more mappings
in the procedure summary, than the ones produced by our method. The latter problem is addressed in [JLRS08]
by abstracting away some of the fine-grained relational information, an abstraction which greatly improves the
scalability of the analysis.

The common aspect of [CR03] and [JLRS04] is that they attemptto abstract the “functional behavior” of
the procedure by using a relation which records its effect onthe procedure’s local-heap. In both approaches, the
mapping is determined by the internal properties of the procedure’s local-heap (e.g., aliasing and sharing within
the procedure’s local-heap). However, the sharing patterns with the other parts of the heap areindependentof
the internal structure of the local-heap. In contrast, in our approach we attempt to record these sorts of sharing
patterns. These two sorts of information are orthogonal andcan be combined.

Hackett and Rugina [HR05] exploit a staged analysis to obtain a relatively scalable interprocedural shape
analysis. This approach uses a scalable imprecise pointer-analysis to decompose the heap into a collection of
independent locations. The precision of this approach might be limited as it relies on pointer-expressions appear-
ing in the program’s text. Its tabulation operates on global-heaps, potentially leading to a low reuse of procedure
summaries.

Gotsman et al. [GBC06] describe a heap-modular interprocedural shape analysis that can handle a bounded
numbers of cutpoints. The main idea is to treat a bounded number of cutpoint-labels as, essentially, additional
parameters: Every procedure can be seen as havingk additional (hidden) formal parameters (wherek is the bound
on the number of allowed cutpoints). When a procedure is invoked, their analysis (non-deterministically) binds
these additional parameters with references to the cutpoints. The algorithm was instantiated for singly linked lists.
Their tabulation algorithm is based on our algorithm, presented in Appendix F.

Yang et al. [YLB+08] present a heap-modular interprocedural shape analysiswhich, similarly to [GBC06], is
based on a domain of separation logic formulae. Their experimental results indicate that the use of local-heaps
provides a speedup of×2–×3 in the analysis compared to a global-heap analysis. Furthermore, the use of an
interprocedural analysis that passes only the reachable portion of the heap was found to be one of the three key
reasons for the scalability of their analysis. (The other two key reasons being an efficient join operator and the
discard of intermediate states.)

Marron et al. [MHKS08] present a context-sensitive shape analysis which is employed for automatic paral-
lelization of sequential heap manipulating programs. The interprocedural analysis is based on an abstraction of
local-heaps with cutpoints. The analysis uses an abstraction of cutpoint-labels which is based on two main ideas:
(i) avoid summarizing cutpoints that are generated by the local variables of theimmediatecaller and (ii) abstract
all other cutpoints by recording the set of roots of access paths. The analysis also uses liveness information to
avoid recording as cutpoints objects that are only pointed to by dead references.

4Note that in [CR03], theobjectsat the entry state are related to the objects at the exit state. In [JLRS04],fieldsof objects at the entry state
are related to fields of objects at the exit state.
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6.3.4 Shape Abstraction of local-heaps

In our interprocedural analysis for cutpoint free programs(and in our modular analysis for dynamically encapsu-
lated programs) we do not devise new shape abstractions. Instead we show how tolift existing intraprocedural
shape analyses,e.g., [MYRS05, DOY06, LAIS06], to obtain interprocedural and modular shape analysis algo-
rithms. Specifically, our analyses are parametric in the abstraction of the local-heap.

The common aspect of [MYRS05, DOY06, LAIS06] is that they abstract the heap assegmentsof lists or trees
delimited by local variables or by (a bounded number of) shared nodes. The segmented representation records the
reachability-from-variableinformation by trackingdominated-by-(a bounded set of)-variablesinformation. It is
the latter sort of information which is required by our analyses.

The interprocedural shape analysis of [GBC06], which utilizes the domain of [DOY06], also depends on the
domination information recorded by the abstraction. Indeed, when the number of cutpoints exceeds a certain (arbi-
trary but fixed) threshold, the analysis abstracts away all information regarding the cutpoints and turns references
to cutpoints into dangling references which the program is not allowed to access.

6.3.5 Heap Modular Analysis

We use the termheap modular analysisto denote a particular kind ofheterogeneous abstraction[YR04]. A
heterogeneous abstraction allows different parts of the heap to be abstracted using different degrees of precision
at different program points. A heap modular analysis tracksinformation about the contents of the procedure
local-heap and abstracts away (almost) all the informationregarding the contents of the other parts of the heap.

The interprocedural shape analysis algorithms presented in Chapters 3 and 4, as well as the analyses
of [JLRS04, CR03, HR05, GBC06], compute heap modular procedure summaries, but are not modular, i.e.,
they analyze whole programs. The analysis of [HR05] tracks properties of single objects. The other algorithms
abstract whole local-heaps. The unique aspect of our abstractions is that they maintain information regarding the
sharing patterns between the procedure local-heap and the other (irrelevant) parts of the heap.

The trimming abstraction is presented in Chapter 5 for modular analysis. However, it can also be used for
achieving a more efficient interprocedural analysis: a trimmed memory state explicitly represents only a part of
the local-heap. This suggests possible benefits both in performance and in reuse. Indeed, in [RRYS06] we have
applied such an abstraction for shape analysis of parameterized data structures. The heap abstraction of [RRYS06]
seeks to strike a balance between the use of non-local (transitive) properties to gain precision and exploiting heap-
locality. Similarly to our modular analysis, the abstraction of [RRYS06] represents the heap as an (evolving)
tree of heap-components, with only a single heap-componentbeing accessible at any time. The representation is
tailored to yield several benefits: (a) It localizes the effect of heap mutation, enabling more efficient processing
of heap mutations; (b) The representation is more space-efficient as it permits heap-components with isomorphic
contents to use a shared representation; (c) It enables a more precise identification of the “input heap” to a pro-
cedure, increasing the reuse of summaries in a tabulation-based interprocedural analysis, thus making it more
efficient. More specifically, based on this heap abstraction, we have designed an analysis that can compute pa-
rameterized summaries which can be re-used for analyzing clients of instantiations of parameterized (generic)
data-structures.

6.4 Modular Shape Analysis

Cousot and Cousot [CC02] describe fundamental techniques for modular static program analysis. These tech-
niques allow to compose separate analyses of different program parts, analyses which detect properties pertaining
solely to the analyzed program part, together with a global analysis which detects global program properties. A
modular shape analysis, mainly interested in properties ofthe global-heap, is at risk of degenerating into a whole
program analysis. Nevertheless, we are able to achieve modularity by associating (an unbounded number of)
different parts of the heap(components) with different modules. Our analysis eliminates the need to consider
intermodule aliasing by establishing rigid spatial interfaces between parts (components) belonging to different
modules and requiring that the heap be, effectively, a tree of components. This allows us to consider properties
of components as being module-local and directly use the techniques of [CC02]. In our modular analysis, we use
various techniques described in [CC02]:
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- We useuser provided interfacesto prevent live intermodule sharing and to communicate the (limited) effect of
mutations done by different modules.

- Our definition of a component ensures that (i) different components never share parts of the heap and that
(ii) only component headers can be passed as parameters to intermodule procedure calls. The latter restriction
ensures that intermodule procedures are always passed whole components as parameters, and thus, prevents
intermodule procedure calls from having side-effects on components not passed as parameters. Every dynam-
ically encapsulated memory state satisfies the above two restrictions. Our analysis utilizes this fact tosimplify
the separate analysis of modules by representing only thoseparts of the heap which are relevant for the analyzed
module.

- Furthermore, we can disregard possible worst case assumptions regarding aliasing in favor of certain benign dis-
jointness assumptions. However, we do makeworst-case assumptionsregarding the possible calling sequences
of intermodule procedure calls. An analysis which conservatively abstracts the results of such calling sequences
can find all possible heap components of a module because it can treat heap components as atomic values.

Logozzo [Log03] presents a modular analysis which infers class invariants based on an abstraction of program
traces. An extension of this work which handles subtyping ispresented in [Log04a]. A different extension which
allows to consider clients that invoke only certain series of procedure invocations, provided that the language
of the expected series can be specified by a regular expression, appears in [Log04b]. The determined invariants
concern values of atomic fields of objects of the analyzed class. Properties of subobjects can also be detected
provided that these subobjects are encapsulated inside thestate of their containing objects (objects which are of
the analyzed class) and are never leaked to the context. (A subobject is leaked if it was passed as a parameter from
the context or as a return value. For example, in the running example of Chapter 5, resources are “leaked” from
resource pools.)

Aggarwal and Randall [AR01] describe an analysis which modularly determines invariants regarding the value
of an integer field and the length of an array field of thesameobject. Our analysis computes shape invariants of
subheaps comprised of objects that may be passed as parameters.

Yorsh et al. [YSRS05] provide a method for computing the effect of a procedure call which is modular in the
program code—but not in the program state: A theorem prover is used to propagate the effect of a procedure call
on the different abstraction layers by inferring this effect from the calls effect on the representation of the lower
level of abstractions. Intuitively, their approach leads to a breaching of abstraction layers as it requires maintaining
in the state of every component information pertaining to the representation of its subcomponents.

Lam et al. [LKR05] and Wies et al. [WKL+06] utilize user-specified pre- and post- conditions to achieve
modular shape analysis which can handle a bounded number of flat set-like data structures. It allows objects to
be placed in multiple sets. In our approach, an object can be placed only in a single separately-analyzed but
arbitrarily-nested set.

One of the most challenging problems in modular analysis is inferring the preconditions of (intermodule)
procedure calls. Calcagno et al. [CDOY07] present an analysis which attempts to infer a description of only the
memory cells that might be accessed, following the footprint idea in separation logic. The main idea is to try
to discover assertions that describe the footprint, ratherthan the entire global state of the system. Specifically,
the analysis runs forward and whenever it encounters a dereference of a potentially dangling pointer, it adds this
pointer into the “footprint assertion”. The latter describes the cells needed for the program to run safely. Our
modular analysis also runs forward. However, it utilizes the (verified) restrictions on the expected “well behaved”
clients to compute all possible input states to a procedure (i.e., compute its precondition) using the module’s most
general client.

6.5 Manual Modular Verification of Heap Manipulating Progra ms

In this thesis, we do not provide a proof system per-se. However, abstract-interpretation can be seen as a mech-
anism for automatic program verification [Cou03]. In particular, there are close relations between our approach
for interprocedural analysis and existing techniques for manual verification of procedural programs.
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6.5.1 Rule of Adaptation

The first proof rule for procedure calls, therule of adaptation, was given in [Hoa71]. It allows to reuse a proof
of a procedure body in different invocations of the procedure. Later work, e.g., [ILL74, GL80], simplified the
use of this rule by providing arule of invariance(also known as aframe axiomor a frame rule). The frame
axiom enables one to prove that any predicate that does not refer to variables changed by a procedurep (and
any procedure invoked byp) can be assumed to remain true after an invocation ofp [GL80]. However, heap-
manipulating programs are not handled in [Hoa71, ILL74, GL80]. Proof rules for heap-manipulating programs
are given in [Hoa72]. These rules are valid only for programswithout reference parameters that use tree-like data
structures, i.e., programs that do not use sharing.

Our interprocedural shape analysis algorithms are based onan abstraction of a local-heap semantics. Specif-
ically, the “mimicry” of the modular treatment of the heap bythe static-analysis algorithms (which is due to the
fact that they are abstract interpretations of local semantics) can be seen as a utilization of a (reachability-based)
frame rule that is “built into” the semantics. The reuse of the results of an analysis of a procedure-body for differ-
ent calling-contexts with similar sharing patterns can be seen as a utilization of (a limited form of) an adaptation
rule.

6.5.2 Separation Logic

Separation logic [IO01, Rey02] provides a way of proving properties of (heap manipulating) procedures in a local
fashion using aframe rule. The main idea is to partition the heap into disjoint parts,5 and reason about each part
separately. Inferring the effect of a procedure on a heap described byP ∗ R6 by (only) reasoning about its effect
on a heapP is possible, as long as there is no need to reason about thecontentsof the heap described byR. In
this case, the frame rule ensures that if a procedurep transforms a heapP into a heapQ, then invokingp on a
heapP ∗ R results in a heap that satisfiesQ ∗ R.

In some sense, the approach used in this chapter is in the spirit of local reasoning. Our semantics resembles
the frame rule in the sense that the effect of a procedure callon a large heap can be obtained from its effect on
a subheap. However, while the frame rule allows for an arbitrary partitioning of the heap, in our semantics, an
invoked procedure operates on the subheap reachable from the actual parameters. In particular, the partitioning of
the heap according to theLSLCPF semantics and theLSL semantics is deterministic. (However, in theanalysis,
when the distinction between several cutpoints is lost, theanalysis has to take into account every possible matching
between the cutpoints at the entry-site and the cutpoints atthe exit-site.)

6.5.2.1 Local Reasoning

In separation logic, local reasoning is carried out using user-supplied specifications, e.g., loop invariants and
procedure specifications. In contrast, in our work, the partitioning of the heap is built into the concrete semantics,
and abstract interpretation is used to establish properties in the absence of user-supplied specifications.

6.5.2.2 Modular Verification

O’Hearn et al. [OYR04] and Bierman and Parkinson [BP05] allow to modularly conduct local reasoning [Rey02]
about abstract data structures and abstract data types withinheritance, respectively. The reasoning requires user-
specified resource invariants and loop invariants. The model of [BP05] allows for more sharing than our model.
However, our modular analysis automatically infers resource invariants based on an ownership transfer specifica-
tion (and an instance of the bounded parametric abstraction). Technically, our use of rim-objects (resp. abstract
sealed components) is analogous to [BP05]’s use ofabstract predicates’ names (resp. resource invariants).

6.5.2.3 Store-based vs. Storeless Semantics

The standard models for separation-logic are based on a store-based semantics [YO02]. In particular, allocation
of new heap cells is not parametric because the identity of the location of the allocated cell can be observed in the
model [BY07]. As a result, it is very challenging to develop amodel for separation logic that can justifyrelational

5Mutual references between the different parts of the heap are permitted.
6P ∗ R asserts that the heap can be partitioned into two disjoint parts, one satisfyingP and the other satisfyingR.
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parametricity, i.e., a model that can justify observational equivalencesbetween two implementations of a muta-
ble abstract data type [BY07, BY08]. A solution to this problem is given by Birkedal and Yang [BY07, BY08] by
using FM domain theory [BL05]. In this domain one can name locations but cannot observe the identity of loca-
tions because of the built-in use of permutation of locations. Essentially, the permutation ensures that a program
cannot distinguish between isomorphic data structures. This restriction on the observational and computational
power of the program allows Benton and Leperchey [BL05] to reason about contextual equivalence [JM96] and
Birkedal and Yang [YO02, BY08] to give a parametric model of separation logic, which captures that clients
behave parametrically in the internal resource invariantsof mutable abstract data types, and in particular, handles
the problem of non parametric memory allocation.

In our work, we use storeless semantics which provides a canonical representation for memory states which,
in a store-based semantics, would be considered isomorphic. (In particular, memory allocation is deterministic
without depending on a particular allocator). This allows our semantics to be fully-abstract (see Lemma 4.5.8 and
Theorem 4.5.10). We note that it is much easier to show these properties for our semantics as we only discuss first
order languages and do not support higher order functions.

6.6 Encapsulation

Encapsulation(also known asconfinementor ownership) [Hog91, Alm97, CPN98, NVP98, BV99, CNP01,
GPV01, MPH01, BN05, LPHZ02, BLS03] allows for modular reasoning about heap-manipulating (object-
oriented) programs. The common aspect of these works is thatthey all place various restrictions on the types
of data structures that a program is allowed to manipulate—in particular, on the sharing patterns permitted in the
manipulated data structures. See [NBT+03] for a comparison of different models of encapsulation.

Most related to our work aredeep ownership modelswhich structure the heap into a tree of so-calledowner
contexts. Many contributions to the field use type systems to enforce the structure. For programs that adhere to
their restrictions, it can be shown that the restricted structure of the heap ensures certain beneficial properties, e.g.,
confinementof objects to be manipulated only by methods that come from their own packages [BV99],synchro-
nizationproperties can be defined and guaranteed [BLR02], and a certain frame rulecan be provided [MPHL03].

The cutpoint-freedom restriction (see Section 3.3) is inspired by the restrictions used to achieve encapsulation
by using owners-as-dominators. Cutpoint-freedom allows for arbitrary heap sharing within the same procedure,
but restricts both the heap sharing and the stack sharing across procedure calls. In a sense, cutpoint-freedom
attempts to encapsulate the procedure local-heap in the global context by ensuring that the objects passed as
parameters to the procedure dominate its local-heap. This allows to treat the passing of the local-heap to the
callee as, essentially, a value-result parameter which is simultaneously assigned to its actual parameters.

The interprocedural shape analysis presented in Chapter 4 does not placeanyrestriction on the data structures
that the program uses. For example, our list abstraction of theLSL semantics, presented in Section 4.7, does
not place any restriction on the sharing between different lists. However, we expect that the analysis would
benefit when analyzing encapsulated programs, because we anticipate that encapsulated programs would have
few cutpoints.

The dynamic encapsulation restriction (see Definition 5.5.4) is very similar to the owners-as-dominators re-
striction. Specifically, our module-induced decomposition of a memory state into a tree of components is similar
to the package-induced partitioning of a memory state into atree of memory-regions in [ZNV04]. Our constraints
are also similar to external uniqueness [CW03], which requires that there be auniquereference pointing to an
object from outside its (transitively) owned context. Suchreferences can be transferred via destructive reads and
borrowed within a program scope where their uniqueness may not hold. References going out of components into
ancestor owners are allowed.

A distinguishing aspect of our modular analysis is that it integrates a shape analysis with encapsulation con-
straints. More specifically, the dynamic encapsulation restrictionimposed in our modular analysis is inspired
by the restrictions used to ensure encapsulation. Furthermore, we show that dynamic encapsulation helps mod-
ular shape analysis and that shape analysis can be used to verify dynamic encapsulation. Technically, we use
shape analysis to establish dynamic encapsulation which allows for arbitrary aliasing within a component and
for multiple references from an owner component to the header of an owned component. However, the (live)
inter-component references are required to form a tree.

Our use of sealed and unsealed components is similar to the use of packed and unpacked owner contexts in
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Boogie [BDF+04, LM06]: In a packed context, class invariants have to hold. Children of packed contexts must
also be packed. Modification of objects is only allowed in unpacked contexts. Whereas in our approach sealing
is implicitly connected to the semantics of procedure calls, packing and unpacking has to be explicitly specified
by the programmer in Boogie, which allows Boogie to handle reentrancy. The central difference between the
approaches is that our techniques infer module invariants whereas Boogie verifies class invariants provided by the
programmer.

Our ownership specification is also in the spirit of [CW03]’sdestructive reads and borrowing. (We note that an
interesting opportunity is to try to combine [CW03] with ourapproach.) Boyland [Boy01] uses shape analysis to
modularly verify (specified) uniqueness of alive reference to anobject(which may have live references pointing
to its subobjects).



Chapter 7

Conclusions and Future Directions

Our long term research goal is to devise precise and efficientstatic shape analysis algorithms for proving inter-
esting properties of realistic programs. We believe that this thesis makes an important step towards achieving this
goal. In the following, we briefly summarize the main contributions made in this thesis, discuss their strengths
and weaknesses, and indicate directions for future work.

We note that the ideas presented in this thesis have been already used in the interprocedural shape analysis
algorithms of [GBC06, BFQ07, YLB+08, MHKS08] and in the context-bounded analysis of multithreaded pro-
grams of [BFQ07]. (See Section 6.3). They also form the basisfor our followup work on modular shape analysis
for concurrent libraries [RBR+08]. (See Section 7.3.2).

7.1 Procedure Local-Heap Storeless Semantics

In this thesis, we develop two storeless semantics:LSLCPF andLSL. Our semantics are designed for languages
with dynamic memory allocation, destructive updating and procedure calls. Our storeless semantics are unique in
that called procedures are only passedpartsof the heap.

The development of a storeless semantics that does not represent all the heap has been challenging. Intuitively,
it is hard to develop a storeless semantics which is modular in the heap because memory locations are not explicitly
represented. Instead, every dynamically allocated objectis represented by the set of pointer-access paths pointing
to it. Our main insight inLSL is that the side-effects of a procedure invocation on pending access paths1 can be
delayed to the procedure return—even though the memory cells do not have unique identifiers (e.g., locations).
The main idea is to give special treatment tocutpoints: objects that separate the “local-heap” that can be accessed
(and possibly mutated) by a procedure from the parts of the heap which it cannot access.

LSLCPF andLSL differ in the way that they treat cutpoints:LSLCPF forbids cutpoints. Specifically, it aborts
when a procedure invocation yields a cutpoint.LSL allows arbitrary cutpoints by treating them differently than
other, non-cutpoint, objects. More specifically,LSL labels every cutpoint with the set of access paths pointing
to it at the time the invocation starts. This provides a unique canonic context-independent representation for
the cutpoints of the invocation. We note that both semanticsprovide a canonical representation for memory
states which, in a store-based semantics, would be considered isomorphic. (In particular, memory allocation is
deterministic).

The notion of acutpointseems to be an important concept both in storeless semanticsand in store-based
semantics. For instance, garbage collection of local-heaps becomes unsound unless cutpoints are considered as
part of the root set. (See Remark 4.3.5 and Corollary 4.5.5).

We characterize the manner in whichLSLCPF andLSL are equivalent to the standard store-based semantics.
(See Section 3.5 and Section 4.5). This allows us to identifya class of assertions for which the non-standard
concrete semantics is equivalent to the standard store-based semantics. In addition, we show thatLSL is fully
abstract, i.e., whenever two code blocks are indistinguishable in every program context, the two code blocks have
the same semantics

1We use the term apending access pathfor an access path which starts at a local variable of a pending call. (See Section 2.4.1.1).
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LSLCPF andLSL were designed with their precise and efficient abstractionsin mind. Past works [Deu92a,
Deu94, Ven99, SRW02] have shown that algorithms based on abstract interpretation of storeless semantics can
successfully verify properties such as the absence of null dereferences, the absence of garbage, and preservation
of invariants of abstract data types (for small programs). The challenge is to scale up these methods to handle
real-life programs. The main concept in our work is to exploit the compositional structure of programs by finding
suitable methods for handling procedure calls:

• LSL distills the information about the irrelevant part of the heap, i.e., the part of the heap which is not
reachable from the local variables of the procedure, into its sharing patterns with the procedure’s local-heap.
The sharing patterns are registered in the form of cutpoint-labels—which are expressible in a context-
independent manner—and hence analysis results can be reused for different contexts that have the same
sharing patterns. Thus, we believe that an analysis based onan abstraction of our new semantics has better
chances to scale both in the size of the analyzed program, andin the precision of the results.
Furthermore, we believe thatLSL can be used as a formal basis for new static analyses and to formally
justify previous analyses that rely on similar observations to ours by showing that these analyses are an
abstract interpretation ofLSL. Indeed, in Section D.4, we show the first stage of formally justifying
previous analyses usingLSL: establishing a Galois connection between the concrete program states and
the analysis’ abstract domain.

• LSLCPF was designed with the goal to lift existing intraproceduralanalyses to the interprocedural setting.
Indeed by restricting the sharing patterns to include only objects that are pointed to by variables, and, in
particular, exclude cutpoints, we can liftintraprocedural analyses of [MYRS05, DOY06, LAIS06] to the
interprocedural and modular setting.

One of the design decisions taken when developingLSLCPF andLSL was to replace the (more standard)
call-by-referencecalling convention, where procedures are passed references to the global-heap, with acall-by-
value-resultcalling convention, with local-heaps being the valuecopiedwhen the procedure starts executing,
andrestoredwhen it terminates. Thus, it was natural to present our local-heap semantics as large-step seman-
tics [Kah87]. However, the idea of local-heap semantics canbe used in small-step semantics [Plo81] too: Instead
of encoding a stack of activation records inside the memory state, as traditionally done, it is possible to maintain
a stack of program states. This stack allows us to represent in every program state the(values of) local vari-
ables and the local-heap of just one procedure, as is the casein large-step semantics. This approach is taken in
Chapter 5 and in [BFQ07], which presents a context-bounded analysis for multithreaded Java programs using a
concrete store-based local-heap semantics.2 Interestingly, this approach also allows us to apply our techniques to
an interesting class of concurrent programs. (See Section 7.3.2).

7.1.1 Limitations

We address the challenging problem of designing shape analysis algorithms following a two-stage approach. In
the first stage, we identify an interesting class of programsand an interesting class of properties. We define a
non-standard operational semantics, namelyLSLCPF andLSL, which agrees with the standard semantics with
respect to the verified properties in the chosen class of programs. (The semantics also detects whether a program
belongs to this class.) In the second phase, we develop abstract interpretation algorithms of our semantics. Thus,
by design, our semantics do not preserve all program properties.

A main limitation of our semantics is that they abstract awayall properties of the contents of irrelevant parts
of the heap. We remark thatLSL andLSLCPF preserve the following properties:3 (i) the values computed by
arbitrary code blocks and program expressions; (ii) partial correctness for program properties, in particular, the
absence of null-dereferences and the maintenance of data-structure invariants; (iii) infinite executions and total
correctness for program properties expressed using the aforementioned assertion language; and (iv) the absence
of garbage.

BothLSL andLSLCPF record some, but not all, information about the sharing patterns between the procedure
local-heap and the irrelevant context. For example, neither LSL norLSLCPF preserve the property that an object
which is pointed to by a parameter is also pointed to by a field of an object from outside the local-heap. Thus, for
example, usingLSL or LSLCPF we cannot show that such an object is not heap shared.LSL does not preserve

2The main idea in [BFQ07] is to encode in the local-heaps of theprocedures ofevery threadthe cutpoints induced by references fromall
threads.

3LSLCPF preserves these properties only for cutpoint-free programs.
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the property that an object is pointed to by a field of an objectfrom outside the local-heap. Thus, it can prove that
a cutpoint is not heap shared.

The main limitation ofLSLCPF is the (intentionally) restricted class of cutpoint free programs which it can
handle without aborting in an error state. Unfortunately, we do not have a syntactic characterization of this class
of programs, we only have a semantic characterization.

7.1.2 Future Directions

Beyond Reachability. Our local-heap storeless semantics include in the procedure’s local-heap all the objects
that are reachable from the actual parameters. This design choice was mainly due to pragmatic considerations:
Using reachability, we are able to provide a general specification of the procedure’s local-heap which, by def-
inition, contains all the objects that a procedure can access. On the flip side, we expect that this specification
will usually over-approximate the part of the heap which a procedure actually accesses.4 In particular, it may
unnecessarily generate many cutpoints, which are hard to abstract. Thus, it can be beneficial to devise a storeless
semantics which includes in the local-heap of a procedure only a portion of its reachable heap.

A main challenge in devising a semantics which represents only subsets of the reachable heap is the identi-
fication of these subsets. One viable approach is to use procedure-specific user-supplied assertions, e.g., using
separation logic, about the expected footprint. For example, in [RRYS06], we have already started investigating
the use of user specifiedpackandunpackassertions to define a semantics that represents a portion ofthe pro-
cedure’s local-heap as a basis for shape analysis of parameterized data-structures. (See Section 6.3.5). Another
approach, which we have already started to explore, is to define this subset based on certain programming styles
and practices. For example, in the trimmed semantics, presented in Chapter 5, the subset is defined based on the
module partitioning of the program.5

Another challenge in devising a procedure local-heap semantics which operates on a portion of the reachable
heap is the need to consider pointers that go from the callee’s local-heap into the caller’s local-heap. In contrast,
the local-heap semantics developed in this thesis had to consider only pointers that go from the caller’s local-heap
into the callee’s (because the callee’s local-heap contains all the objects that it can reach). As a result, passing to
the callee only a portion of the reachable-heap, complicates the propagation of the effect of the callee to the caller.
In particular, it may require a new kind of “forward-going” cutpoints.

Foundations of Storeless Semantics.In a store-based semantics, an object is identified by its location. In a
storeless semantics, an object is identified by the set of pointer-access paths pointing to it. An interesting question
is how should a semantics which uses locations to represent objects but does not distinguish between isomorphic
memory states be classified. On one hand, such a semantics is implemented like a store-based semantics, i.e.,
using locations. On the other hand, it misses the main characteristic of a store-based semantics, i.e., that an object
can be identified in different memory states by its location.

In this thesis, we identified the term “storeless semantics”with semantics which areimplementedusing an
equivalence relation over access paths. However, from the point of view of a program, a storeless semantics based
on access-paths and a semantics which represents a memory state using locations, à la store-based semantics, but
which identifies all isomorphic memory states,6 à la storeless semantics, are undistinguishable.

We believe that a semantics which uses locations but identifies isomorphic memory states is more closely
related to storeless semantics than to store-based semantics. The main advantage of using such a semantics is that
it reduces the notational overhead which is imposed by the current “access-path-based” storeless semantics. The
main disadvantage is that instead of having a canonic representation for all “isomorphic” memory states, as in

4The part of the heap which the procedure actually accesses isknown in separation logic terminology [IO01, Rey02] as theprocedure’s
footprint.

5The trimmings semantics, like theDOS semantics, is implemented as a store-based semantics usinglocations. However, this imple-
mentation was chosen mostly for simplicity. Specifically, it is possible to define a storeless version ofDOS (and of the trimming semantics)
because programs executed in theDOS semantics cannot observe location names and, in addition, the actual location names of locations in
different components do not matter neither in the concrete semantics nor in its abstract interpretation. Specifically,one way to defineDOS
as a storeless semantics is to encode the internal structureof a component using the access paths starting at its header;explicitly represent the
graph of components; and encode the inaccessible value as a special kind of an atomic value.

6This sort of semantics is used in the framework of [SRW02], where the actual identifiers of the individuals in a logical structure do not
matter, and in the FM-domain-based semantics for separation logic [BY07, BY08] (see Section 6.5), where locations can be thought of as
being (consistently) renamed after every statement.
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current storeless semantics, the semantics has to represent a state using a (representative of a) set of isomorphic
memory states. Adopting this point of view poses an interesting question: Can we define the difference between
a store-based semantics and a storeless semantics based on properties instead of its implementation?

We believe that finding adeclarative definitionof what is a storeless (resp. store-based) semantics based on
the properties of the semantics instead of its implementation is an interesting and an important problem. Ideally,
such a definition would not only characterize the class of storeless (resp. store-based) semantics, but also clarify
the differences between storeless and store-based semantics. (See also Section 6.5.2.3).

7.2 Interprocedural Shape Analysis

In this thesis, we present new interprocedural shape-analysis algorithms for programs that manipulate dynamically
allocated storage by abstract interpretation of our non-standard local-heap concrete semantics. Our approach is
orthogonal and complementary to previous works that analyze procedure invocations [RS01, CR03, JLRS04]. In
particular, our approach emphasizes the need to maintain inthe analysis information regarding the sharing patterns
between the procedure local-heap and the other (irrelevant) parts of the heap. In contrast, existing approaches
concentrate on tracking only the internal properties of a procedure’s local-heap (e.g., aliasing and sharing within
the procedure’s local-heap). Intuitively, the importanceof explicitly tracking these sharing patterns stems from
the fact that they areindependentof the internal structure of the local-heap. We believe thatthe modular treatment
of the heap will have a key role in scaling interprocedural shape analysis to larger pieces of code.

By choosing to develop static analyses by abstract interpretation of our non-standard semantics, we made two
design choices: One is to use a storeless semantics. The other is to concentrate on a superset of a program’s
footprint, based on reachability, rather than the actual footprint. While the ideas underlying our approach apply
also to store-basedsemantics, the choice of a storeless semantics was a naturalone to make (see Section 6.1).
The decision to concentrate on a superset of a program’s footprint (inferable via static analysis), was a pragmatic
choice which allows to use the same specification of the footprint for any procedure. (This pragmatic choice was
found to be practical by experiments carried out by Yang et. al. [YLB +08]. See Section 6.3.1.2). Nevertheless,
in Chapter 5 and in [RRYS06] (see Section 6.3.5), we have already started investigating the use of analyzing a
procedure over a subset of its reachable heap utilizing light-weight user-supplied specifications.

The notion of acutpointseems to be an important concept in interprocedural shape analysis algorithms,
independently of the concrete semantics on which the analysis is based. Specifically, one has to devise ways
either to specialize the algorithms to handle programs withrestricted sharing patterns which bound the number of
cutpoints, or to devise methods to abstract (an unbounded number of) cutpoints. We follow both methods:

• We define the restricted class of cutpoint-free programs. Weshow that interesting cutpoint-free programs
can be written naturally, e.g., programs manipulating unshared trees and a recursive implementation of
quicksort. (We also show that some interesting existing programs are cutpoint-free, e.g., all programs
verified using shape analysis in [DRS00, RS01, JLRS04], and many of those in [Deu94, SYKS03].)

• We present an interprocedural analysis which is precise enough for programs with a small number of cut-
points.

Our analyses are modular in the heap (see Section 6.3.5) and thus allow reusing the effect of a procedure at
different calling contexts and at different call-sites. Our analysis goes beyond the limits of existing approaches
and was used to verify a recursive quicksort implementation. Preliminary experimental results indicate that:
• the cost of analyzing recursive procedures is similar to thecost of analyzing their iterative versions;
• our analysis benefits from procedural abstraction—often the handling of procedures is as precise as inlining the

procedure body and the cost can be smaller when the code is reused. In fact, in some cases the precision of the
analysis can be improved by procedural abstraction. In particular, the analysis of recursive procedures can be
more efficient or even more precise than the analysis of the iterative version; and

• our approach compares favorably with [RS01, JLRS04].

7.2.1 Limitations

Our current analyses are expected to become imprecise when the abstractions summarize together multiple cut-
points. In particular, analyzing programs that generate anunbounded number of cutpoints can be very challenging
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for our analyses. Devising abstractions suitable for handling such programs is a matter of future work. (See Sec-
tion 7.2.2).

Our interprocedural shape analyses require maintaining a rather precise information regarding reachability and
domination in the heap. This forces our analyses to use very preciseintraprocedural analyses which are capable
of keeping track of this sort of information. (See Section 6.3.4).

7.2.2 Future Directions

Detecting Live Cutpoints. Our interprocedural shape analysis for cutpoint-free programs aborts the program
when a cutpoint is detected. However, if a program never usesthe references which generated the cutpoints, this
restriction seems needlessly severe, as the generated cutpoint is, in a sense, adeadcutpoint. In the future, we
plan to utilize liveness analysis or, alternatively, user-supplied specification to separate the live cutpoints from the
dead cutpoints and abstract dead cutpoints as regular, i.e., non-cutpoint, objects.

Cutpoint Abstraction. The cutpoint abstraction becomes challenging when there isno a priori bound on the
number of cutpoints. In these programs, it is possible to obtain bounded abstractions only when several cutpoint
objects are merged. The need to “merge” objects to obtain bounded abstraction is not new. In the past, analyses
that were developed within the3-valued logical framework for program analysis of [LAS00, SRW02] addressed
it by merging together objects that have “similar” aliases.In this thesis, we suggested abstracting cutpoints in a
similar way: e.g., merge together cutpoints that have the same type or that are reachable from the same formal
variables on procedure entry. (See Section 4.10.4.1). However, it is not clear if this is the right way to go. We
believe that devising abstractions of cutpoints which are useful for analyzing real-life programs is an interesting
and important research problem.

Cutpoint Profiling. A first stage in developingusefulabstractions for cutpoints can be an experimental study of
the sorts of cutpoints and sharing patterns that arise in real-life programs. Rubinstein [Rub06] provides a cutpoint-
profiler which measures the number of cutpoints that occur during executions of real-life programs. The study
determined that there are methods with a very large number ofcutpoints. It also detected that most of the cutpoints
stem from sharing ofString objects,Integer objects, and other objects of similar types. Thus, it seems that an
analysis should take special care of this kind of cutpoints.The findings of [Rub06] strengthen the need to refine
the measurements in order to gain more intuition that can help in finding cutpoint abstractions which are useful
for analyzing real-life programs. In particular, it is interesting to measure cutpoint liveness information.

Scaling local-heap Shape Analysis. There are several techniques that can be combined with local-heaps to
scale our shape analysis. For example,staged analysiscan be used to reduce the cost of abstraction by first com-
puting context-sensitive flow-insensitive points-to analysis (e.g., [WL04]) and then employing our fine-grained
abstraction on parts of the heap which may be aliased. Another possibility is to follow [YR04], where it is shown
how to radically improve the efficiency of shape analysis by using heterogenous abstractions.

Our prototype implementation already benefits from thepartially disjunctive join operatorof Manevich et.
al. [MSRF04], which merges similar shape-graphs. This reduces the number of shape-graphs and the running
time. Technically, this join operator [MSRF04] exploits the fact that our abstract domain (23Struct ) has a Hoare
order and returns an upper approximation of the set-union operator. As a result, the analyses may provide a
less precise information than the meet-over-all-valid-paths [SP81], which a fully-disjunctive join operator (i.e.,
set-union) would guarantee. However in our experiments we found that using partially disjunctive join is precise
enough and provides for a much more efficient analysis. In recent work, Manevich et. al. [MBC+07] suggested
the use of an even more aggressive join operator which is based on heap decomposition. It is interesting to
consider developing interprocedural analyses which use this “more aggressive” join operator.

7.3 Modular Shape Analysis

Modular shape analysis is particularly difficult because ofaliasing which, in general, is not constrained. In this
thesis, instead of trying to devise an analysis for arbitrary programs, we focus our attention to certain “well-
behaved” programs.
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The main idea behind our approach is to assume a modularly-checkable program-invariant concerning aliases
of live intermodule references. More specifically, we focuson dynamically encapsulated programs, programs
which adhere to the restriction that live references between components(subheaps manipulated by different mod-
ules) form a tree. We consider our work as a first step towards amodular shape analysis. We note that our modular
shape analysis is the first one capable of handling pointer parameters.

A distinguishing aspect of our work is that we integrate a shape analysis with (dynamic) encapsulation con-
straints. Our work presents a nice interplay between encapsulation and modular shape analysis: it uses dynamic
encapsulation to enable modular shape analysis, and uses shape analysis to determine that the program is dynam-
ically encapsulated.

While the dynamic encapsulation model is fairly restrictive with respect to the coupling between separate
components, it is very permissive about what can happen inside a single component. This model is also sufficient
to express several, natural, usage constraints that arise in practice. Furthermore, we believe that our restrictions
can be relaxed to help address a larger class of programs.

7.3.1 Limitations

The main limitations of our approach is the need for a user provided owner-ship specification, and the restrictions
of the inter-component references.

7.3.2 Future Directions

Inferring Ownership Transfer Specification. Our modular analysis requires user-supplied specificationre-
garding ownership transfer. While it is possible to relievethe need for user-supplied specification by fixing
arbitrary ownership transfer specification, the resultinganalysis, in many cases, may not be useful.

Automatically determining the ownership transfer specification will further enhance the automation of our
analysis. One way to find a plausible specification can be to “train” the analysis by performing whole-program
analyses of example programs. Another way would be to use dynamic (runtime) analysis.

Partitioned Module Invariants. We use a very conservative abstraction of sealed componentsand inter-
component references. In particular, the abstraction retains no information about the state of a sealed component
(which typically belongs to other modules used by the analyzed module). This can lead to an undesirable loss in
precision in the analysis (in general). We can refine the abstraction by usingcomponent-digests[RRSY06], which
encode (hierarchical) properties of wholecomponentsin a typestate-like manner [SY86]. This, e.g., can allow our
analysis to distinguish between a reference to a pool of closed socket components from a reference to a pool of
connected socket components.

Modular Analysis with Shared Abstractions. Modular verification of shared data structures is a challenging
problem: Side-effects in one module that are observable in another module make it hard to analyze each module
separately. Our modular analysis forbids (live) intermodule sharing. Juhasz et. al. [Juh08, JRPH+08] present
a novel approach for relieving this restriction, thus allowing modular verification of shared data structures. The
main idea is to verify that the inter-module sharing is restricted to a user-provided specification which also enables
the analysis to handle side-effects.

Modular Local Shape Analysis for Concurrent View-Serializable Programs. In this thesis we focused ex-
clusively on sequential programs. In our current work, we address the challenging problem of modular analysis
for concurrentprograms. Specifically, we aim at designing modular static analysis algorithms for a subset of
view-serializableheap-manipulating programs. Our main observation is that an assertion, from a certain class of
program assertions, holds in all concurrent executions of aview-serializableprogramif and only if it holds in all
of its serial executions. Furthermore, this class includesassertions that are sufficient to show view-serializability.
Specifically, we provide a reduction which allows to transform certain concurrent programs into sequential pro-
grams, and by analyzing the resulting sequential programs using sequential techniques, to establish assertions of
the concurrent programs. An immediate consequence of our current work, is that it shows how to lift the results
presented in this thesis to the concurrent setting.
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Appendix A

Mathematical Conventions

A.1 Mathematical Notations

In this section, we provide some standard mathematical definitions regarding operations on sets and functions,
binary relations, equivalence relations, and sequences.

Definition A.1.1 (Set difference)Given two setsS1 andS2, theset differencebetweenS1 andS2, denoted by
S1 \ S2 = {e ∈ S1 | e 6∈ S2}, is the set of elements inS1 which arenotalso inS2.

Definition A.1.2 (Function restriction) Given a functionf : S →֒ T and a setSsub ⊆ S, therestriction of f to
Ssub , denoted by

f |Ssub
=

{
f(e) e ∈ Ssub

undefined otherwise,

is a function which identifies withf onS′ and is not defined anywhere else.

Definition A.1.3 (Least fixed point) Given a lattice(D,⊑) and a functionf(X) : D → D which is monotone
with respect to⊑, the least fix-point off , denoted bylfp λ.(f), is an elementd ∈ D which is (i) a fixpoint off ,
i.e.,d = f(d), and (ii) smaller than any other fixpoint off , i.e., ifd′ = f(d′) thend ⊑ d′.

Definition A.1.4 (Binary relations) A setτ ⊆Σ×Σ is abinary relationover a setΣ. Thedomainof τ , denoted
by,dom(τ), isdom(τ) = {σ | 〈σ, σ′〉 ∈ τ}. Therangeof τ , denoted by,range(τ), is range(τ) = {σ′ | 〈σ, σ′〉 ∈
τ}. The imageof a setS ⊆ Σ underτ , denoted byτ(S) is τ(S) = {σ′ ∈ Σ | σ ∈ S, 〈σ, σ′〉 ∈ τ}. The
compositionof τ with a binary relationsτ ′ overΣ, denoted byτ ◦τ ′, is τ ◦τ ′ = {〈σ, σ′′〉 | 〈σ, σ′〉 ∈ τ, 〈σ′, σ′′〉 ∈
τ ′}.

By abuse of notation, we sometimes denote the image of a singleton setS ={σ} under a binary relationτ ⊆Σ×Σ
by τ(σ).

Definition A.1.5 (Equivalence relations) A binary relation≈ over a setΣ is an equivalence relationif ≈ is
reflexive, i.e., for everyσ ∈ Σ, σ ≈ σ; symmetric, i.e., for everyσ1, σ2 ∈ Σ, σ1 ≈ σ2 iff σ2 ≈ σ1; and transitive,
i.e., for everyσ1, σ2, σ3 ∈ Σ, if σ1 ≈ σ2 andσ2 ≈ σ3, thenσ1 ≈ σ3. Theequivalence classof σ ∈ Σ under an
equivalence class≈, denoted by[σ]≈, is [σ]≈ = {σ′ ∈ Σ | σ′ ≈ σ}. Thequotient setof an equivalence class≈,
denoted byΣ/ ≈ is Σ/ ≈= {[σ]≈ | σ ∈ Σ}.

Definition A.1.6 (Set partitioning) A setP is apartitioning of a setS if P ⊆ 2S , {s ∈ p | p ∈ P} = S and for
everyp1, p2 ∈ P such thatp1 6= p2, p1 ∩ p2 = ∅.

Definition A.1.7 (Sequences)A sequenceπ over a setS is a total functionπ ∈ {i ∈ N | 0 ≤ i ≤ n} → S
for somen ∈ N. Thelength of a sequenceπ, denoted by|π|, is |dom(π)|. A sequenceπ is a subsequenceof a
sequenceπ′ if there existsn ∈ N such that for anyj ∈ dom(π) it holds thatπ(j) = π′(j + n); such aπ is (also)
a prefix of π′ if n = 0. Theconcatenationof sequencesπ1 andπ2, denoted by juxtapositionπ1π2, is a sequence
π such thatπ(i) = π1(i) for everyi, 0 ≤ i < |π1| andπ(i) = π2(i−|π1|) for everyi, |π1| ≤ i.
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Figure A.1: Kleene’s3-valued interpretation of the propositional operators.

A.2 Syntax and Semantics of Logical Formulae

In this section , we define the syntax and the semantics of first-order formulae with equality and transitive closure
we use.

A.2.1 Syntax of Formulae

In this section , we define the syntax of first-order formulae with equality and transitive closure we use.

Definition A.2.1 A formula over thevocabularyP = {p1, . . . , pn} is defined inductively, as follows:

Atomic Formulae Thelogical literals 0, 1, and 1

2
are atomic formulae with no free variables.

For every predicate symbolp ∈ P of arity k, p(v1, . . . , vk) is an atomic formula with free variables
{v1, . . . , vk}.

The formula(v1πv2), wherev1 and v2 are distinct variables, is an atomic formula with free variables
{v1, v2}.

Logical Connectives If ϕ1, ϕ2 andϕ3 are formulae whose sets of free variables areV1, V2, andV3 , respectively,
then(ϕ1 ∧ϕ2), (ϕ1 ∨ϕ2), (¬ϕ1), and(ϕ1?ϕ2 : ϕ3) are formulae with free variablesV1 ∪V2, V1 ∪V2, V1,
andV1 ∪ V2 ∪ V3 respectively.

Quantifiers If ϕ is a formula with free variables{v1, v2, . . . , vk}, then(∃v1 : ϕ) and(∀v1 : ϕ) are both formulae
with free variables{v2, v3, . . . , vk}.

Transitive Closure If ϕ is a formula with free variablesV such thatv3, v4 6∈ V , then(TC v1, v2 : ϕ)(v3, v4) is
a formula with free variables(V − {v1, v2}) ∪ {v3, v4}. We use the notationsn+(v3, v4) = (TC v1, v2 :
n)(v3, v4) andn∗(v3, v4) = (TCv1, v2 : ϕ)(v3, v4)∨eq(v3, v4) as shorthand for the transitive closure and
the reflexive transitive closure of the binary predicaten, respectively.

A formula isclosedwhen it has no free variables.

A.2.2 Kleene’s3-Valued Semantics

Kleene’s Interpretation of the propositional operators isgiven in Figure A.1.
Kleene’s3-valued semantics for first-order formulae with transitiveclosure is given in Definition A.2.2.

Definition A.2.2 A 3-valued interpretation of the language of formulae overP is a3-valued logical structure
S, comprised ofUS , a set ofindividuals and interpretationιS which maps every predicate symbolp of arity k to
a truth-valued function:

ιS(p) : (US)k → {0, 1,
1

2
}.

AnassignmentZ is a function that maps free variables to individuals (i.e.,an assignment has the functionality
Z : {v1, v2, . . .} → US). An assignment that is defined on all free variables of a formula ϕ is calledcomplete
for ϕ. In the sequel, we assume that every assignmentZ that arises in connection with the discussion of some
formulaϕ is complete forϕ.

Themeaning of a formulaϕ, denoted by[[ϕ]]S3 (Z), yields a truth value in{0, 1, 1
2}. The meaning ofϕ is

defined inductively as follows:
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Atomic For a logical literal l ∈ {0,1, 1

2
}, [[l]]S3 (Z) = l (wherel ∈ {0, 1, 1

2}).

For an atomic formulap(v1, . . . , vk),

[[p(v1, . . . , vk)]]S3 (Z) = ιS(p)(Z(v1), . . . , Z(vk))

Logical Connectives For logical formulaeϕ1, ϕ2, andϕ3

[[ϕ1 ∧ ϕ2]]
S
3 (Z) = min([[ϕ1]]

S
3 (Z), [[ϕ2]]

S
3 (Z))

[[ϕ1 ∨ ϕ2]]
S
3 (Z) = max([[ϕ1]]

S
3 (Z), [[ϕ2]]

S
3 (Z))

[[¬ϕ1]]
S
3 (Z) = 1 − [[ϕ1]]

S
3 (Z)

[[ϕ1?ϕ2 : ϕ3]]
S
3 (Z) =





[[ϕ2]]
S
3 (Z) [[ϕ1]]

S
3 (Z) = 0

[[ϕ3]]
S
3 (Z) [[ϕ1]]

S
3 (Z) = 1

[[ϕ2]]
S
3 (Z)

[[ϕ1]]
S
3 (Z) = 1

2
[[ϕ2]]

S
3 (Z) = [[ϕ3]]

S
3 (Z)

1
2 otherwise

Quantifiers If ϕ is a logical formula,

[[∀v1 : ϕ]]S3 (Z) = minu∈US [[ϕ1]]
S
3 (Z[v1 7→ u])

[[∃v1 : ϕ]]S3 (Z) = maxu∈US [[ϕ1]]
S
3 (Z[v1 7→ u])

Transitive Closure (Transitive closure using a pair of variables). For(TC v1, v2 : ϕ)(v3, v4),

[[(TC v1, v2 : ϕ)(v3, v4)]]
S
3 (Z) =

max
n ≥ 1, u1, . . . , un+1 ∈ U,
Z(v3) = u1, Z(v4) = un+1

n

min
i=1

[[ϕ]]S3 (Z[v1 7→ ui, v2 7→ ui+1])

Extended Transitive Closure (Transitive closure using a pair of pairs of variables. See also Section D.3.1.2).

For (TC v1, v2; w1, w2 : ϕ)(v3, v4; w3, w4),

[[(TC v1, v2; w1, w2 : ϕ)(v3, v4; w3, w4)]]
〈U,ι〉
2 (Z)

def
=

max
n ∈ N,

u1
1, . . . , u1

n+1 ∈ U,

Z(v3) = u1
1, Z(v4) = u1

n+1,

u2
1, . . . , u2

n+1 ∈ U,

Z(w3) = u2
1, Z(w4) = u2

n+1

n

min
i=1

[[ϕ]]
〈U,ι〉
2 (Z

[
v1 7→ u1

i , v2 7→ u1
i+1,

w1 7→ u2
i , w2 7→ u2

i+1

]
)

We say thatS andZ potentially satisfy ϕ (denoted byS, Z |= ϕ) if [[ϕ]]S3 (Z) = 1
2 or [[ϕ]]S3 (Z) = 1. Finally,

we writeS |= ϕ if for everyZ: S, Z |= ϕ.

We remind the reader, that we use the equality infix predicate(=) in our formula as an intuitive replacement
of theeq predicate. In particular, while theeq predicate is defined using the semantics “identically-equal” relation
on individuals, denoted also by the symbol ‘=’,1 the two may not denote the same relation:

• Equal elements (according to theeq predicate) are identical, i.e., ifeq(u1, u2) thenu1 = u2. (In this case
u1 is a non-summary individual.)

• Non-identical individualsu1 and u2 are unequal (i.e., ifu1 6= u2 then¬eq(u1, u2)). However, while
obviouslyu = u, it can be the case thateq(u, u) evaluates to12 . (In this case,u is a summary individual.)

Notice that Definition A.2.2 could be generalized to allow many-sorted sets of individuals. This would be
useful for modeling heap cells of different types; however,to simplify the presentation, we have chosen not to
introduce this mechanism.

1Throughout the thesis, the intended meaning of the= should always be clear from the context.
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Appendix B

Appendix for Chapter 2

B.1 The Meaning of Control Statements

In our analyses, we represent procedures using control-flowgraphs and encode conditionals and while loops using
assume statements. (See Appendix F). Anassume(cnd) statement acts as an identity statement when applied to
a state in whichcndholds, and gets the computation stuck, otherwise.

Computing whether a conditioncnd∈ cond(see Figure 2.1) holds in a a given state is done using a semantics-
specific functionBS : cond→ S → {tt ,ff } which maps conditionalcnd∈ cond(see Figure 2.1) to predicates
over statess ∈ S. Thus, in the following we only provide such a functionBS[[ ]] for every semantics.

For example, the semantics function which maps conditionalinvolving comparison between access paths
α andβ to predicates over store-based states isλsG.[[α = β]]GSB(sG) in the GSB semantics andλσL.[[α =
β]]LSB(σL) in theLSB semantics.

B.2 Properties of theGSB Semantics

In this section, we introduce the notions ofheap pathsandgeneralized heap paths. We also prove some properties
of theGSB semantics which are used in the proof of Theorem 4.5.3.

Definition B.2.1 (Heap path) A heap pathζ = 〈l, δ〉 ∈ Loc × ∆ is a pair consisting of a location and a field
path.HeapPath denotes the setLoc × ∆.

Definition B.2.2 (Generalized heap path)A generalized heap pathζ ∈ AccPathp∪HeapPath of a procedurep
is an access path ofp or a heap path.GHeapPathp denotes the set of all generalized heap paths of procedurep.
GHeapPath denotes the union of all generalized heap paths of all procedures in a program.

Definition B.2.3 (Generalized heap path value)The value of a generalized heap pathζ in memory state
〈L, ρ, h〉 of procedurep is defined to be:

[[ζ]]G〈L, ρ, h〉 =

{
ĥ(ρ(x), δ) ζ = 〈x, δ〉, x ∈ Vp

ĥ(l, δ) ζ = 〈l, δ〉, l ∈ L

whereĥ is as defined in Definition 2.4.4. Note that the above definition generalizes Definition 2.4.4 (value of an
access path in theGSB semantics). The following definition generalizes Definition 2.4.6 (equality of access paths
in theGSB semantics).

Definition B.2.4 (Generalized heap path equality)Generalized heap pathsζ1 andζ2 areequalin a given state
sG, denoted by[[ζ1 = ζ2]]G(sG), if they have the same value in that state, i.e.,[[ζ1]]G(sG) = [[ζ2]]G(sG). A
generalized heap pathζ is equal to null in a given statesG, denoted by[[ζ = null]]G(sG), if [[ζ]]G(sG) = null.
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The following lemma states that a procedure invocation cannot modify fields of objects that are allocated, but
which are not reachable from an actual parameter, when a procedure is invoked.

Lemma B.2.5 (Unreachable locations not modified)Let sc
G, sr

G be states in SG such that

〈y = p(x1, . . . , xk), sc
G〉

GSB
∽∽∽∽∽◮ sr

G. Let Lreach ⊆ Lc be the location inLc that are reachable from the
actual arguments atsc

G, i.e.,

Lreach =
⋃

1≤i≤k

{l ∈ Lc | ∃δ ∈ ∆, l = [[〈xi, δ〉]]G(sc
G)}.

For any generalized access pathζ = 〈r, δ〉 ∈ GHeapPath such that[[ζ]]G(sc
G) ∈ Lc \ Lreach the following

holds:

1. [[ζ]]G(sc
G) = [[ζ]]G(sr

G), and

2. for anyf ∈ F , [[〈r, δf〉]]G(sc
G) = [[〈r, δf〉]]G(sr

G).

Sketch of Proof:The lemma states that a procedure cannot modify the content of locations it cannot access (reach).
The proof is by induction on the derivation tree. We track theset of reachable locations from every variable of
the invoked procedure and prove that a variable cannot point-to (and thus potentially modify) locations that are
allocated when the procedure is invoked and are not reachable from any actual parameter. Note that for any
l ∈ Lreach and anyδ ∈ ∆, [[〈l, δ〉]]G(sr

G) is defined becauseLc ⊆ Lr.

The following lemma formally states that any access path that extends a null valued access path has a null
value. Similarly, any prefix of a non null valued access path points to a location.

Lemma B.2.6 (Null valued access paths)LetsG ∈ Sq
G be aGSB state for procedureq,

1. For a generalized heap pathα = 〈r, δ0δ1〉 ∈ GHeapPathq, it holds that [[α]]G(sG) =
[[〈[[〈r, δ0〉]]G(sG), δ1〉]]G(sG).

2. For any (generalized) access pathα ∈ GHeapPathq,

a. if [[α = null]]GSB(sG), then for any generalized heap pathα′ such thatα ≤ α′, [[α′ = null]]GSB(sG),

b. if [[α 6= null]]GSB(sG), then for any generalized heap pathα′ such thatα′ ≤ α, [[α′ 6= null]]GSB(sG).

Proof: Immediate from Definition B.2.3 (generalized heap-path value).
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Appendix for Chapter 3

This chapter provides formal details pertaining to Chapter3:
• Section C.1 describes the meaning of control statements.
• Section C.2 provides formal details of theLCPF semantics.
• Section C.3 describes the analysis of sorting and list manipulating programs.

C.1 The Meaning of Control Statements

Control statements are handled as descried in Section B.1. The semantics function which maps conditional in-
volving comparison between pointer access paths to predicates over states in theLSLCPF semantics is

BΣ
LCPF

: cond→ ΣLCP F
→ {tt ,ff }

BΣ
LCPF

[[cnd]] = λσLcpf
.





[[α = β]]cpfL (σLcpf
) cnd≡ α = β

¬[[α = β]]cpfL (σLcpf
) cnd≡ α 6= β

[[α = null]]cpfL (σLcpf
) cnd≡ α = null

¬[[α = null]]cpfL (σLcpf
) cnd≡ alpha 6= 6= null

C.2 Formal Properties of theLCPF Semantics

This section provides formal details which were omitted from the body of Section 3.7.2.
• Section C.2.1 provides the operational semantics for the intraprocedural statements and the predicate-update

formulae for the instrumentation predicates for interprocedural statements.

C.2.1 Formal Specification of the Operational Semantics

This appendix provides the operational semantics for the intraprocedural statements (Section C.2.1.1) and the
predicate-update formulae for the instrumentation predicates for interprocedural statements (Section C.2.1.2).

C.2.1.1 Operational Semantics for Atomic Statements

The operational semantics for assignments is specified bypredicate-update formulae: for every predicatep and
for every statementst , the value ofp in the2-valued structure which results by applyingst to S, is defined in
terms of a formula evaluated overS.

Predicate-update formulae of the core-predicates for assignments are given in Figure C.1. The table also
specifies the side condition which enables that applicationof the statement. These conditions check that null-
dereference is not performed. The value of every core-predicatep after the statement executes, denoted byp′,
is defined in terms of the core predicate values before the statement executes (denoted without primes). Core
predicates whose update formula is not specified, are assumed to be unchanged, i.e.,p′(v1, . . .) = p(v1, . . .).
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Statement Predicate-update formulae side-condition

y = null y′(v) = 0

y = x y′(v) = x(v)

y = x.f y′(v) = ∃v1 : x(v1) ∧ f(v1, v) ∃v1 : x(v1)

y.f = null f ′(v1, v2) = f(v1, v2) ∧ ¬y(v1) ∃v1 : y(v1)

y.f = x f ′(v1, v2) = f(v1, v2) ∨ (y(v1) ∧ x(v2)) ∃v1 : y(v1)

y = alloc(T) T ′(v) = T ′(v) ∨ new(v)

eq ′(v1, v2) = eq(v1, v2) ∨ new(v1) ∧ new(v2)

new ′(v) = 0

Figure C.1: Predicate-update formulae defining the operational semantics of assignments.

None of the assignments, except for object allocation, modifies the underlying universe. Object allocation is
handled as in [SRW02]: A new individual is added to the universe to represent the allocated object; the auxiliary
predicatenew is set to holdonlyat that individual; only then, the predicate-update formulae is evaluated.

C.2.1.2 Predicate Update Formulae for Instrumentation Predicates

Figure C.2 provides the update formulae for instrumentation predicates used by the procedure call rule. We use
PTX(v) as a shorthand for

∨
x∈X x(v). The intended meaning of this formula is to specify thatv is pointed to

by some variable fromX ⊆ Local⋆. We usebypassX(v1, v2) as a shorthand for(F (v1, v2) ∧ ¬PTX(v1))
∗. The

intended meaning of this formula is to specify thatv2 is reachable fromv1 by a path that does not traverse any ob-
ject which is pointed-to by any variable inX ⊆ Local⋆. As we can see, formulamatch{〈h1,x1〉,...,〈hk,xk〉}(v1, v2)
again plays a central role.
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a. Predicate update formulae forupdCally=p(x1,...,xk)
q

ils ′(v) = ils(v) ∧ (¬PT x1,...,xk
(v)∨

∃v1, v2 : R{x1,...,xk}(v1) ∧ R{x1,...,xk}(v2) ∧

F (v1, v) ∧ F (v2, v) ∧ ¬eq(v1, v2))

r′y(v) =

{
rxi

(v) : y = hi

0 : y ∈ Local⋆ \ {h1, . . . , hk}

b. Predicate update formulae forupdRety=p(x1,...,xk)
q

ils ′(v) = ils(v) ∧ (inUc(v) ∧ ¬R{x1,...,xk}(v) ∨ inUx(v)) ∨

PT x1,...,xk
(v) ∧ ∃v1, v2, v3 : match{〈h1,x1〉,...,〈hk,xk〉}(v1, v) ∧ ¬eq(v2, v3) ∧

inUc(v2) ∧ ¬R{x1,...,xk}(v2) ∧ F (v2, v1) ∧

(inUc(v3) ∧ ¬R{x1,...,xk}(v3) ∧ F (v3, v1) ∨ inUx(v3) ∧ F (v3, v))

r′obj (v1, v2) = robj (v1, v2) ∧ inUx(v1) ∧ inUx(v2) ∨

robj (v1, v2) ∧ inUc(v1) ∧ inUc(v2) ∧ ¬R{x1,...,xk}(v2) ∨

inUc(v1) ∧ inUx (v2) ∧ ∃va, vf : match{〈h1,x1〉,...,〈hk,xk〉}(va, vf ) ∧

bypass{x1,...,xk}(v1, va) ∧ robj (vf , v2)

r′x (v) = inUc(v) ∧ rx (v) ∧ ¬R{x1,...,xk}(v) ∨

inUx(v) ∧ ∃vx, va, vf : match{〈h1,x1〉,...,〈hk,xk〉}(va, vf ) ∧

x(vx) ∧ bypass{x1,...,xk}
(vx, va) ∧ robj (vf , v)

Figure C.2: Predicate-update formulae for the instrumentation predicates used in the procedure call rule. We give
the semantics for an arbitrary procedure cally = p(x1, . . . , xk) by an arbitrary procedureq. We assume thatp’s
formal parameters areh1, . . . , hk.
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Core Predicates
predicate Intended Meaning
dle(v1, v2) Thedata component ofv1 is less-than-or-equal-to the data component ofv2

Instrumentation Predicates
predicate Defining Formula Intended Meaning
O(v) ∀v1 : n(v, v1) =⇒ dle(v, v1) v’s data field is not strictly greater than that

of its successor

Figure C.3: Core and instrumentation predicates used in theanalysis of sorting programs.

C.3 Analyzing Sorting Programs

The analysis presented in [LARSW00] allows to prove partialcorrectness of sorting and list manipulating proce-
dures. In this section, we briefly describe our adaptation oftheir abstraction to local-heaps.

The main idea is to track the relative order between the data components of list elements using a binary core
relation (dle). In addition, an additional instrumentation predicate records the relative order between the data
components of successive list elements (O ). Figure C.3 lists the additional predicates we use here, together with
their intended meaning.

Concrete memory states are represented using2-valuedlogical structures and we abstract them into3-valued
logical structures usingcanonical abstraction. However, we represent two individuals that differ only in the value
of the predicateO by a single summary individual. This improves the performance of the analysis, but may reduce
its precision.

We use the same predicate-update formulae as in [LARSW00] tospecify the effect of intraprocedural state-
ments on the values of the added predicates. The main idea is to assume (and verify) that a list element is allocated
with a random data field, which is not modified afterwards. Theprogram can establish the relative relation be-
tween the data fields using comparisons.

The only change in the procedure call rule amounts to updating the rule to construct the memory state at the
return site. Note that the values of both theO -predicate and thedle-predicate at the entry to the callee is the same
as it was at the call-site.

At the return site, the value of theO -predicate can be taken as is from the call site (for objects not passed to
the invoked procedure) and from the exit site (for objects inthe invoked procedure local-heap). This is possible
because the invoked procedure could not have modified the external references into its local-heap. In addition, if
it also has not changed the data-value, theO -predicate still holds for those objects whose successor was passed to
the callee.

Thedle relation between objects that were (resp. were not) passed to the callee does not change. The only
difficulty is in restoring thedle relation between objects that were not passed to the invokedprocedure and those
that were. The main problem is that we cannot relate an individual that represents a certain heap allocated object
at the call site, with the individual that represents the same object at the exit site. This information is lost in our
semanticsfor all objects, except for the ones that are pointed to by parameters. Thus, we try to restore the relative
relation using the parameters, resorting to an indefinite value as our last choice. The predicate update formulae
for thedle-predicate is given in Figure C.4.

To verify that reverse returns a list in reversed order, we needed an additional instrumentation predicate
RO(v), whose defining formula is∀v1 : n(v, v1) =⇒ dle(v1, v). This predicate holds for an individualv, if v’s
data field is not strictly less than that of its successor [LARSW00].

C.3.1 Verifying the Partial Correctness of Quicksort.

We now describe the analysis ofquicksort in more details. Figure C.5 shows a program that allocates a random
list and sorts it using thequicksort procedure. The quicksort procedure partitions the list by moving all the list
elements whose data field is less than that of the pivot (the first parameter) to the beginning of the list. The list is
then divided into two sub lists, which are sorted in a recursive fashion. Finally, the two lists are linked together.
Note that the pivot is strictly larger than all other elements in the first list. This ensures that when the first recursive
call returns, the pivot remains the last element in the first sublist.
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dle ′(v1, v2) = dle(v1, v2) ∧ (inUc(v1) ∧ inUc(v2) ∨ inUx (v1) ∧ inUx(v2)) ∨

inUc(v1) ∧ inUx(v2) ∧






1 : ∃vc, vx : match{〈h1,x1〉,...,〈hk,xk〉}(vc, vx) ∧ dle(v1, vc) ∧ dle(vx, v2)

0 : ∃vc, vx : match{〈h1,x1〉,...,〈hk,xk〉}(vc, vx) ∧ ¬dle(v1, vc) ∧ ¬dle(vx, v2)
1
2 : otherwise


 ∨

inUx(v1) ∧ inUc(v2) ∧






1 : ∃vc, vx : match{〈h1,x1〉,...,〈hk,xk〉}(vc, vx) ∧ dle(v1, vc) ∧ dle(vx, v2)

0 : ∃vc, vx : match{〈h1,x1〉,...,〈hk,xk〉}(vc, vx) ∧ ¬dle(v1, vc) ∧ ¬dle(vx, v2)
1
2 : otherwise




Figure C.4: The predicate update formulae for thedle predicate used in the procedure call rule to construct the
memory state at the return site.

We made two modifications to the program in order to eliminatetwo (false, i.e., dead) cutpoints. Then-field
of the pivot object (pointed-to byp) is dead when the first recursive call occurs. Had we not nullified it, the objects
pointed-to bytl andlast would have become cutpoints. Similarly, thepr is dead when the second recursive call
occurs. However, the object it points to would have become a cutpoint had it not been nullified. The nullification
of all the local variables prior to the return statement is only conducted to simplify the presentation.

Figure C.6 shows several concrete states that occur during the execution ofquicksort and their abstraction.
For clarity, in the concrete states we do not draw the instrumentation predicates. Instead, we draw in each object
the numeric value of its data field, from which thedle relation can be easily inferred. In the abstract states, we
do not draw thedle androbj relations. We prove that a list is sorted by showing that the predicateO holds in all
its elements. Because this predicate does not take a role in the abstraction and we only care when its value is1,
we draw it only in those nodes in which it hold. If we do not drawit in a nodeu, we mean that its value inu is
either0 or 1

2 . Because thedle is a transitive relation, we do not drawdle-labeled edges which can be inferred. For
example, if the data field ofu1 is less-or-equal to the data field ofu2, and the data field of the latter is less-or-equal
to the data field ofu3, we draw adle-labeled edge fromu1 to u2 and fromu2 to u3, but we do not draw such an
edge fromu1 to u3. Because thedle is reflexive, we omit selfdle-loops in non summary objects.

Note that the second recursive call is invoked on a local-heap which, under abstraction, is identical to the
local-heap that was passed by the external call, thus the results of analyzing the recursive call can be reused in the
analysis of the external call. Also note that when the procedure returns, every element has theO property, thus,
proving that the list is in order.
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public static List quickSortRec(List p, List q) {
// Location (A)
List hd,pr,tl;
if (p == null)

return first;

if (p == q)
return h2;

hd = p;
pr = p;
tl = p.n;

// Partitioning of the list
while (tl != q) {

if (tl.d < p.d) {
pr.n = tl.n;
tl.n = hd;
hd = tl;
tl = pr.n;

}
else {

pr = tl;
tl = tl.n;

}
}

tl = p.n;
p.n = null; // removing a false cutpoint due to a dead field
pr = null; // removing a false cutpoint due to a dead variable

// Location (B)
List s = quickSortRec(hd,p);
// Location (C)
List t = quickSortRec(tl,q);
// Location (D)

p.n = t;

t = hd = pr = tl = null;

// Location (E)
return s;

}

public static void main(String argv[]) {
List x = randomList(8);
List y = quicksort(x,null);

}

Figure C.5: A program that sorts a list using a quicksort algorithm for singly linked lists.
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Figure C.6: Concrete memory states that occur during the execution ofquicksort and their abstractions.
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Appendix D

Appendix for Chapter 4

This chapter provides formal details pertaining to Chapter4:
• Section D.1 describes the meaning of control statements.
• Section D.2 provides the proofs of the main theorems stated in Section 4.5.
• Section D.3 provides additional formal details pertainingto the concrete semantics presented in Sec-

tion 4.8.2.
• Section D.4 shows that Deutsch’s abstract-interpretationalgorithm [Deu94] can be seen as an abstraction

of theLSL semantics and provides insight into the clever interprocedural aspects of the analysis.

D.1 The Meaning of Control Statements

Control statements are handled as descried in Section B.1. The semantics function which maps conditional in-
volving comparison between pointer access paths to predicates over states in theLSL semantics is

BΣ
L

: cond→ ΣL → {tt ,ff }

BΣ
L
[[cnd]] = λ.





[[α = β]]LSL(σL) cnd≡ α = β

¬[[α = β]]LSL(σL) cnd≡ α 6= β

[[α = null]]LSL(σL) cnd≡ α = null

¬[[α = null]]LSL(σL) cnd≡ alpha 6= 6= null

D.2 Formal Properties of theLSL Semantics

This section provides the proofs of the main theorems statedin Section 4.5. Furthermore, it proves a stronger
theorem than the equivalence theorem, i.e., the preservation ofcontext-aware equivalence.

More specifically, in this section we prove our main theorem,Theorem 4.5.3 (preservation of observational
equivalence). In Section D.2.1, we state, and prove, additional properties of theLSL semantics. In Section D.2.2,
we define the notion of context-aware equivalence between states inLSL and states inGSB, and prove a stronger
theorem than the equivalence theorem, i.e., the preservation ofcontext-aware equivalence.

As in Section 4.5, we assume,A andCPL with a certain index (resp. prime) to be the heap, resp. cutpoint-
labels component of a stateσL with the same index (resp. prime). Similarly, we assumeL, ρ, andh with a
certain index (resp. prime) to be the set of allocated locations, resp. environment, resp. heap of a statesG

with the same index (resp. prime). In addition, we use the notations[[α 6= β]]LSL(σL), [[α 6= null]]LSL(σL),
[[α 6= β]]GSB(sG), and[[α 6= null]]GSB(sG) as shorthand for¬[[α = β]]LSL(σL), resp.¬[[α = null]]LSL(σL),
resp.¬[[α = β]]GSB(sG), resp.¬[[α = null]]GSB(sG).

D.2.1 Properties of theLSL Semantics

In this section, we prove certain properties of theLSL semantics. These properties are needed in the proof of
the Context-Aware Equivalence theorem, however, they are mere technicalities of the definition ofLSL as given
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in Figure 4.6 and Figure 4.7.

The following lemma establishes some of the properties of the [·]· function defined in Figure 4.5. In particular,
it states certain properties related to equality of access-paths.

Lemma D.2.1 (Properties of[·]·) Let σL = 〈CPL, A〉 ∈ Σq
L be an (admissible) memory state for procedureq.

For any generalized access pathsα, β ∈ GAccPathq the following holds:

1. [[α = null]]LSL(σL) ⇐⇒ [α]A = ∅

2. [[α = β]]LSL(σL) ⇐⇒ [α]A = [β]A

3. [[α = null]]LSL(σL) =⇒ (∀α′, α ≤ α′ =⇒ [[α′ = null]]LSL(σL))

4. [[α 6= null]]LSL(σL) =⇒ (∀α′, α′ ≤ α =⇒ [[α′ 6= null]]LSL(σL))

5. [α]A ∈ A ∪ {∅}

6. ∀cpl ∈ CPL : [〈cpl , ǫ〉]A 6= ∅

Sketch of Proof:1-5 are immediate from the definitions of:[[· = ·]]LSL, [·]·, and admissibility. Lemma D.2.1(6) is
proven using an induction on the derivation tree where the key observation is that objects never lose their labels,
i.e., an access path of the form〈cpl , ǫ〉, wherecpl ∈ CPL, is never removed from the description of an object.

The following lemma states certain properties of the sets ofobjects and the various mappings defined in the
procedure call inference rule (see Figure 4.7).

Lemma D.2.2 (Properties of the procedure call inference rule) Letσc
L = 〈CPLc, Ac〉 ∈ Σq

L be an admissible
memory state for procedureq in which the statementy = p(x1, . . . , xk) is executed. Let〈CPLe, Ae〉, 〈CPLx, Ax〉,
〈CPLr, Ar〉, Oargs

c , Opassed
c , Ocp

c , Ocp
c , bindargs , bind cp , bindcall , andbindret be as defined in Figure 4.7. Let

α ∈ GAccPathq be an arbitrary generalized access path of procedureq. The following holds.

1. ∅ 6∈ Opassed
c .

2. (Ac \ Opassed
c ) ∩map(sub(bindret)) Ax = ∅.

3. If [α]Ar 6= ∅ and[α]Ar 6∈ (Ac \ Opassed
c ), then[α]Ar ∈ map(sub(bind ret)) Ax.

4. ∀a, a′ ∈ dom(bind ret) : a 6= a′ =⇒ ∀α ∈ bindret(a) : ∀β ∈ bindret(a
′) : α 6≤ β ∧ β 6≤ α.

5. ∀a ∈ dom(bind ret) : ∀α, β ∈ bind ret(a) : α 6= β =⇒ α 6≤ β ∧ β 6≤ α.

6. ∀a ∈ range(bindret) : ∀α ∈ a.∀α′ < α, [α′]Ac 6∈ Opassed
c .

7. ∅ 6∈ range(bind ret)

Proof: We only sketch the proof of 3. The other properties are derived immediately from the definition of the
LSL semantics.
1. [α]Ar 6= ∅, [α]Ar 6∈ Ac \ Opassed

c Assumption

2. Ar = (Ac \ Opassed
c ) ∪ map(sub(bind ret)) Ax SeeFigure 4.7.

3. (Ac \ Opassed
c ) ∩ map(sub(bind ret)) Ax = ∅ Lemma D.2.2(2)

4. [α]Ar ∈ map(sub(bindret)) Ax 1 − 3

The following lemma establishes certain properties of the memory states that occur during a procedure invo-
cation at the call-site, at the entry-site, at the exit-site, and at the return-site. Informally, it states the following
properties:

1. Properties of cutpoint-labels:
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(a) Cutpoint-labels are never empty.

(b) At the entry state, every access path in a cutpoint-labelpoints to the corresponding cutpoint.

2. When a procedure returns, an access path can point to one ofthe following: to an object which was not
passed to the procedure, to an object that was in the invoked procedure local-heap, or to null.

3. When a procedure returns, an access path that points to an object which was not in the callee’s local-heap
does not point to such an object when the procedure has been invoked.

4. The functionsub(bind ret) is injective for all objects that are reachable at the returnsite. Furthermore, it
maps all unreachable objects to the empty set.

5. When a procedure returns, every access path that points tothe invoked procedure’s local-heap, has a unique
prefix which starts either with the return value, an object pointed-to by an actual parameter, or a cutpoint of
that invocation.

Lemma D.2.3 (Properties of procedure calls)Let σc
L, q, y = p(x1, . . . , xk), 〈CPLe, Ae〉, 〈CPLx, Ax〉,

〈CPLr, Ar〉, Oargs
c , Opassed

c , Ocp
c , Ocp

c , bindargs , bind cp , bindcall , bindret , and α ∈ GAccPathq be as in
Lemma D.2.2. The following holds:

1. For anycpl ∈ CPLe, the following holds:

(a) ∅ 6= cpl ⊆ Fq × ∆, and

(b) for anyα′ ∈ cpl and anyδ ∈ ∆, [[α′.δ = 〈cpl , δ〉]]LSL(σe
L).

2. If [α]Ar 6∈ (Ac \ Opassed
c ), then for any generalized access pathα′ such thatα ≤ α′, [α′]Ar ∈ {∅} ∪

map(sub(bindret)) Ax.

3. If [α]Ar ∈ (Ac \ Opassed
c ), then for every generalized access pathα′ ≤ α it holds that[α′]Ac 6∈ Opassed

c .

4. For any o, o′ ∈ Ax, if o 6= o′, then eithersub(bind ret) o 6= sub(bind ret) o′ or sub(bind ret) o =
sub(bind ret) o′ = ∅.

5. (a) If 〈y, ǫ〉 ≤ α, then[[〈y, δ〉 = null]]LSL(σr
L) ⇐⇒ [[〈ret , δ〉 = null]]LSL(σx

L)

(b) If 〈y, ǫ〉 6≤ α and∀α′ ≤ α.[α′]Ac 6∈ Opassed
c , then[[α = null]]LSL(σr

L)) ⇐⇒ [[α = null]]LSL(σc
L).

(c) If [α]Ac ∈ Oargs
c ∪ Ocp

c and α ∈ Bypass(Opassed
c ) [α]Ac then there exists a (unique)rα

1 ∈
dom(bind ret) such thatα ∈ bindret rα

1 . Furthermore for anyδ ∈ ∆, [[α.δ = null]]LSL(σr
L) ⇐⇒

∀αp ∈ rα
1 , [[αp.δ = null]]LSL(σx

L)

6. For anyo ∈ Ax such that[α]Ar = sub(bind ret) o and [α]Ar 6= ∅, there exists a uniqueα0 ≤ α such that
α0 ∈ flat (range(bindret)). Furthermore, one (and only one) of the following holds:

(a) α0 = 〈y, ǫ〉

(b) [α0]Ac ∈ Oargs
c andα0 ∈ Bypass(Opassed

c ) [α0]Ac

(c) [α0]Ac ∈ Ocp
c andα0 ∈ Bypass(Opassed

c ) [α0]Ac

and, in addition,rα
1 .δα

1 ⊆ o whereα = α0.δ
α
1 , rα

1 .δα
1 6= ∅ and

rα
1 =





{〈ret , ǫ〉} (if case6a holds)

bindargs [α0]Ac (if case6b holds)

bindcp [α0]Ac (if case6c holds)
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Proof:

Properties 2–5 are immediate. We prove properties 1 and 6.

1.

(i) By definition, CPLe = map(sub(bindargs)) Ocp
c . To show that∅ 6∈ CPLe ⊆ 2Fq×∆ , we show that∀o ∈

Opassed
c .∅ 6= sub(bindargs) o ⊆ Fq × ∆. This proves (i), becauseOcp

c ⊆ Opassed
c . Recall that

Opassed
c = RObjs(Ac)Oargs

c = {o ∈ Ac | o′ ∈ Oargs
c , δ ∈ ∆, o′.δ ⊆ o}

Thus,

5. o ∈ Opassed
c ⇐⇒ ∃o′ ∈ Oargs

c , ∃δ ∈ ∆. o′.δ ⊆ o.

By definition (see Figure 4.7),

6. ∅ 6∈ Oargs
c , and

7. bindargs = λo ∈ Oargs
c .{〈hi, ǫ〉 | 1 ≤ i ≤ k, xi ∈ o}.

Thus, for anyo ∈ Opassed
c ,

8. sub(bindargs)(o) = flat {bindargs(a).δ | a ∈ dom(bindargs), δ ∈ ∆, a.δ ⊆ o}

= flat {bindargs(o
′).δ | o′ ∈ Oargs

c , δ ∈ ∆, o′.δ ⊆ o}

which gives (by5, 6) that∅ 6∈ sub(bindargs)(o), and (by5, 7) thatsub(bindargs)(o) ⊆ Fq × ∆.

To prove (ii), we recall (see Figure 4.7) that

9. CPLe = map(sub(bindargs)) Ocp
c ,

10. Ocp
c ⊆ Opassed

c ,

11. bindcp = λo ∈ Ocp
c .{〈sub(bindargs) o, ǫ〉}, and

12. bindcall = λo ∈ Oargs
c ∪ Ocp

c .

{
bindargs(o) o ∈ Oargs

c

bind cp(o) o ∈ Ocp
c

,

13. Ae = map(sub(bind call)) Opassed
c .

Thus, for anycpl ∈ CPLe and for anyo ∈ Ae,

14. 〈cpl , δ〉 ∈ o ⇐⇒ 13

15. ∃o′ ∈ Opassed
c : o = sub(bind call) o′ ∧ 〈cpl , δ〉 ∈ sub(bind call)o

′ ⇐⇒

16.

∃o′ ∈ Opassed
c : o = sub(bind call) o′ ∧

〈cpl , δ〉 ∈ flat

{
bind call(a1).δ1

∣∣∣∣∣
a1 ∈ dom(bindcall ),

δ1 ∈ ∆, a1.δ1 ⊆ o′

}
⇐⇒ Def. of sub

17.
∃o′ ∈ Opassed

c : o = sub(bind call) o′ ∧

∃o′′ ∈ Ocp
c : 〈cpl , δ〉 = 〈sub(bindargs) o′′, δ〉 ∧ o′′.δ ⊆ o′

⇐⇒ 9, 7, 11, 12

18.

∃o′ ∈ Opassed
c : o = sub(bind call) o′ ∧

∃o′′ ∈ Ocp
c : 〈cpl , δ〉 = 〈sub(bindargs) o′′, δ〉 ∧

∀o′′′ ∈ Oargs
c : ∀δ′ ∈ ∆ : o′′′.δ′ ∈ o′′ =⇒ o′′′.δ′.δ ∈ o′

⇐⇒
Admissibility of σc

L

Opassed
c = RObjs(Ac)Oargs

c

19.
∃o′ ∈ Opassed

c : ∃o′′ ∈ Ocp
c : 〈cpl , δ〉 = 〈sub(bindargs) o′′, δ〉 ∧

sub(bindargs) o′′.δ ⊆ sub(bindargs) o′
⇐⇒ 18, 8, Def. of bindargs

20. ∀α′ ∈ cpl : α′.δ ∈ o ⇐⇒ 19

6.
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21. [α]Ar 6= ∅, o ∈ Ax, [α]Ar = sub(bind ret) o Assumptions

22. α ∈ sub(bind ret) o 21, Def. of [·]·
23. α ∈ flat {bindret(a).δα

1 | a ∈ dom(bindret), δα
1 ∈ ∆, a.δα

1 ⊆ o} 22, Def. of sub

24. ∃a ∈ dom(bind ret) : ∃δα
1 ∈ ∆: a.δα

1 ⊆ o ∧ α ∈ (bindret a).δα
1 23, Def. of flat

25. ∃a ∈ dom(bind ret) : ∃δα
1 ∈ ∆: ∃α0 ∈ bind ret(a) : a.δα

1 ⊆ o ∧ α = α0.δ
α
1 24, Def. of ·.·

26. ∃!a ∈ dom(bind ret) : ∃δα
1 ∈ ∆: ∃α0 ∈ bind ret(a) : a.δα

1 ⊆ o ∧ α = α0.δ
α
1 25, Lemma D.2.2(4),

α0 ≤ α

27. ∃!a ∈ dom(bind ret) : ∃!δα
1 ∈ ∆: ∃!α0 ∈ bind ret(a) : a.δα

1 ⊆ o ∧ α = α0.δ
α
1 26, Lemma D.2.2(5),

α0 ≤ α

28. Let a, α0, δ
α
1 be the unique values satisfying27. We continue with

a case analysis of the possible values ofa ∈ dom(bind ret)

29. α0 ∈ flat (range(bindret)) ∧ ∀α′ ≤ α : α′ ∈ flat (range(bindret)) =⇒

α′ = α0 27 − 28

30. dom(bindret) = {{〈ret , ǫ〉}} ∪ map(bindargs) Oargs
c ∪map(bind cp) Ocp

c Def. of bind ret

31. Assumea = {〈ret , ǫ〉} (Case6a)

32. bindret({〈ret , ǫ〉}) = {〈y, ǫ〉} Def. of bind ret

33. α0 = 〈ret , ǫ〉 29, 32

34. {〈ret , ǫ〉}.δ2 ⊆ o 27, 28, 33

35. Assumea ∈ map(bindargs) Oargs
c (Case6b)

36. ∃o′ ∈ Oargs
c , a = bindargs o′ 35

37. α0 ∈ bindret(a) 28

38. ∃o′ ∈ Oargs
c , a = bindargs o′, α0 ∈ Bypass(Opassed

c ) o′ 35 − 37, Def. of bindret

39. a = bindargs([α0]Ac), α0 ∈ Bypass(Opassed
c ) [α0]Ac 38, Def. of bind ret

andBypass

40. bindargs [α0]Ac .δα
1 ⊆ o 28, 39

41. Assumea ∈ map(bindargs) Oargs
c (Case6c)

42. proof analogous to case6b

Note that, by Lemma D.2.2(7),r1
α 6= ∅.

In the following, we sketch the proofs of additional properties ofLSL which are stated in Section 4.5.

Sketch of Proof (Theorem 4.5.9):

(i) For access paths that in memory stateσc
L point to an object which is not inOpassed

c , the proof is immediate
from admissibility ofσr

L and the fact
thatAc \ Opassed

c ⊆ Ar.

For accesses pathsα, β that in memory stateσc
L point-to (the same) object inOpassed

c , but do notpass
throughany object inOpassed

c , the proof follows from Lemma D.2.3(5c).

(ii) For access paths that are equalnull in σc
L, the proof is immediate from Lemma D.2.3(5b).

Sketch of Proof (Theorem 4.5.10):
The proof is done by induction on the shape of the derivation tree. The base case is immediate because in

every statement in bothσ1
L andσ2

L:

• the same set of access paths that start with a variable, are added / removed from the description of every
object, and

• the side-conditions for executing a statement involve onlyaccess paths that start with a variable.

The induction step for (non-atomic) intraprocedural statements is also immediate because of the aforementioned
nature of side-conditions in theLSL semantics. To see why the induction step holds for a procedure call, we
observe that in bothσ1

L andσ2
L:
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• the same objects are reachable from the actual parameters, and

• at procedure return, the update of access paths that start with a variable, is done using the same cutpoints.

D.2.2 Context-Aware Equivalence

In this section, we state and prove the context-aware equivalence theorem (Theorem D.2.9). Theorem 4.5.3 is an
immediate corollary of Theorem D.2.9.

Definition D.2.4 (Renaming function) Given anLSL state〈CPL, A〉 of procedurep, and aGSB state〈L, ρ, h〉
of procedurep, a functionf : CPL → L is a renaming function if it is total and injective. We liftf to
f̂ : GAccPathp → GHeapPathp as follows:

f̂(〈r, δ〉) =

{
〈r, δ〉 : r ∈ Vp

〈f(r), δ〉 : otherwise

Definition D.2.5 (Context-Aware Equivalence)Let p be a procedure. ThestatesσL = 〈CPL, A〉 ∈ Σp
L and

sG = 〈L, ρ, h〉 ∈ Sp
G are context-aware equivalent w.r.t. a renaming functionf : CPL → L, denoted by

σL ∝f sG, if for all α, β, γ ∈ GAccPathp,

1. [[α = β]]LSL(σL) ⇐⇒ [[f̂(α) = f̂(β)]]GSB(sG),

2. [[γ = null]]LSL(σL) ⇐⇒ [[f̂(γ) = null]]GSB(sG).

The statesσL andsG arecontext-aware equivalentif there exists a renaming functionf s.t.σL ∝f sG.

The following lemma is rather technical. It states that any extension of a renamed access path points to the
same location as the renamed extended access path.

Lemma D.2.6 Let σL ∈ Σq
L and sG ∈ Sq

G be context-aware equivalent states w.r.t a renaming function f .
For any α, α0 ∈ GAccPathq and anyδ ∈ ∆ such thatα = α0.δ, [[f̂(α)]]G(sG) = [[f̂(α0).δ]]G(sG) =

[[〈[[f̂(α0)]]G(sG), δ〉]]G(sG).

Proof: Immediate from the definition of̂f , the definition of·.·, and Lemma B.2.6(1).

The following lemma shows that context-aware equivalence at the call-site, implies context-aware equivalence
at the entry-site. Furthermore, it defines an appropriate renaming function (fe). Property 1 shows thatfe is indeed
a renaming function and Property 2 proves that the entry states are context-aware equivalent with respect tofe.
Properties 3–5 establish certain properties offe.

Lemma D.2.7 (Context-aware equivalence of invoked procedures)
Let σc

L = 〈CPLc, Ac〉 ∈ Σq
L andsc

G = 〈Lc, ρc, hc〉 ∈ Sq
G be context-aware equivalent states w.r.t. a renaming

functionf , i.e., σc
L ∝f sc

G. Let y = p(x1, . . . , xk) be a call to procedurep whose formal parameters are
h1, . . . , hk. Letσe

L = 〈CPLe, Ae〉, σx
L = 〈CPLe, Ax〉, σr

L = 〈CPLc, Ar〉, Oargs
c , Opassed

c , Ocp
c , bindargs , bindcp ,

andbind call be as defined in Figure 4.7. Letse
G = 〈Le, ρe, he〉, sx

G = 〈Lx, ρx, hx〉, andsr
G = 〈Lr, ρr, hr〉 be

as defined in Figure 2.5. LetLreach be as defined in Lemma B.2.5. Letfe : CPLe → Le such thatfe(cpl) =
[[α]]G(se

G) whereα ∈ cpl . The following holds:

1. fe is a renaming function.

2. σe
L ∝fe

se
G.

3. (a) For anyo ∈ Oargs
c , for anyαq ∈ Bypass(Opassed

c ) o, for anyαp ∈ bindargs o, [[f̂(αq)]]G(sc
G) =

[[f̂e(αp)]]G(se
G).

(b) For anyo ∈ Ocp
c , for any αq ∈ Bypass(Opassed

c ) o, for any αp ∈ bind cp o, [[f̂(αq)]]G(sc
G) =

[[f̂e(αp)]]G(se
G).
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4. For anyα ∈ GAccPathq, [α]Ac ∈ Opassed
c ⇐⇒ [[f̂(α)]]G(sc

G) ∈ Lreach

5. For anyαp ∈ ({h1, . . . , hk} ∪ CPLe) × {ǫ}, [[f̂e(αp)]]G(se
G) = [[f̂e(αp)]]G(sx

G).

Proof: 1.

The functionfe is a total function fromCPLe to Le. It is well defined because, by construction ofCPLe:

• everycpl ∈ CPLe contains at least one generalized access path (see Lemma D.2.2(1)), and

• for everyα1, α2 ∈ cpl , [[α1 = α2]]LSL(σe
L).

The functionfe is injective because, by construction ofCPLe, for everycpl1, cpl2 ∈ CPLe such thatcpl1 6= cpl2
for everyα1 ∈ cpl1 andα2 ∈ cpl2 [[α1 6= α2]]LSL(σe

L).

2.

1. σe
L andse

G are observationally equivalent: For any access paths〈hi, δ〉 and〈hj , δ
′〉, where1 ≤ i, j ≤ k

and δ, δ′ ∈ ∆, [[〈hi, δ〉 = 〈hj , δ
′〉]]LSL(σe

L) ⇐⇒ [[〈xi, δ〉 = 〈xj , δ
′〉]]LSL(σc

L) ⇐⇒ [[〈xi, δ〉 =
〈xj , δ

′〉]]GSB(sc
G) ⇐⇒ [[〈hi, δ〉 = 〈hj , δ

′〉]]GSB(se
G). The proof for the preservation of equality with

null of access paths that start at a formal variable is analogous.All other variablesx ∈ Vp \ Fp are equal
to null at procedure entry by definition.

2. σe
L andse

G are context-aware equivalent w.r.tfe. We prove this by case analysis.

• Assumeα = 〈hi, δ〉 andβ = 〈hj , δ
′〉. Then[[α = β]]LSL(σe

L) ⇐⇒ [[f̂e(α) = f̂e(β)]]GSB(se
G),

becauseσe
L andse

G are observationally equivalent; and, by Definition D.2.4,α = f̂e(α) andβ =

f̂e(β).

• Assumeα = 〈cpl , δα〉 andβ = 〈h, δβ〉 for somecpl ∈ CPLe, δα, δβ ∈ ∆ andh ∈ Fp

[[α = β]]LSL(σe
L) ⇐⇒

∀α′ ∈ cpl : [[α′.δα = β]]LSL(σe
L) ⇐⇒

Lemma D.2.3(1), transi-

tivity of [[· = ·]]LSL

∀α′ ∈ cpl : [[α′.δα = β]]GSB(σe
L) ⇐⇒

σe
L andse

G are obs-

ervationally equivalent

∀α′ ∈ cpl : [[f̂e(α
′.δα) = f̂e(β)]]GSB(se

G) ⇐⇒ Definition D.2.4

∀α′ ∈ cpl : [[f̂e(α
′.δα)]]G(se

G) = [[f̂e(β)]]G(σe
L) ⇐⇒ Def. of equality

∀α′ ∈ cpl : [[〈f̂e(α
′), δα〉]]G(se

G) = [[f̂e(β)]]G(σe
L) ⇐⇒ Lemma D.2.6

[[〈fe(cpl), δα〉]]G(se
G) = [[f̂e(β)]]G(σe

L) ⇐⇒
fe(cpl) = [[α′]]G(σe

L),

α′ ∈ cpl , cpl 6= ∅

∀α′ ∈ cpl : [[f̂e(〈cpl , δα〉) = f̂e(β)]]GSB(σe
L)

• The proof for the preservation of equality withnull and equality between two cutpoint-anchored
paths is analogous.

3.
Immediate from the definition offe; the substitution of actual parameters by formal parameters as defined in
Figure 2.5 and Figure 4.7; and the fact that thehe = hc.
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4.
43. ∀α ∈ GAccPathq :

[α]σc
L
∈ Opassed

c ⇐⇒ Definition ofOpassed
c ,

[α]Ac 6= ∅ ∧

∃i, 1 ≤ i ≤ k : ∃δ ∈ ∆: [[α = 〈xi, δ〉]]LSL(σc
L)

⇐⇒
(see proof for

Lemma D.2.8(1))

[[α 6= null]]LSL(σc
L) ∧

∃i, 1 ≤ i ≤ k : ∃δ ∈ ∆: [[α = 〈xi, δ〉]]LSL(σc
L)

Lemma D.2.1(1)

44. ∀α ∈ GAccPathq :

[[f̂(α)]]G(sc
G) ∈ Lreach ⇐⇒ By definition ofLreach

[[f̂(α)]]G(sc
G) ∈ Lc ∧

∃i, 1 ≤ i ≤ kv : ∃δ ∈ ∆: [[f̂(α) = 〈xi, δ〉]]GSB(sc
G) ⇐⇒

Def. of equality

with null

[[f̂(α) 6= null]]GSB(sc
G) ∧

∃i, 1 ≤ i ≤ k.∃δ ∈ ∆.[[f̂(α) = 〈xi, δ〉]]GSB(sc
G)

45. ∀α ∈ GAccPathq : ∀i, 1 ≤ i ≤ k : ∀δ ∈ ∆:

[[α 6= null]]LSL(σc
L) ∧ [[α = 〈xi, δ〉]]LSL(σc

L) ⇐⇒ σc
L ∝f sc

G

[[f̂(α) 6= null]]GSB(sc
G) ∧ [[f̂(α) = 〈xi, δ〉]]GSB(sc

G)

46. ∀α ∈ GAccPathq :

[α]σc
L
∈ Opassed

c ⇐⇒ [[f̂(α)]]G(Ac) ∈ Lreach 43 − 45

5.
Immediate from the following facts:

1. formal parameters are not assigned;

2. Le ⊆ Lx; and

3. by definition of[[·]]G, for anycpl ∈ CPLe,

[[f̂e(〈cpl , ǫ〉)]]G(se
G) = fe(cpl ) = [[f̂e(〈cpl , ǫ〉)]]G(sx

G).

The following lemma shows that context-aware equivalence at the call-site is preserved at the corresponding
return-site for access paths that do not traverse the local-heap of the invoked procedure (1–2). Furthermore,
it asserts that if the exit-states are context-aware equivalent w.r.t fe (as defined in the previous lemma), then
the return states are also context-aware equivalent w.r.t.fe (3). This is the main lemma used in the proof of
Theorem D.2.9.

Lemma D.2.8 (Context-aware equivalence at return sites)Let σc
L, sc

G, f , y = p(x1, . . . , xk), p, σe
L, σx

L, σr
L,

Oargs
c , Opassed

c , Ocp
c , bindargs , bindcp , bindcall , se

G, sx
G, Lreach , andfe be as in Lemma D.2.7. The following

holds,

1. ∀α ∈ GAccPathq if [α]Ar 6= ∅ ∧ [α]Ar ∈ Ac \ Opassed
c then (i) [α]Ar = [α]Ac and (ii) [[f̂(α)]]G(sr

G) =

[[f̂(α)]]G(sc
G) 6∈ Lreach .

2. For anyo ∈ Opassed
c , for anyαq ∈ Bypass(Opassed

c ) o, [[f̂(αq)]]G(sc
G) = [[f̂(αq)]]G(sr

G).

3. If σx
L ∝fe

sx
G thenσr

L ∝f sr
G.

Proof:
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1.
47. [α]Ar ∈ Ac \ (Opassed

c ∪ {∅}) Assumption

48. [α]Ac = [α]Ar Admissibility of σc
L

49. [α]Ac 6∈ RObjs(Oargs
c )

47 − 48,

Opassed
c = RObjs(Oargs

c )

50. ∀o ∈ Ac, ∀o′ ∈ Oargs
c , ∀δ ∈ ∆, o′.δ ⊆ o =⇒ α 6∈ o 49, def. ofRObjs(Oargs

c )

51. ∀o ∈ Ac, ∀i, 1 ≤ i ≤ k, ∀δ ∈ ∆,

([xi]Ac 6= ∅ ∧ [xi]Ac .δ ⊆ o) =⇒ α 6∈ o 50, def. ofOargs
c

52. [α]Ac 6= ∅ 47 − 48

53. ∀i, 1 ≤ i ≤ k, ∀δ ∈ ∆, [α]Ac 6= [〈xi, δ〉]Ac 51, 52

54. ∀i, 1 ≤ i ≤ k, ∀δ ∈ ∆, [[α 6= 〈xi, δ〉]]LSL(σc
L) 53, def. of equality

55. ∀i, 1 ≤ i ≤ k, ∀δ ∈ ∆, [[f̂(α) 6= 〈xi, δ〉]]GSB(sc
G)

54, σc
L ∝f sc

G,

f̂(〈xi, δ〉) = 〈xi, δ〉

56. ∀i, 1 ≤ i ≤ k, ∀δ ∈ ∆, [[f̂(α)]]G(sc
G) 6= [[〈xi, δ〉]]G(sc

G) 55, def. of [[· = ·]]GSB

57. [[f̂(α)]]G(sc
G) 6∈ Lreach 56, def. ofLreach

58. [[f̂(α)]]G(sc
G) = [[f̂(α)]]G(sr

G) 57, Lemma B.2.5

2.
Immediate from the definition ofBypass , Lemma D.2.8(1), Lemma B.2.5(2), and the fact that a callee cannot
modify the value of pending variables.

3
Let α = 〈rα, δα〉, β = 〈rβ , δβ〉, andγ = 〈rγ , δγ〉 be any generalized access paths of procedurep. We show

that

1. [[α = β]]LSL(σr
L) =⇒ [[f̂(α) = f̂(β)]]GSB(sr

G) and

2. [[γ = null]]LSL(σr
L) =⇒ [[f̂(γ) = null]]GSB(sr

G).

The proof of the other direction, (i.e., that[[f̂(α) = f̂(β)]]GSB(sr
G) =⇒ [[α = β]]LSL(σr

L) and [[f̂(γ) =
null]]GSB(sr

G) =⇒ [[γ = null]]LSL(σr
L)) is analogous, and it is not shown.

The proof is done by case analysis.

1. Proving[[α = β]]LSL(σr
L) ⇒ [[f̂(α) = f̂(β)]]GSB(sr

G)

a. Assuming[[α 6= null]]LSL(σr
L) and[[β 6= null]]LSL(σL) and

1. [α]Ar ∈ Ac \ Opassed
c and[β]Ar ∈ Ac \ Opassed

c .

2. [α]Ar ∈ Ac \ Opassed
c and[β]Ar 6∈ Ac \ Opassed

c .

3. [α]Ar 6∈ Ac \ Opassed
c and[β]Ar ∈ Ac \ Opassed

c .

4. [α]Ar 6∈ Ac \ Opassed
c and[β]Ar 6∈ Ac \ Opassed

c .

b. Assuming[[α = null]]LSL(σr
L) and[[β = null]]LSL(σr

L).

2. Proving[[γ = null]]LSL(σr
L) ⇒ [[f̂(γ) = null]]GSB(sr

G)

a. rγ = y.

b. rγ 6= y and

1. ∀γ′ ≤ γ, [γ′]Ar ∈ (Ac \ Opassed
c ) ∪ {∅}.

2. ∃γ′ ≤ γ, [γ′]Ar 6∈ (Ac \ Opassed
c ) ∪ {∅}.
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Case 1(a)1:
59. [α]Ar 6= ∅ [[α 6= null]]LSL(σr

L), Lemma D.2.1(1)

60. [α]Ar ∈ Ac \ Opassed
c Assumption

61. [α]Ac = [α]Ar 59 − 61, Lemma D.2.8(1)

62. [[f̂(α)]]G(sc
G) = [[f̂(α)]]G(sr

G) 59 − 61, Lemma D.2.8(1)

63. [β]Ac = [β]Ar 6= ∅ Analogous to59 − 61

64. [[f̂(β)]]G(sc
G) = [[f̂(β)]]G(sr

G) Analogous to62

65. [α]Ar = [β]Ar [[α = β]]LSL(σr
L), Lemma D.2.1(2)

66. [α]Ac = [β]Ac 61, 63, 65

67. [[α = β]]LSL(σc
L) 66, Lemma D.2.1(2)

68. [[f̂(α) = f̂(β)]]GSB(sc
G) 67, σc

L ∝f sc
G

69. [[f̂(α)]]G(sc
G) = [[f̂(β)]]G(sc

G) By def. of equality

70. [[f̂(α)]]G(sr
G) = [[f̂(β)]]G(sr

G) 62, 64, 69

71. [[f̂(α) = f̂(β)]]GSB(sr
G) 70, def. of equality

Case 1(a)2: This case is impossible.

72. [α]Ar ∈ Ac \ Opassed
c , [α]Ar 6= ∅ SeeCase 1(a)1.

73. [β]Ar 6= ∅ [[β 6= null]]LSL(σr
L), Lemma D.2.1(1)

74. [β]Ar ∈ map(sub(bind ret)) Ax \ {∅} 73, [β]Ar 6∈ Ac \ Opassed
c

Lemma D.2.3(2)

75. (Ac \ Opassed
c ) ∩ map(sub(bindret)) Ax ⊆ {∅} Lemma D.2.2(2)

76. [α]σr
L

= [β]σr
L

[[α = β]]LSL(σr
L), Lemma D.2.1(2)

77. Contradiction 72, 73, 74 − 76

Case 1(a)3: This case is also impossible (see proof for Case 1(a)2).
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Case 1(a)4:
78. [α]Ar 6= ∅ [[α 6= null]]LSL(σr

L),

Lemma D.2.1(1)

79. [α]Ar ∈ (map(sub(bind ret)) Ax) \ {∅} 78, Assumption,

Lemma D.2.3(2)

80. [β]Ar 6= ∅ [[β 6= null]]LSL(σr
L),

Lemma D.2.1(1)

81. [β]Ar ∈ (map(sub(bind ret)) Ax) \ {∅} 80, Assumption,

Lemma D.2.3(2)

82. [α]Ar = [β]Ar [[α = β]]LSL(σr
L),

Lemma D.2.1(2)

83. ∃!o ∈ Ax, [α]Ar = [β]Ar = sub(bind ret) o 6= ∅ 78 − 82,

Def. of map,

Lemma D.2.3(4)

84. Let o be the unique object inAx which satisfies83.

Let α0, r
α
1 , δα

1 be the unique values determined byLemma D.2.3(6) for o andα.

Let β0, r
β
1 , δβ

1 be the unique values determined byLemma D.2.3(6) for o andβ.

85. α0 6= 〈y, ǫ〉 =⇒

α0 ∈ Bypass(Opassed
c ) [α0]σc

L
, [α0]Ac ∈ Oargs

c ∪ Ocp
c ,

[α0]Ac ∈ Oargs
c =⇒ rα

1 = bindargs [α0]Ac 6= ∅

[α0]Ac ∈ Ocp
c =⇒ rα

1 = bind cp [α0]Ac 6= ∅ Lemma D.2.3(6)

86. [[f̂(α0)]]G(sr
G) =

{
[[f̂(〈y, ǫ〉)]]G(sr

G) α0 = 〈y, ǫ〉

[[f̂(α0)]]G(sr
G) α0 6= 〈y, ǫ〉

Lemma D.2.3(6)

87. [[f̂(α0)]]G(sr
G) =

{
[[〈y, ǫ〉]]G(sr

G) α0 = 〈y, ǫ〉

[[f̂(α0)]]G(sc
G) α0 6= 〈y, ǫ〉

Def. of f̂

85, Oargs
c ∪ Ocp

c ⊆ Opassed
c ,

Lemma D.2.8(2)

88. [[f̂(α0)]]G(sr
G) =

{
[[〈ret , ǫ〉]]G(sx

G) α0 = 〈y, ǫ〉

[[f̂e(αp)]]G(se
G) α0 6= 〈y, ǫ〉, αp ∈ rα

1

Def. ofGSB see Figure 2.5

85, Lemma D.2.7(3)

89. [[f̂(α0)]]G(sr
G) =

{
[[f̂e(〈ret , ǫ〉)]]G(sx

G) α0 = 〈y, ǫ〉

[[f̂e(αp)]]G(sx
G) α0 6= 〈y, ǫ〉, αp ∈ rα

1

Def. of f̂e

88, Lemma D.2.7(5)

90. ∀αp ∈ rα
1 , [[f̂(α0)]]G(sr

G) = [[f̂e(αp)]]G(sx
G) 89, α0 = 〈y, ǫ〉

⇒ rα
1 = {〈ret , ǫ〉}

91. [[f̂(α)]]G(sr
G) = [[〈[[f̂ (α0)]]G(sr

G), δα
1 〉]]G(sr

G) α = α0.δ
α
1 , Lemma B.2.6(1),

Lemma D.2.6

92. ∀βp ∈ rβ
1 , [[f̂(β0)]]G(sr

G) = [[f̂e(βp)]]G(sx
G) Analogous to85 − 90

93. [[f̂(β)]]G(sr
G) = [[〈[[f̂ (β0)]]G(sr

G), δβ
1 〉]]G(sr

G) Analogous to91

94. rα
1 .δα

1 ⊆ o, rβ
1 .δβ

1 ⊆ o 84, Lemma D.2.3(6)

95. ∀αp ∈ rα
1 , ∀βp ∈ rβ

1 , [[αp.δ
α
1 = βp.δ

β
2 ]]LSL(sx

G) 94, Lemma D.2.1(2),

Admissibility of σx
L

96. σx
L ∝fe

sx
G Assumption

97. ∀αp ∈ rα
1 , ∀βp ∈ rβ

1 , [[f̂e(αp.δ
α
1 ) = f̂e(βp.δ

β
2 )]]GSB(sx

G) 95 − 96

98. ∀αp ∈ rα
1 , ∀βp ∈ rβ

1 , [[f̂e(αp.δ
α
1 )]]G(sx

G) = [[f̂e(βp.δ
β
2 )]]G(sx

G) 97, Def. of equality

99. ∀αp ∈ rα
1 , ∀βp ∈ rβ

1 ,

[[〈[[f̂e(αp)]]G(sx
G), δα

1 〉]]G(sx
G) = [[〈[[f̂e(βp)]]G(sx

G), δβ
1 〉]]G(sx

G) 98

100. [[〈[[f̂ (α0)]]G(sr
G), δα

1 〉]]G(sx
G) = [[〈[[f̂(β0)]]G(sr

G), δβ
1 〉]]G(sx

G) 90, 92, 99,

85 (rα
1 6= ∅, rβ

1 6= ∅)

101. [[〈[[f̂ (α0)]]G(sr
G), δα

1 〉]]G(sr
G) = [[〈[[f̂(β0)]]G(sr

G), δβ
1 〉]]G(sr

G) 100, hr = hx, Def. of [[·]]G
102. [[f̂(α)]]G(sr

G) = [[f̂(β)]]G(sr
G) 91, 93, 101

103. [[f̂(α) = f̂(β)]]GSB(sr
G) 102, Def. of equality
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Case 1b:
104. [[α = null]]LSL(σr

L) Assumption

105. [[β = null]]LSL(σr
L) Assumption

106. [[f̂(α) = null]]GSB(sr
G) 104, σc

L ∝f sc
G, Case 2

107. [[f̂(β) = null]]GSB(sr
G) 105, σc

L ∝f sc
G, Case 2

108. [[f̂(α) = f̂(β)]]GSB(sr
G) 106, 107

Case 2a:
109. [[〈y, δγ〉 = null]]LSL(σr

L) By assumption

110. [[〈ret , δγ〉 = null]]LSL(σx
L) Lemma D.2.3(5a)

111. σx
L ∝fe

sx
G σc

L ∝fe
sc

G, the induction assumption

112. [[f̂e(〈ret , δγ〉) = null]]GSB(sx
G) 110, 111

113. [[〈ret , δγ〉 = null]]GSB(sx
G) 112, Def. of f̂e

114. [[〈y, δγ〉 = null]]GSB(sr
G) hr = hc, ρr(y) = ρx(ret)

Case 2(b)1:
115. ∀γ′ ≤ γ, [γ′]Ar ∈ (Ac \ Opassed

c ) ∪ {∅} Assumption

116. Ar = (Ac \ Opassed
c ) ∪ map(sub(bind ret)) Ax Def. ofLSL (see Figure 4.7).

117. ∀γ′ ≤ γ, [γ′]σc
L
6∈ Opassed

c 116, Lemma D.2.3(3), Lemma D.2.2(1)

118. [[γ = null]]LSL(σc
L) 115, 117, γ ≤ γ, Lemma D.2.3(5b)

119. [[f̂(γ) = null]]GSB(σc
L) 118, σc

L ∝f sc
G

We continue with case analysis w.r.t. the value

of [[〈rγ , ǫ〉]]G(sc
G)

• Assume[[〈rγ , ǫ〉]]G(sc
G) = null

120. [[γ = null]]LSL(σr
L) ∀γ′ ≤ γ[[γ′ 6= null]]LSL(σr

L)

121. rγ ∈ Vq \ {y} 120, Lemma D.2.1(6), Assumption(rγ 6= y)

122. [[〈rγ , ǫ〉 = null]]LSL(σc
L) 120 − 121, Lemma D.2.3(5a)

123. [[f̂(〈rγ , ǫ〉) = null]]GSB(sc
G) 122, σc

L ∝f sc
G

124. [[〈rγ , ǫ〉 = null]]GSB(sc
G) Def. of f̂

125. [[〈rγ , ǫ〉 = null]]GSB(sr
G) Def. ofGSB

126. [[γ = null]]GSB(sr
G) 125, 〈rγ , ǫ〉 ≤ γ, Lemma B.2.6(2a)

• Assume[[〈rγ , ǫ〉]]G(sc
G) 6= null

127. ∃!s ∈ F , ∃!γ′.s ≤ γ, [[f̂(γ′) 6= null]]GSB(σc
L)∧

∀γ′′, γ′.s ≤ γ′′, [[f̂(γ′′) = null]]GSB(σc
L) 119, Lemma B.2.6(2a− 2b), Lemma D.2.6

128. Let f andγ′ be the unique values satsfying127

129. [[f̂(γ′)]]G(σc
L) 6∈ Lreach 117, 128, Lemma D.2.7(4)

130. [[f̂(γ′)]]G(σc
L) ∈ Lc \ Lreach 129, [[f̂(γ′) 6= null]]GSB(σc

L)

131. [[f̂(γ′).s]]G(σc
L) = [[f̂(γ′).s]]G(σr

L) 130, Lemma B.2.5, Lemma D.2.6

132. [[f̂(γ′).s]]G(σr
L) = null 127 − 128, 131, Lemma D.2.6

133. [[f̂(γ′).s = null]]GSB(σr
L) 132, Def. of equality w.null

134. [[f̂(γ) = null]]GSB(σr
L) 128, 133, Lemma B.2.6(2a), Lemma D.2.6
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Case 2(b)2:
135. [γ]σr

L
= ∅ Lemma D.2.1(1)

([[γ = null]]LSL(σr
L))

136. ∃γ′ ≤ γ, [γ′]Ar 6∈ (Ac \ Opassed
c ) ∪ {∅} Assumption

137. ∃γ′, γ′ < γ, [γ′]σr
L
∈ map(sub(bind ret)) Ax \ {∅},

∀γ′′, γ′ ≤ γ′′ =⇒ [γ′′]σr
L
∈ map(sub(bind ret)) Ax ∪ {∅} 135 − 136, Lemma D.2.3(2)

138. ∃γ′, γ′ < γ, [γ′]σr
L
∈ map(sub(bind ret)) Ax \ {∅}, 137, [[γ = null]]LSL(σr

L),

∀γ′′, γ′ ≤ γ′′ =⇒ [γ′′]σr
L
∈ map(sub(bind ret)) Ax ∪ {∅} Lemma D.2.1(1)

139. ∃s ∈ FID, ∃γ′, γ′.s ≤ γ ∧ [γ′]σr
L
∈ map(sub(bind ret)) Ax∧

[[γ′ 6= null]]LSL(σr
L) ∧ ∀γ′′, γ′.s ≤ γ′′ =⇒ [[γ′′ = null]]LSL(σr

L) 138, Lemma D.2.1(1, 3, 4)

140. ∃s ∈ FID, ∃γ′, γ′.s ≤ γ, ∃o ∈ Ax, [γ′]σr
L

= sub(bind ret) o∧

[[γ′ 6= null]]LSL(σr
L) ∧ [[γ′.s = null]]LSL(σr

L) 139, Def. of map

141. Let γ′, s, o be the unique values satisfying140

142. let γ′
0, r

γ′

1 , δγ′

1 be the unique values determined byLemma D.2.3(6) for o andγ′.

143. ∀γp ∈ rγ′

1 , [[γp.δ
γ′

1 s = null]]LSL(σx
L) Lemma D.2.3(5c)

144. σx
L ∝fe

sx
G Assumption

145. ∀γp ∈ rγ′

1 , [[f̂e(γp.δ
γ′

1 s) = null]]GSB(σx
L) 143 − 144

146. ∀γp ∈ rγ′

1 , [[f̂e(γp.δ
γ′

1 s)]]G(σx
L) = null 145

147. ∀γp ∈ rγ′

1 , [[[[f̂e(γp.δ
γ′

1 )]]G(σx
L).s]]G(σx

L) = null 146, Lemma D.2.6

148. ∀γp ∈ rγ′

1 , [[[[[[f̂e(γp)]]G(σx
L).δγ′

1 ]]G(σx
L).s]]G(σx

L) = null 147, Lemma D.2.6

149. ∀γp ∈ rγ′

1 , [[f̂(γ0)]]G(sr
G) = [[f̂e(γp)]]G(sx

G), rγ′

1 6= ∅ See proof forCase 1(a)4

150. [[[[[[f̂ (γ0)]]G(σr
L).δγ′

1 ]]G(σx
L).s]]G(σx

L) = null 148 − 149

151. [[[[[[f̂ (γ0)]]G(σr
L).δγ′

1 ]]G(σr
L).s]]G(σr

L) = null 150, hx = hr (See Figure 4.7)

152. [[γ′.s]]G(σr
L) = null 151, Lemma D.2.6

153. [[γ′.s = null]]GSB(σr
L) 152, Def. of [[·]]G

154. [[γ = null]]GSB(σr
L) γ′.s ≤ γ, Lemma B.2.6(2a)

Theorem D.2.9 (Context-aware Equivalence Preservation)Let p be a procedure. LetσL ∈ Σp
L andsG ∈ Sp

G

be context-aware equivalent states w.r.t. to a renaming functionf , i.e.,σL ∝f sG. Letst be an arbitrary statement
in p. The following holds:

1. For any stateσ′
L ∈ Σp

L such that〈st , σL〉
LSL
∽∽∽∽∽◮ σ′

L, there exists a states′G ∈ Sp
G such that:

• 〈st , sG〉
GSB
∽∽∽∽∽◮ s′G, and

• σ′
L ∝f s′G.

2. For any states′G ∈ Sp
G such that〈st , sG〉

GSB
∽∽∽∽∽◮ s′G, there exists a stateσ′

L ∈ Σp
L such that:

• 〈st , σL〉
LSL
∽∽∽∽∽◮ σ′

L, and

• σ′
L ∝f s′G.

Proof: Let q be a procedure. LetσL = 〈CPL, A〉 ∈ Σq
L andsG = 〈L, ρ, h〉 ∈ Sq

G context-aware equivalent states
w.r.t. to a renaming functionf , i.e.,σL ∝f sG.

We prove (i) and (ii) simultaneously using an induction on the shape of the derivation tree. The proof is done
by case analysis of the statement in the transition which labels the root of the derivation tree.
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Base case:The transition which labels the root of the derivation tree contains an atomic statement, i.e., the
derivation tree is a leaf. Thus, we only need to show that the states that result by executing the same (atomic)
statement inσL andsG are also context-aware equivalent w.r.t. tof . The proof is done by a case analysis.

x=null The axiom for this statement has no side-condition, thus this statement is guaranteed to terminate in any
state. In particular, it is true that

∃σ′
L ∈ Σq

L, s.t.〈x = null, σL〉
LSL
∽∽∽∽∽◮ σ′

L and ∃s′G ∈ Sq
G, s.t.〈x = null, sG〉

GSB
∽∽∽∽∽◮ s′G.

By definition, σ′
L = 〈CPL, rem(A, {x})〉 = 〈CPL, {(map(λo.o \ {x}.∆) A) \ {∅}〉 =

〈CPL, {a \ x.∆ | a ∈ A} \ {∅}〉 ands′G = 〈L, ρ[x 7→ null], h〉.

Let α = 〈rα, δα〉, β = 〈rβ , δβ〉, andγ = 〈rγ , δγ〉 be generalized access paths of procedureq.

[[α = β]]L(σ′
L) ⇐⇒

∀a′ ∈ {a \ {x}.∆ | a ∈ A} \ {∅}, α ∈ a′ ⇐⇒ β ∈ a′ ⇐⇒

∀a′ ∈ {a \ {x}.∆ | a ∈ A}, α ∈ a′ ⇐⇒ β ∈ a′ ⇐⇒



rα 6= x, rβ 6= x, ∀a ∈ A, α ∈ a ⇐⇒ β ∈ a or

rα = x, rβ 6= x, ∀a ∈ A, β 6∈ a or

rα 6= x, rβ = x, ∀a ∈ A, α 6∈ a or

rα = x, rβ = x

⇐⇒





rα 6= x, rβ 6= x, [[α = β]]L(σL) or

rα = x, rβ 6= x, [[β = null]]L(σL) or

rα 6= x, rβ = x, [[α = null]]L(σL) or

rα = x, rβ = x

⇐⇒ (σL ∝f sG)





rα 6= x, rβ 6= x, [[f̂(α) = f̂(β)]]G(sG) or

rα = x, rβ 6= x, [[f̂(β) = null]]G(sG) or

rα 6= x, rβ = x, [[f̂(α) = null]]G(sG) or

rα = x, rβ = x

⇐⇒

[[f̂(α)]]G(s′G) = [[f̂(β)]]G(s′G) ⇐⇒

[[f̂(α) = f̂(β)]]GSB(s′G)

[[γ = null]]L(σ′
L) ⇐⇒

∀a′ ∈ {a \ {x}.∆ | a ∈ A} \ {∅}, γ 6∈ a′ ⇐⇒

∀a′ ∈ {a \ {x}.∆ | a ∈ A}, γ 6∈ a′ ⇐⇒{
rγ 6= x, ∀a ∈ A, γ 6∈ a or

rγ = x
⇐⇒

{
rγ 6= x, [[γ = null]]L(σL) or

rγ = x
⇐⇒ (σL ∝f sG)

{
rγ 6= x, [[f̂(γ) = null]]G(sG) or

rγ = x
⇐⇒

[[f̂(γ)]]G(s′G) = null ⇐⇒

[[f̂(γ) = null]]GSB(s′G)

x=y Analogous to [x=null].

x=y.f Analogous to [x=null].

x.f=null Analogous to [x=null].

x.f=y Analogous to [x=null].

x=alloc t Analogous to [x=null].
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Induction step (intraprocedural): The transition labeling the root of the derivation tree contains a non-atomic
intraprocedural control statement. Thus, the induced derivation tree is not a leaf. The proof is done by a case
analysis.

seq Assume thatst = st1; st2 and that〈st1; st2, σL〉
LSL
∽∽∽∽∽◮ σ′

L.

155. 〈st1; st2, σL〉
LSL
∽∽∽∽∽◮ σ′

L Assumption

156. ∃σ′′
L.〈st1, σL〉

LSL
∽∽∽∽∽◮ σ′′

L ∧ 〈st2, σ′′
L〉

LSL
∽∽∽∽∽◮ σ′

L Def. of [seq] inLSL

157.
∃σ′′

L.∃s′′G.〈st1, σL〉
LSL
∽∽∽∽∽◮ σ′′

L ∧ 〈st2, σ′′
L〉

LSL
∽∽∽∽∽◮ σ′

L ∧

〈st1, sG〉
GSB
∽∽∽∽∽◮ s′′G ∧ σ′′

L ∝f s′′G

σL ∝f sG

Induction assumption

for st1, σL, andsG

158. ∃s′′G.∃s′G.〈st1, sG〉
GSB
∽∽∽∽∽◮ s′′G ∧ 〈st2, s

′′
G〉

GSB
∽∽∽∽∽◮ s′G ∧

σ′
L ∝f s′G

σ′′
L ∝f s′′G

Induction assumption

for st2, σ
′′
L, ands′′G

159. ∃s′G.〈st1; st2, sG〉
GSB
∽∽∽∽∽◮ s′G ∧ σ′

L ∝f s′G
Def. of [seq] inGSB

The proof in the other direction is analogous.

if-tt Analogous to [seq].

if-ff Analogous to [seq].

while Analogous to [seq].

Induction step (interprocedural):
The transition labeling the root of the derivation tree contains a procedure call. Thus, the induced derivation

tree is not a leaf. Without loss of generality, assume that the invocation isy=p(x 1, . . . ,xk) . To simplify notations,
we assume thatσc

L = σL and thatsc
G = sG.

Assume that〈y = p(x1, . . . , xk), σc
L〉

LSL
∽∽∽∽∽◮ σr

L.

160. 〈y = p(x1, . . . , xk), σc
L〉

LSL
∽∽∽∽∽◮ σr

L Assumption

161. ∃σe
L, σx

L ∈ Σp
L, σr

L ∈ Σq
L, s.t. 〈body of p, σe

L〉
LSL
∽∽∽∽∽◮ σx

L; and Def. of procedure call inLSL

σe
L, σx

L andσr
L are as defined in Figure 4.7

162.
Let se

G be that state that arise at the entry top whenp

is invoked atsc
G

Suchse
G exists because in

GSB there are no side-

conditions for procedure calls

163.
Let fe be that renaming function defined as in Lemma D.2.8

for σe
L andse

G

164. σe
L ∝fe

se
G 162, 163, Lemma D.2.7(2)

165. ∃sx
G ∈ Sq

G.〈body of p, se
G〉

GSB
∽∽∽∽∽◮ sx

G ∧ σx
L ∝fe

sx
G 161, 164, Induction

assumption forσe
L, se

G, andfe

166. ∃sr
G ∈ Sq

G.〈y = p(x1, . . . , xk), sc
G〉

GSB
∽∽∽∽∽◮ sr

G s.t.

sr
G is as defined in Figure 2.5 forsc

G andsx
G

165

167. σr
L ∝f sr

G 164, 165, Lemma D.2.8(3)

The proof in the other direction is analogous.
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D.3 Formal Properties of theLCP Semantics

• Section D.3.1 provides additional formal details pertaining to the concrete semantics presented in Sec-
tion 4.8.2.

D.3.1 Formal Specification of the Operational Semantics

This appendix provides additional formal details. In Section D.3.1.1 we define the notion of garbage collected
2-valuedlogical structures. In Section D.3.1.2 we extend the logic of [SRW02] to support extended transitive
closure. In Section D.3.1.3 we formally define the operational semantics for procedure calls and returns.

D.3.1.1 Garbage Collected States

Definition D.3.1 (Garbage-Collected 2-Valued Logical Structures) An admissible 2-valuedlogical structure
S = 〈U, ι〉 representing a local-heap for a procedurep in programP at a given point in an execution isgarbage-
collectediff everyobjectis reachable from either a variable or from a frozen variable, i.e.,

S |= RVp
(v) ∨ ∃v1, v2 : isLbCP (v1) ∧ lbl(v1, v2) ∧ (TC w1, w2 : F (w1, w2))(v2, v)

D.3.1.2 Extended Transitive Closure

The logic used in [SRW02] is first order logic with transitiveclosure. In [SRW02], formulae with transitive closure
have only one pair of variables. For example, the bounded variables in the formula(TC v1, v2 : ϕ)(v3, v4) are
v1 andv2. To define the semantics of the return operation we need to allow a transitive closure formulae with two
pairs of free variables, as conducted, e.g., in [Imm99]. (For a formal definition, see Section A.2).

Lemma D.3.2 (Extended Embedding)Letϕ be an extended transitive closure formulae. For anyS ∈ 2Struct

andS♯ ∈ 3Struct such thatS ⊑f S♯ and for any assignmentZ it holds that,

[[ϕ]]S2 (Z) ⊑ [[ϕ]]S
♯

3 (f ◦ Z)

D.3.1.3 Operational Semantics

The operational semantics is specified bypredicate-update formulae: For every predicatep and for every state-
mentst , the value ofp in the2-valued structureS′, which results by applyingst to S, is defined in terms of a
formula evaluated overS.

The predicate-update formulae of the core-predicates for assignments is given in Figure D.1. The value of
every core-predicatep after the statement executes, denoted byp′, is defined in terms of the core predicate values
before the statement executes (denoted without primes). Core predicates whose update formula is not specified,
are assumed to be unchanged, i.e.,p′(v1, . . .) = p(v1, . . .).

The operational semantics for object allocation is given inFigure D.2. The operational semantics for procedure
invocations is given in Figure D.3 and in Figure D.4.

Definition D.3.3 (Transition Relation) Let p be a procedure. Letst is a statement inp. The transition relation
2
 ⊆ (2Structp×st)×2Structp contains〈S, S′〉 iff (i) S andS′ are garbage-collected2-valuedlogical structures
for procedurep and (ii) applying the predicate-update formulae (action) associated withst to S results inS′.
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Statement Predicate-update formulae

y = null y′(v) = 0

y = x y′(v) = x(v)

y = x.f y′(v) = ∃v1.x(v1) ∧ f(v1, v)

y.f = null f ′(v1, v2) = f(v1, v2) ∧ ¬y(v1)

y.f = x f ′(v1, v2) = f(v1, v2) ∨ (y(v1) ∧ x(v2))

Figure D.1: The predicate-update formulae defining the operational semantics of assignments.

Statement y = alloc (T )

Prepare newNode(addPreds(S, {new}))

Predicate− isObj ′(v) = isObj (v) ∨ new(v)

update y′(v) = new(v)

formulae T ′(v) = ¬new(v) ∧ T (v) ∨ new(v)

Clean removePreds(S′, {new})

Figure D.2: The predicate-update formulae defining the operational semantics of object allocation.



180 APPENDIX D. APPENDIX FORCHAPTER 4

Statement : iCall y=p(x1,...,xk)
q

Prepare
clone(R{x1,...,xk}(v),addPreds(Sc, {new , instance}))

Predicate − updateformulae

y′(v) =

{
xi(v) : y = hi

0 : otherwise

f ′(v1, v2) = f(v1, v2) ∧ R{x1,...,xk}(v1) ∧ R{x1,...,xk}(v2)

isObj ′(v) = rx1,...,xk
(v)

T ′(v) = rx1,...,xk
(v) ∧ T (v) ∨ ∃vobj , instance(vobj , v) ∧ T (vobj )

isLb ′
O (v) = isLbO (v) ∨ new(v)

isLbCP
′(v) = new(v) ∧

∃vobj .instance(vobj , v) ∧ isCP q,{x1,...,xk}(vobj )

lbl ′(v1, v2) = instance(v2, v1) ∧ isCPq,{x1...xk}(v2)

ŷ′(v) = new(v) ∧{
∃vobj : xi(vobj ) ∧ instance(vobj , v) : y = hi

0 : otherwise

f̂ ′(v1, v2) = new(v1) ∧ new(v2)∧

∃vobj1 , vobj2 : instance(vobj1 , v1) ∧ instance(vobj2 , v2) ∧

f(vobj1 , vobj2 )

eq ′(v1, v2) = (R{x1,...,xk}(v1) ∧ R{x1,...,xk}(v2) ∧ eq(v1, v2)) ∨

(new(v1) ∧ new(v2)∧

∃vobj : instance(vobj , v1) ∧ instance(vobj , v2))

Clean

Let S′′ = remove(isObj (v) ∧ ¬R{x1,...,xk}(v) ∨

isLbO (v) ∧ ¬new(v)), S′)

in 〈US′′

, remPreds(ι′′, {new , instance})〉

Figure D.3: The operational semantics for procedure calls in Section 4.8.2: Construction of the structure at
the entry to a callee. We give the semantics for an arbitrary procedurecall y = p(x1, . . . , xk) by an arbitrary
procedureq. We assume thatp’s formal parameters areh1, . . . , hk.
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Statement : iRety=p(x1,...,xk)
q

Prepare
combine(addPreds(Sc, {inUc, inUx}),

addPreds(Sx, {inUc, inUx}))

Predicate − updateformulae

x′(v) = isObj (v)∧



ret(v) x = y

(inUc(v) ∧ x(v) ∧ ¬R{x1,...,xk}(v)) ∨

(inUx(v) ∧ ∃v1 : x(v) ∧ inUc(v1) ∧ R{x1,...,xk}(v1) ∧

matchq,{〈h1,x1〉,...,〈hk,xk〉}(v1, v))

x ∈ Vq \ {y}

f ′(v1, v2) = isObj (v1) ∧ isObj (v2) ∧

(inUc(v1) ∧ inUc(v2) ∧ f(v1, v2) ∧ ¬R{x1,...,xk}(v2) ∨

inUx(v1) ∧ inUx(v2) ∧ f(v1, v2) ∨

inUc(v1) ∧ inUx (v2) ∧

∃vcp : inUc(vcp) ∧ isObj (vcp) ∧ f(v1, vcp) ∧

matchq,{〈h1,x1〉,...,〈hk,xk〉}(vcp , v2))

isObj ′(v) = isObj (v) ∧

(inUc(v) ∧ ¬R{x1,...,xk}(v) ∨ inUx(v))

T ′(v) = T (v) ∧ (inUc(v) ∧ ¬R{x1,...,xk}(v) ∨ inUx(v))

isLb ′
O (v) = isLbO(v) ∧ inUc(v)

isLbCP
′(v) = isLbCP (v) ∧ inUc(v)

lbl ′(v1, v2) = isLbCP (v1) ∧ inUc(v1) ∧ isObj (v2) ∧

(inUc(v2) ∧ ¬R{x1,...,xk}(v2) ∧ lbl (v1, v2) ∨

inUx(v2) ∧ ∃vcp : R{x1,...,xk}(vcp) ∧ isObj (vcp) ∧

lbl (v1, vcp) ∧matchq,{〈h1,x1〉,...,〈hk,xk〉}(vcp , v2))

ŷ′(v) = ŷ(v) ∧ inUc(v) ∧ isLbO (v)

f̂ ′(v1, v2) = isLbO (v1) ∧ isLbO(v2) ∧ inUc(v1) ∧ inUc(v2) ∧ f̂ ′(v1, v2)

eq ′(v1, v2) = eq(v1, v2)

Clean

Let S′′ = remove(isObj (v) ∧ inUc(v) ∧ R{x1,...,xk}(v) ∨

isLbO (v) ∧ inUx(v), S′)

in 〈US′′

, remPreds(ι′′, {inUc, inUx})〉

Figure D.4: The operational semantics for procedure calls:Construction of the structure at thereturn-siteto a
caller. We give the semantics for an arbitrary procedure call y = p(x1, . . . , xk) by an arbitrary procedureq. We
assume thatp’s formal parameters areh1, . . . , hk.
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Sll revr(Sll t, Sll r):=
Sll tn;
if (t == null) then

ret = r
else

tn = t.n;
ld : t.n = r;
ret = revr(tn, t);

fi

Figure D.5: A function thatrecursivelyreverses a list.

D.4 A May-Alias Abstraction of LSL

In this section, we show that Deutsch’s abstract-interpretation algorithm [Deu94] can be seen as an abstraction of
theLSL semantics. Also, we provide insight into the clever interprocedural aspects of the analysis.

May-alias algorithms find an upper approximation for the sets of aliased access paths at every program point.
The algorithm of [Deu94] is interprocedural, flow-sensitive, and context-sensitive. It handles dynamically allo-
cated memory, recursive functions, and recursive data structures. The algorithm computes (in polynomial time) a
(bounded) representation of all the pairs of aliased accesspaths at every program point.

The algorithm described in [Deu94] is heap modular. The key observation which allows [Deu94] to obtain
this property is that a procedure operates uniformly on all aliasing relationships involving variables of pending
calls.1

LSL provides insights into the algorithm described in [Deu94].In particular, the treatment of variables of
pending calls, which is one of the most complicated aspects of [Deu94]. For instance, a surprising aspect of the
method given in [Deu94] is that recursive procedures are handled in a more precise way than loops. The intuitive
reason is that the abstractions of values of variables in thecurrent procedure is different from the abstraction used
for values of variables in pending procedures. Specifically, the abstract domain used in [Deu94] is shown to be an
abstraction ofLSL.

D.4.1 May-Alias Analysis

One of the most intricate aspects of the interprocedural analysis in [Deu94] is the delayed propagation of the
effect of destructive updates performed by an invoked function on pending access paths. The algorithm does not
represent pending access paths explicitly. Instead, it tracks the effect of the function body on field paths that start
at—what we call—cutpoints of the invocation. In particular, it represents (values of) current access paths and
(values of) pending access path differently.

This simple observation suffices to see why the analysis ofrevr , a recursivefunction that (destructively)
reverses a singly linked list (shown in Figure D.5, originally in [Deu94]) manages to verify that reversing an
acyclic list returns an acyclic list, whereas the analysis fails to verify this property for a list-reversal function that
uses a loop, e.g., our running example.

The functionrevr reverses a list recursively by invoking itself with the tail(t ) of the (original) list, which
is not reversed yet, and a pointer to the already reversed part (r ). The analysis handles the destructive update
precisely because it can distinguish between the value oft in the current call and its values in pending calls
by abstracting them differently. However, in the analysis of the loop-basedreverse function in our running
example (where variablep plays the same role ast in Figure D.5) , the analysis cannot distinguish between the
value ofp in the different iterations. Note that this loss of information is inherent in the may-alias analysis. In
particular, it does not depend on the algorithm that abstracts the access paths.

1The method of [Deu94] applies to programs with cutpoints. However, the lack ofmust-alias information may lead to a loss of precision
in the analysis of destructive updates.
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D.4.2 A Galois Connection betweenLSL and Deutsch’s May-Alias Abstraction

In this section we define a Galois connection between sets ofLSL states and the abstract domain of [Deu94] for
may-alias analysis.

The algorithm of [Deu94] computes (in polynomial time) at every program pointl a set ofsymbolic alias
pairs (SAPs). The computed set represents (in a bounded way) any pair ofcurrent access paths that are aliased
at l. As explained in Section D.4.1, The algorithm does not represent pending access paths explicitly. Instead, at
the call-site, the algorithmgeneralizesanySAPrepresenting an alias with an access path that starts at an actual
parameter. The generalizedSAPcontains: (i) a representation of the access path that starts at the actual parameter,
where the root of the access path (i.e., the actual parameter) is substituted by its corresponding formal parameter,
and (ii) a name of ageneric object. A generic object represent—what we call—a cutpoint of the invocation. The
name of the generic object is determined uniquely by the access path it is aliased with. We denote byAPG the
set of access paths enriched with generic object names (i.e., APGcontains access paths that start at a variable or
a generic object name.).

In our terminology, generic objects are an abstraction of the cutpoints of the invocation, and the name of the
generic object is an abstraction of the cutpoint-label based on its content. The use of generic object names in the
analysis of a return statement is an approximation of the waycutpoint-labels are used inLSL.

The actual representation of symbolic alias pairs (SAPs) is immaterial for the definition of the Galois connec-
tion. All we rely on is that the setUR = 2SAP of all symbolic alias relation forms a lattice ordered by⊑SAP and
equipped with a join operator⊔SAP.2 We make use of the functionFactor : AccPath× AccPath→ SAP, defined
in [Deu94], which maps a pair of unbounded (aliased) access paths, possibly starting with a generic object name, to
its most precise representation by aSAP. We also make use of the functionmakeGenericName: AccPath→ APG,
also defined in [Deu94], which maps an access path that startswith a formal parameter to the generic object name
it determines.

To establish the Galois connection between the set of program states (ordered by set inclusion) andUR, it
suffices to show arepresentation functionthat maps a program state to its “most precise representation” in UR
(e.g., see [NNH99]). The functionβp

may: Σp
L → SAP, defined in Figure D.6 is a representation function. It is

parameterized for every functionp in the program by the set of thep’s local variables (Vp) and formal parameters
(Fp).

The functionβp
may is defined as a composition of two functions: (i)toPairsp : Σp

L → 2APG×APG, which maps
a program state of functionp, σp

L ∈ Σp
L, to pairs of (unbounded) access paths enriched with object names; and

(ii) boundPairs: 2APG×APG → UR, which bounds the resulting set by mapping it to a (bounded) set of symbolic
access pairs.

The functiontoPairs converts a program state to a (bounded) alias relation in twosteps: (i) it creates the
equivalence relation (AP) by pairing any two generalized access paths that belong to the same equivalence class;
(ii) it “recovers” the generic object names out of any generalized access path that starts with a cutpoint or a formal
parameter by invokinggeneric. The special treatment for formal parameters is required because [Deu94] considers
objects pointed-to by actual parameters as (trivial) cutpoints, where we do not. A bounded representation is
achieved by applyingFactor pointwise and taking the least upper bound of the resulting set of symbolic access
paths.3

2In [Deu94], The setUR is actually parameterized by the numeric lattice used in theanalysis. Since the parameterization is not relevant
for our purposes, we ignore this issue.

3In [Deu94], special care needs to be taken in case the analysis is parameterized by a lattice with infinite chains. In particular,⊑SAP is not
necessarily bounded. For simplicity, we assume this is not the case.
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βp
may: Σp

L → UR s.t.

βp
may = boundPairs◦ toPairsp

toPairsp : Σp
L → 2APG×APG s.t.

toPairsp(〈CPL, A〉) = Let

AP = {〈α, β〉 | ∃a ∈ A, s.t.α ∈ a andβ ∈ a}

in
⋃

〈α,β〉∈AP

{
〈α′, β′〉

∣∣∣∣∣
α′ ∈ genericp(CPL, α),

β′ ∈ genericp(CPL, β)

}

Where

genericp : 2CPL × GAccPath→ 2APG s.t.

genericp(CPL, 〈r, δ〉) =



{〈r, δ〉} r ∈ Vp \ Fp

{〈r, δ〉, 〈makeGenericName(〈r, ǫ〉), δ〉} r ∈ Fp

{〈makeGenericName(α), δ〉 | α ∈ r} r ∈ CPL

boundPairs: 2APG×APG → UR s.t.

boundPairs(AliasRel) =⊔
SAP{Factor(〈α, β〉) | 〈α, β〉 ∈ AliasRel}

Figure D.6:βp
may is a representation function that maps a memory state of function p to its most precise represen-

tation as sets of symbolic access path.
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Appendix for Chapter 5

This chapter provides formal details pertaining to Chapter5. Specifically, the following appendixes provides
formal details which were omitted from the body of Chapter 5:
• Section E.1 defines our technique for handling procedure calls using a stack of program states, and exemplifies

it by defining our version of the standard store-based semantics for pointer programs. It also defines the notion
of interprocedural execution traces.

• Section E.2 provides the formal details which were omitted in Sections 5.5 and 5.6.

E.1 Interprocedural Lifting Semantics

In this section, we present a technique which allows tolift a concrete intraprocedural semantics into an interpro-
cedural semantics. Specifically, we suggest a way to extend asemantics which supports only atomic (intraproce-
dural) statements to handle procedure invocations.

The main idea is to replace the representation of the programstate used by the intraprocedural semantics by
a stackof program states. A standard stack of activation records, contains only the local variables, the current
program points (program counter), the return addresses. Incontrast, the stack that we use storeswholeprogram
states.

Our technique requires to extend the intraprocedural semantics with operations that defines the memory state
of the invoked procedure when its execution starts (according to the state of the caller at the call-site) and the
memory state of the caller when it regains control (according to the caller’s memory state at the call-site and
the callee’s memory state at the exit-site). These operations are similar to the ones used in a large-step seman-
tics [Kah87] to define the memory state on which the body of an invoked procedure is executed (entry memory
state) and the memory state resulting after a procedure call(return memory state), see, e.g., Chapters 3 and 4.

The ideas in this section are heavily influenced by the formulation of aninterprocedural analysisusing a stack
of abstractmemory states in [KS92].

E.1.1 Procedure Representation by Flow Graphs

In the following, we assume that the bodies of procedures arerepresented in a standard way by theirflow graphs.
A flow graph of a procedurep is a rooted directed graphGp = 〈Np, Ep, sp, ep〉.

Gp’s nodes,Np ⊂ PP, areprogram points. Gp is rooted atsp, theentry-siteto p. The program pointep

is p’s exit-site. Every node, exceptsp (resp.ep), is the target (resp. source) of an edgee ∈ Ep. For simplicity,
we assume that the sets of program points of different procedures are disjoint.Gp’s edges,Ep ⊆ Np×Np, are
associated withatomicstatements andprocedure calls.

The functionstmtGp
(e) maps flow graphGp edges to statements. The functionoutGp

maps a given program
point in Np to the set of its successors1, i.e.,outGp

(n) = {n′ ∈ Np | 〈n, n′〉 ∈ Ep}. (We omit theGp subscript
when it is clear from the context). For simplicity, we assumethat the edges emanating fromsp, as well as the ones
entering intoep, are associated withnop statements. When an edgee = 〈nc, nr〉 is associated with a procedure

1The intended meaning of several edges emanating from a single program point is that a successor is chosen non deterministically.
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call, we say thatnc is acall-siteand thatnr is its corresponding return-site. We assume every call-sitenc has
exactly one return-site which we denote byreturn(nc). Similarly, we assume every return-sitenr has exactly
one call-site, denoted bycall(nr).

The functionfg(n) maps a program point to the (unique) flow graph which containsn. The functionfg(p)
maps a procedure identifierp to p′ flow graph. The functionproc(G) maps a flow graphG of procedurep to p’s
procedure identifer.

A program is comprised of a set of procedures, including a distinguishedmain procedure. We denote the set
of all procedures in a programP by procs(P ), and the set of all program points inP by PP(P ), i.e.,PP(P ) =⋃

p∈procs(P ) Np, whereNp are the program points of procedurep.

E.1.2 Intraprocedural Semantics

An intraprocedural semanticsS manipulating memory statesσ ∈ Σ defines ameaningfor every intraprocedural
statementst as a binary relation over a set of memory states[[st ]]S ⊆ Σ × Σ. A pair of memory states〈σ, σ′〉 ∈
[[st ]]S (also denoted byσ′ ∈ [[st ]]S(σ′), see Definition A.1.4) iff the execution ofst in memory stateσ may lead
to memory stateσ′.

Definition E.1.1 (Program states)A program stateof a programP according to a semantics which manipulates
memory statesΣ is a pair comprised of a program point and a memory state,〈pp, σ〉 ∈ PP(P ) × Σ.

An intraprocedural semanticsS associates to every (single-procedure) programP a transition systembetween

program statestrP ⊆ (PP(P )×Σ)×(PP(P )×Σ). We write〈pp, σ〉
trP 〈pp′, σ′〉 for 〈〈pp, σ〉, 〈pp ′, σ′〉〉 ∈

trP .

A transition〈pp, σ〉
trP 〈pp′, σ′〉 indicates that (i) there is an edge〈pp, pp′〉 ∈ E, i.e.,pp′ ∈ out(pp), and (ii) the

execution of a statementst = st(〈pp, pp′〉) in memory stateσ may lead to memory stateσ′, i.e.,σ′ ∈ [[st ]]S(σ).

E.1.3 Interprocedural Lifting

We lift an intraprocedural semantics, as defined above, to aninterprocedural semantics which is capable of han-
dling procedure calls. The main idea is that the interprocedural semantics associates with every programP a
transition system betweenstacks of program states(instead of a transition system between program states).

Intuitively, the interprocedural semantics maintains a stack of program states. The program state of thecurrent
(active) procedure is stored at the top of the stack. Intraprocedural statements have access only to the top of the
stack.

Interprocedural statements make use of the (unbounded number of) program points stored in the stack to
ensure that a procedure which was invoked at a call-sitenc returns to the corresponding return-site,return(nc).

The memory states stored in the stack are used to record the memory states of the caller as it was when the
control reached the invocation call-site. Our lifting technique does not dictate the memory states at the entry-
sites and return-sites. Instead, it requires two operations,Call andRet, which specify, for every procedure call
statementy = p(x1, . . . , xk), the effect of transferring control from the caller to the callee, and vice versa:

[[Cally=p(x1,...,xk)]] ⊆ Σ×Σ

[[Rety=p(x1,...,xk)]] ⊆ (Σ×Σ)×Σ

Intuitively, the semantics utilizes the above relations tohandle procedure calls as follows:
• When a procedure is invoked, the semanticspushesa new program state, which we refer to as theentry

state, to the top of the stack. The entry state is comprised of the callee’s entry-site and anentry memory
state. The entry memory state depends on the memory state at the call-site and is specified by the meaning
of a Call operation.

• Execution of the statements in the callee’s body is continued as in the case of the intraprocedural statements,
manipulating the program state at the top of the stack.

• When a procedure execution reaches the exit-site, the semantics pops the callee’s program state from the
top of the stack. The caller’s execution is continued from the return-site corresponding to the call-site stored
in the stack. The memory state at the return site is updated bytheRet relation according to the call memory
state and the exit memory state.
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newstack : PP×Σ → ST KΣ

top : ST KΣ → PP×Σ

push : ST KΣ × PP×Σ → ST KΣ

pop : ST KΣ →֒ ST KΣ

| · | : ST KΣ →֒ N

top(newstack (pp, σ)) = 〈pp, σ〉

top(push(stk , pp, σ)) = 〈pp, σ〉

pop(push(stk , pp, σ)) = stk

|stk | =





1 stk = newstack(pp, σ)

1 + |pop(stk)| otherwise

Figure E.1: Axiomatic definition of a stack of program states. Note thatpop(newstack (pp, σ)) is undefined.

Formally, a (lifted) interprocedural semantics which is based on an intraprocedural semantics manipulating
memory statesσ ∈ Σ, manipulatesstacksof program states,stk ∈ ST KΣ. The equational definition of the
setST KΣ in Figure E.1 provides the following stack-manipulating operations: -newstack creates a new stack
containing a single program state; -push pushes a program state to the top of the stack; -top retrieves the program
state from the top of the stack; -pop pops the program state from the top of the stack; and -| · | returns the number
of elements in the stack.

The use of stacks of program states allows us to formalize thenotion of thecurrent program state.

Definition E.1.2 (Current program state) The current program state of a stackstk ∈ ST KΣ is the pro-
gram state〈pp, σ〉 = top(σ). The memory stateσ, denoted bycurstate(stk), is thecurrent memory state of
stackstk . The program pointpp, denoted bycurpc(stk), is thecurrent program point of stackstk . The proce-
dureproc(fg(pp)), denoted bycurproc(stk), is thecurrent procedure of stackstk .

A (lifted) interprocedural semanticsS associates with every programP a transition systemstr ⊆ ST KΣ ×
ST KΣ betweenstacksof program states. The transition system, defined in defined in Figure E.2, is parameterized

by the intraprocedural transition relation,trP , and the meaning ofCall· andRet· operations. We writestk
strP stk ′

for 〈stk , stk ′〉 ∈
strP .

A transitionstk
strP stk ′ indicates that one of the following holds:

• stk
str Intra

P stk ′: stk ′ results from an application of an intraprocedural statement on the current memory state
of stk .

• stk
strCall

P stk ′: The current program point instk is a call-site. The entry-state which results from applyinga
Call statement to the current memory state ofstk , is pushed intostk , resulting instk ′.

• stk
strRet

P stk ′: The current program point instk is an exit-site. The return-state which results from applying
aRet statement on the two topmost memory states instk , the call memory state and the exit memory state,
is pushed intostk , after the call state and the exit state have been popped, resulting in stk ′.

The following definition formalizes the notion of the statement executed in a transition.

Definition E.1.3 (Executed statement)The executed statement in a transitionstk
strP stk ′, denoted by

stmt(〈pp, pp′〉), wherepp = curpc(stk) andpp′ = curpc(stk
′), is:

• stfg(pp)(〈pp, pp′〉) if program pointspp andpp′ belong to the same procedure, i.e.,fg(pp) = fg(pp′).
• Cally=p(x1,...,xk) if pp is a call-site,stfg(pp)(〈pp, return(pp)〉) ≡ y = p(x1, . . . , xk), andpp′ is the

entry-site ofp.
• Rety=p(x1,...,xk) if pp′ is a return-site,stfg(pp′)(〈call(pp′), pp′〉) ≡ y = p(x1, . . . , xk), andpp is the

exit-site ofp.
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strP ⊆ ST KΣ × ST KΣ s.t.

strP = str Intra ∪ strCall ∪ strRet

str Intra
P =



〈stk , stk ′〉

∣∣∣∣∣∣∣

〈pp, σ〉 = top(stk),

〈pp, σ〉
trP 〈pp′, σ′〉,

stk ′ = push(pop(stk), pp′, σ′)





strCall
P =




〈stk , stk ′〉

∣∣∣∣∣∣∣∣∣∣∣

〈pp, σ〉 = top(stk),

ppr = return(pp),

stfg(pp)(〈pp, ppr〉) ≡ y = p(x1, . . . , xk),

σe ∈ [[Cally=p(x1,...,xk)]](σ),

stk ′ = push(stk , sp, σe)





strRet
P =




〈stk , stk ′〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈ep, σ〉 = top(stk),

〈ppc, σc〉 = top(pop(stk)),

ppr = return(ppc),

stfg(ppc)
(〈ppc, ppr〉) ≡ y = p(x1, . . . , xk),

σr ∈ [[Rety=p(x1,...,xk)]](〈σc, σ〉),

stk ′ = push(pop(pop(stk)), ppr, σr)





Figure E.2: Lifted interprocedural transition system for an arbitrary programP . p is an arbitrary procedure;
fg(p) = 〈Np, Ep, sp, np〉. Σ is the set of manipulated memory states.

E.1.4 Interprocedural Paths, Traces, and Executions

In this section, we define the notion of thereachable interprocedural traces of a program. Based on this notion,
we define the notions ofreachable memory statesand themeaning of a procedure. The latter is defined as an
input-output relation. According to our definition, a procedure may have different meanings in different programs.
However, the difference amounts to different sets of input memory states. This indicates that it is possible to define
a functional meaning for a procedure as a transformer frominput statesto output statesin a program independent
manner.

In the rest of the section, we assume thatP is an arbitrary program and thatS is an arbitrary (lifted) interpro-
cedural semantics manipulating memory statesσ ∈ Σ. We denote bystrP the transition relation associated byS
to P . We assume that the execution of every program begins at a (designated)initial memory state, σ0 ∈ Σ.

Definition E.1.4 (Executions) A sequenceπ ∈ ΠST KΣ
is anexecutionof programP if 〈π(i), π(i + 1)〉 ∈ strP

for every1≤ i< |π|.

Definition E.1.5 (Paths) Thepath induced by a program traceπ, denoted bypath(π), is a sequence of program
pointspp such thatpc(i) = curpc(π(i)).

Definition E.1.6 (Initial and final memory states) Theinitial resp. final memory state of an executionπ, de-
noted byin(π) resp.out(π), is the current memory state oftop(π(1)) resp.top(π(|π|)).

Definition E.1.7 (Feasible executions)An execution traceπ of program P is feasible if π(0) =
newstack(smain, σ0). We denote the set of feasible program execution traces of programP according to se-
manticsS byΠP

S .

Definition E.1.8 (Reachable memory states)Letpp be a program point in programP , pp ∈ PC(P ). A mem-
ory stateσ ∈ Σ is a reachable memory state atpp (according to semanticsS) if there exists a feasible execution
traceπ ∈ ΠP

S such thatpp is the current program point ofπ(|π|) andσ is the current memory state ofπ(|π|).
We denote the set of reachable memory states atpp in programP (according to semanticsS) byR(pp)P

S .
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Example E.1.9 We exemplify the lifting of intraprocedural semantics to the interprocedural setting
by lifting GSB, the standard intraprocedural store-based semantics for heap-manipulating programs,
defined in Section 2.2.

The meaning of every intraprocedural statementst ∈ Stmt in GSB is defined in Figure 2.4 by

means of a transition relation
GSB
∽∽∽∽∽◮⊆ SG × Stmt × SG. Below, we extend the

GSB
∽∽∽∽∽◮ relation

to describe the meaning ofCall andReturn statements pertaining to any arbitrary procedure call
y = p(x1, . . . , xk):

〈Cally=p(x1,...,xk), s
c
G〉

GSB
∽∽∽∽∽◮ 〈Lc, [zi 7→ ρc(xi) | 1≤ i≤k], hc〉

〈Rety=p(x1,...,xk), s
c
G, sx

G〉
GSB
∽∽∽∽∽◮ 〈Lx, ρc[y 7→ ρx(ret)], hx〉

wheresc
G = 〈Lc, ρc, hc〉 andsx

G = 〈Lx, ρx, hx〉

TheCall operation initializes the formal parameters using the values of the actual parameters, and
initiates the invoked procedure execution in a memory statethat contains the caller’s heap. The
Ret operation copies into the return memory state the callee’s heap at the exit-site, and restore the
values of the caller’s variables from the call memory state (stored in the stack), except fory, which is
assigned the callee’s return value.

Note that in this example, we lift a global-heap semantics. Thus, the semantics treats the whole heap
as a single global resource which is “passed” as a whole in every procedure call. In particular, as a
result, the heap part of the memory state in the call-site is not needed to define the memory state at
the return-site.
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E.2 Formal Details Pertaining to theDOS Semantics

Section E.2.1 provides the formal (and rather standard) definitions ofreachabilityandconnectivityin the context
of Chapter 5. Section E.2.2 formalizes the notion of implicit components and implicit component graphs.

E.2.1 Reachability, Connectivity, and Domination

In this section, we give formal definitions for the notions ofreachabilityand (undirected)connectivityin DOS
memory states. We also formalize the notion of domination. These definitions are based on the corresponding
standard notions in2-level stores. Intuitively, locationl2 is reachable from(resp.connected to) a locationl1 in
a memory stateσ if there is a directed (resp. undirected) path in the heap ofσ from l1 to l2. A locationsl is
reachablein σ if it is reachable from a location which is pointed to by some variable. An objectl is adominatorif
every access path pointing to an object reachable froml, must traverse throughl. Note that the inaccessible value
is treated, basically, as anull value,i.e., it cannot lead to an object.

Definition E.2.1 (Heap path) A sequenceπ of location is adirected heap pathin a heaph ∈ H, if for every
0≤i< |π| − 1 there existsfi ∈ F such thath(π(i), fi) = π(i + 1). A directed heap pathπ goes froml1, if
π(0) = l1, it goes tol2 if π(|π| − 1) = l2.

A sequenceπ of location is anundirected heap pathin h ∈ H, if for every0≤i<|π| − 1 there existsfi ∈ F
such that eitherh(π(i), fi) = π(i + 1) or h(π(i + 1), fi) = π(i). A directed heap path isπ connectingl1 andl2,
if π(0) = l1 andπ(|π| − 1) = l2, or vice versa.

A heap pathπ traverses throughl if there existsi, 1≤i<|π| such thatl = π(i).

Definition E.2.2 (Reachability) A location l2 is reachable from a location l1 in a memory stateσ =
〈ρ, L, h, t, m〉, if there is a directed heap path inh going froml1 to l2.

Definition E.2.3 (Reachable locations)Location l is reachablein σ if it is reachable from a location which
is pointed to by some variable. We denote the set ofreachable locationsin σ ∈ ΣD by R(σ), i.e., R(σ) =
{l ∈ L|x ∈ V and l is reachable inσ fromρ(x) ∈ Loc} .

Definition E.2.4 (Connectivity) Locationsl1 andl2 areconnectedin a memory stateσ = 〈ρ, L, h, t, m〉, if there
is anundirectedpath inh connectingl1 to l2.

Definition E.2.5 (Domination) A set of locationsD ⊆ Loc are dominator(or dominate their reachable heap)
in memory stateσ = 〈ρ, L, h, t, m〉 ∈ ΣD, if for everyx ∈ V such thatlx = ρ(x) ∈ Loc, every directed heap
path inh from lx to a location which is reachable from a location inD, traverses through a location inD.

E.2.2 Components

We formalize the notion of components, implicit componentsdecomposition using the definitions ofreachability
given in Appendix E.2.1. We use the auxiliary functionsucch(L) = {h(l)f ∈ Loc | l ∈ L, f ∈ F}. Function
succh(L) computes the set of objects which, in heaph, are pointed to by a field of an object inL.

Definition E.2.6 (Components)Thedomain of componentsis C = 2Loc×2Loc×2Loc×H×T M×M. A com-
ponentc = 〈I, L, R, h, t, m〉 ∈ C is a6-tuple.L containsc’s internal objects;I ⊆ L andR ⊆ Loc \ L constitute
c’s spatial interface. The heaph ∈ L →֒ F →֒ (L ∪ R ∪ {null,⊖}) defines the values of fields for objects inside
c. The type mapt ∈ (L ∪ R) → T defines the types of the objects insidec and in its rim. m is c’s component
module. We say that componentc belongs tom. For everyl ∈ L, m(t(l)) = m. For everyl ∈ R, m(t(l)) 6= m.

A component can be in one of two states:sealedor unsealed. In the context of a memory state, we are always
able to tell the state of a component (see below). Thus, formally, we only place an additional restriction on sealed
components: Ifc is a sealed component thenR = {h(l)f ∈ Loc | l ∈ L, f ∈ F}.

The types of the reachable objects in a memory stateσ induce a (unique)implicit component decomposition
of σ: The current component contains all the reachable locations that belong to the current module. Every sealed
component contains a maximal set of reachableM-connected locations. (These sets are mutually disjoint by
definition).
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Definition E.2.7 (M-Connectivity) Locationsl1 andl2 areM-connectedin a memory stateσ = 〈ρ, L, h, t, m〉,
denoted byl1

M!σl2, if there is an undirected heap pathπ connectingl1 and l2 such that for every0≤i<|pi|,
mσ(l1) = mσ(π(i)).

The internal structure of an implicit component is induced by a restriction of a DOS memory stateσ on a
set ofreachablelocations who belong to the same module. Note that references from unreachable locations do
not count. Also note that because our semantics is cutpoint-free,unreachable locations in the local-heap are also
unreachable in the global-heap.

Definition E.2.8 (Implicit components) A sealed componentc ∈ C is an implicit sealed componentof aDOS
memory stateσ = 〈ρ, L, h, t, m〉 if there exists a modulemc 6= m and a nonempty setLc ⊆ R(σ) of reachable
objects such that for everyl1 ∈ Lc andl2 ∈ R(σ), if l1

M!σl2, thenl2 ∈ Lc andc = 〈I, Lc, R, h|Lc , t|Lc∪R, mc〉
whereI = {l ∈ Lc | l ∈ succh(R(σ) \ Lc)} ∪ {ρ(x) ∈ Lc | x ∈ V} andR = succh(Lc) \ Lc. (Note that, in
particular,mσ(l1) = mσ(l2) = mc.)

The implicit current component of σ is an unsealed componentc ∈ C such that c =
〈I, L∗, R, h|L∗ , t|L∗∪R, m〉 whereL∗ = {l ∈ R(σ) | mσ(l) = m}, I = {ρ(x) ∈ L∗ | x ∈ V}, and
R = (succh(L∗)∪{ρ(x) ∈ Loc | x ∈ V}) \ L∗.

We denote theset of sealed components in a memory stateσ ∈ ΣD byC(σ). The implicit current component
of σ is denoted byc⋆(σ).

Note that the entry locations of the unsealed current component are determined only by the values of variables.
The acyclicity of the module dependency relation ensures that (in the local-heap) there are no references from
objects inside sealed components to objects inside the current component.

The component decomposition of a memory stateσ naturally induces itsimplicit component graph, which is
a directed graph whose nodes are the implicit components ofσ and its edges reflect the inter-component reference
structure.

Definition E.2.9 (Induced component graphs)The induced component graphof a memory stateσ denoted by
CG(σ), is a directed graphCG(σ) = 〈C(σ), E〉 such thatE ⊆ C(σ) × C(σ) and〈c1, c2〉 ∈ E iff R1 ∩ I2 6= ∅,
wherec1 = 〈I1, L1, R1, h1, t1, m1〉 andc2 = 〈I2, L2, R2, h2, t2, m2〉.

A component graph is ensured to be connected:
• the target of a reference between two objects located insidedifferent implicit components is also in the rim

of the component containing the reference’s source.
• References from a local variable to a location outside the current module are treated as an inter-component

reference leaving the current component. In particular, all such entry locations are also in the rim of the
implicit current component.
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Appendix F

Interprocedural Tabulation Algorithm

In this chapter, we describe the iterative interprocedurallocal-heap shape-analysis algorithm. For simplicity,
we describe it in a generic way as an algorithm that manipulates shape-graphs. In this thesis, shape-graphs are
implemented by3-valuedlogical structures.

The algorithm computes procedure summaries by tabulating input shape-graphs to output shape-graphs. The
tabulation is restricted to shape-graphs thatoccur in the analyzed program. The abstract domain is the powerset of
shape-graphs(2SG ) with set-union as thejoin operator. The abstract-transformers are always applied point-wise,
thus they distribute over the join operator (e.g., see [NNH99]). The algorithm remains sound in case the join
operator is an over-approximation of set union.

The algorithm is a variant of the IFDS-framework [RHS95] adapted to work with local-heaps. The main
difference between our framework and [RHS95] is in the way return statements are handled: In [RHS95], the
dataflow facts that reach a return-site come either from the call-site (for information pertaining to local variables)
or from the exit-site (for information to pertaining globalvariables). In our case, the information about the heap
is obtained bycombiningpair-wise the shape-graphs at the call-site with the shape-graphs at the exit-site: the
information about the values of local variables and fields ofobjects that point to the part of the heap which was
not passed to the callee is passed as-is from the call-site. The information about the values of fields of objects in
the part of the heap which was passed to the callee is taken as-is from the exit-site. The information about the
value of the caller’s local variables and the values of fieldsof objects that were not passed to the callee, but point
to objects that are passed to the callee, are computed by thecombineoperation (see Section F.2).

F.1 Program Model

We represent a programP in a standard manner by the set ofcontrol-flow-graphsof its procedures (with a distin-
guishedmain procedure), connected by a set of interprocedural call/return edges. The control-flow-graphCFGp

of a procedurep, is comprised of a set of nodesNp, representing program locations, and a set of intraprocedural
edgesEp ⊆ Np × Np labeled with program statements. We assume that everyCFGp has a single entry-node,
entryp, and a single exit-node,exitp.

We partition the setN ⋆ of all CFG nodes in the program into five subsets:Entry⋆, Exit⋆, Call⋆, Ret⋆,
andIntra⋆, corresponding to the sets of all entry-nodes, exit-nodes,call-sites, return-sites, and all other nodes,
respectively.

The procedural control-flow graphs are connected by a set of interprocedural edgesEinter ⊆ Call⋆×Entry⋆∪
Exit⋆ × Ret⋆. We denote the set of all program edges byE⋆=

⋃
p∈pgm Ep ∪ Einter .

For simplicity, we guarantee that return-sites are not call-sites or exit-sites, by augmenting each return-site
with a singlenop operation.

In the sequel we denote the set of outgoing edges for a noden ∈ N ⋆ by out(n), and the statement that labels
an edge〈n,n ′〉 ∈ E⋆ by stmt(〈n,n ′〉). We also usecallee(ncall ) andreturn(ncall) to denote the target of the
call atncall and the return-site ofncall , respectively. For an entry-noden ∈ Entry⋆, we denote the matching
exit-node byexitn.
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proc tabulate( Program P , SG sg0)
worklist = {〈entrymain : 〈sg0, sg0〉〉}
while ( worklist 6= ∅)

remove an event 〈n : 〈sgentry , sg〉〉 from worklist

if n ∈ Entry⋆ ∪ Ret⋆ ∪ Intra⋆ then
foreach 〈n,n ′〉 ∈ out(n)

foreach sg ′ ∈ apply(stmt(〈n,n ′〉), sg)
if 〈sgentry , sg ′〉 6∈ PathSet(n ′) then

propagate(n ′, 〈sgentry , sg ′〉)
else if n ∈ Call⋆

n
entry
callee = callee( n)

if not applicable(stmt(〈n,nentry
callee〉), sg) then

HALT
foreach sg ′ ∈ extract(stmt(〈n,nentry

callee〉), sg)

add 〈n, 〈sgentry , sg〉〉 to CTXs (nentry
callee) sg ′

if 〈sg ′, sg ′〉 6∈ PathSet(nentry
callee) then

propagate(nentry
callee, 〈sg

′, sg ′〉)
else

nexit = exitn
entry
callee

foreach sgexit ∈ sm(nentry
callee)sg

′

addToRet(nexit, sgexit , return(n), 〈sgentry , sg〉)
else // n ∈ Exit⋆

foreach〈ncall , 〈sge, sgc〉〉 ∈ CTXs (nentry
callee) sgentry

addToRet(n, sg, return(ncall), 〈sgentry , sgcall〉)

proc addToRet(Ncallee nexit ,SG sg
x
,Ncaller nret ,SG × SG 〈sg

e
, sg

c
〉)

foreach sg ′ ∈ combine(stmt(〈nexit ,nret〉), 〈sgc, sgx〉,)
if ( 〈sge, sg

′〉 6∈ PathSet(nret)) then
propagate(nret, 〈sge, sg

′〉)

Figure F.1: The tabulation algorithm.

F.2 Tabulation Algorithm

We describe the algorithm using the following operations as“black boxes”:
• apply : Stmt × SG → 2SG applies the abstract transformer associated with a givenintraprocedural

statement to a given shape-graph and returns the resulting set of shape-graphs.
• applicable: Stmt × SG → {true, false} verifies that the given procedure call statement can be applied to

the given shape-graph.
• extract : Stmt × SG → 2SG applies the abstract transformer associated with the givencall-statement to

the given shape-graph. Thus, computing the shape-graph that represents the local-heap which is passed to
the callee.

• combine: Stmt × SG × SG → 2SG computes the shape-graph representing the local-heap of the caller
at the return-site by applying the associated abstract transformer when control returns to the caller. This
operation gets two shape-graphs as arguments, one from the call-site and the other from the callee exit-site.

Section F.3 realizes the aforementioned “black box” operations to realize shape analyses algorithms using the
abstract semantics described in Sections 3.7.3, 4.8.3.

The tabulation algorithm propagatespath-edges. A path-edge〈sgentry , sg〉 is propagated to a control flow
graph noden ∈ Np iff there exists an interprocedural-valid-path [SP81] from entryp to n such that applying
the composed effect of all abstract transformers associated with statements along the path tosgentry results in
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sg [RHS95].

The algorithm maintains the following data structures:

• The setPathSet(n) contains all path edges propagated to noden. These sets are initialized to∅. Note
thatPathSet(exitp) contains the (already-computed) summarized effect of the procedure. Thus, we define
sm : Entry⋆ → SG → 2SG which maintains the procedure summary as
sm(entryp)sgentry = {sgexit : 〈sgentry , sgexit〉 ∈ PathSet(exitp)}.

• The multi-mapCTXs : Entry⋆ → (SG × SG) → 2Call⋆×SG×SG associates every procedurep, identified
by its entry-site,entryp, with its calling context. The calling-context is a map fromevery 0-length path-
edge〈sgentry , sgentry〉 ∈ PathSet(entryp) which was propagated top’s entry to a set of pairs of a call-
sitencaller

call ∈ Call⋆ and a path-edge〈sgcaller
entry , sgcaller

call 〉 ∈ PathSet(ncaller
call ) such that the analysis of the

invocation ofp at call-sitencaller
call extracted the shape-graphsgentry out of sgcaller

call . This map is initialized
to associate entry-nodes with empty maps.

The iterative algorithm (proceduretabulate ) is defined in Figure F.1. Theworklist is initialized to contain
a 0-length path edge from a shape-graph representing the memory at the entry to the program to the same shape-
graph. It then iterates until theworklist is exhausted. In every iteration, the algorithm extracts oneeventout of the
worklist. An eventis comprised of aCFG noden and a path edge〈sgentry , sg〉. The algorithm performs one of
the following operations depending on the role ofn:

• If n represents a procedure entry, a return-site or a program location of an intraprocedural statement, the
algorithmappliesthe abstract transformer associated with each edge emanating from n, propagating an
(extended) path edge, if necessary.

• If n represents a call-site to procedurep, the algorithmextractssg ′, the shape-graph representing the callee’s
local-heap from the target of the path-edge (sg). It then adds the call-siten and path-edge〈sgentry , sg〉 to
the calling contexts ofCTXs (nentry

callee) sg ′. This operation “registers”〈n, 〈sgentry , sg〉〉 as a calling-context
of p, which means that whenever anewpath edge whose source issg ′ is propagated toexitp, the algorithm
propagates an appropriate shape-graph to the return-sitereturn(n). If the path edge〈sg ′, sg ′〉 has not
been propagated toentryp, the algorithm propagates it. Otherwise, the algorithm propagates the known
summary effect ofp on sg ′ to the return-site usingaddToRet (see next case).

• If n represents the exit-site of procedurep, the algorithm updates the return-site of every calling-context
which is registered forsgentry (i.e., inCTXs (entryp) sgentry ) usingaddToRet. The functionaddToRet
combines the shape-graph at the exit-site of the callee with the shape which is the target of the path-edge at
the call-site.

The algorithm also uses the operationpropagate(n, 〈sgentry , sg〉) that adds the edge〈sgentry , sg〉 to
PathSet(n), the set of path-edges atn; and inserts the event〈n : 〈sgentry , sg〉〉 to the worklist.

F.3 Tabulation-Based Interprocedural Functional Shape Analysis

We utilize the tabulation algorithm defined in Figure F.1 forthe analyses described in Sections 3.8, 4.9 using
different instantiations for the operationsapply, applicable, extract, andcombine.

F.3.1 Tabulation Algorithm for Section 3.8

We obtain a tabulation algorithm for the analysis frameworkdescribed in Section 3.8 by instantiating the four
aforementioned operations in the following way: We implement apply by evaluating the abstract transformer
associate with the given atomic statement (see Section C.2.1.1 and Section 3.7.3). The operationsapplicable,
extract, andcombineare implemented by evaluating the different steps in the procedure call rule instantiated
for the given call: The operationapplicable is implemented by evaluating the side condition on the abstract
memory state that arises at the call site. Thus, it (conservatively) verifies that the invocation is cutpoint-free. The
operationsextractandcombineare implemented by following the rule’s specification on howto construct the
(abstract) memory states at the callee’s entry state and at the caller’s return site, respectively (see Section 3.7.2).
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F.3.2 Tabulation Algorithm for Section 4.9

We obtain a tabulation algorithm for the analysis frameworkdescribed in Chapter 4 by instantiating the four
aforementioned operations in the following way: We implement apply by evaluating the abstract transformer
associated with the given atomic statement. The operationapplicableis treated as a function that always return
true, i.e., every procedure call statement can be applied toany given shape-graph. The operationsextractand
combineare implemented by following the rule’s specification on howto construct the (abstract) memory states
at the callee’s entry state and at the caller’s return site, respectively (see Section 4.8.2).



“The poets have been mysteriously silent on the subject of cheese.”

–G. K. Chesterton


