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ABSTRACT

Modular verification of shared data structures is a challenging problem: Side-
effects in one module that are observable in another module make it hard to an-
alyze each module separately. We present a novel approach for modular verifi-
cation of shared data structures. Our main idea is to verify that the inter-module
sharing is restricted to a user-provided specification which also enables the anal-
ysis to handle side-effects. For our approach, we constructed a novel modular
static analysis and implemented a proof-of-concept analyzer. Using the analyzer,
we verified some shared data structures which cannot be verified modularly by
current tools.



1. INTRODUCTION

Abstract data type implementations are naturally implemented with pointers.
Pointers permit the sharing of data structure implementations. This representation
exposure of internal data structures drastically complicates the task of (modular)
reasoning. However, sharing is inherent in many real life situations. For example,
sharing is used in certain popular design patterns [6] such as the model-view-
controller pattern in which a model is shared by a controller, which modifies
the model, and a view, which reflects the up-to-date state of the model. Another
common design pattern is the adapter pattern in which a wrapper modifies the
behavior of a data structure it wraps (or hides some of its complexities), yet the
underlying data structure may still be accessible.
In this thesis, we present a novel modular approach for static analysis capable of
verifying partial correctness of shared data structures. The main results of this
thesis can be summarized as follows:

1. We present a novel approach for manual and automatic modular verification
of shared composite data structures. The additional proof burden required
in our approach is proportional to the expected “degree of sharing”.

2. We define a form of specification and enumerate the proof obligations which
suffice for the modular verification of a module. The specification allows to
control the permitted inter-module sharing patterns.

3. We define LHM , a non-standard semantics specifically designed as a foun-
dation for modular analysis. Assertions written in our specification lan-
guage which hold in LHM also hold in the standard semantics. Therefore
analyses which are sound with respect to LHM are also sound with respect
to the standard semantics.

4. We demonstrate the usage of our technique and the (reasonable) specifica-
tion burden by applying it to certain real-life programming paradigms.



5. We implemented a proof-of-concept analyzer and used it to verify certain
small but intricate shared implementations that cannot be verified modularly
by existing tools.

Limitations we assume that:

(a) The programming language is object-based, i.e., with dynamic memory allo-
cation and procedures, but without inheritance or subtyping,

(b) The module dependency relation is acyclic,

(c) Every instance of a data structure (a component) has a single object (the
data structure’s header) which dominates the entire data structure. Meaning
that any heap path reaching the objects comprising the data structure passes
through the header, except for possibly heap paths reaching the headers of
sub-components (shared internal data structures) (which must come from a
different module)

(d) Every data structure has a bounded number of exposed possibly-shared inter-
nal data structures.

(e) We do not handle deallocation or garbage collection

Overview We concentrate on presenting an extended informal overview of our
approach (Sections Sec. 2 and Sec. 3), and only highlight key formal aspects —
which are fully presented in the appendix.
Outline The rest of the thesis is organized as follows: Sec. 4.1 defines our program
model. Sec. 4 describes the required specification and the proof obligations. Sec. 5
presents our non standard hybrid semantics. Sec. 6 shortly describes the analysis.
Sec. 6.4 describes our implementation and a few test cases. Sec. 7 reviews related
works. Sec. 9 concludes.
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2. RUNNING EXAMPLE

Fig 2.1 shows our running example. The code is written in a Java-like language.
It is comprised of three data structure instances: a client using a map and a key-
set. We refer to a data structure instance as a component and to an internal data
structure as a subcomponent. We refer to data structures sharing an internal data
structure as siblings. In this example, the key-set and the client are sibling data
structures: the map is a shared subcomponent of both of them.
In the appendix we give a more detailed and complete version.
The client initialization procedure, Client,
shown in Fig 2.1(a), uses a the map module to associate keys (integers) to values
(floats). The set reflects the domain of the map: In the spirit of the keySet()
method of a Java’s maps, when the set is constructed, it is linked to a map and
provides a view of the keys contained in this map. For example, the third invoca-
tion of insert associating key 9 to value 1.0, has a side-effect on the key-set,
it makes 9 a member of the key-set.
The Keyset class, shown in Fig 2.1(b), stores in field map a reference to the set’s
underlying map. This field is initialized upon construction and utilized to delegate
methods invoked on the set to its map. Note that after the key-set is initialized, the
client keeps–and uses–a reference to its underlying map.
Fig 2.1(c) shows the signature of the methods in the Map class. (The actual im-
plementation, using a binary search tree, is omitted for brevity, and can be found
in App. G.)
Verification Goal Our analysis verifies each module separately. In the following,
we focus on verifying that all the instances of the Keyset class comply with their
specification (explained below). Our analysis also modularly extracts information
about the dependencies between Keyset and Map in a way that allows to ver-
ify that all the instances of the client satisfy the assertions. The main challenge
we face is the propagation of side-effects due to methods invoked on shared sub-
components. For example, verifying the first assert statement stating that 9 is a
member of the key-set requires propagating the side-effects of the third invocation
of insert on the map to the key-set.



Module Client
class Client{
Map m;
Keyset s;
Client(){
m = new Map();
s = new Keyset(m);
m.insert(3,4.0);
m.insert(2,5.0);
m.insert(9,1.0);
assert s.isMember(9);
s.remove(9);
assert m.find(9)

==NOTFOUND;
}
}

Module Keyset
class Keyset {
Map map;
Keyset(Map smap){
map=smap;
}
bool isMember(int k){
return map.find(k)

!= NOTFOUND;
}
void remove(int k){
map.remove(k);
}
}

Module Map
class Map {
static int NOTFOUND=-1;
...
Map(){...}
void insert(int k, float val) {
...
}
float find(int k) {
...
}
void remove(int k) {
...
}
}

(a) Client program (b) Keyset class (c) A Map class

Fig. 2.1: Running Example (code).

model keys ∈ 2N

model pivot Map amap;
model function amap = dom(amap.map)

pre m 6= null
post ret fresh

ret.amap = m
ret.keys = dom(m.map)

Keyset(Map m)

post ret = k ∈ keys
bool isMember(int k)

post keys′ = keys \ {k}
amap.map′ = amap.map|dom(amap.map)\{k}

void remove(int k)

(a) Keyset interface specification

rep pivot
amap = map

rep function
keys = dom(map.map)

(b) Keyset internal specification

model map ∈ N ↪→fin R

post ret.map = ∅
ret fresh

Map()

pre k ≥ 0
post map′ = map[k 7→ v]
void insert(int k, float v)

post ret = k ∈ dom(map) ?
map(k) : NOTFOUND

float find(int k)

post map′ =
map|dom(map)\{k}

void remove(int k)

(c) Map interface specification

Fig. 2.2: Running example (specification). Fields that are not modified are not mentioned.
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3. OUR APPROACH

In this section, we provide an informal overview of our approach. Our approach
builds on the seminal work of Hoare [7] which allows for manual modular ver-
ification of abstract data structures. Hoare proposes the use of a representation
function which maps the representation of the data structure’s state to an abstract
value. The specification of the data structure’s procedures is given in terms of
abstract values. This allows a client of the data structure to be independent of
the data structure’s actual implementation. Hoare’s work does not support point-
ers and dynamically allocated memory. However, it can be extended naturally to
nested (encapsulated) data structures, i.e., where subcomponents can be organized
only in the form of a tree.

3.1 Controlled exposure of sharing

In this work, we provide an approach for manual and automatic modular verifica-
tion of composite data structures in the presence of shared subcomponents. In this
setting, any sound analysis needs to consider side-effects due to sharing. Our main
idea is to have a controlled exposure of the sharing of subcomponents instead of
forbidding it or ignoring it.
We support shared subcomponents with the aid of a user specification that: (i) ex-
poses subcomponents that can be referenced by other data structures; (ii) provides
the [lack of] effect of every operation invoked on the data structure not only on
the abstract value of the data structure, but also on the abstract value of any sub-
component that it may share with others. A key feature of this specification is
that it exposes the effect of a procedure call on shared subcomponents, but it does
not specify the effect of the procedure on sibling data structures, thus enabling
modular reasoning.



3.2 The aggregate model function

The main challenge that we face is the tracking of indirect changes to the abstract
values of sibling data structures. Such changes may occur, e.g., when a (shared)
subcomponent of two data structures is modified.
We address the above challenge using a user-specified aggregate model func-
tion. The latter allows us to compute a conservative approximation of the (side-
affected) data structure’s abstract value after an indirect change. It computes the
(updated) data structure’s abstract value based on the abstract values of its inter-
nal representation (including unshared subcomponents) and the abstract values of
its shared subcomponents. When analyzing sibling data structures the analysis
tracks which subcomponents are shared and by whom. When the abstract value
of a shared subcomponent is modified, the analysis updates the abstract values of
the affected data structures using their aggregate model functions.
Our approach uses two kinds of additional fields to record the abstract value of a
data structure and to define the aggregate model function. Model fields are used to
record the abstract values of data structures. Model pivot fields are used to record
the inter-component reference structure.

Fig 2.2(c) shows the (user-provided) interface specification of the Map class. A map
implements a partial function from integers to reals. The abstract value of a map is
a function from integers to floats. We use the model field map to record this value.
The map is an example of a fully-encapsulated data structure. The Keyset data
structure, whose interface specification is shown in Fig 2.2(a), is an example of a data
structure implementation which allows a controlled exposure of subcomponents. The
abstract value of the Keyset is a set of integers. The model field keys records this
value. In addition, the Keyset exposes a model pivot field. The model pivot field
is a special sort of a model field whose value is a reference to a subcomponent. It
is initialized with the map parameter when a key-set is constructed and allows the
exposure of the effect of the key-set’s method’s on this (possibly) shared component.
For example, the specification of the Keyset’s remove method exposes the fact
that removing a key from a key-set also removes it from the (abstract value of the)
map. The aggregate model function of the Keyset class is shown in Fig 2.2(a). It
specifies how to compute the value of the model field keys when the abstract value
of its underlying map changes. Specifically, it specifies that the value of the key-
set’s model field keys should be updated to the domain of the abstract value of the
map referenced by the key-set’s model pivot field amap. Recall that the client of the
map (and of the key-set) is aware of the connection between the key-set and the map
because the key-set exposes its pivot field amap.
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Fig. 3.1: Possible memory states occurring in an invocation of m.insert(9,1.0)
on σc.

3.3 Non-standard semantics

We verify that a program is correct according to its specification by abstract inter-
pretation [3] of LHM , a non-standard componentized hybrid semantics. LHM
abstracts the standard semantics (instrumented to also track the values of model
fields and model pivot fields) by forgetting the concrete (non model) fields of ob-
jects that are not the current objects.

Fig 3.1 (sc) depicts a possible memory state that may arise in the execution of the run-
ning example before the third invocation of insert according to an (instrumented)
standard semantics which is instrumented to track also the values of model fields. The
state contains a client object (depicted as a diamond). The client object has two fields,
depicted as labeled edges: An s-field pointing to a key-set, depicted as a rectangle,
and an m-field pointing to a map, depicted as a hexagon. The key-set’s map-field also
points to the map object. The map contains two associations (shown as ellipses).

The rectangular frames depict the component-decomposition of the memory state. We
say that two objects reside within the same implicit component if they belong to the
same module and are connected in the heap via an undirected heap path which only
goes through objects that belong to the same module. We say that a component is an
unsealed component if it is the current component (its head is pointed to by this) and
a sealed component otherwise. A memory state sc is comprised of three components.
The key-set component and the map component are sealed.

13



The (instrumented) standard semantics records the values of model fields and model
pivot fields only for object in sealed components. The value of the model pivot field
amap is depicted as a double-line edge emanating from the set object to the map
object. The values of the model fields keys and map are depicted inside the key-set
and map object, respectively. For example, the (local) model field map of the map is
the partial function [2 7→ 5.0, 3 7→ 4.0].

Fig 3.1 (se) depicts the part of the memory state which the insert procedure can
reach after being invoked for the third time. This part of the memory state is trans-
formed into the one shown in Fig 3.1 (sx) by the execution of the insert procedure.
The standard memory state shown in Fig 3.1 (sr) results when the call to insert
returns to the Client. Note that while insert could not directly modify fields in
object which it could not reach, it does have a side effect on the abstract value of the
key-set’s keys model field.

The LHM memory states depicted in Fig 3.1 (σc), Fig 3.1 (σe), Fig 3.1 (σx), and
Fig 3.1 (σr), abstract the standard memory states depicted in Fig 3.1 (sc), Fig 3.1 (se),
Fig 3.1 (sx), and Fig 3.1 (sr), respectively. Note that the LHM memory states repre-
sents the abstract values of sealed components, but abstract away their representation.
Also note that the inter-component reference structure is maintained by the model
pivot fields.

The LHM memory state shown in Fig 3.1 (sx), representing the memory state when
the insert procedure terminates, is computed directly from the memory state shown
in Fig 3.1 (se), representing the memory state when the insert is invoked using the
specification of insert. Furthermore, the model pivot field amap exposing the
dependency of the value of the key-set’s keys model field on the abstract value of the
map allows computing the updated value of keys using its aggregate model function.

14



4. PROGRAM MODEL, SPECIFICATION AND PROOF
OBLIGATIONS

In this section, we describe our program model, the required user-provided specifi-
cation, and the proof obligations. Any approach, be it manual or automatic, which
can establish the proof obligations with the given specification verifies soundly
that the module respects its specification. In the following sections, we present an
automatic approach which achieves this purpose.

4.1 Program Model

We analyze imperative object-based (i.e., without subtyping) programs. A pro-
gram consists of a collection of procedures and a distinguished main procedure.
The programmer can also define her own types (à la Java classes). We expect to
be given a partitioning of the program types and procedures into modules.
Syntactic domains We assume the syntactic domains x ∈ V of variable identi-
fiers, f ∈ F of field identifiers, T ∈ T of type identifiers, p ∈ PID of procedure
identifiers, and m ∈M of module identifiers. We assume that types, procedures,
and modules have unique identifiers in every program.
Modules We denote the module that a procedure p belongs to by m(p) and the
module that a type identifier T belongs to by m(T ). A module m1 depends on
module m2 if m1 6= m2 and one of the following holds: (i) a procedure of m1

invokes a procedure of m2; (ii) a procedure of m1 has a local variable whose type
belongs to m2; or (iii) a type of m1 has a field whose type belongs to m2.
Procedures A procedure p has local variables and formal parameters, which are
considered to be local variables. Only local variables are allowed. We assume that
the target of a procedure invocation is bound to an implicit this parameter. For
each field access x.f=e or y = x.f by a procedure p we require that the type T of
the object pointed to by x satisfies m(p) = m(T ).



4.1.1 Simplifying assumptions

To simplify the presentation, we make the following assumptions: (a) Every mod-
ule defines a single data structure which can be used by other modules; (b) Every
module has a specially-designated initialization procedure which allocates new
instances of its data structure and initializes them - a constructor.

4.2 Standard Module Specification

Interface specification We expect to have a user-supplied Hoare-style “public”
specification of the program’s modules:

• Every module may have model fields. The model fields represent the ab-
stract value of the data structure implemented by the module. A model field
should range over a value domain. For example, the (only) model field of
the Keyset module is keys and its possible values are sets of integers. The
model field of the Map module is map and its possible values are maps of
integers to floats.

• Every procedure should have a pre-post specification which describes the
effect of the procedure on the model fields of its parameters. A pre-post
specification is admissible if it refers to a relation over expressions over
the callee’s local model heap — i.e. access paths starting at the procedure
parameters and following a sequence of model pivot fields or to the values
of model fields that can be reached by traversing such access paths. For
example, the specification of the map’s insert procedure indicates the
abstract value of a map after the invocation of insert(k,v), indicated
by a map′, is the same as the map’s value before the insertion except that
the key k is now associated with the value v. As a negative (inadmissible)
example — if Map’s specification were to mention the keys field of a Keyset
object refering to it it would be inadmissible as this Keyset is not reachable
from the Map. In the following, we assume that procedure specifications
are admissible.

Internal specification In addition, we expect an internal module specification
which provides a representation function [7] mapping the data structure’s con-
crete representation to its abstract value. We allow the representation function to
be defined only as a function of (i) the values of objects reachable from the com-
ponent’s header via fields defined in the module and (ii) the values of model fields
of subcomponents.
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4.3 Additional Specification Burden

The additional specification burden required by our approach (compared, e.g.,
to [7]) is the specification of the model pivot fields and the aggregate model func-
tions.
The model pivot fields specify the data structure’s subcomponents that can be
shared with other data structures. Any such subcomponent is given an externally-
visible name and any procedure which has a side-effect on the abstract value of
such a subcomponent is required to expose it in its specification. For example, the
Keyset module has a (single) model pivot field amap. The set’s initialization
function, Keyset specifies that amap names the map passed as parameter. The
set’s remove function specifies that the removed key is extracted not only from
the set’s model field, but also from the map which amap refers to. We emphasize
that a model field is allowed to have reference (location) value only if it is a model
pivot field.
We refer to a model field whose value does not depend on model fields of ex-
ternally — visible subcomponents as a local model field. An aggregate model
function is admissible if it is defined as a function of the values of the compo-
nent’s local model fields and the model fields of its subcomponents. For example,
the aggregate model function associated with the model field keys of the Keyset
module specifies that the value of this field is the domain of the abstract value of
the key-set’s map. If we change the key-set to be a filtered key-set which contains
only keys whose values are bigger than a given threshold, then the threshold value
could be exposed by a local model field and the aggregate model function of the
filtered key-set would specify that the key-set contains all elements in the domain
of its map that are smaller than the (exposed) threshold.
Internal specification The internal specification is used only during the verifica-
tion of the module itself. It links the model pivot fields and model fields with the
actual implementation of the module’s data structure.
Every local model field is associated with a representation function that specifies
its value. The representation function can depend only on properties of objects
that are reachable from the header of the data structure through fields defined in
the module.
The representation function for every model pivot field is further limited to only
access fields inside the current component (so it depends only on its component)
and must evaluate to an outgoing pointer.
For example, the model pivot field amap is associated with the Keyset’s map-field
which points to a Map.
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Our analysis finds module invariants (properties which are expected to hold when
the data structure is not being manipulated) in an automatic manner. For example,
a module invariant of the Keyset module which our analysis find is that the
field m never has a null value.

4.4 Proof Obligations

When verifying a module, we need to verify, as usual, that the postcondition of
every procedure p and the module invariant are implied from executing p’s body
in any state which satisfies p’s precondition and the module invariant. (When
verifying an initialization function only the precondition can be assumed.) In
addition, we need to establish the following properties:

1. model function consistency, i.e., evaluating the model function of a model
field mf over a model heap mh is conservative w.r.t. evaluating the repre-
sentation function of mf over an equivalent hybrid heap hh (terms formally
defined in the appendix).

2. model pivot consistency, i.e., in any state which satisfies the module in-
variant, every reachable subcomponent which is not dominated by the data
structure’s header (i.e., possibly exposed) is named (pointed to) by a model
pivot field

3. single header, i.e., every component has a single header.

4. model function dependency locally acyclic, i.e., there is no local dependency
cycle between model functions of the same component

This admissibility of the aggregate model function in addition to the single header
requirement and the acyclicity of the module import relation ensure that these
functions are well defined, i.e., there is no cyclic definition of aggregate model
functions.
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5. COMPONENTIZED-HEAP CONCRETE SEMANTICS

In this section we define CHS , a non standard concrete semantics which serves
as a foundation for our modular analysis: We establish the proof obligations in
LHM . Our restrictions on the program model and on the specification ensure
that even though the proof obligations are shown to hold in LHM , the properties
that they assert also hold in the standard semantics.
CHS is a store-based semantics (see, e.g., [21]). A traditional aspect of a store-
based semantics is that a memory state represents a heap comprised of all the
allocated objects. CHS , on the other hand, is a local heap semantics [22]: A
memory state which occurs during the execution of a procedure does not represent
objects which, at the time of the invocation, were not reachable from the actual
parameters.
LHM is a hybrid semantics: It only represents the fields of the current compo-
nent. It represents sealed components using their headers and only records the
model and model pivot fields of these headers.
LHM is a “mixed-step” semantics: When executing intraprocedural statements
and intra-module procedure calls, it acts as small-step operational semantics [20].
However, instead of encoding a stack of activation records inside the memory
state, as traditionally done, LHM maintains a stack of program states [10]). The
use of a stack of program states allows us to represent in every memory state the
(values of) local variables and the partial heap of just one (the current) procedure.
When executing an inter-module procedure call, LHM acts as large-step opera-
tional semantics [8]: it computes the effect of a procedure invocation in “one step”
using the procedure’s specification.
LHM checks that the program memory states satisfy certain admissibility con-
ditions (listed below). Thus, LHM may abort whereas standard heap semantics
would not abort. Such an abort means that a module does not satisfy our restric-
tions. (Our analysis conservatively detects such aborts.) For brevity, we only
informally discuss the relation between LHM and the standard heap semantics
and describe key aspects of the operational semantics. In A.4, we formally define
LHM and relate it to the standard semantics using Galois connections.



l ∈ Loc Location
var ∈ VarId Variable id
ε ∈ Env = V ↪→ Val Local variables
v ∈ Val = Loc ∪ {null} ∪N ∪ F Concrete value
h ∈ H = Loc ↪→ F ↪→ Val Concrete heap
t ∈ Type Type
t ∈ TM = Loc ↪→ T Type heap
a ∈ AVal Model value
ah ∈ AH = Loc ↪→ F ↪→ AVal Model heap
ph ∈ PH = Loc ↪→ F ↪→ Val Pivot heap
σ ∈ Σ = Env×2Loc×H×TM×M×AH×PH×AH Memory states

Fig. 5.1: Semantic domains.

5.1 Memory States

Fig 5.1 defines the concrete semantic domains and the meta-variables ranging over
them. We assume Loc to be an unbounded set of locations. A value v ∈ Val is
either a location, the special null value, an integer or a float.
A memory state in the LHM semantics is an 8-tuple:
σ = 〈ε, L, h, t, m, alh, ph, ah〉. The first four components comprise a 2-level
store: ε ∈ Env is an environment assigning values for the variables of the current
procedure. L ⊂ Loc contains the locations of allocated objects. (An object is
identified by its location. We interchangeably use the terms object and location.)
The heap h ∈ H assigns values to fields of allocated objects. t ∈ TM maps
every allocated object to the type-identifier of its (immutable) type. Implicitly,
t associates every allocated location to a module: The module that a location
l ∈ L belongs to in memory state σ is m(t(l)). The fifth component, m ∈ M, is
the module of the current procedure. We refer to m as the current module of σ.
The sixth component, alh ∈ AH, is the local abstract value map. It records the
abstract values of local model fields. The seventh component, ph ∈ PH, is the
model pivot heap, recording the reference values of pivot model fields. The eighth
component, ah ∈ AH, is the abstract value map. It records the abstract values of
non-local model fields.
To exclude states that cannot arise in any program, we now define the notion
of admissible states. We note that LHM preserves the admissibility of memory
states.
A LHM memory state σ = 〈ε, L, h, t, m, alh, ph, ah〉 ∈ Σ is admissible if
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〈Cally=p(x1,...,xk), σc〉 CHS−→ σr

where:
σe = 〈εe, Lc, ∅, tc|Lrel

, mc, alhc|Lrel
, phc|Lrel

, alhc|Lrel
〉

εe = [zi 7→ εc(xi) | 1 ≤ i ≤ k]
Lrel = R({εc(xi) ∈ Loc | 1 ≤ i ≤ k}

σe
[[p]]Ã σx

σr = 〈εc[y 7→ εx(ret)], mc, Lx, hc, tc[tx], alhr, phr, ahr〉
alhr = alhc[alhx]
phr = phc[phx]
ahr = ahx ∪

⋃
l∈dom(ahc)\dom(ahe) update(l, ahc, alhr, phr, tr, ahx)

update(l, ahc, alhr, phr, tr, ahx) =



ahx l ∈ dom(ahx)
ahsub ∪ {l 7→ f 7→ mf (l, alhr, ahsub, phr) | f ∈ model(tr(l))} otherwise

ahsub =
⋃

l′∈subcomponents update(l′, ahc|L′
rel

, alhr|L′
rel

phr|L′
rel

, tr|L′
rel

, ahx|L′
rel

)

subcomponents = {l′ ∈ {phr(l, p)|p ∈ pivot(tr(l))}
L′rel = R({l′}, phr)

R(L, ph) = {l ∈ dom(ph)|l reachable from l′ ∈ L in ph}

Fig. 5.2: The axioms for an arbitrary intermodule procedure call y = p(x1, . . . , xk) assuming
p’s formal parameters are z1, . . . , zk and p returns its value by assigning it to a specially
designated variable ret . The call state is σc = 〈εc, Lc, hc, tc,mc, alhc, phc, ahc〉 The
exit state is σx = 〈εx, Lx, hx, tx,mx, alhx, phx, ahx〉 is a possible outcome of p when
invoked on memoy state σc according to p’s specification, [[p]]. For a type t ∈ T ,
model(t) denotes the model fields of t, pivot(t) denotes the model pivot fields of t. The
aggregate model function associated with a model field f is denoted by mf .

(i) The domain of the heap and the local abstract value map, the model pivot
heap, and the abstract value map are disjoint, i.e., let A = dom(alh)∪dom(ph)∪
dom(ah), then dom(h) ∩ A = ∅; (ii) Every object in the domain of the heap be-
longs to the current module, i.e., for every l ∈ dom(h), m(t(l)) = m; (iii) The
type of every object in the (local) abstract values map and the model pivot heap
does not come from the current module, i.e., for every l ∈ A, m(t(l)) 6= m, where
A is as defined above; (iv) Fields and model fields can point only to allocated lo-
cations, i.e., {h(l)f ∈ Loc, ph(l)f | l ∈ L, f ∈ F} ⊆ L; and (v) The pivot heap
is acyclic.

Figures 3.1(σc) and 3.1(σr) depict the (admissible) LHM memory states that arise in
the execution of the running example before and after the third invocation of insert,
respectively.
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5.2 Operational Semantics

We only discuss the key aspects of the operational semantics, formally defined in
App. A.4.

5.2.1 Intraprocedural Statements

Intraprocedural statements are handled, essentially, as usual in a two-level store
semantics for pointer programs (see, e.g., [21]). The main difference from the
standard semantics, formalized in App. A.3, is that the semantics checks that the
program accesses only fields of objects that belong to the current component.

5.2.2 Intra-module interprocedural statements

LHM is a local-heap semantics [22] which maintains a stack of program states
to handle intra-module procedure calls [23]. The program state of the current
procedure is stored at the top of the stack, and it is the only one which can be
manipulated by intraprocedural statements.

5.2.3 Inter-module interprocedural statements

Fig 5.2 defines the axioms for intermodule procedural calls. When an intermodule
procedure call is invoked, LHM computes the return state σr in three steps, as
described below.
First, it computes an intermediate memory state, σe, which represents the callee’s
local heap but with all components remaining sealed. It does this by restricting
the heap to the part reachable from the actual parameter. Because the module
dependency is acyclic, only headers of sealed components (reachable via the pivot
heap) can be passed. It then checks that the resulting memory state satisfies the
pre-condition of the invoked procedure, and aborts otherwise.
Then, LHM applies the effect of the invoked procedure in one step: it selects
(nondeterministically) any exit state which is a possible outcome of the invoked
procedure according to its specification. Because the invocation context is un-
known, the specification cannot refer to the current component.
Finally, LHM computes the return state of the procedure by carving out the lo-
cal heap passed to the callee from the call heap and replacing it with the callee’s
heap at the exit site. This operation correctly updates the heap, the type map,
the local abstract value map, and the model pivot heap. To correctly propagate
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the side effect of the invoked procedure on the (aggregate) model fields the se-
mantics updates the value of every model field pertaining to an object which
was not passed to the callee using the update procedure. The invocation of
update(l, ahc, alhr, phr, tr, ahx) updates the model fields of l by first (recursively)
computing ahsub, an abstract value map containing the updated values of model
fields of every subcomponent of l. (Note that to determine the subcomponents, the
semantics uses the updated pivot heap.) LHM then computes the value of every
model field f of l using mf , the aggregate model function of f . Note that this
computation is well defined because of the acyclicity of model field dependencies
promised by our assumptions.
We note that the above computation is rather inefficient as it recomputes values of
fields that cannot be modified. In Sec. A.4, we present an optimized version which
updates only fields that depend on potentially modified fields. The optimized
version behaves better under abstraction.

5.3 Observational Soundness

Our goal is to verify (modularly) properties of modules according to the standard
semantics. The admissibility of LHM memory states, our programming model,
and the conditions checked by the operational semantics, ensure that if the LHM
semantics never aborts when executing a module, then for any memory state s that
can arise according to the standard semantics (in a program comprised only of
such “well-behaved” modules) there exists a LHM memory state σ which arises
during the execution of the program in the LHM semantics which abstracts s.
An immediate consequence of the above is that any assertion regarding properties
of objects reachable from component headers which is shown to hold with respect
to LHM semantics also holds with respect to the standard semantics. For a formal
definition of the observational soundness theorem, see Sec. B.
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6. STATIC ANALYSIS

This section presents key aspects of our (conservative) modular static analysis.
The analysis is obtained as an abstract interpretation of LHM using a bounded
conservative abstraction. Our analysis is parametric in the bounded abstraction
and can use different (bounded) abstractions when analyzing different modules.
In our implementation, we use canonic abstraction [24].
Our static analysis is conducted in an assume-guarantee manner allowing each
module to be analyzed separately. The analysis, computes a conservative rep-
resentation of every possible input state to an intermodule procedure call. This
process, in effect, identifies structural module invariants. Our analysis verifies
conservatively that a module satisfies its specification and respects the restrictions
we impose.
The main challenge in our analysis lies in finding all the possible input states to
an intermodule procedure calls. We overcome this challenge by utilizing the fact
that in LHM whenever a program passes a component of the analyzed module a
parameter to an intermodule procedure call, it must be a sealed component which
was previously generated by the program. (This is derived from the fact that every
component has a single header and that a component can be manipulated only by
the module which generated it). In particular, we can anticipate the possible entry
memory states of an intermodule procedure call: Note that components are sealed
only when an intermodule procedure call returns. Furthermore, the only way a
sealed component can be mutated is to pass it back as a parameter to a procedure
of its own module. Thus, a partial view of the execution trace, which considers
only the executions of procedures that belong to the analyzed module, and col-
lects the sealed components generated when an intermodule procedure invocation
returns, can anticipate (conservatively) the possible input states for the next inter-
module invocations. Specifically, only a combination of already generated sealed
components of the module can be the component parameters in an intermodule
procedure invocation.
We conservatively compute the effect of procedure calls on subcomponents using
the user-provided specification. The procedure’s pre-post specification allows us



to find the effect of the procedure on the components passed to it as parameters
(and their subcomponents) and the aggregate model function allows us to propa-
gate side effects to sibling components.

6.1 Automatic Verification

Our analysis verifies each module separately. It computes conservatively all possi-
ble input states of intermodule procedure calls by exercising the analyzed module
using its most-general-intrusive-client (MGIC): a program that simulates all pos-
sible procedure invocations on the analyzed component (thus simulating arbitrary
usage contexts) and on its exposed subcomponents (thus simulating all possible
side-effects).
We obtain an effective analysis by abstracting the hybrid semantics using standard
shape abstraction [24] which conservatively represents every (unbounded) hybrid
memory state in a bounded way.
Modularity Our analysis is modular in two aspects. First, it is modular in the
program code: When verifying one module, we only require the code implement-
ing that module and only the specification of the other modules. (Specifically, we
determine the effect of an inter-module procedure call on a subcomponent using
the procedure’s specification.) Second, it is modular in the program state: when
reasoning about a module, we

(i) Reason about the concrete representation of data structures manipulated by
the module,

(ii) Represent the abstract values and the topologies (sharing patterns) of sub-
components that come from other modules.

(iii) Ignore the data structure context containing the analyzed data structures.

(In comparison, Hoare’s approach, by being targeted to verify only fully encapsu-
lated data structures, can avoid reasoning about sharing patterns.) A key reason
for the modularity of our analysis in the program state is the heterogenous mem-
ory representation of the hybrid states. This allows our analysis to require only the
specification of dependant modules and not their implementation (as is required,
e.g., in [26]).
Burden on the user The additional proof burden (beyond the one imposed, e.g.,
by Hoare’s approach) that we place is proportional to (i) the allowed sharing, i.e.,
to the number of subcomponents of the verified data structure which are allowed
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to be shared externally and the interconnection between them, and (ii) the actual
sharing, i.e., the sharing between the data structure subcomponents.

Recap

The essence of our work is the propagation of the side-effects on the abstract
values of sibling data structures. The aggregate model function provides a conser-
vative approximation of the data structure’s abstract value based on the abstract
values of its internal, unshared parts and the abstract values of its shared subcom-
ponents.

6.2 Bounded abstraction

We provide an effective conservative abstract interpretation [3] algorithm which
determines module invariants by devising a bounded abstraction of LHM mem-
ory states. An abstraction of a LHM memory state, being comprised essentially
of an environment of a single procedure and a subheap, is very similar to an ab-
straction of a standard two-level store. The additional elements that the abstrac-
tion tracks are the model pivot fields (which can be abstracted in a similar manner
to standard concrete fields) and model fields representing abstract values of data
structure. Thus, the abstract domain is expected to be able to represent (conserva-
tively) the abstract values used in the specification.
Abstracting a LHM memory state is simpler than abstracting standard memory
states: Instead of abstracting the representation of a data structure (e.g., the repre-
sentation of a map as a tree) the abstraction needs to record the essential properties
of the data structure, e.g., the association between keys and values, the elements
in the domain of the map, etc. Furthermore, we believe that a key reason for the
success of our analyzer is the fact that while a procedure call might have a com-
plicated effect on the concrete heap, e.g., inserting a node to a tree, its effect on
the abstract value of the data structure can be much more limited, e.g., adding an
association to a map.

6.3 Modular analysis

We conduct modular static analysis by performing an interprocedural analysis of
a module together with its MGIC. The module’s MGIC invokes a sequence of
arbitrary sequence procedures of the module using arbitrary input arguments. (In
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this respect, the most-general-intrusive-client is similar to the most-general-client
of a class [23].) However, it also invokes procedures directly on the exposed
subcomponents of the analyzed module. (In this respect, the client is intrusive as
it bypasses the component and directly interacts with its subcomponents). This
allows to simulate conservatively any arbitrary context in which components of
the module can be used.
Our analyzer verifies that every intermodule procedure call made by the MGIC
respects the procedure’s specification.

6.4 Experimental evaluation

We have experimented with expressing several examples in our system. We real-
ized our system by developing a proof-of-concept modular analyzer using canonic
abstraction [24] within the TVLA system [15]. Our analyzer was able to verify
the Keyset module in 10 seconds running on a machine with a 2.66 Ghz Core 2
Duo processor and 2 Gb memory. The verification proved that any Keyset compo-
nent in any context using any map that conforms to the Map specification would
behave as in its specification.
The MGIC for the Keyset of the running example is detailed in Fig 6.1. The
analysis uses the MGIC as follows: The Keyset is represented in the concrete
space. The Keyset methods are executed using the body. The map is represented in
the model space (just m.map - no internal nodes). The map methods are executed
using specification only (also calls in Keyset method bodies). The value s.keys
is calculated using the representation function in each assertion that uses it. Pre
and post conditions are checked before/after each call (in the model space). The
last assertion checks that the model function over-approximates the representation
function - both calculated from the hybrid view. The question marks represent
non-deterministic selections.
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MGIC(){
Map m;
Keyset s;
//Initialize a general map
m = new Map();
while (?){
switch (?) {
case 0: m.insert(?,?); break;
case 1: m.remove(?); break;

} //switch
} //while

//Excercise all use-cases of Keyset
s = new Keyset(m);
while (true){
int key = ?;
float val = ?;
switch (?) {
case 0:
assume(true);
m.insert(key,val);
assert(m.map′ = m.map ∪ (key, val));
case 1:
assume(true);
m.remove(key);
assert(m.map′ = m.map \ {key});
case 2:
assume(true);
bool b = s.isMember(key);
assert(b == key ∈ s.keys);
assert(m.map′ = m.map);
assert(s.keys′ = s.keys);
break;
case 3:
assume(true);
s.remove(key);
assert(m.map′ = m.map \ {key});
assert(s.keys′ = s.keys \ {key});
break;

} //switch
assert( s.keys ∈ Keyset.keys m(s));

} //while
}

Fig. 6.1: MGIC for the Keyset component.
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7. RELATED WORK

In this section, we review related works.
Modular verification. In [1], Barnett and Naumann presented verification ap-
proach that supports state dependencies across ownership boundaries. A compo-
nent can grant “friends” the right to depend on their state. Thus, the dependency
is publicly visible and treated in a modular way. The downsise of this technique
is that the granting component needs to know its clients. To overcome this restric-
tion, Leino and Schulte developed a technique based on history invariants [14]
which allow component invariants to depend on other non-encapsulated compo-
nents, which resembles our method. However, the expressible dependencies are
weaker than the ones allowed by our method since they need to be captured by a
history constraint.
A modular solution for model fields and non-shared abstractions is developed in
[17, 13]. The focus of that work is as well on object invariants, and the problem
of when abstract and concrete state have to be consistent is similar. The methods
shown in those papers are more suitable for manual verification or theorem provers
rather than analysis. Those works inspired some of our definitions for when an
abstraction has to hold and the ideas of pivots and dependencies.
In [9], Kassios presents a framework for modular reasoning supporting
abstraction, data-hiding, and subtyping. The framework allows asserting proper-
ties such as disjointness and inclusion between the domains of different represen-
tation functions and to prove modularly non-modification of model fields. Classes
can have “public” invariants which encode similar information to our “public”
model function, however, in a less disciplined way. We give explicit rules for
pivots and rely on pivot equality while Kassios uses frames which are sets of
pointers and relies on set operations (inclusion, disjointness etc) which we believe
are harder to use in practice. Our restrictions give us simpler proof obligations
with simpler propagation of side-effects which can be verified automatically.
Local reasoning [19] and [2] allow to conduct modularly (manual) local reason-
ing [21] about abstract data structures and abstract data types with inheritance,
respectively. The reasoning requires user-specified resource invariants and loop



invariants. Our analysis automatically infers these invariants based on user pro-
vided interface specification and representation functions (and an instance of the
bounded shape abstraction). [2], however, allows for more sharing than in our
model. Their system can encode “public” invariants of aggregates and model piv-
ots, but does not have an inherent notion of aggregate representation function.
Modular static analysis [4] describes the fundamental techniques for modular
static program analysis. These techniques allow to compose separate analyses
of different program parts. We use their techniques, in particular, we use user
provided specification to communicate the effect and side effects of mutations
done by different modules.
[11, 25] also utilize user-specified pre- and post- conditions to achieve modular
shape analysis which can handle a bounded number of flat set-like data struc-
tures. Our approach, allows for separately-analyzed arbitrarily-nested and possi-
bly shared sets.
[16] presents a modular analysis which infers class invariants. The determined
invariants do not concern properties of shared subobjects.
[26] provides a method for computing the effect of a procedure call which is mod-
ular in the program code — but not in the program state: A theorem prover is used
to propagate the effect of a procedure call on the abstract field of the caller by in-
ferring it from the call’s effect on the concrete fields of the callee. Intuitively, their
approach requires maintaining the values of concrete fields for subcomponents.
[23] presents a modular shape analysis which identifies structural (shape) invari-
ants for dynamically encapsulated programs: heap-manipulating programs which
forbids sharing between components via live (i.e., used before set) references.
This paper allows shared components but requires that every shared subcompo-
nent be named by a model pivot field. This may restrict our approach from han-
dling data structures which hold object data which are transferred as parameters.
One way we can overcome this restriction is by incorporating in our approach
dynamic encapsulation for certain kinds of object parameters.
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8. DISCUSSION AND FUTURE WORK

Our presentation uses some restrictions on the programming language and the
valid programs and requires some additional burden from the programmer, here
we discuss the implications of these restrictions and the options for alleviating
them.

8.1 Discussion

Our system as is can support some interesting programs like the running example
but is lacking in several key aspects. Our main advantage over most existing and
proposed systems is that we allow completely modular verification with shared
abstractions in a practical manner. The main shortcomings of our approach is that
it requires a substantial specification effort from the programmer — the model
function (over Hoare’s approach), and that several common language features are
not supported — subtyping, genericity, casts, multiple headers per component,
cyclic module import etc. We believe some additional specification burden is
mandatory for the added program complexity of shared abstractions in a modular
setting. We discuss the missing features in the next section, and offer ways to
include most of them. The additional verification burden (proof obligations) was
discussed in Sec. F.

8.2 Restrictions

Most issues of Java-like languages and shared representations are analyzed in de-
tail in [18].

• Module import acyclicity: This is largely a technical requirement to sim-
plify the presentation. The fundamental requirement is model field depen-
dency acyclicity — that can be enforced modularly. A simple and practical
way to achieve this is to require that model field dependency is acyclic by



type (meaning the dependency relation for model field types is acyclic) how-
ever this disallows some existing programming patterns such as alternating
lists. A more general way is to require local acyclicity (among model fields
of ther same type) and require acyclicity whenever an object is abstracted
(e.g. this on return from function) as a proof obligation. This requires more
verification work but allows more programs. An issue with cyclic import is
that this can be passed (directly or indirectly) as an argument, which means
any knowledge of the current component (including local variables point-
ing into it) is lost upon return unless it is passed as immutable (even if the
specification does not specify any modification to its model fields).

• One header per component: This is a serious restriction as it disallows e.g.
iterators. We believe it can be removed if all headers of the component
(e.g. List and its Iterators) are defined in the same module and verified with
“private” or at least “package” knowledge of each other, and each has to
have a pivot to each other (which means pivots and representation functions
in general are no longer only reference reachable heap as e.g. an Iterator
does not have to have a pointer to a List’s header — it may only point to a
Node). We believe it is practical to allow multiple headers per component
with the above mentioned restrictions and some additional modifications to
the formulation and leave it as future work. The subject of package access
is discussed in detail in [18].

• Local frame for pivots: This is an entirely technical requirement to simplify
presentation — as long as dependencies are acyclic pivots can be defined as
any other representation function. However we could not find a real use for
non-local pivots.

• One to one concrete-model component graph: This enforces a bounded
number of pivots and identity of the concrete and abstract component graph.
We considered simple extensions to allow our system to support sets, se-
quences or trees of pivots (e.g. for a List with all members being outgo-
ing pointers rather than the objects themselves we could use head.next ∗
.element as a representation function). We can allow the model component
graph to be larger than the concrete one as mentioned earlier for iterators.
We can allow the model component graph not to include a pivot for point-
ers to immutable subcomponents. Another extensions with a large practical
value is to enforce the equivalence of concrete and model component graphs
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on component pack (this on return from function) rather than by construc-
tion of the type as done in this thesis — this effectively means adding this
equivalence to the class invariant.

• Subtyping: Subtyping is problematic because an upcasts loses specifica-
tion information. We assume here a standard model of subtyping where the
subtype may have additional constructs (concrete functions and specifica-
tion model fields (the extended state)) and stricter specification for con-
structs (stricter pre-post for functions). Stricter specification for model
fields, which means less dependencies and stricter model functions (more
deterministic). The problem is that these extra model fields are lost on up-
cast (e.g. when calling a function that receives a supertype as a parame-
ter) and hence have to be reconstructed on return. We believe that with
some restrictions on subtyping and modifications to the call rule, our sys-
tem can support subtyping, especially: Only stricter (as above) subtypes are
allowed (which is a standard requirement), no downcasts are allowed, only
new functions are allowed to modify new model fields and the extension of
dependencies is limited — the whole topic is discussed in detail in [18]
Multiple subtyping, even with methods inherited through more than one
path, should not pose additional problems if cross-casts are not allowed,
however cross-casts require the handling of downcasts which is discussed
later.

• Inheritance: Inheritance in a modular environment requires the descendant
class to to have a “protected” specification that is stronger than the “public”
specification given to clients, in addition to “protected” functions. We be-
lieve the protected interface for a class is a kind of sub-type of the public
interface (as most up/down casts are done in the same fashion) and hence
the requirements for for subtyping should be sufficient for inheritance under
the assumption there are no non-private fields. Multiple inheritance should
pose no additional difficulties other than those added by multiple subtyping.

• Genericity: Genericity is in general orthogonal to our work (the running ex-
ample could be given as a generic Map/Wrapper). The areas where generic-
ity interacts with subtyping (e.g. as in Java 1.5 onwards) needs special care,
but we believe that once subtyping is supported genericity is supported as
well.

• Reflection: We do not see a way in which reflection can be readily supported
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as it bypasses several fundamental language mechanism.

• Casts: Casts should be seperated to several kinds, largely following C++:

– Down/crosscasts: these are problematic because a down cast both re-
quires the caster to reconstruct somehow the extended specification
state and allows the downcaster to modify the extended specification
(and concrete) state in ways it cannot specify (as the extended speci-
fication state is not in the scope of the upcasted type). A worst case
handling of this is to “havoc” extended state whenever a downcast
is performed (including return from a function with upcasted argu-
ments). A better handling might be to allow the downcaster to include
the downcasted type in the specification with a typecase kind specifi-
cation (e.g. if x is of type T then . . .).

– Unrestricted casts: Casts in the style of C++’s reinterpret cast cannot
be included in most (if not all) modular verification systems as they
can be used to produce pointers to anywhere in memory (other com-
ponents, unallocated space, OS etc) of any type. A restricted form
(e.g. pointer → int) may be allowed. Or we can formulate their se-
mantics in such a manner that only certain limited uses of this kind of
cast allow us to prove anything about a program.

– Upcasts, promotions etc: C++’s static cast is generally safe to use in
our system (once subtyping is)

– const cast: If we support immutable types (which should be straight-
forward) the immutable version of a type is in a sense a super-type
of the mutable version — hence removing immutability is similar to
downcasts.

• Concurrency: We have not done any research in adding concurrency to our
system.

• Exceptions: We have not considered exceptions in our system but we be-
lieve they can be integrated in a manner similar to [5]
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9. CONCLUSIONS

We presented a modular analysis for programs with shared heap-allocated data
structures. We showed the realizability of our system by developing a proof-of-
concept modular analyzer. We believe that the demonstrated ability to automati-
cally analyze programs with inter-component sharing is an important step forward
and that the idea of aggregate abstractions and aggregate model functions is of
more general applicability (e.g., it can be used in manual verification) as our work
is mostly independent of the specification language and of the shape abstraction.
We simplified the verification problem by forbidding callbacks and subtyping.
We believe our work can be extended to handle these notions using additional
user-provided specification. In particular, it seems that we can allow for a cyclic
module dependencies, as long as the model functions and the representation func-
tions are well-defined (i.e., not-cyclicly defined). We regard these extensions as
interesting subjects for future work.
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APPENDIX



Overview.
The formal part of our work is presented in the following appendices:
The first appendix presents the language and semantics.
The second appendix states the main theorems.
The third appendix details the requirements on the program and the proof obliga-
tions.
The fourth appendix gives the auxiliary definitions.
The fifth appendix includes proofs for all the theorems.
The sixth appendix shows an example specification language which is practical
and in which the proof obligations are easy to show.
The seventh appendix gives all the details of the running example.
The top-down order of presentation necessitates some forward references — most
refer to the fourth appendix.
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A. LANGUAGE AND SEMANTICS

A.1 Language

A.1.1 Syntactic Domains

The syntactic domains (Fig A.1) are standard.

f ∈ FId field id
x, y ∈ VarId variable id
T ∈ TId type id
M ∈ MId module id

mf ∈ MFId model field id

Fig. A.1: Syntactic Domains — also used as semantic domains

A.1.2 Programming Language

The language (Fig A.2) is a standard Java-like language with classes, fields, con-
structors and packages (modules) and without the more advanced features:

• Subtyping

• Inheritance

• Genericity

• Reflection

• Casts

• Concurrency



• Exceptions

Our language is typed in the style of Java without subtyping and inheritance. We
do not give details of typing as it is standard - every local variable, function argu-
ment and class field has a declared type (reference or primitive) and type identity
is checked on assignment. As there is no subtyping this is simple and standard.
We use the terms private and public for the main (client visible) and auxiliary
(client invisible) types of a module, respectively (as is common in Java).

program = 〈module〉∗
module = MId

〈public− class〉
〈class〉∗

public-class = 〈class〉
class = TId

(FId ,TId)∗
〈method〉∗

method = (VarId ,TId)∗
〈statement〉

statement = skip
y = x
y = x.f
y.f = x
y = new〈T〉
〈statement〉;〈statement〉
let y=〈exp〉 in 〈statement〉
if 〈exp〉 then 〈statement〉 else 〈statement〉
while 〈exp〉 do 〈statement〉
call f( VarId∗)

exp = . . .

Where:
x, y are variable ids
T is a type id

Fig. A.2: The programming language.
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A.1.3 Specification Language

We do not give a specification language syntax but rather show it in semantic
terms. The specification language (Fig A.3) includes the following constructs:

• For each class:

– A set of typed model (specification) fields with, for each model field:

∗ A representation function that defines the model field in terms
of its containing component and abstract subcomponents. e.g.
AVLMap.v: a function that maps the heap of an AVL map to a
mathematical partial function

∗ A model function that defines the model field in terms of its ab-
stract component and abstract subcomponents. e.g. Keyset.keys:
a function that takes a model (abstract) heap containing a Keyset
wrapper wrapping a map and mapping it to the set of keys of the
map

∗ A set of dependencies: model fields in component and subcom-
ponents upon which this model field’s value depends. e.g. depen-
dencies for AVLMap.map is an empty set while dependencies for
Keyset.keys is Keyset.map and Keyset.map.v

We distinguish between two kinds of model fields — normal and pivot:

normal the range of the representation and model functions cannot
include locations (but can include null)

pivot the range of the representation and model functions includes
only locations and null

• For every function:

– A functional specification in terms of the model local heaps. Our proof
obligations, admissibility rules and call rule ensure that the model lo-
cal heap is an abstraction of the concrete local heap and that giving
the specification for the local heap is sufficient. e.g. the specification
for AVLMap.insert would include pairs of model heaps where the first
and second heaps in each pair contain only an AVLMap, no Keysets
are present but the caller may have any number of Keysets wrapping
the AVLMap
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class-spec = model-field∗
method-spec = pre-post-spec
model-field = MFId

representation-function
model-function
dependencies

Fig. A.3: The specification language.
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A.2 Semantic Domains

A.2.1 Standard Domains

The primitive semantic domains (Fig A.4) are standard - with domains also for
specification constructs. The compound semantic domains used (Fig A.5) are also
rather standard, with 3 flavours for concrete, hybrid and model heaps.

l ∈ Loc location
null ∈ {null} null

∈ AtomicVal atomic value

∈ MAtomicVal atomic model value

Fig. A.4: Primitive semantic domains

Env = VarId ⇀ Val variable environment

Val = AtomicVal ∪ Loc ∪ {null} value
Heap = Loc × FId ⇀ Val heap
State = Env ×Heap state

MVal = MAtomicVal ∪ Loc ∪ {null} model value
MHeap = Loc ×MFId ⇀ MVal model heap
MState = Env ×MHeap model state

HVal = Val ∪MVal hybrid value
HFId = FId ∪MFId hybrid field id
HHeap = Loc ×HFId ⇀ HVal hybrid heap
HState = Env ×HHeap hybrid state

Fig. A.5: Compound semantic domains

A.2.2 Specification Domains

The specification domains are in the style of JML specifications and are shown in
(Fig A.6).
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Class Specification :
MFId ⇀ (Loc × HHeap ⇀ MVal) : Trf representation function
MFId ⇀ (Loc ×MHeap ⇀ P (MVal)) : Tmf public model function
MFId ⇀ P (MFPath) : Tdep public dependencies

Method Specification :
MState ⇀ P (MState) : fspec pre-post specification

Fig. A.6: The specification language.

46



A.3 LHS — Local Heap Standard Semantics

In this section we describe the standard, store based,local heap semantics.

A.3.1 Intra Module Semantics

The intra module semantics (Fig A.7) are the basic semantics for Java statements
(and equivalents).
We do not relate to the free list — as its use is standard.

skip : 〈skip, (ε, h)〉 Ã (ε, h)
assignment : 〈y = x, (ε, h)〉 Ã (ε[y 7→ ε(x)], h) x, y ∈ dom(ε)
field read : 〈y = x.f , (ε, h)〉 Ã (ε[y 7→ h(ε(x), f)], h) x, y ∈ dom(ε)

(ε(x), f) ∈ dom(h)
f ∈ Mfs(current)
y = this ∨ private(ε(x), h)

field write : 〈y.f = x, (ε, h)〉 Ã (ε, h[(y, f) 7→ ε(x)]) x, y ∈ dom(ε)
(ε(y), f) ∈ dom(h)
ε(x) ∈ typedom(h, y, f))
f ∈ Mfs(current)
y = this ∨ private(ε(x), h)

allocation : 〈y = new〈T〉, (ε, h)〉 Ã (ε[y 7→ p], h[({p} × Tfs) 7→ null]) y = this
p ∈ free
mdl(T) = current

composition :
〈S1,σ〉Ãσ′′ 〈S2,σ′′〉Ãσ′

〈S1;S2,σ〉Ãσ′

let :
〈S1,(ε[y 7→ε(e)],h)〉Ã(ε′[y 7→ ],h′)
〈let y=e in S1,(ε,h)〉Ã(ε′,h′) y /∈ dom(ε)

iftrue :
〈S1,σ〉Ãσ′

〈if e then S1 else S2,σ〉Ãσ′ e(σ)

iffalse :
〈S2,σ〉Ãσ′

〈if e then S1 else S2,σ〉Ãσ′ ¬e(σ)

whiletrue :
〈S,σ〉Ãσ′′ 〈while e do S,σ′′〉Ãσ′

〈while e do S,σ〉Ãσ′ e(σ)

whilefalse : 〈while e do S,σ〉Ãσ
¬e(σ)

Fig. A.7: Intra-module semantics - current is the current module and typedom is the set
of values of the type (not shown here as it is standard)

A.3.2 Inter Module Semantics

The call rule (Fig A.8) describes the large-step call in 3 steps —

1. Carve out the callee’s local heap (using reachability restriction)

2. Execute the function’s body

3. Embed the local-heap post state in the caller’s pre-state by using an overrid-
ing union
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Reachability restriction means using the heap reachable from the arguments,
Overriding union is standard - both are described in Sec. D.1

callstandard :
〈fbody,σe〉Ãsσx

〈f(v),σc〉Ãsσr
v ∈ εc

Where :
σc = 〈εc, hc〉
σx = 〈εx, hx〉
σe = 〈εe, he〉 :

εe = εc|v[a|v]
he = hc||εc(v)

σr = 〈εr, hr〉 :
εr = εc[εx[v|a]]
hr = hc[hx]

Where :
σc : is the call state
σe : is the entry state
σx : is the exit state
σr : is the return state

a : fargs are the formal arguments for f
v : are the actual arguments for the call

Fig. A.8: LHS call semantics
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A.4 LHMS — Local Heap Modular Semantics

A.4.1 Intra module semantics

The intra module semantics are just like in the standard semantics - as we are only
allowed to read and write fields of the current component the semantics works for
both hybrid and concrete heaps.

A.4.2 Inter module semantics

The modular call rule is described in Fig A.9. The call rule is similar to the
standard with several differences resulting from our usage of specification. At
the third stage we use the embed function which embeds the callee’s post-state
local heap into the callers pre-state heap. This is performed by first using an
overriding union following the standard semantics and then propagating changes
into affected model fields recursively (through dependencies), as shown in Fig D.8
- the function is defined precisely in Sec. D.1. Since our specification is provided
in an abstract way using sets of states, the precondition is checked semantically in
the side-condition of the rule.

callmodular : 〈fspec,σse〉Ãσsx

〈f(v),σmc〉Ãmσmr
σse ∈ fpre

where :
σc = 〈εmc, hmc〉
σx = 〈εmx, hmx〉
σse = 〈εse, hse〉 :

εse = εmc|v[a|v]
hse = hmc||εmc(v)

σmr = 〈εmr, hmr〉 :
εmr = εmc[εsx[v|a]]
hmr ∈ embed(hmc, hsx)

Where :
σmc : is the (hybrid) call state
σmr : is the (hybrid) return state
σse : is the (abstract) specification entry state
σsx : is the (abstract) specification exit state

Fig. A.9: LHMS — Local Heap Modular Semantics — call
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B. THEOREMS

B.1 Soundness

Theorem B.1.1. The soundness theorem:
Given

• a program p for which all proof obligations are satisfied

• A function f of the main module of p

• An admissible state σ of p

• A state σ’ of p s.t. 〈f , σ〉 Ãs σ′

We show that 〈f , hyb(σ)〉 Ãm hyb(σ′). That is, each concrete execution of a
valid program on an admissible state is contained in the abstract execution of that
program on the abstraction of the state.
The hyb function maps a concrete heap to the equivalent hybrid heap. It is de-
scribed in Fig D.7.

B.2 The hyb and embed functions

The main property of the embed function is that embed is an abstract overap-
proximation of the standard embedding, that is, using embed on abstract heaps is
conservative with respect to using overriding union on the concrete heaps.

Lemma B.2.1. If

• σc is an admissible concrete state

• σx is an admissible concrete state

• ∀l ∈ ldom(hx) ∩ ldom(hc) : type(l, hc) = type(l, hx)



• t ∈ ldom(hc) \ ldom(hx)

then hyb(hc[hx], t) ∈ embed(hyb(hc, t), hyb(hx, t)).

Lemma B.2.2. Embed preserves the local heap.
If

• hc is an admissible concrete heap

• hx is an admissible concrete heap

• ∀l ∈ ldom(hx) ∩ ldom(hc) : type(l, hc) = type(l, hx)

then hyb(hc, t)[abs(hx)] =dom(abs(hx)) hyb(hc[hx], t).

Lemma B.2.3. Embed preserves the unmodified lmfs.
If

• hc is an admissible concrete heap

• hx is an admissible concrete heap

• ∀l ∈ ldom(hx) ∩ ldom(hc) : type(l, hc) = type(l, hx)

• hr = hyb(hc[hx], t)

• P = {(l, mf) ∈ dom(hr) : rsframe(mf)(hr, l) ∩mod(hc, hx) = ∅}
then hyb(hc, t) =P hyb(hc[hx], t)

Lemma B.2.4. The hyb function preserves admissibility.
If

• σ is an admissible concrete state

then hyb(σ) is an admissible hybrid state.
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B.3 Properties of LHS

The semantics is relatively standard.
The main properties of the semantics are:

Lemma B.3.1. The semantics preserves admissiblity of heaps:
If

• σ is an admissible concrete state

• S is a statement of the semantics

• 〈S, σ〉 Ãs σ′

Then σ′ is admissible.

Lemma B.3.2. The intra-module semantics only modifies the current component:
If

• σ is an admissible concrete state

• S is an intra-module statement of the semantics

• 〈S, σ〉 Ãs σ′

Then σ =comp(h,ε(this))C σ′.

Lemma B.3.3. The intra-module semantics is unaffected by components other
than the current component:
If

• σ1, σ2 are admissible concrete states

• S is an intra-module statement of the semantics

• σ1 =com(h,ε(this)) σ2.

• 〈S, σ1〉 Ãs σ′1

Then exists σ′2 s.t. 〈S, σ2〉 Ãs σ′2 and σ′1 =comp(h,ε(this)) σ′2.
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B.4 Properties of LHMS

The main properties of the semantics are:

Lemma B.4.1. The semantics preserves admissibility of heaps: If

• σ is an admissible hybrid state

• S is a statement of the semantics

• 〈S, σ〉 Ãs σ′

Then σ′ is admissible.

Lemma B.4.2. The intra-module semantics only modifies the current component:
If

• σ is an admissible hybrid state

• S is an intra-module statement of the semantics

• 〈S, σ〉 Ãs σ′

Then σ =com(h,ε(this))C σ′.

Lemma B.4.3. The intra-module semantics is unaffected by components other
than the current component: If

• σ1, σ2 are admissible hybrid states

• S is an intra-module statement of the semantics

• σ1 =com(h,ε(this)) σ2.

• 〈S, σ1〉 Ãs σ′1

Then exists σ′2 s.t. 〈S, σ2〉 Ãs σ′2 and σ′1 =com(h,ε(this)) σ′2.

B.5 Global invariants

Lemma B.5.1. Type safety — all transitions preserve type safety

Lemma B.5.2. Admissibility — all transitions preserve state admissibility
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C. REQUIREMENTS

C.1 Proof Obligations

The proof obligations are modular restrictions on programs and modular specifica-
tions that ensure that the whole program conforms to the specification (as defined
later). Most of the proof obligations that we provide, are standard and are given
here for completeness. All proof obligation can be verified modularly independent
of the implementation of other modules. We present a syntax of a specification
language and algorithms for syntactically checking the new obligations.

C.1.1 Semantic domains

• All atomic semantic domains are disjoint in pairs

• All atomic semantic domains are non-empty

• The domain Val include the boolean domain — {TRUE, FALSE}

C.1.2 Specification

Proof Obligation C.1.1. For each class, the representation and model functions
are location independent

Proof Obligation C.1.2. For each class, the frame of each pivot is local (each
location valued model field is a function of just the current component). This is
used to ensure pivots cannot be modified indirectly and therefore lmfs that do not
depend on a call’s local heap at the call site does not depend on it at the return
site (for frame rule)

Proof Obligation C.1.3. For each class, each pivot-representation-function is a
projection (no cast to pointer etc). This is used to ensure an abstraction of a
downward closed heap is also downward closed.



Proof Obligation C.1.4. For each class, for every model field, the specification
frame is a superset of the frame : (in subcomponents) — meaning:
For each hybrid field path c.m ∈ frame(mf) where c is the concrete part (within
the component) and m is the model part (in subcomponents), there is a pivot p
s.t. ∀h, l s.t. (l,mf) ∈ dom(h) : Trf (p)(l, h) = h(l, c) for admissible h, and
p.m ∈ Tdep(mf). ( frame(), Tdep()andtrf () are defined in Sec. D.1). This is
used to make sure a caller, which sees only the abstract heaps of subcomponents,
can estimate soundly the frame and hence (non)modification of each model field
of each subcomponent.

Proof Obligation C.1.5. For each class, for every model field mf, for every other
model field mf’ which is a dependee of mf and is in the same component, mf’ has
no dependencies — meaning ∀mf ′ ∈ Tdep(mf) : Tdep(mf ′) = ∅ (a simplification
to allow calculating the entire component in one stage - not a real restriction
— only acyclicity of dependencies of model fields of same component is a real
restriction)

Proof Obligation C.1.6. For each class, for every model field mf, the dependen-
cies must be a superset(or equal) of the frame of the model function Tmf , meaning:
∀h, h′ : h =sframe(mf)(h,l) h′ → Tmf (mf)(h, l) = Tmf (mf)(h′, l).
( sframe() is defined in Sec. D.1).
This is used to ensure that the client of a component can determine the preserva-
tion of a model field using dependencies.

Proof Obligation C.1.7. For each class, every outgoing pointer has a correspond-
ing pivot and vice versa. This is used to ensure the concrete and abstract com-
ponent graphs are identical - therefore the abstract local heap is equivalent to
the concrete local heap. Note that one pivot can represent several equal outgoing
pointers and vice versa. This limits the number of outgoing pointers (degree of
component graph) to be statically bounded - an extension wuth sets or sequence-
sof outgoing pointers is straightforward.

C.1.3 Implementation

The 2 most important proof obligations are:

Proof Obligation C.1.8. Each function complies with its specification — given
the definitions in Fig C.1: For each σhe, σhx s.t. σse ∈ pref 〈fbody, σhe〉 Ãm σhx

implies 〈fspec, σse〉 Ã σsx That is, for every legal hybrid pre-post pair there is a
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corresponding abstract pre-post pair — this is the standard Hoare proof obliga-
tion.

Proof Obligation C.1.9. The model function overapproximates the representation
function:
For each admissible hybrid state σ = (ε, h) where l = ε(this),
(Trf (mf)(l, h) ∈ Tmf (mf)(l, rf (l, h)))
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implementationmodular :
〈fbody,σme〉Ãmσmx

〈fspec,σse〉Ãσsx
σse ∈ fpre

where :
σme = 〈εme, hme〉
σmx = 〈εmx, hmx〉
σse = 〈εse, hse〉 :

εse = εme

hse = rf(hme, t)
σsx = 〈εsx, hsx〉 :

εsx = εmx

hsx = rf(hmx, t)
t = εse(this)

Fig. C.1: Modular implementation proof obligation
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C.2 Program Admissibility

We are only dealing with a subset of the possible programs that we term admissi-
ble programs. We define the admissibility constraints for each language construct.
Most admissibility constraints are standard and can be checked syntactically or
with a simple algorithm over the AST — for others we note how they can be
checked.

C.2.1 Module admissibility

The module declarations of a program are admissible if:

• Module import is acyclic. This is used to ensure dependencies are acyclic
(representation functions well-defined)

C.2.2 Type admissibility

The type declarations of a program are admissible if (all simple type checks):

• The set of fields of each class are mutually disjoint

• The set of classes of each module are mutually disjoint

• Each field is of a private type of the containing module or a public class
of an imported module (note that this means that a component cannot point
to another component of the same kind publicly - no public recursion only
intra-component recursion)

C.2.3 Method admissibility

The methods of a program are admissible if (all simple type checks):

• The first argument of each method is of the containing class (this)

• All other arguments are of public classes of the containing module or public
classes of imported modules

• All local variables are of classes of the containing module or public classes
of imported modules
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C.2.4 Class Specification admissibility

The class specifications of a program are admissible if:

• Every model-field has exactly one model and one representation function

• The model and representation functions:

Location independent Would give the same result for 2 heaps that are iso-
morphic up to locations (but may depend on location equality). This
can be ensured by contructing representation functions from atomic
functions that are location independent
(as done is Sec. F).

Definedness monotonous (if defined on a heap then defined on every con-
taining heap) This is used to ensure that definedness seen in the local
heap is equivalent to that in the caller’s heap. This can be ensured by
defining them as functions over field paths constructed from monotone
functions

Monotonous This is a fundamental requirement to ensure that values cal-
culated by a component (if defined on a heap return the same value for
every containing heap) are valid when the component is embeded into
a larger heap. This can be ensured by defining them as functions over
field paths constructed from monotone functions

Depend only on heap reachable from l (defined for heap h iff defined for
the portion of h reachable from l) This is to make sure that the local
heap is sufficient for abstracting the current component. This can be
ensured by defining them as functions over field paths.

Are either pivot (range is Location or null) or normal (no locations in
range)

• The set of dependencies must be prefix closed. This is a technical require-
ment to simplify presentation. A simple way to ensure this is to take the
prefix closure of the programmer’s specification

C.2.5 Method Specification admissibility

A method specification of a method in a program is admissible if:
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• It references only model fields reachable from the arguments (local heap).
This is necessary for specifications to be definable on the local heap only.
This can be ensured easily by allowing the specification to only reference
field paths starting at this and arguments.

• The preconditions include the requirement that this is not aliased in other
arguments. This is necessary to ensure the current component is only mod-
ified through this - it cannot be referenced indirectly form other arguments
because of the acyclicity of module import.

C.2.6 Program Admissibility

We only consider asmissible programs in this appendix. For our method to be
practical, admissibility checking of programs should be simple, practical and
modular. All checks are modular by definition, meaning they can be checked
with knowledge only of the current module and interfaces of imported modules.
We show a simple and practical specification language in Sec. F which gurantees
by construction (syntax) all above admissibility constraints.
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D. AUXILIARY DEFINITIONS

D.1 Auxiliary Definitions

D.1.1 Declaration mapping

Fig D.1 defines a name and semantic domain for each syntactic constrcut. Fig D.2
defines some functions on these declarations.

The set of field ids of the class T:
Tfs(T): TId → P(HFId)

The set of model field ids of the class T:
Tmfs(T): TId → P(MFId)

The class to which the fieldId f belongs:
type(f): HFId → TId

The declared class of the fieldId f:
ftype(f): HFId → TId

The set of classes of the module m:
types(M): MId → P(TId)

The module to which the class T belongs:
mdl(T): TId ⇀ MId

The public class of module M:
publictype(M): MId ⇀ TId

Fig. D.1: Auxiliary Definitions — Declarations



D.1.2 General definitions

In order to define a formal semantics of the language we use several auxiliary
definitions (Fig D.3):

Field and Access Paths We define field and access paths for all flavours of heaps
(field paths start from a location (not included), access paths start from a
local variable)

Representation Function The representation function maps, per model field, a hy-
brid heap and location to a model value

Model Function The model function maps, per model field, a model heap and
location to a set of model values

LF A (location,fieldId) pair (lf) is the basic heap unit for concrete and hybrid
heaps

LMF A (location,modelFieldId) pair (lmf) is the basic heap unit for model heaps

D.1.3 Auxiliary functions

The auxiliary functions are shown in (Fig D.4)

• We use overriding unions for functions and sets of functions to embed sub-
heaps into larger heaps.

• The set of locations occupied in the heap h is ldom(h) (dom(h) is a set of
location, fieldid pairs)

• Heap reachability restriction is used to get the heap reachable from a set of
locations — e.g. to get a function call’s local heap

• Heap reachability is the standard reachability,signifying the existence of a
field path between 2 locations, we use the same definition for concrete, hy-
brid and model heaps

• Given 2 heaps h,h’, a location l and a set of field paths, we want to determine
whether the field paths evaluate to the same values over the 2 heaps. starting
at the location. This is used to check that the subheap relevant for a specific
model field is isomorphic among 2 heaps
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D.1.4 Component functions

The functions describing the component subdivision of a concrete heap and the
equivalent hybrid and model heap are given in Fig D.5 :

• A component is all the heap reachable from a location (which must be of a
public type) through concrete fields of the same module.

Mfs(module(l, h)) are the concrete field Ids of all types in the module of l
in the heap h. Our proof obligations ensure that, for each heap that can occur
in a program execution, each location belongs to at most one component
— no component can have 2 or more in-ports. In the example, a Keyset
component at location l consists of l.map. A map component at location l
consists of {l.head, l.head.(right‖left)∗, l.head.(right‖left) ∗ .(k‖v)}

• The set of components (identified by location of head) in a heap h is head-
ers(h)

• The set of outgoing pointers (direct subcomponents) of a component l in
heap h is outgoing(h,l). This applies to both concrete, hybrid and model
heaps

• The component graph of a heap has nodes for components and edges for
pointers. Our restrictions ensure it is a DAG and is preserved by hyb and
embed

D.1.5 Representation and model function definitions

Auxiliary functions related to the representation and model functions are defined
in Fig D.6

• The rf function flattens one component l in the heap h — erasing the entire
concrete component and replacing it with a single model object=component
— calculating model values for model fields from heap h which must in-
clude the component l as a concrete component and its subcomponents as
model components.

• The frame of a model field is the minimal set of field paths which, when
evaluate to the same values between 2 heaps, ensure the model field evalu-
ates to the same value in the 2 heaps (starting at the same location). This is
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defined in the hybrid view of the heap. In the example, in the concrete view
of the heap, for a given l pointing to an instance of Keyset, the frame for
(l,keys) is {l.map[.head.(right‖left) ∗ [.(k‖v)]]} We also have a version
for a specific location,heap — given in terms of lmfs.

• The specification frame of a model field is similar to the frame only defined
in the model view and derived from specification (dependencies) rather than
calculated from the function itself. This is used by clients of a component
to determine whether a model field should be recalculated by checking if
the recursive specification frame coincides with (potentially) modified lmfs
in the local heap

D.1.6 The hybrid function

The mapping between a concrete heap and the equivalent hybrid heap is defined
by the hyb function shown in (Fig D.7). The function recursively climbs up the
component DAG, at each stage flattening (abstracting) each component at one
level of the DAG. The arguments for the recursive function are:

h The current partially abstracted heap — initially the concrete heap

D The set of components already abstracted in h

C The set of locations that still need to be abstracted (in order to be able to do
partial hybridization — e.g. exclude the current component )

L The current layer of components to be updated

At each stage we calculate the current layer L by taking the components for
which all subcomponents have been abstracted, and then we flatten them using
the hybl function which erases the concrete components and replaces them with
their model equivalents.
We also have a version for state that takes ε(this) as the hybrid current object and
versions for getting the model heap and state equivalents — with null as current
object.

D.1.6.1 Properties of the hyb function

Lemma D.1.1. If
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• h is an admissible concrete heap

• l ∈ ldom(h)

• S ⊆ headers(h) \ {l}
• ∀c ∈ S : outgoing(c, h) ⊆ S

then hyb(h||S, l) = hyb(h, l)||S
Proof. By induction on the recursion of hyb — We term hl h in iterations of
hyb(h||S, l) and hr h interations of hyb(h, l). as S is downward closed, in each
iteration hr||S =D hl and hence when L = ∅ the lemma holds.

D.1.7 The embed function

The embed function (Fig D.8) is used to calculate the post-state of a function call
from the pre-state of the caller’s heap and the post-state of the callee’s (local)
heap. The function propagates modifications to shared model fields recursively.
The arguments for embedr are:

H The current set of partially embedded heaps — initially just the callers heap
with the callee’s heap overriden by the exit heap (shared abstractions not
updated)

D The set of components already abstracted in h

C As in hyb

M the set of lmfs that is (potentially) different between the call and return states -
initialized to the set modified in the callee’s local heap and propagated using
the specification frame

L The current layer of components to be abstracted

U The subset (as lmfs) of L that is actually recalculated — only lmfs for which
there is an lmf in the specification frame which has been modified are recal-
culated (and marked as modified themselves)
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The set of fieldIds of all the classes of module M:
Mfs(M): MId → P(HFId)
= ∪T∈types(M)Tfs(T)

The set of all public types in the program:
publictypes: P(TId)
= ∪M∈MIdpublictype(M)

The type of the location l in heap h (when defined):
type(l,h): Loc ×HHeap ⇀ TId

=
{

T : {T} = {type(f) : (l, f) ∈ dom(h)}
undefined : otherwise

Is the object at location l in heap h of a private type:
private(l, h): Loc ×HHeap
= type(l, h) /∈ publictypes

The module of the type of the location l in heap h (when defined):
mdl(l,h): Loc ×HHeap ⇀ MId
= mdl(type(l, h))

The set of fieldIds of all the classes of module M:
Mfs(l,h): Loc ×HHeap ⇀ P(HFId)
= Mfs(mdl(l, h))

Preconditions of a function:
fpre: P(HState)
= dom(fspec)

Fig. D.2: Auxiliary Definitions — declaration functions
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p ∈ FPath = FId∗ field path
p ∈ APath = VarId ,FPath access path

p ∈ MFPath = MFId∗ model field path
p ∈ MAPath = VarId ,MFPath model access path
m ∈ MFunc = MFId ⇀ (MHeap × Loc → P (MVal)) model function

p ∈ HFPath = FId∗,MFId∗ hybrid field path
p ∈ HAPath = VarId ,HFPath hybrid access path
r ∈ RFunc = MFId ⇀ (HHeap × Loc ⇀ MVal) rep function

lf ∈ LF = Loc ×HFId Location, fid pair
lmf ∈ LMF = Loc ×MFId Location, mfid pair

Fig. D.3: Auxiliary Definitions
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Overriding union for functions:
f[g]: (D ⇀ R)× (D ⇀ R) → (D ⇀ R)
= {x 7→ if x ∈ dom(g) then g(x) else f(x)}

Extension for sets of functions:
F[G]: P((D ⇀ R))× P((D ⇀ R)) → P((D ⇀ R))
= {f[g] : f ∈ F ∧ g ∈ G}

Locations in a heap:
ldom(h): HHeap → P(Loc)
= {l : ∃f : (l, f) ∈ dom(h)}

Heap reachability restriction:
h||S: HHeap × P(Loc) → HHeap
= h|reach(h,S)

Reachable locations:
reach(h,S): HHeap × P(Loc) → P(Loc)
= ∪l∈S{l′ : reachable1h ∗ (l, l′)}

Directly reachable location:
reachable1h(l, l′): [HHeap]P(Loc × Loc)
= ∃f ∈ HFId : h(l, f) = l′

Heaps that agree on a set of paths from a location:
h =l,P h′: HHeap ×HHeap × Loc × P(HFPath)
= ∀(p) ∈ P : h(l, p) = h′(l, p)

Heaps that agree on a set of lmfs:
h =S h′: HHeap ×HHeap × P(LMF )
= ∀((l, mf)) ∈ S : h(l, mf) = h′(l, mf)

Fig. D.4: Auxiliary Functions
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All locations belonging to the component whose header is at l:
comp(l, h): Loc ×HHeap → P(Loc)
= {l′ ∈ ldom(h) : mdl(l′,h) = mdl(l, h) ∧ ∃p ∈ Mfs(l,h)∗ : h(l, p) = l′}
as lmfs:

complmf(l, h): Loc ×HHeap → P(LMF )
= {(l′,mf) ∈ dom(h) : l′ ∈ comp(l, h)}

Headers of components in h:
headers(h): HHeap → P(Loc)
= {l ∈ ldom(h) : type(l) ∈ publictypes}

A component’s (concrete or model) outgoing pointers:
outgoing(l,h): Loc ×HHeap → P(Loc)
= {l′ ∈ Loc : l′ ∈ h(com(h, l)) \ dom(com(h, l))

The component graph of h:
cg(h): HHeap → (P(Loc)× P(Loc × Loc))
= (Vcg(h), Ecg(h))
Vcg(h) = headers(h)
Ecg(h) = {(l, l′) : l, l′ ∈ headers(h) ∧ l′ ∈ outgoing(h, l)})

Fig. D.5: Auxiliary functions — components
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Representation function of a module m — for the component l:
rf(l, h): Loc ×HHeap ⇀ HHeap
= h|com(l)C ∪ {(l, mf) 7→ Trf(mf)(l, h) : mf ∈ Tmfs(type(l, h))}

Extension for sets of locations L:
rf(L, h): P(Loc)×HHeap ⇀ HHeap
= h|(∪l∈Lcom(l))C ∪ {(l,mf) 7→ Trf(mf)(l, h) : mf ∈ Tmfs(type(l,h)), l ∈ L}

For a hybrid state σ:
rf((ε, h))): HState ⇀ MState
= (ε, rf(ε(this),h))

The frame of a model field mf:
frame(mf): MFId → P(HFPath)
= pc(∩{P ⊆ HFPath : ∀h, h′, l : h =l,P h′ → Trf(mf)(h, l) = Trf(mf)(h′, l)})
(pc is prefix closure)

For a specific heap:
frame(mf)(l, h): MFId × Loc ×HHeap → P(Loc ×MFId)
= {(h(l,p), f) : p.f ∈ frame(mf)}

The specification frame of a model field mf
sframe(mf): MFId → P(MFPath)
= Tdep(mf)

For a specific heap:
sframe(mf)(l, h): MFId × Loc ×MHeap → P(Loc ×MFId)
= {(h(l,p), f) : p.f ∈ sframe(mf)}

The recursive specification frame of a model field mf
For a specific heap:

rsframe(mf)(l, h): MFId × Loc ×MHeap → P(Loc ×MFId)
= sframe(mf)(l, h) ∪ {rsframe(mf ′)(l′,h) : (l′, mf ′) ∈ sframe(mf)(l, h)}

Fig. D.6: Auxiliary Functions — representation and model functions
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The hybrid heap equivalent of the heap h (t is current)
hyb(h, t): Heap × Loc ⇀ HHeap

= hybr(h, ∅,headers(h) \ {t})

The recursive hybrid heap:
hybr(h,D, C): HHeap ×MHeap × P(Loc)× P(Loc) ⇀ HHeap

=
{

h : L = ∅
hybr(hybl(L,h), D ∪ L, C \ L) : L 6= ∅

Where :
L = {l ∈ C : outgoing(l, h) ⊆ D}

Abstract the components L in heap h:
hybl(L,h): P(Loc)×HHeap ⇀ HHeap

= h|comp(L,h)C [rf(L,h)]

The hybrid state equivalent of the state (h, ε)
hyb((h, ε)): State ⇀ HState

= (ε,hyb(h, ε(this)))

The abstract heap equivalent of the heap h
abs(h)): Heap ⇀ MHeap

= hyb(h, null)

The abstract state equivalent of the state (h, ε)
abs((h, ε)): State ⇀ MState

= (ε,hyb(h, null))

Fig. D.7: Auxiliary functions — hybrid
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Embedding of a callee’s local heap into the caller’s heap
embed(hmc, hsx): HHeap ×MHeap → P(HHeap)
= embedr({hmc[hsx]}, ∅, headers(hmc) \ εmc(this), mod(hmc, hsx), dom(hsx))

Recursive embeding
embedr(H, D, C, M, LH)
: P(HHeap)× P(Loc)× P(Loc)× P(LMF )× P(LMF ) → P(HHeap)

=

{
H : L = ∅
∪{embedr(embedl(U(h), h), D ∪ L(h), C \ L(h), M ∪U(h), LH) : h ∈ H} : L 6= ∅

Where :
L(h) = {l ∈ C : outgoing(l, h) ⊆ D}
U(h) = {(l, mf) ∈ dom(h) \ LH : l ∈ L(h) ∧ sframe(mf)(l, h) ∩M 6= ∅}

Recalculate the model functions for lmfs U
embedl(U, h): P(LF )×HHeap → P(HHeap)
= {h}[∪{(l, mf) 7→ Tmf(mf)(l, h) : (l, mf) ∈ U}]

LFs whose value is different between 2 heaps
mod(h1, h2): HHeap ×HHeap → P(Loc ×HFId)
= {(l, f) ∈ dom(h1) ∩ dom(h2) : h1(l, f) 6= h2(l, f)}

Fig. D.8: The embed function
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D.2 Heap Admissibility

We define a subset of the possible heaps which are admissible. We later show that
only admissible heaps can occur in the execution of an admissible program. An
admissible concrete heap satisfies:

No dangling pointers ∀(l, f) ∈ dom(h) : h(l, f) ∈ Loc → h(l, f) ∈ ldom(h)

Type consistency For each location in the domain, exactly the fields of one type
are in the domain. ∀l ∈ ldom(h) : type(l, h) ↓}

Type safety for each (location, fieldId) in the domain, its value is of the type
declared for the field ∀(l, f) ∈ dom(h) : h(l, f) ∈ Loc → type(l, h) =
ftype(f)

An admissible hybrid heap:

• No dangling pointers

• Only the current component is concrete — other components are model

• The current component is a root (has no incoming pointers)

• Type consistency

• Type safety

An admissible model heap:

• No dangling pointers

• Type consistency

• Type safety

• Every model field agrees with its model functions: ∀l, mf : h(l,mf) ∈
m(mf)(h, l)

Similarly for states, a state is admissible if

• The heap is admissible

• The environment has pointers only into the current component

• This points to the head of the current component which has no incoming
pointers
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E. PROOFS

E.1 Soundness

Proof for Lemma. B.1.1 — The soundness theorem:
Given

• a program p for which all proof obligations are satisfied

• A function f of the main module of p

• An admissible state σ of p

• A state σ’ of p s.t. 〈f , σ〉 Ãs σ′

We show that 〈f , hyb(σ)〉 Ãm hyb(σ′).

Proof. The theorem is proven by induction on the module import relation of the
program. (which is a DAG as module import is acyclic)- as each function of each
module can only call functions of imported modules.
We use a slightly stronger induction hypothesis: Each public function of each
lower levels in the module hierarchy complies with its specification. Formally:
for each public function f’ of an imported module:
〈f ′body, σe〉 Ãs σx implies 〈f ′spec, σse〉 Ã σsx

Where: σse = abs(σe)
σsx = abs(σx)
We use this hypothesis to show that (∀σe, σx):
〈fbody, σe〉 Ãs σx implies 〈fbody, σme〉 Ãm σmx

Where:
σme = hyb(σe)
σmx = hyb(σx)
Then we use Proof Ob C.1.8 which states:
〈fbody, σme〉 Ãm σmx implies 〈fspec, σse〉 Ã σsx

Where:



σse = rf (σme)
σsx = rf (σmx)
To get:
〈fbody, σe〉 Ãs σx implies 〈fspec, σse〉 Ã σsx

As rf (hyb(σ)) = abs(σ)
We show this by structural induction on the body of f.
Intra-procedural statements:
By the definition of hyb, h =com(h,t) hyb(h, t), i.e., the concrete and hybrid heaps
are equal on the current component com(h, t).
Lemma. B.3.2 and Lemma. B.4.2 imply that intra-procedural statements only af-
fect the current component. Formally, consider an intra-procedural statement S
(for both modular and standard semantics). Assume that 〈S, (ε, h)〉 Ãs,m (ε′, h′).
This implies that h =comp(h,t)C h′, where t = ε(this).
Lemma. B.3.3 and Lemma. B.4.3 imply that intra-procedural statements are only
affected by the current component. Formally, consider an intra-procedural state-
ment S and 2 states (concrete or hybrid) (ε, h1), (ε, h2) s.t., h1 =comp(h1,t) h2

where t = ε(this), This ensures that 〈S, (ε, h1)〉 Ãs,m (ε′, h′1) if and only if
〈S, (ε, h2)〉 Ãs,m (ε′, h′2) Where h1′ =comp(h′2,t) h′2 and h2 =comp(h′2,t)C h′2
Hence, t if S is intra-procedural then
〈S, σ〉 Ãs (σ′)
iff
〈S, hyb(σ)〉 Ãm hyb(σ′)
Hence we get that the theorem holds for intra-procedural statements.
Inter-procedural calls:
For a call f ′(v) we have to show that:
〈f ′(v), σc〉 Ãs σr implies 〈f ′(v), hyb(σc)〉 Ãm hyb(σr).
In the terminology of Sec. A.3 the only derivation of
〈f ′(v), σc〉 Ãs σr is from 〈f ′body, σe〉 Ãs σx

Where

• εr = εc[εx[v|a]]

• hr = hc[hx]

• εe = εc|v[a|v]

• he = hc||εc(v)

We know (from the induction hypothesis) that
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〈f ′body, σe〉 Ãs σx implies 〈f ′spec, abs(σe)〉 Ã abs(σx)
And from the modular call rule we have, in the terminology of Sec. A.4 :
〈f ′spec, σse〉 Ã σsx implies 〈f ′(v), σmc〉 Ãm σmr

Where

• εmr = εmc[εsx[v|a]]

• hmr ∈ embed(hmc, hsx)

• εse = εmc|v[a|v]

• hse = hmc||εmc(v)

The environments use the exact same substitution for the standard and modular
semantics, hence we only have to show that
(we use t = εc(this) = εr(this) = εmc(this) = εmr(this)):
abs(he) = hse

meaning
abs(hc||εc(v)) = hyb(hc, t)||εc(v)

and
hyb(hr, t) ∈ embed(hmc, hsx)
meaning
hyb(hc[hx], t) ∈ embed(hyb(hc, t), abs(hx))

• abs(hc||εc(v)) = hyb(hc, t)||εc(v) - this holds because of Lemma. D.1.1

• hyb(hc[hx], t) ∈ embed(hyb(hc, t), abs(hx)) this holds by Lemma. B.2.1

So 〈f ′body, σe〉 Ãs σx implies 〈f ′(v), hyb(σc)〉 Ãm hyb(σr)
and so 〈f ′(v), σc〉 Ãs σr implies 〈f ′(v), hyb(σc)〉 Ãm hyb(σr).

E.2 The hyb and embed functions

Proof for Lemma. B.2.1 — Embed is conservatices w.r.t. hyb:
If

• σc is an admissible concrete state

• σx is an admissible concrete state
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• ∀l ∈ ldom(hx) ∩ ldom(hc) : type(l, hc) = type(l, hx)

• t ∈ ldom(hc) \ ldom(hx)

then hyb(hc[hx], t) ∈ embed(hyb(hc, t), hyb(hx, t)).

Proof. We prove this by showing an invariant that connects each recursion level
for hyb and embed, and then showing inductively that this invariant holds until
the last iteration which proves the lemma.
We use the following definitions:

hi
h, D

i
h, C

i
h, L

i
h The repsective arguments of hyb at the ith iteration

H i
e, D

i
e, C

i
e,M

i
e, L

i
e, U

i
e, The repsective arguments of embed at the ith iteration

hr = hyb(hc[hx], t) — the result of hyb

h0
r = hc[hx] — the initial input of hyb

Hmr = embed(hyb(hc, t), hyb(hx, t)) — the result of embed

h0
mr = hyb(hc, t)[hyb(hx, t)] — the inital input of embed

Di
lmf = {(l,mf) ∈ dom(hi

h) : l ∈ Di
e} : The lmfs of Di

h — the layers of
iterations before i

Li
lmf = {(l, mf) ∈ dom(hi

h) : l ∈ Li
e} : The lmfs of the objects of Li

h — the
layer handled in iteration i

LH i
lmf = {(l, mf) ∈ dom(hi

h) : l ∈ LH ∩ Di
e} : The lmfs of the local heap in

the current layer

P i = {Di
lmf \M i

e \ LH i
lmf : The preserved (unmodified) lmfs in Di

e

The main invariant is:
∃h ∈ H i

e : h =Di
e
hi

h

We also show and use the following auxiliary properties:

• ∀i : Di
e = Di

h this follows from the induction invariant and Proof Ob C.1.2

• ∀i : ∀h ∈ H i
e : Li

e(h) = Li
h

We show induction on the number of iteration of hyb and embed:
Basis: At the basis
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• H0
e = h0

mr

• h0
h = h0

r

• D0
e = ∅

So the main invariant holds vacuously.
Step:
Given:
∃h ∈ H i

e : h =Di
e
hi

h

We have to show that:
∃h ∈ H i+1

e : h =Di+1
e

hi+1
h

We name hi
e the realization of the existential quantifier in the hypothesis.

So we have to show that:
∃h ∈ embedl(U

i
e(h

i
e), h

i
e) : h =Di+1

e
hybl(L

i
h, h

i
h)

Where hi
e =Di

e
hi

h

By definition ∀h ∈ H i+1
e : dom(h) = dom(hi+1

h )
By definition Di+1

lmf = Di
lmf ∪ Li

lmf Where Li
lmf = P i ∪ LH i ∪M i

Using this we partition Di+1
lmf to four sets:

Di+1
lmf = Di

lmf ∪ P i ∪ LH i ∪M i Where the unions are all disjoint.
For S = Di

lmf , LH i,M i we show ∀h ∈ H i+1
e : h =S hi

h

For P i we show ∃h ∈ H i+1
e : h =P i hi

h

We use the following properties of embedl and hybl:
∀(l, mf) /∈ Li

lmf : hybl(L
i
h, h

i
h)(l, mf) = hi

h(l, mf)
∀(l, mf) /∈ U i

lmf : ∀h ∈ embedl(U
i
e, h

i
e) : h(l, mf) = hi

e(l,mf) U i
lmf ⊆ Li

lmf

We also use the property that if t is at the root (no component has outgoing pointers
to t) — as is guaranteed by σc being admissible — then ldom(hyb(hc[hx])) =
∪iD

i ∪ {t} where the unions are disjoint (by definition)
We now show the proof for each of the four sets:
Di

lmf : All previous layers
As Di

lmf ∩ U i
lmf = ∅ we get for both embed and hyb: hybl(L

i
h, h

i
h)(l, mf) =Di

lmf

hi
h(l, mf). ∀h ∈ embedl(U

i
e, h

i
e) : h(l,mf) =Di

lmf
hi

e(l,mf) So we can use the
induction hypothesis hi

e =Di
e
hi

h to get ∀h ∈ embedl(U
i
e, h

i
e) : h =Di

e
hybl(L

i
h, h

i
h)

LHi: Call local heap in current layer
As LH i ∩ U i

lmf = ∅ we get: ∀h ∈ embedl(U
i
e, h

i
e) : h =LHi hi

e As ∀i 6= j : Di ∩
Dj = ∅ and LH i ⊆ Di

lmf we get hi
e =LHi h0

e = hyb(hc, t)[hyb(hx, t)] As LH i ⊆
LH = dom(hyb(hx, t)) we get (by Lemma. B.2.2) hyb(hc, t)[hyb(hx, t)] =LHi

hyb(hc[hx], t) And as hyb(hc[hx], t) =Li hi+1
h we get hi+1

e =LHi hi+1
h
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Pi: Unaffected lmfs in current layer (excluding local heap)
As P i ∩ U i

lmf = ∅ we get ∀h ∈ embedl(U
i
e, h

i
e) : h =P i hi

e. As ∀i 6= j :
Di ∩ Dj = ∅ and P i ⊆ Di

lmf we get hi
e =P i h0

e = hyb(hc, t)[hyb(hx, t)] As
P i ∩ LH = ∅ we get hyb(hc, t)[hyb(hx, t)] =P i hyb(hc, t) By Lemma. B.2.3 and
P i ⊆ P we get hyb(hc, t) =P i hyb(hc[hx], t) and as hyb(hc[hx], t) =Li hi+1

h we
get hi+1

e =P i hi+1
h We know P i ⊆ P because P i includes only lmfs for which

the sframe does not coincide with LH where the lfp calculation for P uses the
transitive closure of sframe and its intersection with LH .
Ui: Modified lmfs in current layer (excluding local heap)
By definition ∀(l, mf) ∈ U i : outgoing(l, hi

e) ∈ Di By Proof Ob C.1.5 and
and by the admissibility of the model function , we know that ∀(l, mf) ∈ U i :
sframe(mf)(l, hi

e) ⊆ P i ∪ LH i ∪Di
lmf By the previous sections we know that

hi
e =P i∪LHi∪Di hi+1

h So by Proof Ob C.1.6 Tmf (mf)(l, hi
e) = Tmf (mf)(l, hi+1

h )
By Proof Ob C.1.9 Trf (mf)(l, hi

h) ∈ Tmf (mf)(l, hi+1
h ).

Therefore hi+1
h (l, mf) = Trf (mf)(l, hi

h) ∈ Tmf (mf)(l, hi+1
h ) = Tmf (mf)(l, hi

e)
And so, as hi+1

e is a cartesian product of all sets of possible values for all lmfs in
U i we get ∃h ∈ embedl(U

i
e, h

i
e) : h =U i hi+1

h

And hence combining all results we get: ∃h ∈ embedl(U
i
e, h

i
e) : h =Di+1 hi+1

h

Proof for Lemma. B.2.2 — Embed preserves the local heap:
If

• hc is an admissible concrete heap

• hx is an admissible concrete heap

• ∀l ∈ ldom(hx) ∩ ldom(hc) : type(l, hc) = type(l, hx)

then hyb(hc, t)[abs(hx)] =dom(abs(hx)) hyb(hc[hx], t).

Proof. We prove this by induction on the iterations of abs on the left and hyb
on the right. The main property which makes this hold is that the frame of each
model field in abs(hx) is inside abs(hx), and hence adding elements to the heap
cannot affect the calculation of the representation function by the admissibility
of the representation function (the frame is reachable from this) and by hc being
downward closed.
We use hi

a, D
i
a, Li

a for h,D,L in iterations of abs(hx) and hi
h, D

i
h, Li

h for iterations
of hyb(hc[hx], t).
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The invariant of the induction at iteration i is : hi
a =Di

a∩ldom(hx) hi
h and Di

a ∩
ldom(hx) = Di

h ∩ ldom(hx).
Initially this holds trivially as Di

a = Di
h = ∅.

In each step Li
a∩dom(hx) = Li

h∩dom(hx) because for each (l,mf) ∈ dom(hx)
s.t. l ∈ Li

h, frame(mf)(hi
a, l) ⊆ Di

a × MFId ∪ comp(l, hi
a) because of the

admissibility of the representation function. and similarly frame(mf)(hi
h, l) ⊆

Di
h ×MFId ∪ comp(l, hi

h).
As hi

h =Li
a∩dom(hx) hi

a and from the induction hypothesis hi
h =Di

a∩dom(hx) hi
a we

get hi
h =frame(mf)(hi

h,l) hi
a and so, by the definition of frame, Trf (mf)(hi

h, l) =

Trf (mf)(hi
a, l) and hi+1

a =Di+1
a

hi+1
h .

Proof for Lemma. B.2.3 — Embed preserves the unmodified lmfs:
If

• hc is an admissible concrete heap

• hx is an admissible concrete heap

• ∀l ∈ ldom(hx) ∩ ldom(hc) : type(l, hc) = type(l, hx)

• hr = hyb(hc[hx], t)

• P = {(l, mf) ∈ dom(hr) : rsframe(mf)(hr, l) ∩mod(hc, hx) = ∅}
then hyb(hc, t) =P hyb(hc[hx], t)

Proof. We show this by induction on the dependency DAG of P (which is closed
to dependencies by definition).
At the roots are lmfs with no external dependencies for which Trf is calculated on
the same concrete component (although possibly in different stages).
As each lmf is calculated at most once in hyb, and each lmf is calculated only after
its entire rsframe has been calculated, we can use as the induction invariant the
rsframe equality of all dependencies of (l,mf) on the partially abstracted heap on
both sides. from this follows directly, by Proof Ob C.1.4, that they are calculated
on both sides with heaps equal on the frames and therefore the result is identical
by the definition of frame.

Proof for Lemma. B.2.4 — The hyb function preserves admissiblitiy of heaps:
If
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• σ is an admissible concrete state

then hyb(σ) is an admissible hybrid state.

Proof. • The no-dangling-pointers property in hyb(h) holds because it holds
in h and because of Proof Ob C.1.7 and Proof Ob C.1.3 hence each outgoing
pointer in hyb(h) corresponds to an outgoing pointer in h which points to a
public class — hence exists in hyb(h)

• Type consistency holds because hyb calculates for each location only and
all the model fields for the type of that location

• Type safety follows immediately from type safety of the representation
function (from its admissibility)

• Only the current component remains concrete because of the stopping con-
dition for hyb: at each stage we iterate over all hybrid components but the
current component, and as h is admissible every component has all its sub-
components and they form a DAG, hence every component but h is eventu-
ally abstracted

E.3 Properties of LHS

Proof for Lemma. B.3.1 — LHS preserves admissibility:
If

• σ is an admissible concrete state

• S is a statement of the semantics

• 〈S, σ〉 Ãs σ′

Then σ′ is admissible.

Proof.

• No dangling pointers: New pointers values are only created on object cre-
ation (otherwise just copied from heap/env to heap/env) and object creation
returns a pointer to an allocated object — there are no deallocations. No
expression can return a dangling pointer because of Proof Ob C.1.3
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• Type consistency: The only heap modifying statements are object creation,
field write and call:

– Object creation: for each newly allocated object exactly the fields of
one type are created

– Field write: happens only to existing fields

– Call: only overriding union of admissible heaps is performed, in which
the types of objects agree (because no statement changes the type of
an object and the exit heap is reached from the entry heap which is cut
from the call heap)

• Type safety: fields get new values only on creation, field write and call:

– Object creation: All types must support the null value

– Field write: By the side-condition

– Call: As above, as types are consistent among the call and exit heaps,
overriding union preserves type safety

Proof for Lemma. B.3.2 — The intra-module LHS modifies only the current
component:
If

• σ is an admissible concrete state

• S is an intra-module statement of the semantics

• 〈S, σ〉 Ãs σ′

Then σ =comp(h,ε(this))C σ′.

Proof. By the sideconditions for field write and read: Only fields of the current
component are modified as local variables can only point to the current component
and headers of other components — and cannot modify fields of headers of other
components hence can only modify the current component

Proof for Lemma. B.3.3 — The intra-module LHS is affected only by the current
component:
If
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• σ1, σ2 are admissible concrete states

• S is an intra-module statement of the semantics

• σ1 =com(h,ε(this)) σ2.

• 〈S, σ1〉 Ãs σ′1

Then exists σ′2 s.t. 〈S, σ2〉 Ãs σ′2 and σ′1 =comp(h,ε(this)) σ′2.

Proof. By the sidecondition for field read,write

E.4 Properties of LHMS

Proof for Lemma. B.4.1 — LHMS presreves admissibility:

• σ is an admissible hybrid state

• S is a statement of the semantics

• 〈S, σ〉 Ãs σ′

Then σ′ is admissible.

Proof. • No dangling pointers: As in Lemma. B.3.1

• Type consistency: As in Lemma. B.3.1 except

– Call: the embed function preserves type consistency as it only changes
the values of fields

• Type safety: As in Lemma. B.3.1 except

– Call: As above, as types are consistent among the call and exit heaps
and the model function is type-consistent

Proof for Lemma. B.4.2 — LHMS intra-module is only modifies the current
component:
If

• σ is an admissible hybrid state
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• S is an intra-module statement of the semantics

• 〈S, σ〉 Ãs σ′

Then σ =com(h,ε(this))C σ′.
Proof as per Lemma. B.3.2.
Proof for Lemma. B.4.3 — LHMS intra-module is only affected by the current

component:
If

• σ1, σ2 are admissible hybrid states

• S is an intra-module statement of the semantics

• σ1 =com(h,ε(this)) σ2.

• 〈S, σ1〉 Ãs σ′1

Then exists σ′2 s.t. 〈S, σ2〉 Ãs σ′2 and σ′1 =com(h,ε(this)) σ′2.
Proof as per Lemma. B.3.3
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F. SPECIFICATION LANGUAGE

F.1 The language

A possible specification language is detailed in Fig F.1. The language is somewhat
similar to JML [12] A specification expression (sexpression) is just an expression
made up of specification functions and field paths. For representation functions we
have expression over hybrid field paths implicitly starting at this — this ensures
the frame is reachable. For model functions we use expressions over model field
paths. For pre-post specifications we use a set of sets of 2-vocabulary expressions:
For each (possibly) modified model-field-path (starting at the arguments) we give
its new value as an expression on the pre-state. The atomic specification functions
are n-ary functions from HValn ⇀ HVal with the following restrictions:

• Location independent — if we swap all instances of one location in the
arguments of a function it gives give the same result (swapped if it equaled
the swapped location) - only location equality comparison is allowed

• Can only project locations — a function can return a location only if it is
one of the arguments — this prevents casting to pointer or pointer arithmetic

It is easy to see these properties hold also in finite compositions of such functions.
For model functions, we only use atomic functions from MValn ⇀ MVal . In
order to support recursive data-structures, we allow for representation functions
for private classes. For example — the rep-func for list header List.seq = head
? head.seq : 〈〉 and for Node.seq = next ? 〈val〉.〈next.seq〉 : 〈val〉. This
can lead to cyclic definitions — we do not offer a way to statically check for
them here (except for the obvious conservative type-based way), but several can
be thought of — in any case, over a specific state the cyclicity can be determined
easily. The modifies clause is omitted — it is implicit in the pre-post specifica-
tion. The function pre-conditions may not be derivable easily (depending on the
atomic specification functions) we omit it here but it can be given explicitly as
boolean sexpression over the pre-state. The dependencies of a model field are



given implicitely by the leaves of the expression tree of the model function for
that model-field.
The example is given in the said specification language — the specification func-
tions used is dom — domain of a partial function.

F.2 Evaluation

Given an admissible hybrid heap h, evaluating a representation function Trf for the
model field mf over h for location l Trf (mf)(h, l) is done by evaluating each field
path p in the expression tree’s leaves as h(l,p) and then evaluating the functions
at the nodes bottom up to the root. For model functions this is done similarly.
For pre/post conditions, we have a set of mappings from model field paths to
expressions — for each member of the set (which represents one deterministic
model post-state) the represented post state is the pre-state (local heap) where
the value of each mapped model field path is replaced by evaluating its mapped
expression over the pre-state. This may be inconsistent if 2 aliased paths are
mapped to expressions that evaluate to different values or if the evaluated post-
state is inconsistent with the model function — these can be discarded by the
client (or not — does not affect soundness) these may also be chackable by the
veifier of the function.

F.3 Showing the proof obligations

Given the definition of the classes in module (as finite partial mappings fieldId to
Type) the set of possible field-paths (within the component) is a regular language
(a graph with classes as nodes and an edge for each fieldId from its class to its
type labled by the fieldID gives the deterministic accepting automaton) We show
the proof obligations by: Specification:

• Location independence — automatic by location independence of atomic
specification functions.

• Frames of representation and model functions are reachable from compo-
nent head — by construction.

• Locality of pivot frame — the expressions for pivots include only concrete
field paths (syntactic). In the example — the pivot Keyset.map= map where
this. map is a local path.
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• Specification frame included in frame (for subcomponents) — the frame
for each expression is a finite set of field-paths, for recursive representation
functions, the frame of each expression is the union of frames of its leaves,
where the frame of each leaf which references a rep-function is the frame
of that rep-function. In the example, the frame of Keyset.keys in subcom-
ponents is {map.v} while the specification frame is {map.v} — syntactic
substitution of pivots gives inclusion.

• Equality of hybrid and model component graph — we restrict the set of
possible pivots to be finite — as the set of concrete paths is regular, and as
we can identify fields with outgoing pointers by their types, we can enu-
merate the set of possible outgoing field paths of a component as a regular
expression (intersection of that component’s field paths with all field paths
ending with outgoing labels) We can easily see whether this enumeration is
finite and covered by the model-fields of the representation function) In the
example the only outgoing pointer (for Keyset) is map — which is covered
by the pivot map.

• Dependencies are locally acyclic — we can build a graph with nodes as
model fields of current component and dependencies as edges (syntactic
appearance of a model-field in the expression for another) — and check its
acyclicity. In the example, for Keyset, keys depends on map — acyclic.

Implementation:

• Compliance with specification — We can use any intra-procedural analy-
sis/verification approach that supports both our concrete and abstract do-
mains — The analysis would work on the hybrid heap of each component
at a time, showing, for each function, that if the pre-condition is satisfied so
is the postcondition (it would have to evaluate the representation function
on the post-state and use large step state updates for inter-module function
calls)

• Model function approximates the representation function — the decidabil-
ity of this depends on the atomic specification functions and specification
domain, we offer a restrictive yet usable form in which the proof is trivial
— the expession for the representation function is defined as the expres-
sion for the model function, with each local model-field replaced with its
representation expression (where available)) in this form this is true by con-
struction. In the example, this is satisfied as the representation function for
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keys is a substitution of the representation function for map into the model
function for keys. Another way is the MGIC — we can use an analysis/ver-
ification tool by building a most general intrusive client for each compo-
nent type — a loop with non-deterministic choice between the bodies of
the components’ functions and functions on subcomponents — assuming
pre-conditions before the call/body and asserting the model function ap-
proximates the representation function after the call (we could also assert
each function’s post-conditions). We implemented this for our example.

F.4 Discussion

We have presented a simple yet useful restriction on the specification language
to allow it to use most analysis techniques with little added verification bur-
den. This method completely ignores invariants — it can be extended easily
by adding a decidable language of invariants over e.g. regular expression on
field-paths — thus allowing us to prove more programs. For unbounded num-
bers of pivots (e.g. list with outgoing pointers at each node) we can extend our
language with sets or sequences of locations, and correspondingly relax restric-
tions on pivots. In our language the model-function is single-valued — we can
extend it to multi-valued model-functions by allowing multi-valued atomic spec-
ification functions — but then, to show correspondence with the representation
function syntactically — we would have to have a way to relate multi-valued
functions to single valued ones — (e.g. — for not specifying the iteration or-
der of a set, we could have a multi-valued function anyPermutation which re-
ceives a set and returns its premutations and then the private represntation func-
tion riterOrd i and the public one riterOrd = riterOrd i would give the iteration
order the set value would be rset = ran(iterOrd) and the model function would
be miterOrd = anyPermutation(s))
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Trf = 〈hsexpression〉
Tmf = 〈msexpression〉
fspec = P (〈tvsexpression〉∗)

hsexpression = HFPath

= atomic-sfunction(〈hsexpression〉)

msexpression = MAPath

= atomic-sfunction(〈msexpression〉)

tvsexpression = MAPath = 〈msexpression〉

Fig. F.1: The specification language.

89



G. RUNNING EXAMPLE

The running example is shown in detail in listings 1-6. List G.1 shows the client of
a Map (Integer to Integer) and a Keyset of the map. The client creates a Map and
its corresponding Keyset, modifies the map and observes the change in the Keyset.
List G.2 shows the Map interface — the function signatures, and the functions’
pre-post specification. The specification consists of modeling (the v field — a
partial function of Integer to Integer) and the functions’ pre-post specification (in
JML style — in terms of the model v field and arguments). List G.3 shows the
Keyset interface — the functions and the specification. The specification consists
of modeling: the keys field — a set of keys and the map field — a pivot pointing
to the wrapped map, the function pre-post specification and the model function
- specifying how the keys field changes when the underlying Map is modified.
Note the constructor connects the Keyset to the Map using the map model field
(a pivot). List G.4 shows the implementation of the Keyset - the notable parts
are the representation function - that is, the actual mapping of the Keyset’s state
to model state. List G.5 and List G.6 show the implementation of the Map - The
implementation is a standard not balanced binary search tree. The Map.Node class
is written as a static inner class for convenience only (could be just a private class
in the same package/module). The representation function for Map is recursive
— using the recursive function for Map.Node. The representation function for
Map.Node combines the current node with the left and right subtrees (if exist).



module c l i e n t ;
import k e y s e t , map ;

c l a s s C l i e n t {
void f ( ){

Map m = new Map ( ) ;
Keyse t s = new Keyse t (m) ;

a s s e r t ( ! s . hasKey ( 1 ) ) ;
m. i n s e r t ( 1 , 2 ) ;
a s s e r t ( s . hasKey ( 1 ) ) ;

}
}

Listing G.1: Running Example — Client

module map ;

c l a s s Map{
p u b l i c model P a r t i a l F u n c t i o n <I n t e g e r , I n t e g e r > v ;

p u b l i c ensures v′={} ;
p u b l i c vo id Map ( ) ;

p u b l i c r e q u i r e s key != nul l , v a l u e != n u l l ;
p u b l i c ensures v′=v [ ( key , v a l u e ) ] ;
p u b l i c vo id i n s e r t ( I n t e g e r key , I n t e g e r v a l u e ) ;

p u b l i c r e q u i r e s key != n u l l ;
p u b l i c r e q u i r e s key ∈ dom ( v ) ;
p u b l i c ensures v′=v \ ( key , v ( key ) ) ;
p u b l i c vo id remove ( I n t e g e r key ) ;

p u b l i c r e q u i r e s key != n u l l ;
p u b l i c ensures r e s u l t = i f key ∈ dom ( v ) t h e n v ( key ) e l s e n u l l ;
p u b l i c I n t e g e r lookup ( I n t e g e r key ) ;

}

Listing G.2: Running Example — Map interface
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module k e y s e t ;
import map ;

c l a s s Keyse t{
p u b l i c model Set<I n t e g e r > keys ;
p u b l i c model Map map ;

p u b l i c models keys = dom ( map . v ) ;

p u b l i c r e q u i r e s map != n u l l ;
p u b l i c ensures map′= map ;
p u b l i c ensures keys ′=dom ( map . v ) ;
p u b l i c vo id Keyse t (Map map ) ;

p u b l i c r e q u i r e s key != n u l l ;
p u b l i c ensures keys ′= keys \ key ;
p u b l i c vo id remove ( I n t e g e r key ) ;

p u b l i c r e q u i r e s key != n u l l ;
p u b l i c ensures r e s u l t = key ∈ dom ( v ) ;
p u b l i c boo l hasKey ( I n t e g e r key ) ;

}

Listing G.3: Running Example — Keyset interface
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module k e y s e t ;
import map ;

c l a s s Keyse t{
p u b l i c model Set<I n t e g e r > keys ;
p u b l i c model Map map ;

p u b l i c models keys = dom ( map . v ) ;

p u b l i c r e q u i r e s map != n u l l ;
p u b l i c ensures map′= map ;
p u b l i c ensures keys ′=dom ( map . v ) ;
p u b l i c vo id Keyse t (Map map ){

m = map ;
} ;

p u b l i c r e q u i r e s key != n u l l ;
p u b l i c ensures keys ′= keys \ key ;
p u b l i c vo id remove ( I n t e g e r key ){

i f ( hasKey ( key ) ) m. remove ( key ) ;
} ;

p u b l i c r e q u i r e s key != n u l l ;
p u b l i c ensures r e s u l t = key ∈ dom ( v ) ;
p u b l i c boo l hasKey ( I n t e g e r key ){

re turn m. lookup ( key ) ! = n u l l ;
} ;

p r i v a t e Map m;
p r i v a t e r e p r e s e n t s map = m;
p r i v a t e r e p r e s e n t s keys = dom (m. v ) ;

}

Listing G.4: Running Example — Keyset
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module map ;

c l a s s Map{
p u b l i c model P a r t i a l F u n c t i o n <I n t e g e r , I n t e g e r > v ;

p u b l i c ensures v′={} ;
p u b l i c vo id Map ( ){ head = n u l l } ;

p u b l i c r e q u i r e s key != nul l , v a l u e != n u l l ;
p u b l i c ensures v′=v [ ( key , v a l u e ) ] ;
p u b l i c vo id i n s e r t ( I n t e g e r key , I n t e g e r v a l u e ){

i f ( head == n u l l )
head = new Node ( key . v a l u e ) ;

e l s e
head . i n s e r t ( key , v a l u e ) ;

} ;

p u b l i c r e q u i r e s key != n u l l ;
p u b l i c r e q u i r e s key ∈ dom ( v ) ;
p u b l i c ensures v′=v \ ( key , v ( key ) ) ;
p u b l i c vo id remove ( I n t e g e r key ){

head=head . remove ( key ) ;
} ;

p u b l i c r e q u i r e s key != n u l l ;
p u b l i c ensures r e s u l t = i f key ∈ dom ( v ) t h e n v ( key ) e l s e n u l l ;
p u b l i c I n t e g e r lookup ( I n t e g e r key ){

i f ( head == n u l l ) re turn n u l l ;
re turn head . lookup ( key ) ;

} ;

p r i v a t e Node head ;

p r i v a t e r e p r e s e n t s v = i f ( head == n u l l ) t h e n {} e l s e head . v ;

}

Listing G.5: Running Example — Map
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module map ;

p r i v a t e s t a t i c c l a s s Map . Node{
model Map<I n t e g e r , I n t e g e r > v ;
r e p r e s e n t s v =

( k , v )
∪ i f ( l e f t != n u l l ) t h e n l e f t . v e l s e ∅
∪ i f ( r i g h t != n u l l ) t h e n r i g h t . v e l s e ∅

Node ( I n t e g e r key , I n t e g e r v a l u e ){
k=key ; v= v a l u e ;
l e f t = n u l l ; r i g h t = n u l l ;

}
i n s e r t ( I n t e g e r newKey , I n t e g e r newValue ){

i f ( k==newKey ) v = newValue ;
e l s e i f ( newKey<k )

i f ( l e f t == n u l l ) l e f t = new Node ( newKey , newValue ) ;
e l s e l e f t . i n s e r t ( newKey , newValue ) ;

e l s e
i f ( r i g h t == n u l l ) r i g h t = new Node ( newKey , newValue ) ;

e l s e r i g h t . i n s e r t ( newKey , newValue ) ;
}
Node remove ( I n t e g e r key ){

i f ( k==key ){
i f ( l e f t != n u l l ) l e f t = l e f t . pruneMax ( v ) ;

e l s e i f ( r i g h t != n u l l ) re turn r i g h t ;
e l s e re turn n u l l ;

}
e l s e i f ( key<k ) l e f t = l e f t . remove ( key ) ;
e l s e r i g h t = r i g h t . remove ( key ) ;
re turn t h i s ;

}
Node pruneMax ( I n t e g e r v a l ){

i f ( r i g h t != n u l l ){
Node n = t h i s ;
whi le ( n != n u l l && n . r i g h t != n u l l && n . r i g h t . r i g h t != n u l l )

n=n . r i g h t ;
v a l =n . r i g h t . v ;
n . r i g h t =n . r i g h t . l e f t ;
re turn t h i s ;

} e l s e { / / r i g h t==n u l l
v a l =v ;
re turn l e f t ;

}
}
I n t e g e r lookup ( I n t e g e r key ){

i f ( key==k ) re turn v ;
i f ( key< k && l e f t != n u l l ) re turn l e f t . l ookup ( key ) ;
i f ( key> k && r i g h t != n u l l ) re turn r i g h t . lookup ( key ) ;
re turn n u l l ;

}

I n t e g e r k , v ;
Node l e f t , r i g h t ;

}

Listing G.6: Running Example — MapNode
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