
TVLA: A Framework for Kleene Logic Based Static

Analyses

Tal Lev-Ami∗

Department of Computer Science, Tel-Aviv University, Israel

May 28, 2000

Acknowledgments

First and foremost I would like to thank Dr. Mooly Sagiv for his
guidance, support and drive. Without it, this thesis would never have
been written.

I would like to thank Nurit Dor, Manuel Fahndrich, Noam Rinetskey,
Tom Reps, and Reinhard Wilhelm for reading the drafts and for their
helpful comments. I enjoyed having valuable discussions with Hanne
Riis and Flemming Nielson. Thanks also to Guy Laden, Ran Shaham
and Oded Shmueli.

I would like to thank my parents Liora and Uzi for listening and
giving a kind word where is was needed.

Many thanks to the Acadamy of Science for their Financial support.

Abstract
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algorithms from an operational semantics, where the operational se-
mantics is specified using logical formulae. TVLA has been imple-
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1 Introduction

The abstract-interpretation technique [CC79] for static analysis allows one
to summarize the behavior of a statement on an infinite set of possible mem-
ory states. This is sometimes called an abstract semantics for the statement.
With this methodology it is necessary to show that the abstract semantics
is conservative, i.e., it summarizes the (concrete) operational semantics of
the statement for every possible memory state. Intuitively speaking, the op-
erational semantics of a statement is a formal definition of an interpreter for
this statement. This operational semantics is usually quite natural. How-
ever, designing and implementing sound and reasonably precise abstract
semantics is quite cumbersome (the best induced abstract semantics defined
in [CC79] is usually not computable). This is particularly true in problems
like shape analysis and pointer analysis (e.g., see [Deu94, SRW00, SRW98]),
where the operational semantics involves destructive memory updates.

In this paper, we present TVLA (Three-Valued-Logic Analyzer), a sys-
tem for automatically generating a static-analysis algorithm from the oper-
ational semantics of a given program. The operational semantics is written
in a special form, based on first-order predicate logic with transitive clo-
sure. An additional input to TVLA is an abstract representation of all the
possible memory states at the beginning of the analyzed program. TVLA
automatically generates the abstract semantics, and, for each program point,
produces a conservative abstract representation of the memory states at that
point.

1.1 Main Results

TVLA is intended as a proof of concept for intra-procedural shape anal-
ysis, and other static-analysis algorithms. It is a test-bed in which it is
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quite easy to try out new ideas. The theory behind TVLA is based on
[SRW99, SRW00] (see Section 8.2). The system is publicly available from
http://www.math.tau.ac.il/∼tla.

TVLA was implemented in Java and has been successfully used to per-
form shape analysis on programs manipulating linked data structures (singly
and doubly linked lists), to prove safety properties of Mobile Ambients, and
to verify partial correctness of several programs. We also report on some
programs that are too complex for the current system. The system was
tested on a Pentium II 400 MHz running Linux with JDK 1.2. All the
timing information about the system refers to this computer1.

1.1.1 Applications

TVLA has been utilized to analyze a variety of small but intricate programs
from the groups described below.

Singly Linked Lists: We performed shape analysis on the set of pro-
grams manipulating singly linked lists used in [DRS00], including ones for
searching, element insertion, and element deletion. These programs perform
destructive updating. Some of these programs are (deliberately) semanti-
cally incorrect, and we are able to locate the bugs in them. The analysis
times are reported in AppendixA.

Doubly Linked Lists: Doubly linked lists are more challenging than singly
linked lists because they create shared memory cells and cycles. We have
analyzed a program that inserts a new element into an arbitrary place in a
doubly linked list, and the analysis was able to conclude that the insertion
results in a doubly linked list.

Sorting Programs: A different kind of application of TVLA is for pro-
gram verification. We applied TVLA to several implementations of sorting
algorithms, and proved that, given a possibly unsorted linked list as in-
put, we always end up with a sorted list. This is proven without the need
for programmer-specified loop invariants. Instead, the operational semantics
also keeps track of inequalities between the list elements. We are encouraged
by the fact that we have successfully verified both insert sort and bubble
sort on singly linked lists.

Mobile Ambients: We implemented the analysis of [NNS00] and found
out that it is imprecise and quite slow. This motivated us to generalize the
techniques presented in [SRW99, SRW00] in order to guarantee that only a
constant number of structures arise at each program point (see Section 3.4).

1Our experience indicates that using JVM on Windows, the system runs about 20%
faster.
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With this extension, TVLA was able to successfully analyze a slight variant
of the original specification used in [NNS00]. This took 336 CPU seconds
and the analysis proved the necessary properties (uniqueness of ambient
instance and mutual exclusion) precisely.

1.2 Technical Contributions

The TVLA system introduces several new contributions, which are described
in this thesis.

Focus: We present a nontrivial algorithm for focusing on a general for-
mula. Thus, unlike [SRW00], our Focus is not limited to the formulae specific
to shape analysis. This generalization is crucial in order to go beyond shape
analysis. For example, to verify sorting programs we use more complex
formulae than the ones needed in shape analysis. The Focus algorithm pre-
sented in this thesis is also more efficient than the algorithm from [SRW99]
for the formulae that they both handle.

Coerce: The Coerce operation is very time consuming. TVLA introduces
a new algorithm for Coerce (see Section 5) which is more efficient than the
on given in [SRW00, SRW99], for empirical results, see Appendix A.

Automatic generation of consistency rules : One of the complicated as-
pects of using the three-valued logic approach is the design of consistency
rules. This is particularly complicated because two logically equivalent sets
of consistency rules may result in incomparable analyses (both of which are
conservative). Furthermore, using consistency rules that are not global in-
variants may lead to an incorrect analysis. TVLA incorporates an algorithm
that automatically generates consistency rules from the specification, and
thus the user of the system does not usually need to add explicit consistency
rules (see Section 5).

Constant number of structures: TVLA allows the use of an even more
compact abstract representation in which only a constant number of abstract
structures arise at each program point. In some cases (such as the analysis
preformed on Mobile Ambients), this makes an otherwise infeasible analysis
possible.

1.3 Outline of the Thesis

The rest of the thesis is organized as follows. In Section 2, we give a primer
of the use of 3-valued logic in static analysis. Section 3 contains an overview
of the TVLA system and its capabilities. Section 4 gives a description
of the analyses done with the system. We then give a description of the

6



/* list.h */

typedef struct node

{
struct node *n;

int data;

} *L;

/* reverse.c */

#include ‘‘list.h’’

L reverse(L x) {
L y, t;

y = NULL;

while (x != NULL) {
t = y;

y = x;

x = x->n;

y->n = t;

t = NULL;

}
return y;

}
(a) (b)

Figure 1: (a) Declaration of a linked-list data type in C. (b) A C function
that uses destructive updating to reverse the list pointed to by parameter
x.

main algorithms developed for the system: an efficient Coerce algorithm
(Section 5) and a general Focus algorithm (Section 6). Section 7 explains the
more advanced topic of active nodes. We conclude by summarizing related
work and further research directions (Section 8). Appendix A presents the
empirical results for test runs of the system. Appendix C is a user’s manual
for the TVLA system.

A program that destructively reverses a singly linked list is shown in
Figure 1. The shape analysis of this program serves as a running example
in this thesis.

2 A Primer on 3-Valued-Logic-Based Analysis

Kleene’s 3-valued logic is an extension of ordinary 2-valued logic with the
special value of 1/2 (unknown) for cases that can be either 1 or 0. Kleene’s
interpretation of the propositional operators is given in Table 1. We say that
the values 0 and 1 are definite values and that 1/2 is an indefinite value. We
say that the values 0 and 1 are definite values and that 1/2 is an indefinite
value, and define a partial order " on truth values to reflect information
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∧ 0 1 1/2
0 0 0 0
1 0 1 1/2

1/2 0 1/2 1/2

∨ 0 1 1/2
0 0 1 1/2
1 1 1 1

1/2 1/2 1 1/2

¬
0 1
1 0

1/2 1/2

Table 1: Kleene’s 3-valued interpretation of the propositional operators.

content: l1 " l2 denotes that l1 has more definite information than l2:

Definition 2.1 [Information Order]. For l1, l2 ∈ {0, 1/2, 1}, we define
the information order on truth values as follows: l1 " l2 if l1 = l2 or
l2 = 1/2. The symbol & (join) denotes the least-upper-bound operation with
respect to ", i.e., l1 & l2 = l1, if l1 = l2 and 1/2 otherwise.

Kleene’s semantics of 3-valued logic is monotonic in the information order.

2.1 Representing Memory States via Logical Structures

Our vocabulary includes a set of predicate symbols partitioned into two dis-
joint sets: core and instrumentation predicates. Instrumentation predicates
are used to observe derived properties based on core predicates.

A 2-valued logical structure S is comprised of a set of individuals (nodes)
called a universe, denoted by US , and an interpretation over that universe
for a set of predicate symbols. The interpretation of a predicate symbol p
in S is denoted by pS . For every (core and instrumentation) predicate p of
arity k, pS is a function pS : (US)k → {0, 1}. 2-valued structures are used to
represent memory states used in the operational semantics of the program.

TVLA makes an explicit assumption that the set of predicate symbols
used throughout the analysis is fixed. (The number of individuals in struc-
tures can vary throughout the analysis.)

TVLA only supports predicates of arity ≤ 2; such logical structures can
be thought of as directed graphs. A directed edge labeled by p from u1

to u2 denotes that pS(u1, u2) = 1. Also, we draw p inside a node u when
pS(u) = 1.

Example 2.2 In the running example, a 2-valued structure represents a
memory state (also called a store); an individual corresponds to a list ele-
ment. The intended meaning of the core predicates is given in Table 2, and
the intended meaning of the instrumentation predicates is given in Table 3
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Predicate Intended Meaning
x(v) Is v pointed to by variable x?
y(v) Is v pointed to by variable y?
t(v) Is v pointed to by variable t?
n(v1, v2) Does the n-field of v1 point to v2?

Table 2: The core predicates used in the analysis of the running example.

Predicate Intended Meaning Defining Formula
r[n, x](v) Is v reachable from program ∃v1 : (x(v1) ∧ n∗(v1, v))

variable x using field n?
r[n, y](v) Is v reachable from program ∃v1 : (y(v1) ∧ n∗(v1, v))

variable y using field n?
r[n, t](v) Is v reachable from program ∃v1 : (t(v1) ∧ n∗(v1, v))

variable t using field n?
c[n](v) Does v reside on a directed n+(v, v)

cycle via dereferences along n-fields?
is[n](v) Is v pointed to by more ∃v1, v2 : n(v1, v) ∧ n(v2, v) ∧ v1 *= v2

than one n-field

Table 3: The instrumentation predicates used in the analysis of the running
example and their meaning. Similar instrumentation predicates are used in
all of our shape analyses for singly linked lists. The defining formulae are
explained in Section 2.3.

(for the moment ignore the third column). The store in Figure 2 is repre-
sented by the 2-valued structure S3 shown in Figure 3. The structure S3

has four nodes, u0, u1, u2, and u3 representing the four list elements. This
representation intentionally ignores the values of the data field, which are
usually immaterial for the analysis.

Pointer variables are represented by unary predicates (i.e., xS(u) = 1
if the variable x points to the list element represented by u). In Figure 3,
the variable x is represented by the unary predicate x, which is 1 only for
u0. Notice that TVLA allows the user to specify that a unary predicate is
drawn as a box with an arrow into each node for which it holds. In Figure 3,
x is drawn as a box and has an arrow to u0. Pointer fields within the list
elements are represented as binary predicates (i.e., nS(u1, u2) = 1 if the
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x 5  8  n 1  n 4 NULLn

Figure 2: A possible store for the running example.

x u0
r[n,x]

u1
r[n,x]

n u2
r[n,x]

n u3
r[n,x]

n

x y t r[n, x] r[n, y] r[n, t] is[n] c[n]

u0 1 0 0 1 0 0 0 0
u1 0 0 0 1 0 0 0 0
u2 0 0 0 1 0 0 0 0
u3 0 0 0 1 0 0 0 0

n u0 u1 u2 u3

u0 0 1 0 0
u1 0 0 1 0
u2 0 0 0 1
u3 0 0 0 0

Figure 3: A logical structure S3 representing the store shown in Figure 2 in
a graphical and tabular representation.

n-field of u1 points to u2).
The instrumentation predicate r[n, x] holds for list elements that are

reachable from program variable x, possibly using a sequence of accesses
through the n-field. The structure S3 in Figure 3 has r[n, x]S3 set to 1 for
all the nodes because they are all reachable from x. An important aspect of
explicitly storing r[n, x] is that we can incrementally compute the appropri-
ate values for the predicates after execution of the program statement (see
[SRW00, Section 6.1]). For example, for the statement y = x, the nodes
reachable from y after the statement executes are the same as the nodes
reachable from x.

The instrumentation predicate is[n] holds for nodes shared by n-fields (a
node is shared by n-fields, if it is pointed to by more than one list element
using the field n). In Figure 3, all the elements of the list are unshared, and
thus is[n]S3 is 0 for all of them.

The instrumentation predicate c[n] holds for nodes on a cycle of accesses
along n-fields. We use the cyclicity instrumentation to avoid performing a
transitive-closure operation when updating the reachability information. In
Figure 3, the list is acyclic, and thus c[n]S3 is 0 for all of the nodes.

In fact, throughout the analysis of the running example, is[n]S and c[n]S

are 0 for all of the nodes.
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2.2 Conservative Representation of Sets of Memory States
via 3-valued Structures

Like 2-valued structures, a 3-valued logical structure S is also comprised of
a universe US , and an interpretation pS for every predicate symbol p. But,
for every predicate p of arity k, pS is a function pS : (US)k → {0, 1, 1/2},
where 1/2 explicitly captures unknown predicate values.

3-valued logical structures are also drawn as directed graphs. Definite
values are drawn as in the 2-valued structures. Binary indefinite (1/2) pred-
icate values are drawn as dotted directed edges. Unary indefinite predicate
values are drawn inside the nodes and marked as indefinite (this does not
occur in the running example).

2.2.1 Embedding

Although structures may have different individuals, we can define an order
on structures, denoted by " based on the concept of embedding. The goal
is to guarantee that if S " S′ then the value of every formula in S is less or
equal to its value in S′. In particular, whenever the formula evaluates to a
definite value in S′ then the formula has the same value in S. Formally,

Definition 2.3 Let S and S′ be two structures. Let f : US → US′

be sur-
jective. We say that f embeds S in S′ (denoted by S "f S′) if (i) for every
predicate p (including sm) of arity k and all u1, . . . , uk ∈ US,

pS(u1, . . . , uk) " pS′

(f(u1), . . . , f(uk)) (1)

and (ii) for all u′ ∈ US′

(|{u | f(u) = u′}| > 1) " smS′

(u′) (2)

We say that S can be embedded in S′ (denoted by S " S′) if there
exists a function f such that S "f S′.

A special kind of embedding is a tight embedding , in which information
loss is minimized when multiple individuals of S are mapped to the same
individual in S′:

Definition 2.4 A structure S′ is a tight embedding of S if there exists
a surjective function blur : US → US′

such that, for every p *= sm of arity
k,

pS′

(u′
1, . . . , u

′
k) =

⊔

blur(ui)=u′

i,1≤i≤k

pS(u1, . . . , uk) (3)
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x u0
r[n,x]

u
r[n,x]

n

n

x y t r[n, x] r[n, y] r[n, t] is[n] c[n]

u0 1 0 0 1 0 0 0 0
u 0 0 0 1 0 0 0 0

n u0 u

u0 0 1/2
u 0 1/2

Figure 4: A 3-valued structure S4 representing lists of length 2 or more that
are pointed to by program variable x (e.g., S3).

and for every u′ ∈ US′

,

smS′

(u′) = (|{u|blur(u) = u′}| > 1) &
⊔

blur(u)=u′

smS(u) (4)

Because blur is surjective, equations (3) and (4) uniquely determine S′

(up to isomorphism); therefore, we say that S′ = blur(S).

Example 2.5 In the running example, the 3-valued structure S4 shown in
Figure 4 represents the 2-valued structure S3 for f(u0) = u0 and f(u1) =
f(u2) = f(u3) = u. In fact, the structure shown in Figure 4 represents all
the lists with two or more elements.

The unary predicate symbol x has xS4(u0) = 1, indicating that the
program variable x is known to point to the list element represented by u0,
and xS4(u) = 0, indicating that x is known not to point to any of the list
elements represented by u.

The binary predicate symbol n has nS4(u0, u) = 1/2, indicating that
the n-field of the list element represented by u0 may point to a list element
represented by u — namely the second list element (u1 in Figure 3) — but
does not point to all the list elements represented by u (e.g. u2 in Figure 3).
Also, nS4(u, u) = 1/2, indicating that the n-field of a list element represented
by u may point to another list element represented by u or even to itself but
does not point to all the list elements represented by u (e.g., in Figure 3 the
n-field of u2 points to u3, but not to u1).
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2.2.2 Summary nodes

Nodes in a 3-valued structure that may represent more than one individual
from a given 2-valued structure are called summary nodes. For example, in
the structure shown in Figure 3, the nodes u1, u2, and u3 are represented
by the single node u in Figure 4.

TVLA uses a special designated unary predicate sm to maintain summary-
node information. Such a summary node w has smS(w) = 1/2, indicating
that it may represent more than one node in the embedded 2-valued struc-
tures. These nodes are graphically drawn as dotted ellipsis. In contrast,
if smS(w) = 0 then w is known to represent a unique node. Only nodes
with smS(w) = 1/2 can have more than one node mapped to them by the
embedding function.

The exact choice of which nodes should be summarized is crucial for the
precision of the analysis and is discussed in Section 2.2.1.

2.3 Formulae

Properties of structures can be extracted by evaluating formulae. We use
first-order logic with transitive closure and equality, but without function
symbols and constant symbols. For example, the formula

∃v1 : (x(v1) ∧ n∗(v1, v)) (5)

extracts reachability information. Here, n∗ denotes the reflexive transitive
closure of the predicate n. Therefore, in every structure S, x(v1) evaluates
to 1 if v1 is the node pointed to by x and n∗(v1, v) evaluates to 1 in S if
there exists a path of zero or more n-edges from v1 to v. The third column
of Table 3 displays the defining formula of all the instrumentation predicates
used in the running example.

2.3.1 Subclasses of formulae

Atomic formulae are one of the following (i) p(v1, . . . , vk), (ii) v1 = v2,
and (iii) 0 or 1. Without loss of generality only nullary, unary, and binary
predicates are supported. A literal is an atomic formula or a negation of an
atomic formula.

Definition 2.6 A Horn clause is a formula of the form

(
m−1
∧

i=1

ϕi) → ϕm,

13



where m > 1, and ϕi is an atomic formula,
We now generalize the definition. Toward this end, for a formula ϕ, we

define ϕ1 ≡ ϕ and ϕ0 ≡ ¬ϕ. An extended Horn clause is a formula ϕ of
the form

(
m−1
∧

i=1

(ϕi)
Bi) → (ϕm)Bm ,

where m > 1, ϕi is an atomic formula, Bi ∈ {0, 1}.

2.3.2 Semantics

Definition 2.7 An assignment Z is a function that maps free variables to
individuals (i.e., an assignment has the functionality Z : {v1, v2, . . .} → US).
An assignment that is defined on all free variables of a formula ϕ is called
complete for ϕ. In the sequel, we assume that every assignment Z that
arises in connection with the discussion of some formula ϕ is complete for
ϕ.

The meaning of a formula ϕ, denoted by [[ϕ]]S(Z), yields a truth value
in {0, 1, 1/2}. The meaning of ϕ is defined inductively as follows:

Atomic For a logical literal l ∈ {0,1,1/2}, [[l]]S(Z) = l (where l ∈ {0, 1, 1/2}).

For an atomic formula p(v1, . . . , vk),

[[p(v1, . . . , vk)]]
S(Z) = pS(Z(v1), . . . , Z(vk))

For an atomic formula (v1 = v2),

[[v1 = v2]]
S(Z) =







0 Z(v1) *= Z(v2)
1 Z(v1) = Z(v2) and smS(Z(v1)) = 0
1/2 otherwise

Logical Connectives For logical formulae ϕ1 and ϕ2

[[ϕ1 ∧ ϕ2]]
S(Z) = min([[ϕ1]]

S(Z), [[ϕ2]]
S(Z))

[[ϕ1 ∨ ϕ2]]
S(Z) = max([[ϕ1]]

S(Z), [[ϕ2]]
S(Z))

[[¬ϕ1]]
S(Z) = 1 − [[ϕ1]]

S(Z)

Quantifiers If ϕ is a logical formula,

[[∀v1 : ϕ]]S(Z) = min
u∈US

[[ϕ1]]
S(Z[v1 .→ u])

[[∃v1 : ϕ]]S(Z) = max
u∈US

[[ϕ1]]
S(Z[v1 .→ u])

14



Transitive Closure For (TC v1, v2 : ϕ)(v3, v4),

[[(TC v1, v2 : ϕ)(v3, v4)]]
S(Z) =

max
n ≥ 1, u1, . . . , un+1 ∈ U,
Z(v3) = u1, Z(v4) = un+1

n
min
i=1

[[ϕ]]S(Z[v1 .→ ui, v2 .→ ui+1])

We say that S and Z potentially satisfy ϕ (denoted by S, Z |= ϕ) if
[[ϕ]]S(Z) = 1/2 or [[ϕ]]S(Z) = 1. Finally, we write S |= ϕ if for every Z:
S, Z |= ϕ.

The Embedding Theorem: The Embedding Theorem (see [SRW99, The-
orem 3.7]) states that any formula that evaluates to a definite value in a
3-valued structure evaluates to the same value in all the 2-valued structures
embedded into that structure. The Embedding Theorem is the foundation
for the use of 3-valued logic in static-analysis: it ensures that it is sensible to
reinterpret on the 3-valued structures the formulae, that when interpreted
in 2-valued logic, define the operational semantics.

TVLA requires each instrumentation predicate to be associated with a
formula over the core predicates defining its meaning. For example, evalu-
ating formula (5) on the 3-valued structure shown in Figure 4, yields 1 for
v .→ u0, which indicates that the list element represented by u0 is reachable
from variable x, and 1/2 for v .→ u, which indicates that the list elements
represented by u may or may not be reachable from program variable x.
Notice that r[n, x]S4(u) = 1, which is more precise. This is a general prin-
ciple with instrumentation predicates (referred to as the instrumentation
principle in [SRW99]). The stored information can be more precise than the
result of evaluating the corresponding formula.

3 System Description

The input to TVLA consists of two files: (i) a TVS (Three Valued logical
Structure) file containing a textual representation of the input structures
(see Figure 5), and (ii) a TVP (Three Valued Program) file, which includes
the operational semantics and the association of the operational semantics
with the edges of the control flow graph (CFG) of the analyzed program (see
Figs. 6 and 7). To simplify the specification, we allow the operational seman-
tics to be specific to the analyzed data type (e.g., singly linked lists in the
running example). In the conversion of a C program into a TVP file, some
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%n = {u, u0}

%p =















sm = {u : 1/2}
n = {u → u : 1/2, u0 → u : 1/2}
x = {u0 : 1}
r[n, x] = {u : 1, u0 : 1}















Figure 5: A TVS structure describing a singly linked list pointed to by x.

normalizing transformations are applied (see [CWZ90, SRW98]). For exam-
ple, the assignment y->n=t is broken into two statements: (i) y->n=NULL,
followed by (ii) y->n=t assuming that y->n==NULL. The full operational se-
mantics for programs manipulating singly-linked-lists of type L is given in
Section 4.1.

3.1 TVP

There are two challenging aspects to writing a good TVP specification:
one is the design of the instrumentation predicates, which is important for
the precision of the analysis; the other is writing the operational semantics
manipulating these predicates.

An important observation is that the TVP specification should always
be thought of in the terms of the concrete 2-valued world rather than the ab-
stract 3-valued world: the Embedding Theorem guarantees the soundness of
the reinterpretation of the formulae in the abstract world. This is an appli-
cation of the well-known credo of Patrick and Radhia Cousot that the design
of a static analysis always starts with a concrete operational semantics.

The TVP file is divided into sections separated by %%, given in the
order described below.

3.1.1 Declarations

The first section of the TVP file contains all the declarations needed for the
analysis.

Sets: The first declaration in the TVP file is the set PVar, which specifies
the variables used in the program (here x, y, and t). In the remainder of the
specification, set notation allows the user to define the operational semantics
for all programs manipulating a certain data type, i.e., it is parametric in
PVar.

16



/* Declarations */
%s PVar {x, y, t} // The set of program variables
#include “sll pred.tvp” // Core and Instrumentation Predicates
%%
/* An Operational Semantics */
#include “ptr cond.tvp” // Operational Semantics of Conditions
#include “sll stat.tvp” // Operational Semantics of Statements
%%
/* The program’s CFG and the effect of its edges */
n1 Set Null L(y) n2 // y = NULL;
n2 Is Null Var(x) exit // x == NULL
n2 Is Not Null Var(x) n3 // x != NULL
n3 Copy Var L(t, y) n4 // t = y;
n4 Copy Var L(y, x) n5 // y = x;
n5 Get Next L(x, x) n6 // x = x->n;
n6 Set Next Null L(y) n7 // y->n = NULL;
n7 Set Next L(y, t) n8 // y->n = t;
n8 Set Null L(t) n2 // t = NULL;

Figure 6: The TVP file for the running example shown in Figure 1. Files
sll pred.tvp, sll cond.tvp, and sll stat.tvp are given in Figures 7, 10, and 11
respectively.

17



/* sll pred.tvp */
foreach (z in PVar) {

%p z(v1) unique box // Core predicates corresponding to program variables
}
%p n(v1, v2) function // n-field core predicate
%i is[n](v) = ∃v1, v2 : (n(v1, v) ∧ n(v2, v) ∧ v1 *= v2) // Is shared instrumentation
foreach (z in PVar) {

%i r[n, z](v) = ∃v1 : (z(v1) ∧ n∗(v1, v)) // Reachability instrumentation
}
%i c[n](v) = ∃v! : n(v, v1) ∧ n∗(v1, v) // Cyclicity instrumentation

Figure 7: The TVP predicate declarations for manipulating linked lists as
declared in Figure 1 (a). The core predicates are taken from Table 2. In-
strumentation predicates are taken from Table 3.

Predicates: The predicates for manipulating singly linked lists as de-
clared in Figure 1(a) are given in Figure 7. The foreach clause iterates over
all the program variables in the set PVar and for each of them defines the
appropriate core predicate — the unary predicates x, y, and t (box tells
TVLA to display the predicate as a box). The binary predicate n represents
the pointer field n.

For readability, we use some mathematical symbols here that are written
in C-like syntax in the actual TVP file (see [LA00, Appendix B]).

The second foreach clause (in Figure 7) uses PVar to define the reach-
ability instrumentation predicates for each of the variables of the program
(as opposed to Table 3, which is program specific). Thus, to analyze other
programs that manipulate singly linked lists the only declaration that is
changed is that of PVar.

The fact that the TVP file is specific for the data type L declared in
Figure 1(a) allows us to explicitly refer to n.

Functional properties: TVLA also supports a concept of functional prop-
erties borrowed from the database community. Since program variables can
point to at most one heap cell at a time, they are declared as unique. The
binary predicate n represents the pointer field n; the n-field of each list ele-
ment can only point to at most one target list element, and thus n is declared
as a (partial) function.

18



3.1.2 Actions

In the second section of the TVP file, we define actions that specify the
operational semantics of program statements and conditions. An action
defines a 2-valued structure transformer. The actions are associated with
CFG edges in the third section of the TVP file.

An action specification consists of several parts, each of which is optional
(the meaning of these constructs is explained in Section 3.2). There are three
major parts to the action: (i) Focus formulae (explained in Section 3.2.1),
(ii) precondition formula specifying when the action is evaluated, and (iii)
update formulae specifying the actual structure transformer. For example,
the action Is Null Var(x1) (see Figure 10) specifies when the true branch of
the condition x1 == NULL, is enabled by means of the formula ¬∃v : x1(v),
which holds if x1 does not point to any list element. Since this condition
has no side effects there are no update formulae associated with this action
and thus the structure remains unchanged. As another example, the action
Copy Var L(x1, x2) (see Figure 11) specifies the semantics the statement
x1 = x2. It has no precondition, and its side effect is to set the x1 predicate
to x2 and the r[n, x1] predicate to r[n, x2].

3.1.3 CFG

The third section of the TVP specification is the CFG with actions asso-
ciated with each of its edges. The edges are specified as source action
target. The first CFG node that appears in the specification is the entry
node of the CFG. The CFG specification for the running example, is given
in Figure 6.

3.2 Process

This section presents a more detailed explanation, using the example shown
in Figure 8, of how the effect of an action associated with a CFG edge is
computed. To complete the picture, an iterative (fixed-point) algorithm to
compute the result of static-analysis is presented in Section 3.3.

3.2.1 Focus

First, the Focus operation converts the input structure into a more refined
set of structures that represents the same 2-valued structures as the input
structure. Given a formula, Focus guarantees that the formula never eval-
uates to 1/2 in the focused structures. Focus (and Coerce) are semantic
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Figure 8: The first application of abstract interpretation for the statement
x = x->n in the reverse function shown in Figure 1.
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reductions (see [CC79]), i.e., they transfer a 3-valued structure into a set
of 3-valued structures representing the same memory states. An algorithm
for Focus of a general formula is given in [LA00]. In the running example,
the most interesting focus formula is ∃v1 : x(v1) ∧ n(v1, v), which deter-
mines the value of the variable x after the Get Next L(x, x) action (which
corresponds to the statement x = x->n). Focusing on this formula ensures
that xS(u) is definite at every node u in every structure S after the action.
Figure 8 shows how the structure Sin is focused for this action. Three cases
are considered in refining Sin: (i) The n-field of u0 does not point to any of
the list elements represented by u (Sf0); (ii) The n-field of u0 points to all
of the list elements represented by u (Sf1); and (iii) The n-field of u0 points
to only some of the list elements represented by u (Sf2): u is bifurcated into
two nodes — nodes pointed to by the n-field of u0 are represented by u.1,
and nodes not pointed to by the n-field of u0 are represented by u.0.

As explained later, the result can be improved (e.g., Sf0 can be discarded
since u is not reachable from x, and yet r[n, x]Sf0(u) = 1). This is solved
by the Coerce operation, which is applied after the abstract interpretation
of the statement (see Section 3.2.4).

3.2.2 Preconditions

After Focus, preconditions are evaluated. If the precondition formula is
potentially satisfied, then the action is performed; otherwise, the action is
ignored. This mechanism comes in handy for (partially) interpreting pro-
gram conditions.

In the running example, the loop while (x != NULL) has two outgoing
edges in the CFG: one with the precondition ¬(∃v : x(v)), specifying that
if x is NULL the statement following the loop is executed (the exit in our
case). The other edge has the precondition ∃v : x(v), specifying that if x is
not NULL the loop body is executed.

3.2.3 Update Formulae

The effect of the operational semantics of a statement is described by a set
of update formulae defining the value of each predicate after the statement’s
action. The Embedding Theorem enables us to reevaluate the formulae on
the abstract structures and know that the result provides a conservative
abstract semantics. If no update formula is specified for a predicate, it is
left unchanged by the action.
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In Figure 8, the effect of the Get Next L action (x = x->n) is com-
puted using the following update formulae: (i) x(v) = ∃v1 : x(v1)∧ n(v1, v),
(ii) r[n, x](v) = r[n, x](v)∧(c[n](v)∨¬x(v)). The first formula updates the x
variable to be the n-successor of the original x. The second formula updates
the information about which nodes are reachable from x after the action: A
node is reachable from x after the action if it is reachable from x before the
action, except for the node directly pointed to by x (unless x appears on an
n-cycle, in which case the node pointed to by x is still reachable even though
we advanced to its n-successor). For Sf2, the update formula for x evaluates
to 1 for v .→ u.1 and to 0 for all nodes other than u.1. Therefore, after the
action, the resulting structure So2 has xSo2(u.1) = 1 but xSo2(u.0) = 0
and xSo2(u0) = 0.

3.2.4 Coerce

The last stage of the computation is the Coerce operation, which uses a set
of consistency rules (defined in [SRW99, SRW00, LA00]) to make structures
more precise by removing unnecessary indefinite values and discarding in-
feasible structures. The set of consistency rules used is independent of the
current action being performed. See [LA00] for a detailed description of the
Coerce algorithm used in TVLA and how TVLA automatically generated
consistency rules from the instrumentation predicates and the functional
properties of predicates.

For example, Figure 8 shows how the Coerce operation improves preci-
sion. The structure So0 is infeasible because the node u must be reachable
from y (since r[n, y]So0(u) = 1) and this is not the case in So0. In the struc-
ture So1, u is no longer a summary node because x is unique; u’s self-loop is
removed because u already has an incoming n-field and it does not represent
a shared list element (is[n]So1(u) = 0). For the same reason, in So2, u.1 is
no longer a summary node; Also, the list element represented by u.1 already
has an incoming n-field and it is not shared (is[n]So2(u.1) = 0), and thus
u.1’s self-loop is removed. For a similar reason, the indefinite n-edge from
u.0 to u.1 is removed.

3.2.5 Blur

To guarantee that the analysis terminates on programs containing loops, we
require the number of potential structures for a given program to be finite.

Toward this end, we define the concept of a bounded structure. For
each analysis, we choose a set of unary predicates called the abstraction
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predicates.2 In the bounded structure, two nodes u1, u2 are merged if
pS(u1) = pS(u2) for each abstraction predicate p. When nodes are merged,
the predicate values for their non-abstraction predicates are joined (i.e., the
result is 1/2 if their values are different). This is a form of widening (see
[CC79]). The operation of computing this kind of bounded structure is
called Blur. The choice of abstraction predicates is very important for the
balance between space and precision. TVLA allows the user to select the
abstraction predicates. By default, all the unary predicates are abstraction
predicates, as in the running example.

Example 3.1 In Figure 4, the nodes u0 and u are differentiated by the
fact that xS4(u0) = 1, whereas xS4(u) = 0. (All other predicates are
0.) If x was not an abstraction predicate, then the appropriate bounded
structure S′

4 would have had a single node, say u, with xS′

4(u) = 1/2 and
nS′

4(u, u) = 1/2.

After the action is computed and Coerce applied, the Blur operation is
used to transform the output structures into bounded structures, thereby
generating more compact, but potentially less precise structures.

3.3 Output

Now that we have a method for computing the effect of a single action, what
remains is to compute the effect of the whole program, i.e., to compute
what structures can arise at each CFG node if the program was used on
the given input structures. We use a standard iterative algorithm (e.g., see
[Muc99]) with a set of bounded structures as the abstract elements. A new
structure is added to the set if the set does not already contain a member
that is isomorphic to the new structure. In the running example, the analysis
terminates when the structures created in the fourth iteration are isomorphic
to the ones created in the third iteration (see Figure 9). We can see that
the analysis precisely captures the behavior of the reverse program.

3.4 Additional Features

The system allows several customizations on the standard iterative algo-
rithm for optimizing the analysis (as command line options). The user can
choose whether the actions are evaluated in depth first search post-order or
reverse depth first search post-order. Even though reverse depth first search

2In [SRW99, SRW00] the abstraction predicates are all the unary predicates.
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Figure 9: The structures arising in the reverse function shown in Figure 1
at CFG node n2 for the input structure shown in Figure 4.
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post order is usually more efficient (since an action is evaluated only after
its predecessors are evaluated), using post order causes structures to reach
the end of the program more quickly. This is very useful in case the analysis
is not feasible and yet we want to see a glimpse of what is expected, an
example for such an analysis is the merge function without reachability as
defined in Section 4.1.

Another form of customization is the choice of CFG nodes in which the
set of structures is saved. At the minimum at least one such node should
reside on each loop in the CFG. Three forms are available: (i) at every
CFG node, (ii) at every merge point (i.e., CFG node with two incoming
edges), and (iii) at every back edge of the depth first search tree. The more
CFG nodes in which the structures are saved the faster the analysis is (since
structures need not be recreated). However, more space is needed (by factor
of 10 even for simple programs).

One of the main features of TVLA is the support of single structure
analysis. Sometimes when the number of structures that arise at each pro-
gram point is too large, it is better to merge these structures into a single
structure that represents at least the same set of 2-valued structures. TVLA
enhances this feature even more by allowing the user to specify that some
chosen constant number of structures will be associated with each program
point.

More specifically, nullary predicates (i.e., predicates of 0-arity) are used
to discriminate between different structures. For example, for linked lists we
use the predicate nn[x]() = ∃v : x(v) which discriminates between structures
in which x actually points to a list element from structures in which it does
not. For example, consider a structure S1 in which both x and y point to
list elements, and another structure S2 in which both x and y are NULL.
Merging S1 and S2 will loose the information that x and y are simultaneously
allocated or not allocated. Notice that S1 has nn[x] = nn[y] = 1 and S2 has
nn[x] = nn[y] = 0 therefore S1 and S2 will not be merged together.

In some cases (such as safety analysis of Mobile Ambients, see [NNS00])
this option makes an otherwise infeasible analysis run in a reasonable time.
However, there are other cases in which the single-structure method is less
precise or even more time consuming than the usual method, which uses
sets of structures.

TVLA also supports modeling statements that handle dynamically allo-
cated and freed memory.
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/* ptr cond.tvp */
%action Is Not Null Var(x1) { %t x1 + ” != NULL”

%f { x1(v) } %p ∃v : x1(v)
}
%action Is Null Var(x1) { %t x1 + ” == NULL”

%f { x1(v) } %p ¬(∃v : x1(v))
}
%action Is Eq Var(x1, x2) { %t x1 + ” == ” + x2

%f { x1(v), x2(v) }
%p ∀v : x1(v) ⇔ x2(v)

}
%action Is Not Eq Var(x1, x2) { %t x1 + ” != ” + x2

%f { x1(v), x2(v) }
%p ¬∀v : x1(v) ⇔ x2(v)

}

Figure 10: An operational semantics in TVP for handling pointer conditions.

4 Applications

4.1 Singly Linked Lists

We used the functions analyzed in [DRS00] with sharing and reachability
instrumentations (see Table 4). The specification for all the functions was
written once and used with each of the CFGs.

The actions for handling program conditions that consists of pointer
equalities and inequalities are given in Figure 10.

The actions for manipulating the struct node declaration from Fig-
ure 1(a) are given in Figure 11. The actions Set Next Null L and Set Next L

model destructive updating (i.e., assignment to x1->n), and therefore have
a nontrivial specification.

We use the notation ϕ1?ϕ2 : ϕ3 for an if-then-else clause. If ϕ1 is 1 then
the result is ϕ2, if ϕ2 is 0 then the result is ϕ3. If ϕ1 is 1/2 then the result
is ϕ2 & ϕ3. We use the notation TC(v1, v2)(v3, v4) for the transitive-closure
operator. The variables v3 and v4 are the free variables of the sub-formula
over which the transitive closure is performed, and v1 and v2 are the variables
used on the resulting binary relation.

Most of the analyses were very precise with running times of up to 8
seconds for the most complex function (merge).
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/* sll stat.tvp */
%action Set Null L(x1) { %t x1 + ” = NULL”

{ x1(v) = 0 r[n, x1](v) = 0}
}
%action Copy Var L(x1, x2) { %t x1 + ” = ” + x2

%f { x2(v) }
{ x1(v) = x2(v) r[n, x1](v) = r[n, x2](v)}

}
%action Malloc L(x1) { %t x1 + ” = (L) malloc(sizeof(struct node))) ”

%new
{ x1(v) = isNew(v) r[n, x1](v) = isNew(v) }

}
%action Free L(x1) { %t ”free(x1)”

%f {x1(v)}
%message ∃v1, v2 : x1(v1) ∧ n(v1, v2) ->

”Internal error! assume that ” + x1 + ”->” + n + ”==NULL”
%retain ¬x1(v)

}
%action Get Next L(x1, x2) { %t x1 + ” = ” + x2 + ”->” + n

%f { ∃v1 : x2(v1) ∧ n(v1, v)}
{ x1(v) = ∃v1 : x2(v1) ∧ n(v1, v)

r[n, x1](v) = r[n, x2](v) ∧ (c[n](v) ∨ ¬x2(v))}
}
%action Set Next Null L(x1) { %t x1 + ”->” + n + ” = NULL”

%f { x1(v) }
{ n(v1, v2) = n(v1, v2) ∧ ¬x1(v1)

is[n](v) = is[n](v) ∧ (¬(∃v1 : x1(v1) ∧ n(v1, v))∨
∃v1, v2 : (n(v1, v) ∧ ¬x1(v1)) ∧ (n(v2, v) ∧ ¬x1(v2)) ∧ v1 *= v2)

r[n, x1](v) = x1(v)
foreach(z in PVar-{x1}) {

r[n, z](v) =(c[n](v) ∧ r[n, x1](v)?
z(v) ∨ ∃v1 : z(v1) ∧ TC(v1, v)(v3, v4)(n(v3, v4) ∧ ¬x1(v3)) :
r[n, z](v) ∧ ¬(r[n, x1](v) ∧ ¬x1(v) ∧ ∃v1 : r[n, z](v1) ∧ x1(v1)))

}
c[n](v) = c[n](v) ∧ ¬(∃v1 : x1(v1) ∧ c[n](v1) ∧ r[n, x1](v))}

}
%action Set Next L(x1, x2) { %t x1 + ”->” + n + ” = ” + x2

%f { x1(v), x2(v) }
%message ∃v1, v2 : x1(v1) ∧ n(v1, v2) ->

”Internal error! assume that ” + x1 + ”->” + n + ”==NULL”
{ n(v1, v2) = n(v1, v2) ∨ x1(v1) ∧ x2(v2)

is[n](v) = is[n](v) ∨ ∃v1 : x2(v) ∧ n(v1, v)
foreach(z in PVar) {

r[n, z](v) = r[n, z](v) ∨ r[n, x2](v) ∧ ∃v1 : r[n, z](v1) ∧ x1(v1)
}
c[n](v) = c[n](v) ∨ (r[n, x2](v) ∧ ∃v1 : x1(v1) ∧ r[n, x2](v1))}

}

Figure 11: An operational semantics in TVP for handling the pointer-
manipulation statements of linked lists as declared in Figure 1(a).
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program description

search searches for an element in a linked list
null deref searches a linked list but with a typical

error of not checking for the end of the list
delete deletes a given element from a linked list
del all deletes an entire linked list
insert inserts an element into a sorted linked list
create prepend a varying number of new elements to a linked list
merge merges two sorted linked lists into one

sorted list
reverse reverses a linked list via destructive

updates
fumble an erroneous version of reverse which

loses the list
rotate performs a cyclic rotation when given

pointers to the first and last elements
swap swaps the first and second elements of a

list, fails when the list is 1 element long
getlast returns the last element of the list

Table 4: Description of the analyzed singly linked list programs. These
programs are collections of interesting programs from LCLint [Eva96],
[JJNS97], Thomas Ball and from first-year students. They are available
at http://www.math.tau.ac.il/∼nurr.

x

u0
r[n,x]

u
r[n,x]

n

last

u1
r[n,last]
r[n,x]

n

n
x

u3
r[n,x]

u2
r[n,x]=1/2

n

last

u4
r[n,last]

r[n,x]=1/2

n

n

Figure 12: The structure before and after the rotate function.
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The rotate function gives an example of an analysis which is not as
precise as possible (see Figure 12). The indefinite edge 〈[u.1, [u.0, u0].0], u1〉
is superfluous and all the list should be known to be reachable from x.
The imprecision arises because the list becomes cyclic in the process and
the reachability update formula in the action Set Next Null L shown in
Figure 11 is not very precise in case of cyclic lists.

The merge function is a good example of how precision problems in the
analysis can create too many structures. Analyzing the merge function with-
out the reachability instrumentation creates tens of thousands of graphs and
takes too much space for the machine we were using. Adding the reachabil-
ity information reduces the number of graphs to 327 and the time to about
8 seconds.

4.2 Doubly Linked Lists

Doubly linked lists are an example of a more complex abstract datatype
which can still be analyzed accurately in many cases. The analysis is also a
good example for how nuances in the instrumentation predicates used can
change the accuracy of the analysis. We use a stronger instrumentation
predicate than the one described in [SRW99], i.e., we keep a stronger pro-
gram invariant. We show how using the new instrumentation increases the
accuracy of the analysis. It is hard to predict how these small differences are
going to affect the analysis, this demonstrates the importance of the system
as a platform for developing and testing new analysis algorithms.

The splice function analyzed and the appropriate data structure are given
in Figure 13. The TVP for splice is specified in figures 14, 16, and 15.

The instrumentation predicate that enables us to analyze the DLL pro-
grams precisely is the “cancel f by b” (c[f, b]), an unary predicate stating
that v->f->b == v. A similar instrumentation is maintained for “cancel b
by f”. The formula used in [SRW99] for the instrumentation is,

c[f, b](v) = ∀v1, v2 : f(v, v1) ∧ b(v1, v2) → v1 = v2 (6)

when trying to run the analysis on the splice function utilizing this defining
formula, we found out that the analysis was not as precise as we wanted.
We came up with the following definition of the instrumentation predicate,

c[f, b](v) = ∀v1 : f(v, v1) → b(v1, v) (7)

The difference may seem insignificant. However, (7) is stronger than (6), i.e.,
a node that satisfies (7) must satisfy (6) but not vice versa. The constraints
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/* dlist.h */

typedef struct DNode {
struct DNode *f, *b;

int data;

} DNode, *DL;

/* splice.c */

#include ‘‘dlist.h’’

void splice(int v, DL p) {
DL e, t;

e = (DL)malloc(sizeof(DNode));

e->data = v;

t = p->f;

e->f = t;

if (t != NULL)

t->b = e;

p->f = e;

e->b = p;

}

(a) (b)

Figure 13: (a) Declaration of a doubly linked-list data type in C. (b) A
program that splices an element with a data value v into a doubly linked
list with a head pointed by l, after an element pointed to by p.

generated by the system from this instrumentation,

c[f, b](v) ∧ f(v, v1) " b(v1, v)

and,
c[f, b](v) ∧ ¬b(v1, v) " ¬f(v, v1)

are very important in keeping the analysis of the splice program precise. For
example, Lets look at the simple t = p->f instruction with both versions
of the instrumentation on the structure in Figure 17.

Figure 17 depicts a doubly linked list pointed to by p. Figure 18 illus-
trates a

4.3 Sorting Algorithms

In this section, we describe how the 3-valued-logic analysis framework can
be used to prove that an implementation of an abstract datatype (ADT)
is partially correct. Here we will be concerned with an ADT of sorted
linked lists—i.e., a subset of the full set of data structures allowed according
to the C typedef shown in Figure 1(a), consisting of those structures that
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/* dll pred.tvp */ %s PVar {l, p, t, e}
%s DSel {f, b}
/* Variables definition */
foreach (z in PVar) {

%p z(v1) unique box
}
foreach (sel in DSel) {

/* Selector definition */
%p sel(v1, v2) function
/* Reachability instrumentation */
foreach (z in PVar) {

%i r[sel, z](v) = ∃v1 : (z(v1) ∧ sel∗(v1, v))
}
/* Cyclicity instrumentation */
%i c[sel](v) = sel+(v, v)
/* Cancel instrumentation */
foreach (other in DSel-{sel}) {

%i c[sel, other](v) = ∀v1 : (sel(v, v1) → other(v1, v))
}

}

Figure 14: The predicates used in analyzing doubly-linked lists declared as
in Figure 13(a).
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#include “dll pred.tvp” // see Figure 14
%%
#include “ptr cond.tvp” // see Figure 10
#include “dll stat.tvp” // see Figure 16
%%
/* The program’s CFG

and the effect of its edges */
n1 Malloc DL(e) n2

n2 Get Sel DL(t, p, f) n3

n3 Set Sel Null DL(e, f) n4

n4 Set Sel DL(e, f, t) n5

n5 Is Not Null Var(t) n6

n5 Is Null Var(t) n8

n6 Set Sel Null DL(t, b) n7

n7 Set Sel DL(t, b, e) n8

n8 Set Sel Null DL(p, f) n9

n9 Set Sel DL(p, f, e) n10

n10 Set Sel Null DL(e, b) n11

n11 Set Sel DL(e, b, p) exit

n_1

n_2

e = malloc() 

n_3

t = p->f

n_4

e->f = null

n_5

e->f = t

n_9

n_10

p->f = e

n_6

t != null

n_8

t == null

n_7

t->b = null

n_11

e->b = null

t->b = e

exit

e->b = p

p->f = null

Figure 15: The CFG for the splice function shown in Figure 13.
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/* dll stat.tvp */
%action Get Sel DL(x1, x2, sel) { %t x1 + ” = ” + x2 + ”->” + sel

%f { ∃v1 : x2(v1) ∧ n(v1, v)}
{ x1(v) = ∃v1 : x2(v1) ∧ sel(v1, v)

r[sel, x1](v) = r[sel, x2](v) ∧ (c[sel](v) ∨ ¬x2(v))
foreach (other inPSel-{sel}) {

r[other, x1](v) =(∃v1 : x2(v1) ∧ c[sel, other](v1)?
r[other, x2](v) ∨ ∃v1 : x2(v1) ∧ sel(v1, v) :
∃v1, v2 : x2(v1) ∧ sel(v1, v2) ∧ other∗(v2, v))

} }
}
%action Malloc DL(x1) { %t x1 + ” = malloc() ”

%new
{ x1(v) = isNew(v)

foreach (sel in DSel) {
r[sel, x1](v) = isNew(v)
foreach (other in DSel-{sel}) {

c[sel, other](v) = c[sel, other](v) ∨ isNew(v)
}

} }
}
%action Set Sel Null DL(x1, sel) { %t x1 + ”->” + sel + ” = null”

%f { x1(v) }
{ sel(v1, v2) = sel(v1, v2) ∧ ¬x1(v1)

r[sel, x1](v) = x1(v)
foreach(z inPVar-{x1}) {

r[sel, z](v) =(c[sel](v) ∧ r[sel, x1](v)?
z(v) ∨ ∃v1 : z(v1) ∧ TC(v1, v)(v3, v4)(sel(v3, v4) ∧ ¬x1(v3)) :
r[sel, z](v) ∧ ¬(r[sel, x1](v) ∧ ¬x1(v) ∧ ∃v1 : r[sel, z](v1) ∧ x1(v1)))

}
c[sel](v) = c[sel](v) ∧ ¬(∃v1 : x1(v1) ∧ c[sel](v1) ∧ r[sel, x1](v))
foreach (other inDSel-{sel}) {

c[sel, other](v) = x1(v) ∨ c[sel, other](v)
c[other, sel](v) = c[other, sel](v) ∧ ¬∃v1 : x1(v1) ∧ other(v, v1)

} }
}
%action Set Sel DL(x1, sel, x2) { %t x1 + ”->” + sel + ” = ” + x2

%f { x1(v), x2(v) }
{ sel(v1, v2) = sel(v1, v2) ∨ x1(v1) ∧ x2(v2)

foreach(z in PVar) {
r[sel, z](v) = r[sel, z](v) ∨ ∃v1 : r[sel, z](v1) ∧ x1(v1) ∧ r[sel, x2](v)

}
c[sel](v) = c[sel](v) ∨ (∃v1 : x1(v1) ∧ r[sel, x2](v1) ∧ r[sel, x2](v))
foreach (other in DSel-{sel}) {

c[sel, other](v) = (x1(v)?∃v1 : other(v1, v) ∧ x2(v1) : c[sel, other](v))
c[other, sel](v) = c[other, sel](v) ∨ (x2(v) ∧ ∃v1 : other(v, v1) ∧ x1(v1))

} }
}

Figure 16: The new actions defined for the splice function shown in Fig-
ure 13.
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p
r[f,p]
c[b,f]
c[f,b]
r[b,p]

r[f,p]
c[b,f]
c[f,b]

b
f

b
f

Figure 17: The structure before t = p->f.

p

r[f,p]
c[b,f]
c[f,b]
r[b,p]
r[f,t]

t

c[b,f]
c[f,b]
r[b,p]
r[f,t]
r[b,t]

r[f,p]
c[b,f]
c[f,b]
r[f,t]

f

b

b

b
f

f

p

r[f,p]
c[b,f]
c[f,b]
r[b,p]
r[f,t]

t

c[b,f]
c[f,b]
r[f,t]
r[b,t]
r[b,p]

r[f,p]
c[b,f]
c[f,b]
r[f,t]

f

b

b

b
f

f

(a) (b)

Figure 18: The structure after t = p->f with (a) the instrumentation pre-
sented here and (b) the instrumentation defined in [SRW99].
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/* main.c */

#include "list.h"

int main() {
L x, y, z, w;

L create(), insert sort(L);

L merge(L,L), reverse(L);

x = create(); l1 :
x = insert sort(x); l2 :

y = create(); l3 :
y = insert sort(y); l4 :

z = merge(x,y); l5 :
w = reverse(z); l6 :

}

Figure 19: A main program that performs several operations on sorted lists.

meet the “is-sorted” datatype invariant. In the case of sorted linked lists,
we are interested not just in the correctness of various sorting operations,
which create sorted linked lists, but also in establishing that “is-sorted”
is maintained by list-manipulation operations, such as element-insertion,
element-deletion, destructive list reversal, and merging of two lists. In this
section we refer to the code in Figure 19 to explain the analyses done.

A sorting procedure is partially correct if, whenever the procedure ter-
minates, the output list it produces is sorted in non-decreasing order. Our
approach to verification is capable of establishing this. For instance, the
specific analysis that we discuss below establishes that at program point
l2 in Figure 19, program variable x always points to a list sorted in non-
decreasing order (cf. Figure 27). It also establishes that at program point
l6, program variable w, which holds the reversal of the merge of two sorted
lists, always points to a list sorted in non-increasing order (cf. Figure 30).

Verification will sometimes fail because the analysis is conservative, i.e.,
it may be that the analysis reports that, at a given program point, a variable
might point to something other than a sorted list when in fact it always does
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point to a sorted list. Our limited experience with several small but intricate
programs indicates that this does not happen. The Embedding Theorem
guarantees that the converse is impossible: The analysis can never say that
at a given program point l, variable x always points to a sorted list, and yet
there is an input that leads to a store at l in which the x list is not sorted.
Thus, if the analysis says that at the exit vertex variable x always points to
a sorted list, then x will always point to a sorted list when the procedure
finishes execution.

An artifact of our approach is that some of the work involved in verifi-
cation takes place at the level of the programming language, rather than at
the level of individual statements of a program. Section 4.3.1 discusses what
is required at the programming-language level to define a suitable analysis
for observing ADT properties; Section 4.3.2 describes how such an analysis
can then be used to check the partial correctness of ADT operations.

4.3.1 Specifying an Analysis for Observing ADT Properties

The static analysis algorithm used is the one depicted is Section 3. Predicate-
update formulae for the core predicates x (for all x ∈ PVar) and n, along
with definitions and predicate-update formulae for the instrumentation pred-
icates is, c, and r[n, x] can be found in Tables 3 and 2. To define an analysis
suitable for verifying procedures that operate on sorted linked lists, we have
to provide predicate-update formulae for the predicates dle, inOrder[dle, n]
and inROrder[le, n] (for each of the statements that manipulate pointer
variables), their definition is given in Figure 21. The actions specifying the
operational semantics for the statements of the sorting programs is given
in Figure 23, and the actions specifying the operational semantics for the
conditions used in the sorting programs is given in Figure 22. For bub-
ble sort we use another ADT of a boolean variable. The actions needed to
manipulate these kind of variables are given in Figure 25.

4.3.2 Specifying and Checking Partial Correctness of ADT Op-
erations

Given the static-analysis algorithm defined in the preceding section, to
demonstrate the partial correctness of ADT operations, the user must supply
the following program-specific information:

• The procedure’s control-flow graph.

• A set of 3-valued structures that characterize the acceptable inputs to
the procedure.

36



/* insert sort.c */

#include ‘‘list.h’’

void insert sort(L x) {
r = x;

pr = NULL;

while (r != NULL) {
l = x;

rn = r->n;

pl = NULL;

while (l != r) {
if(l->data > r->data) {

pr->n = rn;

r->n = l;

if(pl == NULL)

x = r;

else

pl->n = r;

r = pr;

break;

}
pl = l;

l = l->n;

}
pr = r;

r = rn;

}
}

%s PVar {x, r, pr, rn, pl, l}
#include “sorting pred.tvp”
%%
#include “sorting cond.tvp”
#include “sorting stat.tvp”
%%

n1 Copy Var L(r, x) n2

n2 Set Null L(pr) n3

n3 Is Not Null Var(r) n4

n3 Is Null Var(r) exit
n4 Copy Var L(l, x) n5

n5 Get Next L(rn, r) n6

n6 Set Null L(pl) n7

n7 Is Not Eq Var(l, r) n8

n7 Is Eq Var(l, r) n20

n8 Greater L(l, r) n9

n8 Less Equal L(l, r) n18

n9 Set Next Null L(pr) n10

n10 Set Next L(pr, rn) n11

n11 Set Next Null L(r) n12

n12 Set Next L(r, l) n13

n13 Is Null Var(pl) n14

n13 Is Not Null Var L(pl) n15

n14 Copy Var L(x, r) n17

n15 Set Next Null L(pl) n16

n16 Set Next L(pl, r) n17

n17 Copy Var L(r, pr) n20

n18 Copy Var L(pl, l) n19

n19 Get Next L(l, l) n7

n20 Copy Var L(pr, r) n21

n21 Copy Var L(r, rn) n3

(a) (b)

Figure 20: The C code for the insert sort function (a) and its correspond-
ing CFG.
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/* sorting pred.tvp */
#include “sll pred.tvp”
/* Comparator definition */
%p dle(v1, v2) transitive reflexive
/* Ordering instrumentations */
%i inOrder[dle, n](v) = ∀v1 : n(v, v1) → dle(v, v1)
%i inROrder[dle, n](v) = ∀v1 : n(v, v1) → dle(v1, v)

Figure 21: The TVP declarations for the insert sort function shown in
Figure 20(a) (sll pred.tvp is defined in Figure 7).

/* sorting cond.tvp */
#include “sll cond.tvp”

%action Greater L(x1, x2) { %t x1 + ”->d >” + x2 + ”->d”
%f { ∃v1, v2 : x1(v1) ∧ x2(v2) ∧ dle(v1, v2) }
%p ¬∃v1, v2 : x1(v1) ∧ x2(v2) ∧ dle(v1, v2)

}
%action Less Equal L(x1, x2) { %t x1 + ”->d <= ” + x2 + ”->d”

%f { ∃v1, v2 : x1(v1) ∧ x2(v2) ∧ dle(v1, v2) }
%p ∃v1, v2 : x1(v1) ∧ x2(v2) ∧ dle(v1, v2)

}
%action Equal L(x1, x2) { %t x1 + ”->d == ” + x2 + ”->d”

%f { ∃v1, v2 : x1(v1) ∧ x2(v2) ∧ dle(v1, v2) ∧ dle(v2, v1) }
%p ∃v1, v2 : x1(v1) ∧ x2(v2) ∧ dle(v1, v2) ∧ (dle(v2, v1)

}

Figure 22: The conditions needed for the insert sort function shown in
Figure 20. sll cond.tvp is defined in Figure 10.
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/* sorting stat.tvp */
%action Set Null L(x1) { %t x1 + ” = NULL”

{ x1(v) = 0
r[n, x1](v) = 0}

}
%action Set Next Null L(x1) { %t x1 + ”->” + n + ” = NULL”

%f { x1(v) }
{ n(v1, v2) = n(v1, v2) ∧ ¬x1(v1)

is[n](v) = is[n](v) ∧ (¬(∃v1 : x1(v1) ∧ n(v1, v))∨
∃v1, v2 : (n(v1, v) ∧ ¬x1(v1)) ∧ (n(v2, v) ∧ ¬x1(v2)) ∧ v1 *= v2)

r[n, x1](v) = x1(v)
foreach(z in PVar-{x1}) {

r[n, z](v) =(c[n](v) ∧ r[n, x1](v)?
z(v) ∨ ∃v1 : z(v1) ∧ TC(v1, v)(v3, v4)(n(v3, v4) ∧ ¬x1(v3)) :
r[n, z](v) ∧ ¬(r[n, x1](v) ∧ ¬x1(v) ∧ ∃v1 : r[n, z](v1) ∧ x1(v1)))

}
c[n](v) = c[n](v) ∧ ¬(∃v1 : x1(v1) ∧ c[n](v1) ∧ r[n, x1](v))
inOrder[dle, n](v) = inOrder[dle, n](v) ∨ x1(v)
inROrder[dle, n](v) = inROrder[dle, n](v) ∨ x1(v)}

}
%action Set Next L(x1, x2) { %t x1 + ”->” + n + ” = ” + x2

%f { x1(v), x2(v) }
%message ∃v1, v2 : x1(v1) ∧ n(v1, v2) ->

”Internal error! assume that ” + x1 + ”->” + n + ”==NULL”
{ n(v1, v2) = n(v1, v2) ∨ x1(v1) ∧ x2(v2)

is[n](v) = is[n](v) ∨ ∃v1 : x2(v) ∧ n(v1, v)
foreach(z in PVar) {

r[n, z](v) = r[n, z](v) ∨ r[n, x2](v) ∧ ∃v1 : r[n, z](v1) ∧ x1(v1)
}
c[n](v) = c[n](v) ∨ (r[n, x2](v) ∧ ∃v1 : x1(v1) ∧ r[n, x2](v1))
inOrder[dle, n](v) = inOrder[dle, n](v) ∧ ¬(∃v1 : x1(v) ∧ x2(v1) ∧ ¬dle(v, v1))
inROrder[dle, n](v) = inROrder[dle, n](v) ∧ ¬(∃v1 : x1(v) ∧ x2(v1) ∧ ¬dle(v1, v))}

}
%action Malloc L(x1) { %tx1 + ” = (L) malloc(sizeof(struct node)) ”

%new
{ x1(v) = isNew(v)

r[n, x1](v) = isNew(v)
dle(v1, v2) =

(isNew(v1) ∧ isNew(v2))∨
(v1 *= v2 ∧ (isNew(v1) ∨ isNew(v2))?1/2 : dle(v1, v2))

inOrder[dle, n](v) = inOrder[dle, n](v) ∨ isNew(v)
inROrder[dle, n](v) = inROrder[dle, n](v) ∨ isNew(v)

}
}
%action Free L(x1) { %t”free(” + x1 + ”) ”

%f{ x1(v) }
%retain¬x1(v)

}

Figure 23: The actions for the statements needed for the insert sort func-
tion shown in Figure 20.
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/* bubble sort.c */

#include ‘‘list.h’’

void bubble sort(L x) {
change = TRUE;

while (change) {
p = NULL;

change = FALSE;

y = x;

yn = y->n;

while (yn != NULL) {
if (y->data > yn->data) {

t = yn->n;

change = TRUE;

y->n = t;

yn->n = y;

if (p == NULL)

x = yn;

else

p->n = yn;

p = yn;

yn = t;

} else {
p = y;

y = yn;

yn = y->n;

}
}

}
}

%s PVar {x, y, p, yn, t}
#include “sorting pred.tvp”
%p change()
%%
#include “sorting cond.tvp”
#include “sorting stat.tvp”
#include “bool cond.tvp”
#include “bool stat.tvp”
%%
n1 Set True(change) n2

n2 Is True(change) n3

n2 Is False(change) n24

n3 Set Null L(p) n4

n4 Set False(change) n5

n5 Copy Var L(y, x) n6

n6 Get Next L(yn, y) n7

n7 Is Not Null Var L(yn) n8

n7 Is Null Var L(yn) n2

n8 Greater L(y, yn) n9

n8 Less Equal L(y, yn) n21

n9 Get Next L(t, yn) n10

n10 Set True(change) n11

n11 Set Next Null L(y) n12

n12 Set Next L(y, t) n13

n13 Set Next Null L(yn) n14

n14 Set Next L(yn, y) n15

n15 Is Null Var L(p) n16

n15 Is Not Null Var L(p) n17

n16 Copy Var L(x, yn) n19

n17 Set Next Null L(p) n18

n18 Set Next L(p, yn) n19

n19 Copy Var L(p, yn) n20

n20 Copy Var L(yn, t) n7

n21 Copy Var L(p, y) n22

n22 Copy Var L(y, yn) n23

n23 Get Next L(yn, y) n7

n24 Set Null L(p) n25

n25 Set Null L(y) n26

n26 Set Null L(yn) n27

n27 Set Null L(t) exit

(a) (b)

Figure 24: The C code for the bubble sort function with element swap (a)
and its corresponding TVP.
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/* bool stat.tvp */
%action Set True(x1) { %t x1 + ”=TRUE”

{ x1() = 1 }
}
%action Set False(x1) { %t x1 + ”=FALSE”

{ x1() = 0 }
}

/* bool cond.tvp */
%action Is True(x1) { %t x1

%p x1()
}
%action Is False(x1) { %t ”!” + x1

%p ¬x1()
}

Figure 25: Statements and conditions manipulating boolean variables.

empty list 1-element lists lists with 2 or more elements

x
r[n,x]

inROrder[dle,n]
inOrder[dle,n]

dle

x
r[n,x]

inROrder[dle,n]=1/2
inOrder[dle,n]=1/2

dle

r[n,x]
inROrder[dle,n]=1/2
inOrder[dle,n]=1/2

dle
n

dle
n

Figure 26: The structures that arise at l1.

• Formulae that characterize the acceptable outputs of a correctly work-
ing procedure.

The initial 3-valued structures are supplied to the analysis algorithm as the
abstract value for the procedure’s entry point; the analysis algorithm is then
run; finally, the formulae that characterize the acceptable outputs are ap-
plied to the structures that are generated by the analysis at the procedure’s
exit point.

Example 4.1 Consider the problem of establishing that the version of insert sort

shown in Figure 20 is partially correct. Figure 26 shows the three structures
that characterize the set of stores in which program variable x points to an
acyclic, unshared linked list.3 After running the analysis of insert sort,
we would check to see whether, for all of the structures that arise at the
procedure’s exit node, the following formula evaluates to 1:

∀v : r[n, x](v) ⇒ inOrder[dle, n](v). (8)

3These are exactly the 3-valued structures that the analysis discovers as the possible
outputs of create.
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empty list 1-element lists sorted lists with 2 or more elements

x
r[n,x]

inROrder[dle,n]
inOrder[dle,n]

dle

x
r[n,x]

inOrder[dle,n]
inROrder[dle,n]=1/2

dle

r[n,x]
inOrder[dle,n]

inROrder[dle,n]=1/2

dle
n

dle

dle
n

Figure 27: The structures that arise at l2.

If the formula evaluates to 1, each node reachable from x is in non-decreasing
order.

However, at this point, the reader may smell a rat: A “sorting” procedure
that always returns NULL will satisfy Formula (8) at the exit point! Thus,
Formula (8) is only part of the specification of the post-condition of a correct
sorting procedure. A second property required of a correct sorting procedure
(as well as of many other procedures that manipulate sorted linked lists) is
that the output list must be a permutation of the input list.

We can establish that the permutation property holds for the output of
insert sort by extending the program-analysis specification with another
predicate, orig[n, x](v), whose value is set at the entry point to record the
elements that are reachable from x there. In each statement, the predicate-
update formula used for orig[n, x] is orig′[n, x](v) = orig[n, x](v). In other
words, orig[n, x] serves as an indelible mark on the elements initially reach-
able from x. At the end of the procedure, we then need to check that the
following formula evaluates to 1:

∀v : orig[n, x](v) ⇔ r[n, x](v). (9)

If the formula does evaluate to 1, then the elements reachable from x after the
procedure executes are exactly the same as those reachable at the beginning
of the procedure, and consequently the procedure performs a permutation.

Example 4.2 Figure 27 shows the three 3-valued structures that arise at
the end of insert sort, given the structures shown in Figure 26 as the
input structures. The structures in Figure 27 describe all possible stores in
which variable x points to an acyclic, unshared, sorted linked list. In all
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y
r[n,y]

inOrder[dle,n]
inROrder[dle,n]=1/2

dle
r[n,y]

inOrder[dle,n]
inROrder[dle,n]=1/2

dle
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r[n,x]
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inROrder[dle,n]=1/2

dle

dle

r[n,x]
inOrder[dle,n]

inROrder[dle,n]=1/2

dle

n

dle

dle

dle
n

dle

dle dle

n
dle

Figure 28: A structure that arises at l4.

z
r[n,z]

inOrder[dle,n]
inROrder[dle,n]=1/2

r[n,z]
inOrder[dle,n]

inROrder[dle,n]=1/2

n
dle

dle
n

dle

dle

Figure 29: A structure that arises at l5.

three structures, Formulas (8) and (9) both evaluate to 1.4 Consequently,
insert sort is guaranteed to work correctly on all acceptable inputs.

Example 4.3 Figure 28 shows one of the structures that can arise at pro-
gram point l4 of main (see Figure 19). In Figure 28, the substructure con-
sisting of the x-box together with the upper two nodes represents one sorted
list of length 2 or more; the y-box and the lower two nodes represents a
second sorted list of length 2 or more.

Figure 29 shows what is produced by the analysis when the structure
shown in Figure 28 is supplied as the input structure in the analysis of

4Assuming, in the case of Formula (9), that instrumentation predicate orig[n, x] was
added to the analysis.
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w
r[n,w]

inROrder[dle,n]
inOrder[dle,n]=1/2

r[n,w]
inROrder[dle,n]

inOrder[dle,n]=1/2

dle
n

dle

n

dle

dle

Figure 30: A structure that arises at l6.

merge: The output structure represents the acyclic, unshared, sorted linked
lists of length 2 or more. In other words, merge preserves sortedness.

Figure 30 shows what is produced when the structure shown in Figure 29
is supplied as the input structure in the analysis of reverse: The output
structure represents the acyclic, unshared, linked lists of length 2 or more,
sorted in reverse order .

Overall, the method described above is able to establish that at program
point l6 of main (Figure 19), program variable w—which is computed by
reversing a list created by merging two sorted lists—always points to a list
sorted in non-increasing order.

4.4 Mobile Ambients

The ambient calculus is a prototype web-language that allows processes (in
the form of mobile ambients) to move inside a hierarchy of administrative
domains (also in the form of mobile ambients); since the processes may con-
tinue to execute during their movement this notion of mobility extends that
found in Java where only passive code in the form of applets may be moved.
Mobile ambients were introduced in [CG]. The calculus is patterned after
the π-calculus but focuses on named ambients and their movement rather
than on channel-based communication; indeed, already the communication-
free fragment of the calculus is very powerful (and in particular Turing
complete). For a description of mobile ambients and 3-valued logic based
analysis of them see [NNS00]. For the rest of the section, the reader is
presumed to be farmiliar with [NNS00] and its results.

The program analyzed is a simulated router (see Figure 34). The packet
p starts in the router r1 and from there routed to router r2. From r2 it can
be routed either back to r1 or to r3. Since processes may evolve when moving
around it is hard to predict which ambients may turn up inside what other
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/* amb pred.tvp */
/**********************************************/
/*************** Core Predicates **************/
foreach (z in AmbientNames) { %p z(v1) }
foreach (z in AmbientNames) {

%p in[z](v1) // v1 is an in[z] capability
%p out[z](v1) // v1 is an out[z] capability
%p open[z](v1) // v1 is an open[z] capability

}
foreach (l in Labels) { %p l(v1) }

%p bang(v) // v is a replication operator (bang)
%p pa(v1, v2) function// v2 is the parent of v1

%p error()

/************************************************************/
/*************** Instrumentation Predicates *****************/

foreach (z1 in AmbientNames) {
foreach (z2 in AmbientNames) {

%i inside[z1, z2]() = ∃v1, v2 : z1(v1) ∧ z2(v2) ∧ pa∗(v1, v2)
}

}

Figure 31: The predicates used in mobile-ambient analysis.

ambients. In this section we present an analysis that allows us to validate
whether all executions satisfy properties like:

• Is there always exactly one copy of the ambient p?

• Is p always inside at most one of the ambients r1, r2 and r3?

The analysis performed here is the analysis described in Section 3 with
the exception that both Focus and Coerce and disabled. The predicates
(see Figure 31) and transformers (see Figure 32) are defined according to
the operational semantics of the replication operator (bang) and the differ-
ent capabilities (open, out, in). The actions use the syntax of composite
operators which allow to use logical operators on a set of formulae. For
details see Appendix C. In case of ambients the TVS is very important as

45



/* amb stat.tvp */
#define NB(v) ∨/{z(v) : z in AmbientNames}
#define NBA(v) (∀v1 : pa∗(v, v1) → NB(v1))
#define REDEX PATH(v) (NB(v) ∧ NBA(v) ∧ ¬error())
%action in(m) { %t “in[” + m + “]”

%p (pa(fc, fp) ∧ pa(fp, fpp) ∧ pa(fs, fpp) ∧ REDEX PATH(fpp)∧
in[m](fc) ∧ m(fs) ∧ NB(fp) ∧ ¬pa(fc, fs))

{ pa(v1, v2) =(v1 = fp ∧ v2 = fs) ∨ (pa(v1, fc) ∧ v2 = fp)∨
(pa(v1, v2)∧¬(v1 = fp ∧ v2 = fpp) ∧ ¬(v1 = fc ∧ v2 = fp) ∧ ¬(v2 = fc))

foreach (z inAmbientNames) {
inside[z, m]() = inside[z, m]() ∨ ∃v : z(v) ∧ pa∗(v, fp)

}
} %retain v *= fc

}
%action out(m) { %t “out[” + m + “]”

%p (pa(fc, fp) ∧ pa(fp, fpp) ∧ pa(fpp, fppp) ∧ REDEX PATH(fppp)∧
out[m](fc) ∧ NB(fp) ∧ m(fpp))

{ pa(v1, v2) =(v1 = fp ∧ v2 = fppp) ∨ (pa(v1, fc) ∧ v2 = fp)∨
(pa(v1, v2) ∧ ¬(v1 = fp ∧ v2 = fpp) ∧ ¬(v1 = fc ∧ v2 = fp) ∧ ¬(v2 = fc))

foreach (z in AmbientNames) {
inside[z, m]() = inside[z, m]()∧

/* z is descendent of fp and fpp has an ancestor m */
((∃v1, v2 : z(v1) ∧ pa∗(v1, fp) ∧ m(v2) ∧ pa+(fpp, v2))∨
/* z is a descendent of m not through fp */
(∃v1, v2 :z(v1) ∧ m(v2) ∧ pa∗(v1, v2) ∧ ¬(pa∗(v1, fp) ∧ pa∗(fp, v2))))

}
} %retain v *= fc

}
%action open(m) {

%t “open[” + m + “]”
%p (pa(fc, fp) ∧ pa(fs, fp) ∧ REDEX PATH(fp) ∧ open[m](fc) ∧ m(fs))
{ pa(v1, v2) =(pa(v1, fc) ∧ v2 = fp) ∨ (pa(v1, fs) ∧ v2 = fp) ∨ (pa(v1, v2)∧

¬(v1 = fc ∧ v2 = fp) ∧ ¬(v2 = fc) ∧ ¬(v1 = fs ∧ v2 = fp) ∧ ¬(v2 = fs))
foreach (z in AmbientNames) {

inside[z, m]() = inside[z, m]()∧
/* z is descendent of fs and fp has an ancestor m */
((∃v1, v2 : z(v1) ∧ pa∗(v1, fs) ∧ m(v2) ∧ pa∗(fp, v2))∨
/* z is a descendent of m not through fs */
(∃v1, v2 :z(v1) ∧ m(v2) ∧ pa+(v1, v2) ∧ ¬(pa∗(v1, fs) ∧ pa∗(fs, v2))))

}
} %retain v *= fc ∧ v *= fs

}
%action nothing() { }

Figure 32: The actions used in mobile-ambient analysis.
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%action bang() { %t “!”
%p (pa(fc, fp) ∧ REDEX PATH(fp) ∧ bang(fc))
%new pa+(v, fc)
{ pa(v1, v2) =pa(v1, v2) ∨ (∃v11 : instance(v1, v11)∧

((pa(v11, fc) ∧ v2 = fp) ∨ (∃v21 : instance(v2, v21) ∧ pa(v11, v21))))
foreach (z in AmbientNames) {

z(v) = z(v) ∨ ∃v1 : (instance(v, v1) ∧ z(v1))
in[z](v) = in[z](v) ∨ ∃v1 : (instance(v, v1) ∧ in[z](v1))
out[z](v) = out[z](v) ∨ ∃v1 : (instance(v, v1) ∧ out[z](v1))
open[z](v) = open[z](v) ∨ ∃v1 : (instance(v, v1) ∧ open[z](v1))

}
}

}

Figure 33: The actions used in mobile-ambient analysis continued from Fig-
ure 32.

it defines most of the actual program. For the TVS of the router example
see Figure 35.

The non-determinism needed in defining the semantics (the choice of
which ambient preforms its capability) is simulated using preconditions. The
preconditions hold for assignments that represent ambients that are allowed
to preform. Thus, all the possible sequences of capability activation are
tried.

The bang operator is simulated using the %new (new) operator which
replicates all the nodes which satisfy the formula of being decendents of
the bang operator. The capabilities that are spent during the action are
discarded using the %retain (retain) operator.

Since an unlimited number of bangs can occur between each capability
activation and the most conservative case is that bang is performed more
than once between each activation we can save calculation time by creating
two control flow nodes “all” and “cap”. Bang is done on a self loop on the
“all” and all the capabilities on edges between “all” and “cap”. Control then
returns to the “all” node using the “nothing” action which doesn’t change
the state. Since TVLA uses reverse post order in the iterative algorithm
the capability edges will not by traversed until the bang operation is fully
explored.

The precision of the algorithm is increased by maintaining more instru-
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/*********************** Sets *****************/
%s AmbientNames {p, r, r1, r2, r3, top}
%s Labels {l0, l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11,

l12, l13, l14, l15, l16, l17, l18, l19, l20, l21, l22}
#include “amb pred.tvp” // see Figure 31
%%
#include “amb stat.tvp” // see Figure 32

%action verify unique() { %t “verify unique”
%p p(v1) ∧ p(v2) ∧ (v1 *= v2)
%message 1 → “Unique breached!”
{ error() = 1 }

}

%action verify position() { %t “verify position”
%p p(v1) ∧ ∨/{z(v2) : z in {r1, r2, r3}} ∧ ∨/{z(v3) : z in {r1, r2, r3}} ∧ (v2 *= v3)∧

pa∗(v1, v2) ∧ pa∗(v1, v3)
%message 1 → “Position breached!”
{ error() = 1 }

}
%%
all bang() all
all in(r1) cap
all in(r2) cap
all in(r3) cap
all in(p) cap
all out(r1) cap
all out(r2) cap
all open(r) cap
cap nothing() all
all verify position() bug
all verify unique() bug

Figure 34: The TVP for the router mobile-ambient analysis.

48



%n = {u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11,
u12, u13, u14, u15, u16, u17, u18, u19, u20, u21, u22}

%p = {
top = {u0}
r1 = {u2}
r2 = {u3}
r3 = {u4}
p = {u1}
r = {u11, u12, u13}
bang = {u6, u7, u8, u9}
in[p] = {u14, u15, u16}
in[r1] = {u5, u22}
in[r2] = {u20}
in[r3] = {u21}
out[r1] = {u17}
out[r2] = {u18, u19}
open[r] = {u10}
pa = {u1->u0, u2->u0, u3->u0, u4->u0, u5->u1, u6->u1, u7->u2, u8->u3,

u9->u3, u10->u6, u11->u7, u12->u8, u13->u9, u14->u11, u15->u12,
u16->u13, u17->u14, u18->u15, u19->u16, u20->u17, u21->u18, u22->u19}

l0 = {u0}
. . .
l22 = {u22}
inside[p, top] = 1
inside[r, top] = 1
inside[r1, top] = 1
inside[r2, top] = 1
inside[r3, top] = 1
inside[r, r1] = 1
inside[r, r2] = 1

}

Figure 35: The TVS for the router mobile-ambient analysis.
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mentation information on the forests represeted by a given 3-valued struc-
ture. The instrumentation defined here is inside[m,n] capturing which am-
bient is inside which ambient. The defining formula for the instrumentation
is:

inside[m, n] = ∃v1, v2 : n(v1) ∧ n(v2) ∧ pa+(v1, v2)

In a nondeterministic program the number of 3-valued structures arising in
the analysis may be too big! (the worst case is exponential in the program
size). In the routing example we got more than 10000 structures. The anal-
ysis can still be feasible by merging many strutures with the same property
into a single struture (potentially loosing more precision). In the routing
example merging all the structures with the same inside[m, n] leads to 72
structures.

5 The Coerce Algorithm

5.1 Constraints

Constraints are useful in improving the precision of the analysis. Constraints
(also called consistency rules) are global invariants in the program. For
example, the constraint

∃v1 : (¬is[n](v) ∧ n(v1, v) ∧ v1 *= v2) " ¬n(v2, v)

states that if node u is not shared by n-fields (is[n]S(u) = 0) and already has
an incoming n-field, it cannot have another incoming n-field. Thus if there
exist u1 *= u2 such that nS(u1, u) = nS(u2, u) = 1 the structure doesn’t
represent any valid concrete structure and can be discarded. Similarly, if
there exist u1 *= u2 such that n(u1, u) = 1 and n(u2, u) = 1/2 we can
conservatively modify n so that n(u2, u) = 0. For example, in Figure 8 we
use this constraint on structure So1 to remove the indefinite self loop on u,
and on So2 to remove the indefinite self loop on u.1 and the indefinite edge
from u.0 to u.1.

In general a constraint is given in the form of ϕ1 " ϕ2, where ϕ2 is a
literal; ϕ1 is called the body of the constraint and ϕ2 is called the head of the
constraint. The free variables of ϕ1 and ϕ2 must match. Such a constraint
is satisfied on a structure S if for every assignment for which the body (ϕ1)
is evaluated to 1 (not just 1/2), the head must also evaluate to 1, denoted
by S |= ϕ1 " ϕ2. Otherwise we say that the constraint is breached denoted
by S *|= ϕ1 " ϕ2.
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If a constraint is breached by an assignment, the system tries to satisfy
the constraint by changing 1/2 values into 1 or 0 as needed. If it is not
possible to satisfy the constraint, the structure is invalid and is discarded.
Formally, we define Coerce as follows,

Definition 5.1 For a structure S and a set of constraints XF , the operation
Coerce(S, XF ) returns the maximal S′ such that S′ " S, US′

= US, and
S′ does not breach any of the constraints in XF . Coerce is undefined if no
such S′ exists.

The effects of Coerce on the precision of the analysis are noticeable. For
example, Figure 8 shows how the imprecision resulting from the Focus op-
eration are fixed. The constraints used for this Coerce operation are the
ones automatically generated from the functional properties of the program
variables and fields and from the instrumentation predicates used (see Sec-
tion 5.2).

In this section we gradually explain the Coerce algorithm implemented
in TVLA. For empirical results of how the new algorithms affect the perfor-
mance of the system see Appendix A.

5.2 Automatic Generation of Constraints

While our system allows arbitrary constraints it is instructive to explain
how constraints are automatically generated from functional properties and
instrumentation predicates.

Functional Properties: The user can specify in TVP the functional prop-
erties of the predicates, and each of these functional properties can be natu-
rally defined by a 2-valued formula. The system generates from this formula
a set of constraints that maintain the truth of the formula. For example,
for the declarations in Figure 7, the system generates the constraints shown
in Table 5. The constraints generated include the defining formula of the
property and the implied constraints of this formula as generated by the
closure operator. The closure operator is defined as follows:

Definition 5.2 For an extended Horn clause ϕ, we define the closure of
ϕ, denoted by closure(ϕ), to be the following set of constraints:

closure(ϕ)
def
=







∃v1, v2, . . . , vn :
m
∧

i=1,i'=j

ϕ1−Bi
i " ϕ

Bj

j

∣

∣

∣

∣

∣

∣

1 ≤ j ≤ m,
vk ∈ freeVars(ϕ),
vk *∈ freeVars(ϕj)







(10)
For a formula ϕ that is not an extended Horn clause, closure(ϕ) = φ.
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Functional property Constraint
%p x(v1) unique (1) x(v1) ∧ x(v2) " v1 = v2

(2) ∃v1 : x(v1) ∧ v1 *= v2 " ¬x(v2)
%p t(v1) unique (3) t(v1) ∧ t(v2) " v1 = v2

(4) ∃v1 : t(v1) ∧ v1 *= v2 " ¬t(v2)
%p y(v1) unique (5) y(v1) ∧ y(v2) " v1 = v2

(6) ∃v1 : y(v1) ∧ v1 *= v2 " ¬y(v2)
%p n(v1, v2) function (7) ∃v : n(v, v1) ∧ n(v, v2) " v1 = v2

(8) ∃v1 : n(v, v1) ∧ v1 *= v2 " ¬n(v, v2)

Table 5: The constraints generated from functional properties shown in
Figure 7.

For a complete list of all the functional properties supported and their
corresponding constraints see Appendix C.

For an instrumentation predicate p defined by formula ϕ the following
constraints are generated: (i) ϕ " p, (ii) ¬ϕ " ¬p, and (iii) the closure
of ϕ → p, and ¬ϕ → ¬p. For example, all the constraints generated for
instrumentation predicates of the reverse example are given in Table 6.

5.3 Order of Constraints

In most of the analyses we tried, the bottleneck of the analysis is the Coerce
operation. This made Coerce the main candidate for optimization. One
of the major problems in the Coerce algorithm given in [SRW99] is that
after each change in the structure all the constraints need to be reevaluated
to find if the last change caused a breach in one of them. Therefore, an
expensive iterative fixed point algorithm is used. The TVLA system uses
a sophisticated ordering of constraints that enables us in many cases to
compute Coerce in one pass over the constraints. Specifically, we use the
concept of depenencies between constraints. A constraint c2 depends on
constraint c1 if while Coerce repairs c1 on a structure that initially satisfies
c2 may cause a breach of c2. Formally,

Definition 5.3 If there exists a structure S such that S |= c2 and Coerce(S, c1) *|=
c2 then we say that c2 depends on c1.

If we can find an ordering of constraints in which every constraint is evalu-
ated before its depenents then after a single pass over all the constraints we
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Instrumentation Generated Constraint

%i is[n](v) = ∃v1, v2 :
(n(v1, v) ∧ n(v2, v) ∧ v1 *= v2)

(9) ∃v1, v2 : (n(v1, v) ∧ n(v2, v) ∧ v1 *= v2) "
is[n](v)

(10) ¬∃v1, v2 : (n(v1, v) ∧ n(v2, v) ∧ v1 *= v2) "
¬is[n](v)

(11) ∃v :(¬is[n](v) ∧ n(v1, v) ∧ n(v2, v)) "
v1 = v2

(12) ∃v2 :(¬is[n](v) ∧ n(v2, v) ∧ v1 *= v2) "
¬n(v1, v)

(13) ∃v1 :(¬is[n](v) ∧ n(v1, v) ∧ v1 *= v2) "
¬n(v2, v)

%i r[n, x](v) =
∃v1 : (x(v1) ∧ n∗(v1, v))

(14) ∃v1 : (x(v1) ∧ n∗(v1, v)) " r[n, x](v)
(15) ¬∃v1 : (x(v1) ∧ n∗(v1, v)) " ¬r[n, x](v)

%i r[n, y](v) =
∃v1 : (y(v1) ∧ n∗(v1, v))

(16) ∃v1 : (y(v1) ∧ n∗(v1, v)) " r[n, y](v)
(17) ¬∃v1 : (y(v1) ∧ n∗(v1, v)) " ¬r[n, y](v)

%i r[n, t](v) =
∃v1 : (t(v1) ∧ n∗(v1, v))

(18) ∃v1 : (t(v1) ∧ n∗(v1, v)) " r[n, t](v)
(19) ¬∃v1 : (t(v1) ∧ n∗(v1, v)) " ¬r[n, t](v)

%i c[n](v) = n+(v, v) (20) n+(v, v) " c[n](v)
(21) ¬n+(v, v) " ¬c[n](v)

Table 6: The constraints generated from the instrumentation predicates
shown in Figure 7.
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are guaranteed that all the constraints hold (unless the structure is discarded
in the process).

We define an initial dependcy graph between constraints where there is
a directed edge from c1 ≡ l1 " pB(v1, . . . , vk) to c2 ≡ l2 " r2 if the literal
pB(v′1, . . . , v

′
k) appears in the DNF form of l2. It is not hard to see that if

there is no edge from c1 to c2 then c2 does not depend on c1.
The initial graph for the reverse example is given in Figure 36. As seen

in the graph, the closure operator used for generating constraints from in-
strumentation predicates creates some problematic constraints that remain
as loops in the dependecy graph (e.g. 10 → 11 → 10). The truth is that
they can be ignored, as stated in the next Lemma.

Lemma 5.4 For a structure S such that S |= ∃ . . . ϕ1 ∧ . . . ∧ ϕn " ϕ,
coerce(S, ∃ . . . ϕ1 ∧ . . . ∧ ϕi−1 ∧ ϕi+1 ∧ . . . ∧ ϕn ∧ ¬ϕ " ¬ϕi) |= ∃ . . . ϕ1 ∧
. . . ∧ ϕn " ϕ
Proof: Lets mark S′ = coerce(S, ∃ . . . ϕ1∧. . .∧ϕi−1∧ϕi+1∧. . .∧ϕn∧¬ϕ " ¬ϕi

By contradiction, assume that S′ *|= ∃ . . . ϕ1 ∧ . . . ∧ ϕn " ϕ. Since
S |= ∃ . . . ϕ1 ∧ . . . ∧ ϕn " ϕ and coerce can only make 1/2 into 1 or 0,
there exists Z s.t. [[ϕ1 ∧ . . . ∧ ϕn]]S

′

(Z) = 1 and [[ϕ]]S
′

(Z) = 0. Thus,
[[ϕ1 ∧ . . . ∧ ϕn ∧ ¬ϕ]]S

′

(Z) = 1. In other words

[[∃ . . . ϕ1 ∧ . . . ∧ ϕi−1 ∧ ϕi+1 ∧ . . . ∧ ϕn ∧ ¬ϕ]]S
′

(Z) = 1 and [[¬ϕi]]
S′

(Z) = 0

thus
S′ *|= ∃ . . . ϕ1 ∧ . . . ∧ ϕi−1 ∧ ϕi+1 ∧ . . . ∧ ϕn ∧ ¬ϕ " ¬ϕi

in contradiction to the definition of coerce.

This resolves most of the loops in the dependecy graph. In the case of
the singly linked list programs analyzed (reverse, merge, insert, etc.) there
are no loops at all.

We now calculate a quasi-toplogical order of the graph and calculate
Coerce using an iterative algorithm using this order. The initial work-set
contains all the constraints. If a constraint causes a modification of the
structure all its dependets are added to the work-set.

5.4 Memoizing Transitive Closures

Despite the fact that in many cases we can avoid reevaluating the defining
formula of instrumentation predicates containing transitive closure in the
update formula, transitive closure is still needed in (generated) constraints
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Figure 36: The dependency graph created for the reverse program, before
and after the application of Lemma 5.4.

that can improve precision. Transitive closure is the most expensive oper-
ation in the formula evaluation. We use the Kleene semiring algorithm for
calculating the transitive closure, which is O(n3) ([Ull89]).

For example, the “reachability from a program variable” instrumenta-
tion creates many constraints containing exactly the same transitive closure
subformula. To save time in recalculating the transitive closure, each differ-
ent transitive closure subformula is precalculated and replaced with a binary
predicate in all the places it appears. Every time the predicates in the un-
derlying subformula change, the transitive closure is recalculated and the
relevant constraints are reevaluated.

5.5 Incremental Evaluation

Some actions have a very local effect on the structure. Some predicates’
values remain unmodified after the action. If the constraint’s body contains
only atomic formulae that were unmodified since the last time the constraint
was evaluated, there is no need to reevaluate the constraint. We maintain
a dirty flag for each predicate, resetting it after each Coerce and setting
it every time a predicate’s value is modified. The initial work-set of the
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iterative algorithms can now contain only the constraints that contain a
dirty predicate or all the constraints if the universe of the structure was
modified.

5.6 Incremental Formula Evaluation

When trying to evaluate a formula, a standard method is generating all the
possible assignments into free variables of the formula, and evaluating the
formula for each assignment.

Many of the useful constraints we use can be expressed as conjunctions
of literals. If this is the case we use an efficient method taken from the de-
ductive database world to evaluate the assignments that breach a constraint.

The Coerce operation needs all the assigments that evaluate the body of
the constraint to true and the head to false or unknown. We order the literals
(of both the body and the head) in the following order: unary, negated unary,
binary, negated binary, equality, inequality. We then evaluate the formula
incrementally in order, in each step we compute the relevant assignments
by joining the previous assignments with the assignments that satisfy the
current literal (or do not satisfy the head).

6 The Focus Algorithm

The focus operation is crucial for precise analysis. However, it can generate a
large number of structures. The algorithm presented here uses the functional
properties of the predicates to reduce the number of generated structures.

Some focus formulae might generate an infinite number of structures.
For example, focusing on the formula ∀v1 : ¬n(v, v1) (which is true for the
last element of a singly linked list) on the structure shown in Figure 4 leads
to an infinite number of structures. Our analysis conservatively identifies
the cases where a specific formula might Focus a specific structure into an
infinite number of structures and issues an error message at Focus time.
A warning is given in compile time if a formula can potentially Focus a
structure into an infinite number of structures.

This section presents a new algorithm for the Focus operation applicable
on a general formula. The algorithm is more efficient in terms of number
of structures generated than the one given in [SRW00] in cases where it is
comparable. However, it still may create many unnecessary structures in
the process.

The definition of the Focus operation is as follows:
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Focus(S: structure, ϕ: formula) : Set of structures
conj1 ∨ . . . ∨ conjn := DNF(QuatifierFree(TC Eliminate(ϕ)))
XS0 := {S}
for i in 1..n do

XSi := FocusConjunction(XSi−1, conji)
od
return XSn

Figure 37: The general Focus algorithm. DNF, QuatifierFree and
TC Eliminate are defined in Section 6.1 and FocusConjunction is defined
in Figure 38.

Definition 6.1 Given a set of formulae F , a focus operation for F is an
operation that converts every structure S into a set of structures XS such
that

• XS and S represent the same concrete structures,

• Every formula ϕ ∈ F has a definite value in each of the structures in
XS on every possible assignment.

The Focus algorithm is given in Figure 37. The algorithm starts by
normalizing the general formula into a set of conjunctions of literals (see
Section 6.1). Each conjunction is analyzed incrementally to find the sources
of indefinite assignments (Section 6.2). For each such indefinite assignment,
the structure is replaced with a set of structures embedding the same set of
concrete structures on which that assignment is no longer indefinite (Sec-
tion 6.3).

The algorithm can benefit from the use of functional properties (Sec-
tion 6.4) both in terms of the number of structures generated and in terms
of “focusable” structures (structures that do not result in an infinite number
of structures).

The actual implementation of the algorithm needs to overcome some
inefficiencies in algorithm as presented here. A sketch of the solution to
these inefficiencies is given in Section 6.5.

6.1 Normalizing Focus Formulae

Focus starts by normalizing the focus formula into a set of conjunctions of
literals. Focusing on the resulting conjunctions yields structures in which
the original formula is definite.
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FocusConjunction(XS0: Set of structs, ϕ1 ∧ . . . ∧ ϕn: conj. of literals) : Set of structs
for i in 1 . . . n do

XSi := FocusLiteral(XSi−1, ϕ1 ∧ . . . ∧ ϕi−1, ϕi)
od
return XSn

Figure 38: Focus on a conjunction of literals. FocusLiteral is defined in
Figure 39.

FocusLiteral(XS: Set of structures, ϕ : formula, ϕ′ : literal) : Set of structures
AnswerSet := φ
while XS *= φ do

select and remove S from XS
if exists Z such that [[ϕ ∧ ϕ′]]S(Z) = 1/2 do

XS := XS ∪ FocusAssignment(S, ϕ′, Z)
else

AnswerSet := AnswerSet ∪ {S}
fi

od
returnAnswerSet

Figure 39: Focus on a literal within a conjunction of literals. FocusAssign-
ment is defined in Figure 40.
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function FocusAssignment(S: structure, ϕ: Literal, Z assignment) : Set of structures
sw3Ditch ϕ

c3Dase ϕ ≡ 1/2
error(Illegal focus formula)

c3Dase ϕ ≡ v1 = v2

error(Focusing on equality of a summary node Z(v1)
may create infinite number of structures)

c3Dase ϕ ≡ p(v1, v2, . . . , vk)
Let ui = Z(vi)
S0 := S[pS(u1, u2, . . . , uk) .→ 0]
S1 := S[pS(u1, u2, . . . , uk) .→ 1]
XS := {S0, S1}
i3Df there exists i, s.t., smS(ui) = 1/2 then
i3Df there exists j *= i, s.t., smS(uj) = 1/2 then
error(Focusing on a formula ϕ with two summary nodes ui and uj

may create an infinite number of structures)
fi
let u.0 and u.1 be individuals not in US

S′ := Expand(S, ui, u.0, u.1)
S′′ := S′[pS′

(u1, . . . , ui−1, u.0, ui+1, . . . , uk) .→ 0, pS′

(u1, . . . , ui−1, u.1, ui+1, . . . , uk) .→ 1]
XS := XS ∪{S′′}
fi
return XS

c3Dase ϕ ≡ ¬ϕ′

return FocusAssignment(S, ϕ′, Z)
esac

Figure 40: Returns a set of structures that can be embedded into S such
that ϕ evaluates to a definite value for the assignment Z.
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First, TC Eliminate removes all transitive closure operators assuring
that the free variables of the sub-formulae remain unique. After focusing
on the resulting formula every assignment evaluates the TC sub-formula
to a definite value thus the transitive closure of the sub-formula must also
evaluate to a definite value. Thus we can safely focus on the formula after
TC Eliminate instead of the original formula (As a result of this normaliza-
tion we may conservatively report an error even when the original formula
would have evaluated to a definite value).

Next, QuatifierFree removes all quantifiers. Focusing on resulting for-
mula guarantees that all the assignments evaluate the formula to a definite
value, thus the original formula which has quantifiers on of some of the vari-
ables must also evaluate to a definite value. Therefore, we can safely focus
on the formula after QuatifierFree instead of the original formula.

Finally DNF is used to convert the quantifier free formula to DNF.
Instead of focusing on the disjunction we decompose it into a set containing
its composing conjunctions. Since focusing on all the conjunctions in the
set means that for every assignment into the formula’s free variables, all the
conjunctions will be evaluated to a definite value, their disjunction must also
evaluate to a definite value.

For example, consider the formula ∃v1 : x(v1)∧n(v1, v) which is used in
interpreting the instruction x = x->n of the reverse example. The formula
does not contain transitive closure and it is already in DNF. All that remains
to normalize this formula is to remove the existential quantifier ∃v1. The
resulting formula is x(v1) ∧ n(v1, v), which is already a conjunction. Thus
in Figure 37, conj1 = x(v1) ∧ n(v1, v).

6.2 Focusing on Conjunctions of Literals

The normalization done to the focus formula in the previous section resulted
in conjunctions of literals. In this section we show how to Focus on such
formulae. The algorithm for FocusConjunction is given in Figure 38.

The algorithm for FocusConjunction is defined inductively. After step i,
the set of structures XSi is focused in respect to ϕ1 ∧ . . . ∧ ϕi and embeds
the same structures as XSi−1. The initial set is XS0 and the final result is
XSn. At each step FocusLiteral is called with a set of structures and two
formulae. The precondition is that all the structures in the set are already
focused for the first formula and should be focused for the conjunction of
the two formulae.

FocusLiteral is a work-set algorithm which finds all the assignments in
which the formula ϕ ∧ ϕ′ is indefinite (since the structures are focused in

60



FocusConjunction FocusLiteral
i XSi ϕ ϕ′ iteration XS AnswerSet

0 {Sin}
1 x(v1) 0 {Sin} φ

1 φ {Sin}
1 {Sin}

x(v1) n(v1, v) 0 {Sin} φ
1 {Sf0, Sf1, Sf2} φ
2 {Sf1, Sf2} {Sf0}
3 {Sf2} {Sf0, Sf1}
4 φ {Sf0, Sf1, Sf2}

2 {Sf0, Sf1, Sf2}

Table 7: FocusConjunction on Sin given in Figure 8.

terms of ϕ it can only be because of ϕ′). For each indefinite assignment,
FocusAssignment is called to handle it. If no such assignment exists then by
definition, the structure is focused in terms of this formula and it is moved
to the AnswerSet.

For example, consider the Focus operation shown in Figure 8. The initial
input to the FocusConjunction algorithm is the set {Sin} and the normalized
Focus formula is x(v1)∧n(v1, v) as shown in the previous section. Thus XS0

= {Sin} and for the first call to FocusLiteral we have XS = {Sin}, ϕ ≡ 1 and
ϕ′ ≡ x(v1). Since for every assignment Z we have [[x(v1)]]Sin(Z) *= 1/2, Sin is
added to the AnswerSet of FocusLiteral and returned to FocusConjunction
to become XS1. Thus XS1 = {Sin} and for the second call to FocusLiteral we
have XS = {Sin}, ϕ ≡ x(v1), and ϕ′ ≡ n(v1, v). The assignment Z = {v1 .→
u0, v2 .→ u} is the only assignment for which [[x(v1) ∧ n(v1, v)]]Sin(Z) = 1/2,
we call FocusAssignment with Sin, n(v1, v), and Z and the result is the three
structures Sf0, Sf1, and Sf2 (see Section /refSe:FocusAssignment). Thus of
the second iteration of the loop XS = {Sf0, Sf1, Sf2}. For each of these
structures no assignment evaluates the formula to 1/2 thus all three of them
are added to the AnswerSet and returned to FocusConjunction to become
XS2. Since this is the last step the final result is {Sf0, Sf1, Sf2}.

6.3 Focusing on Literals

FocusAssignment is called with a structure S, a literal ϕ and an assignment
Z such that [[ϕ]]S(Z) = 1/2. A case analysis is performed. If the formula
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is a negation we call the function recursively without the negation (since
negation does not change the definiteness of a formula). If the formula is
1/2, it is invalid since the Focus formula should be 2-valued. If the formula
is an equality then the only possible reason for FocusAssignment to be called
is if the assignment maps both variables into a the same summary node. In
this case no Focus is possible and an error message is given.

The common case is that the formula is a k-ary predicate. Using the
assignment we compute the relevant tuple of the predicate whose value is
1/2. In this case we need to check that no more than one of nodes in the
tuple is a summary node. If two or more of the nodes in the tuple are
summary nodes then the Focus will result in an infinite structure and an
error message is given. If none of the nodes in the tuple is a summary node
then there are two cases for the value of this tuple in structures embedded
into the given structure - 0 and 1. We thus generate two structures one with
the value of the tuple forced to 0 and one with the value of the tuple forced
to 1. If one of the nodes in the tuple is a summary node then there is a third
case - a structure where some of the nodes embedded to the summary node
result in a tuple whose value is 0 and some of the nodes result in a tuple
whose value is 1. For this kind of structures we create a third structure
where the summary node is expanded into two summary nodes (the values
of all the predicates for these new summary nodes are equal to the value of
the original summary node) for one of the summary nodes the value of the
tuple is 0 and for the other 1.

For example, as described in the last section FocusAssignment is called
once for n(v1, v), with S = Sin and Z = {v1 .→ u0, v .→ u}. Since u is a
summary node and u0 isn’t we generate three structures, Sf0, Sf1, and Sf2

as shown in Figure 8.

6.4 Using Functional Properties in Focus

The functional properties of the predicates give us an interesting insight
into the structures that Focus should generate. For example, if a unary
predicate is declared unique then Focus should never generate a structure
where that predicate holds for two different nodes because that structure
does not represent any valid concrete structure and will be discarded by
Coerce. This optimization can be very important in terms of the number
of structures created For example, focusing on a unique unary predicate
that evaluates to 1/2 on m nodes creates m + 1 structures instead of > 2m

structures.
Another use of the functional properties is to turn summary nodes into
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non-summary nodes whenever possible. For example, if an unary predicate
is declared unique and holds for a summary node then the summary node
can be safely turned into a non-summary node (since the predicate can
not be true for more than one node). This feature is important since as
we saw in Section 6.3 an infinite number of structures is created when a
binary predicate is focused on a self loop of a summary node, thus, turning
summary nodes into non-summary nodes in the process enables us to focus
on formulae that would otherwise create an infinite number structures.

For example, look at Figure 8. The binary predicate n is a function.
Taking advantage of this fact in the focus, we can turn u into a non-summary
node in the Sf1 and u.1 into a non-summary node in Sf2.

The most important functional properties in terms of focus are unique,
function, and invfunction since they enable us to perform both optimiza-
tions. When taking functional properties into account the order in which
we focus the literals of the conjunction is important since we want to turn
summary nodes into non-summary nodes as soon as possible. A possible
good order is to focus first on all the predicates that have unique, func-
tion, or invfunction functional properties and only then on the rest of the
predicates.

6.5 The Actual Implementation

The actual implementation of the Focus operation has another problem to
consider. The algorithm as specified here required recomputing all the as-
sigments that evaluate the formula to 1/2 for each structure and after every
change. This can be very inefficient. The actual implementation keeps track
for each structure the partial assignments that satisfy the sub-formula and
in each step only considers assignments that extend them. The algorithm
has to deal with another problem when computing ∪ of sets of structures.
These structures are not necessarily bounded structures. Computing ∪ re-
quires comparing structures to check that they are not already in the set.
Without bounded structures we are forced to use general isomorphism be-
tween graphs as comparison which is exponential. Without comparing the
structures, the algorithm would create the same structure many times, which
is very inefficient.

The source of the problem is in focusing on a conjunction. The algorithm
focuses in each step on a literal for each assignment that satisfies the pre-
ceding sub-formula. For assignments that differ only in variables not used
in the current literal the same structures are created.

The solution to the problem is similar to an optimization done in de-
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ductive databases. The assignments are projected into the relevant set of
variables and the literal is focused only with assignments that differ in vari-
ables used in the given literal. The assignments are not recalculated at every
iteration, they are accumulated as the focus proceeds, and projected in each
step onto the set of variables still needed in future iterations.

The algorithm as currently implemented in TVLA has several drawbacks.
One, it only supports nullary, unary and binary predicates. Support for n-
ary predicates is not available but can be added. Two, certain formulae can
cause cases were the algorithm returns structures on which the formula still
evaluates to 1/2. The result is ofcourse still conservative (i.e., the set of
embedded concrete structures is still the same).

7 Active Nodes

TVLA also supports dynamic creation and deletion of individuals from the
structure. Such changes are necessary in order to model statements such as
malloc and free, which can affect the actual existence of concrete nodes.
TVLA’s support for dynamic changes of individuals is very general and goes
well beyond manipulation needed for shape analysis. Furthermore, it also
supports very compact representation of structures which is comparable to
[SRW98], thereby solving a major open problem in [SRW99].

Conceptually, a TVLA user can assume that the number of individuals
is infinite. However, in every structure the number of active individuals is
always finite. Operations such as malloc and free are modeled in the TVP
by modifying the active property of individuals.

The active property of individuals is maintained by a designated unary
predicate ac, where acS(u) = 1 indicates that the individual u is active in
the structure S. In shape analysis, acS(u) can be one of the following,

• 1 — indicating that u represents at least one concrete node in all the
concrete structures represented by this structure.

• 1/2 — indicating that u may not be present in some structures (i.e.,
it is possible that u does not represent a concrete node in one or more
of the concrete structures represented by this structure).

• 0 — indicating that u does not represent any concrete node in any of
the concrete structures represented by this structure, and can thus be
discarded by the implementation.
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The rest of this section is organized as follows: We start with a gener-
alized definition of embedding in Section 7.1. We then show what modi-
fications should be done to formula evaluation (Section 7.2), Coerce (Sec-
tion 7.3), and Focus (Section 7.4). Section 7.5 defines the mechanisms that
support creating new nodes (new) and removing unneeded nodes (retain).
We conclude with a description of single structure analysis (Section 7.6).

7.1 Generalized Embedding

Definition 7.1 Let S and S′ be two structures. Let f : US → US′

. We say
that f embeds S in S′ (denoted by S "f S′) if (i) for every predicate p
(including sm and ac) of arity k and all u1, . . . , uk ∈ US,

pS(u1, . . . , uk) " pS′

(f(u1), . . . , f(uk)) (11)

and (ii) for all u′ ∈ US′

(|{u | f(u) = u′}| > 1) " smS′

(u′) (12)

and (iii) for all u′ ∈ US′

having acS′

(u′) = 1, there exists u ∈ US such that
f(u) = u′.

We say that S can be embedded in S′ (denoted by S " S′) if there
exists a function f such that S "f S′.

If all the individuals are active then this definition is equivalent to Defi-
nition 2.3, since the third requirement implies that f is surjective.

An equivalent embedding theorem exists for the generalized version of
embedding, i.e., formulae with definite values in S′ agree on these values
with every S embedded into S′.

Theorem 7.2 [Generalized Embedding Theorem]. Let S, S′ be two
structures, and let f : US → US′

be a function such that S "f S′. Then, for
every formula ϕ and complete assignment Z for ϕ, [[ϕ]]S(Z) " [[ϕ]]S

′

(f ◦ Z).
Proof: Appears in Appendix B.

7.2 Formula Evaluation

Formula evaluation is modified slightly in to handle maybe active nodes.
Let Z be an assignment such that S, Z |= ϕ. If Z contains a node which
is maybe active, it is possible that in some concrete structures it does not
exist, thus, the formula must evaluate to unknown for that assignment. The
new definition of the meaning of a formula is given below.
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Definition 7.3 The meaning of a formula ϕ, denoted by [[ϕ]]S(Z), yields a
truth value in {0, 1, 1/2}. The meaning of ϕ is defined inductively as follows:

Atomic For a logical literal l ∈ {0,1,1/2}, [[l]]S(Z) = l (where l ∈ {0, 1, 1/2}).

For an atomic formula p(v1, . . . , vk),

[[p(v1, . . . , vk)]]
S(Z) = pS(Z(v1), . . . , Z(vk))

For an atomic formula (v1 = v2),

[[v1 = v2]]
S(Z) =







0 Z(v1) *= Z(v2)
1 Z(v1) = Z(v2) and smS(Z(v1)) = 0
1/2 otherwise

Logical Connectives For logical formulae ϕ1 and ϕ2

[[ϕ1 ∧ ϕ2]]
S(Z) = min([[ϕ1]]

S(Z), [[ϕ2]]
S(Z))

[[ϕ1 ∨ ϕ2]]
S(Z) = max([[ϕ1]]

S(Z), [[ϕ2]]
S(Z))

[[¬ϕ1]]
S(Z) = 1 − [[ϕ1]]

S(Z)

Quantifiers If ϕ is a logical formula,

[[∀v1 : ϕ]]S(Z) = min
u∈US

max(1 − acS(u), [[ϕ1]]
S(Z[v1 .→ u]))

[[∃v1 : ϕ]]S(Z) = max
u∈US

min(acS(u), [[ϕ1]]
S(Z[v1 .→ u]))

Transitive Closure For (TC v1, v2 : ϕ)(v3, v4),

[[(TC v1, v2 : ϕ)(v3, v4)]]
S(Z) =

max
n ≥ 1, u1, . . . , un+1 ∈ U,
Z(v3) = u1, Z(v4) = un+1

min(
n

min
i=1

[[ϕ]]S(Z[v1 .→ ui, v2 .→ ui+1]),
n

min
i=2

acS(ui))

As for transitive closure, the requirment is that every path that includes
a node which is maybe active should give 1/2. Since we use the semi-ring
algorithm for calculating the transitive closure, the only change needed is
that the update formula changes from

n∗(v1, v2) = n∗(v1, v2) ∨ (n∗(v1, v) ∧ n∗(v, v2))

to
n∗(v1, v2) = n∗(v1, v2) ∨ (ac(v) ∧ n∗(v1, v) ∧ n∗(v, v2))
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7.3 Coerce

The effect on Coerce is of course more severe. If the assignment that breaches
a constraint contains maybe active nodes we must ignore that breach since
the body evaluates to unknown.

7.4 Focus

The Focus operation is also affected by the addition of maybe active nodes.
The definition of Focus requires the formula to evaluate to unknown if the
assignment contains maybe active nodes, this means that the focus operation
must make sure that all the assignments that contain maybe active nodes
and thus should be evaluated to unknown are focused in a sense that each
maybe active node might either exist or not exist. In the algorithm, every
time a new variable is added to the assignment and is bound to a maybe
active node, the structure is replaced with two structures, one in which the
node exists and is active and another were the node does not exist.

7.5 Actions

We now describe how the concept of active nodes is used to model operations
that create new nodes or remove unneeded nodes.

7.5.1 New

Some actions require the creation of new nodes (e.g., in response of a malloc

statement). Two forms of %new are supported: (i) create a single new
node, and (ii) given an unary formula, duplicate all the nodes that poten-
tially satisfy the formula. In both cases a new predicate isNew is introduced
to the duration of this action and set to 1 for each node created in this action.
In the case (ii), a binary predicate called instance is introduced connecting
each duplicated node with its matching new node. If the duplicated node
was a summary node, the new node is a summary node too.

For a %new with an unary formula ϕ(v1) we evaluate

acS(v) = acS(v) ∨ ∃v1 : ϕ(v1) ∧ instance(v, v1)

to determine which nodes should be active after the new. Notice that the
formula ϕ(v1) might evaluate to 1/2 in which case acS(v) = 1/2 because
some concrete structures represented by S may not satisfy ϕ(v1) and thus v
should not be in them.
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7.5.2 Retain

Some actions require the deletion of nodes (e.g., in response to a free com-
mand). We use %retain with a unary formula ϕ specifying which nodes
should be retained after the action. Nodes that do not potentially satisfy
the formula are removed along with the associated values in the predicates.

For a %retain with an unary formula we evaluate

acS(v) = acS(v) ∧ ϕ(v)

to determine which nodes should be active after the new. Notice that the
formula ϕ(v) might evaluate to 1/2 in which case acS(v) = 1/2 because
some concrete structures represented by S may not satisfy ϕ(v) and thus v
should still exist in them.

7.6 Single Structure

Single structure analysis is a well known idiom in the program analysis
community. It is used a for more efficient (in terms of time and space)
but less precise analysis. The support for maybe active nodes gives us a
way to represent all the structures in at a CFG node in a single structure.
The algorithm needed to complete the picture is it that of joining a new
structure with an existing structure resulting in a structure that represents
all the concrete structures that either of these structures represent.

The Join algorithm works when both structures are blurred using the
same set of abstraction predicates. The nodes are renamed to their canonic
names before applying the Join. Join is given in Figure 41.

7.6.1 Using Nullary Predicates to Improve Precision

The main problem with single structure analysis is the loss of precision.
Fortunately, in most of the programs analyzed we are able to reconcrete
structure precision by modifying the join operation slightly. The join no
longer creates a single structure, but at most 3k structures were k is the
number of nullary predicates in the analysis. Two structures that differ in
the values of their nullary predicates are not merged (this is similar to the
concept of abstraction in unary predicates).

For shape analysis, we add the instrumentation

nn[x]() = ∃(v) : x(v)

which states that the program variable x is not null. The results are promis-
ing since most of the singly list functions and even the bubble sort with
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Join(S1, S2: structure) : structure
US = US1 ∪ US2

foreach u ∈ US − (US1 ∩ US2) do
acS(u) = 1/2

od
foreach u ∈ US1 ∩ US2 do

acS(u) = acS1(u) & acS2(u)
od
foreach p ∈ P of arity 0

pS() = pS1() & pS2()
od
foreach p ∈ P − {ac} of arity 1 do

foreach u ∈ US1 − US2 do
pS(u) = pS1(u)

od
foreach u ∈ US2 − US1 do

pS(u) = pS2(u)
od
foreach u ∈ US1 ∩ US2 do

pS(u) = pS1(u) & pS2(u)
od

od
foreach p ∈ P of arity 2 do

foreach u1 ∈ US1 − US2 , u2 ∈ US1 do
pS(u1, u2) = pS1(u1, u2)
pS(u2, u1) = pS1(u2, u1)

od
foreach u1 ∈ US2 − US1 , u2 ∈ US2 do

pS(u1, u2) = pS2(u1, u2)
pS(u2, u1) = pS2(u2, u1)

od
foreach u1, u2 ∈ US1 ∩ US2 do

pS(u1, u2) = pS1(u1, u2) & pS2(u1, u2)
pS(u2, u1) = pS1(u2, u1) & pS2(u2, u1)

od
od
returnS

Figure 41: Joining two structures.
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value swap function are analyzed accurately. For timing information for the
single graph analysis see Appendix A.

8 Conclusion

The method of three-valued logic based program analysis can handle a wider
class of problems than shape analysis. We have successfully analyzed Mobile
Ambients even though it is a completely different paradigm. We can also
show partial correctness of algorithms such as the sorting programs.

However, it is clear that some analyses go beyond the scope of TVLA
and it is not obvious whether TVLA can or should be extended to support
them. Specifically, the concrete semantics must be expressible using first
order logic with transitive closure, in particular no arithmetic is supported.

Program analysis algorithms are hard to design, prove correct and imple-
ment. The concept of three-valued logic based analysis greatly simplifies the
problem since it allows us to work with the concrete operational semantics
instead of the abstract semantics. The use of three-valued logic guarantees
that the transition to the abstract semantics is sound. TVLA has two major
contributions to the simplification of problem. First, it provides a platform
on which one can easily try new algorithms and observe the results. Second,
the constraints generated from the instrumentation predicates are a very
strong tool in assuring the correctness of the analysis. The instrumentation
predicates are updated separately from the core predicates and any dis-
crepancy between them causes a constraint breach which is reported by the
system. We often found out that this exposes bugs in the concrete seman-
tics. When a core or instrumentation predicate is updated in a way which
is inconsistent with its functional properties or with the defining formula of
some instrumentation predicate, a constraint breach happens.

A common principle in program analysis is that there is a trade-off be-
tween the time of analysis and its precision. In case of three-valued logic
based analysis, this is not always true. A more precise analysis creates less
unneeded structures and thus runs faster. A good example for this is the
merge function (see Section 4.1) where adding the reachability information
drastically reduces both the space and the time needed for the analysis.

The use of instrumentation predicates is a very good tool in improving
precision, and have a very low cost. If a class of programs has an invariant
that is true for most of them and can improve precision if the invariant holds
but it doesn’t necessarily hold in all the, using an instrumentation predicate
to track that invariant allows us to use the power of the invariant without
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limiting ourselves to programs that were that invariant holds. For example,
we use cyclicity instrumentation to update the reachability information. If
a singly linked list is acyclic updating the reachability information can be
done more precisely. The use of the cyclicity instrumentation allows us to
take advantage of this property without limiting the analysis to acyclic lists.

The adaptation of three-valued logic based analysis to single structure
can in many cases help solve the space problems found in the analysis. An
interesting insight is that not all the structures should be merged. A mech-
anism similar to abstraction should exist to allow differentiating between
structures. The mechanism introduced here of using nullary predicates is
shown to be sufficient for analyzing singly linked accurately.

The system was implemented in Java which is an Object-Oriented imper-
ative language. The use of strong libraries such as the Collections library
enables the development of complex data structure manipulation without
using a more high level language such as ML. A prototype of the system
was also written using a deductive database system (CORAL see [RSSS93]).
However, since the operations needed are not exactly within the scope on the
current deductive databases, the results were unsatisfactory. The analysis
was not feasible even for a few loop iterations of the reverse example.

8.1 The Essence of Instrumentation

Our experience indicates that instrumentation predicates are essential to
achieving efficient and useful analyses. First, they are helpful in debug-
ging the operational semantics. The instrumentation predicates are updated
separately from the core predicates, and any discrepancy between them is
reported by the system. Our experience indicates that in many cases this
reveals bugs in the operational semantics.

The conventional wisdom in static analysis is that there is a trade-off
between the time of analysis and its precision (i.e., that a more precise anal-
ysis is more expensive). In case of 3-valued-logic-based analysis, this is not
always true. Often it happens that an analysis that uses more instrumenta-
tion predicates creates fewer unneeded structures, and thus runs faster. A
good example of this is the merge function (see Section 4.1) where adding
the reachability information drastically reduces both the space and the time
needed for the analysis.

In general, the introduction of instrumentation predicates is a very good
tool for improving precision, and has a very low cost. If a property holds
for many but not all nodes of the structures that arise in a program, then
we can use an instrumentation predicate to track at which program points
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and for which nodes the property holds. This allows us to use the impli-
cations of the property without limiting ourselves to programs where the
property holds . For example, we use cyclicity instrumentation to update
the reachability information. If a singly linked list is acyclic, updating the
reachability information can be done more precisely. The use of cyclicity
instrumentation allows us to take advantage of this property without limit-
ing the analysis to programs in which lists are always acyclic. Of course, in
some programs, such as rotate, where cyclicity is temporarily introduced,
we may lose precision when evaluating formulae in 3-valued logic. This is in
line with the inherent complexity of these problems. For example, updating
reachability in general directed graphs is a difficult problem.

Formally, instrumentation predicates allow us to narrow the set of 2-
valued structures represented by a 3-valued structure, and thereby avoid
making overly conservative assumptions in the abstract interpretation of
a statement. For example, the structure shown in Figure 4 represents an
acyclic singly linked list, which means that all of the list elements repre-
sented by u are not shared. Thus, is[n]S4(u) = 0. The same holds for
u0. Without the sharing information, the structure might also represent
2-valued structures in which the linked list ends with a cycle back to itself.

For unary instrumentation predicates, we can fine-tune the precision
of an analysis by varying the collection of predicates used as abstraction
predicates. The more abstraction predicates used, the finer the distinctions
that are made, which leads to a more precise analysis. For example, the fact
that is is an abstraction predicate allow us to distinguish between shared
and unshared list elements in programs such as the swap function, where
a list element is temporarily shared. Of course, this may also increase the
cost of the analysis.

8.2 Comparison to Related Work

TVLA is based on the theoretical framework introduced in [SRW99], [SRW00],
and [NNS00]. The thesis introduces new algorithms for Coerce and Focus
and extends the framework to handle single structure analysis. The thesis
also introduces the concept of functional properties of predicates and their
use in automatic constraint generation. The Coerce algorithm was optimized
to avoid unnecessary recomputations by using lazy evaluation, imposing an
order of constraint evaluation and using relational database query optimiza-
tion techniques (see [Ull89]) to evaluate formulae. The Focus algorithm was
generalized to handle an arbitrary formula. This was crucial to support the
formulae used for analyzing sorting programs. In addition, the Focus algo-
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rithm in TVLA was also optimized to take advantage of functional properties
of the predicates.

The worst-case space of the analysis was improved from doubly exponen-
tial to singly exponential by means of the option in which all the structures
with the same nullary predicate values are merged together. Thus, the num-
ber of potential structures becomes independent of the number of nodes in
the structure. Interestingly, in most of the cases analyzed to date the anal-
ysis remains rather precise. However, in some cases it actually increases the
space needed for the analysis due to decreased precision.

For an elaborate comparison of three-valued based analysis with other
methods of program analysis see [SRW00]. TVLA is a framework for intra-
procedural program analysis. There are frameworks for inter-procedural
program analysis such as PAG ([AM95]), SHARLIT ([TH92]), OPTIMIX
[Aßm98] and Vortex ([Cha99]). The main advantage of these systems over
TVLA is the support for inter-procedural analysis and their scalability to
larger programs. The main problem of these systems is that they force the
user to work directly with the abstract semantics. This makes the process
of developing new program analysis algorithms much harder especially for
parametric analyses. In TVLA the user can specify the concrete operational
semantics and the system takes care of the transition to the abstract se-
mantics. It may be possible to integrate TVLA into one of these systems to
benefit from both approaches.

BANE ([Aik99]) is a constraint solver based on set constraints. The
constraints used in TVLA are first order logic constraints which are much
stronger. Specifically, the number of constraints in BANE is bounded by the
size of the program. In TVLA since the constraints can contain quantifiers
and even transitive closure, the number of BANE like constraints is not
bounded by the size of the program. On the other hand, BANE is flow-
insensitive and usually much more space and time efficient than TVLA.

8.3 Further Work

The system is very useful in the analysis of small programs. However, there
are many issues that should be solved before the analysis can scale to larger
programs. Most of these are theoretical and not implementation issues.

The design of instrumentation predicates remain the hardest part in de-
veloping a good program analysis algorithm. Tools and methodologies to
assist in the development of such predicates are needed. The system does
take a step in the right direction by automatically generating constraints
from the defining formula of the instrumentation and the functional prop-
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erties of these predicate thus helps in maintaining the correctness of the
update formulae for these predicates.

The choice of which of the predicates should be abstraction predicates is
very important for the space/precision trade-off. We lack a good methodol-
ogy for selecting these predicates.

The programs analyzed can have multiple types in them. Types can
be simulated by using unary predicates. However, this approach creates
problems in the automatic generation of constraints, and the complicates
the definition of instrumentation predicates. A better approach may be to
use multi-sorted logics to define the different types. The user will supply for
each node in the input its type and every time a node is generated by the
new command, a type will be associated with it.

The algorithm proposed for Focus cannot handle equality, although it
should be possible to define an algorithm that can. The Focus algorithm
handling of transitive closure also leaves something to be desired. For exam-
ple, a focus on a binary predicate considers the whole structure instead of
the path between the two given nodes, which can create more graphs than
necessary.

The update formulae and preconditions are formulae that can have sev-
eral quantified or free variables. The naive algorithms is exponential in the
number of quantifications since all the possible assignments of free variables
are generated before the formula is evaluated. Notice however that this
number is usually independent of the size of the analyzed program, at least
not in the cases we tried. Techniques for optimizing the formula evaluation
be taken for the database world and adapted to Kleene logic.

The relationship between the structures generated during the analysis
can be of interest especially in the case of flow-insensitive analysis. We
could create a structure derivation graph and use it to answer temporal
logic like queries. For example, in the case of Mobile Ambients, we could
answer queries such as does the packet p always reside in the router r after
it entered it.

The current analysis engine only supports intra-procedural analysis. The
analysis of complex programs requires the extension of the system to support
inter-procedural analysis. The problem of shape analysis in the context of
procedures still lacks a good solution. The known methods such as call-
string has major space problems and cannot handle recursion in reasonable
precision.

Focus and Coerce are two semantic reductions used in the analysis. We
want to find a way to unite the two mechanisms. This can be useful for
example, in limiting the number of structures created by Focus that would
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later be discarded in Coerce. Another possible unification is to describe the
full operational semantics and the Focus operation as constraints and use a
sophisticated constraint solver as the analysis engine.

The extensive use of logic in the system raises the question of how well
could deductive database system handle the needed operation. A prototype
of such a system was written, the initial results however, were not promising.

The major problem in terms of scalability of the system is the space
needed for the analysis. We use some techniques to alleviate the problem
but they are not enough. A possible solution to the problem may be to use
Binary Decision Diagrams (BDDs) to represent multiple logical structures
([Bry92]). This will be particularly useful if we could find a way to apply
the operations needed (Coerce, Focus, Blur) on a BDD without expending it
back to the underlying logical structures (such methods are known to exist
for formula evaluation). Another possible solution to the space program is
the use of secondary storage for structures that are not participating in the
current operation.
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A Empirical

The timing information in this section is for a Linux system running on a
PentiumII 400MHz. It is known that using JVM on Windows the system
runs about 20% faster.

The system was used to analyze on a number of examples (see Section 4).
The timing information for all the functions analyzed is given in Table 9, as
are the results for the functions we analyzed in single structure mode. No-
tice, the number of structures created is total number of structures that were
created and not discarded by the Coerce and not the number of structures
kept in the CFG node.

The system utilizes several algorithms for improving the speed of the
Coerce operation (see Section 5). The effect of each of the optimizations on
the time Coerce takes is given in Table 8.

B Proof of the Generalized Embedding Theorem

Theorem 7.2 Let S and S′ be two structures, and let f : US → US′

be
a function such that S "f S′. Then, for every formula ϕ and complete
assignment Z for ϕ, [[ϕ]]S(Z) " [[ϕ]]S

′

(f ◦ Z).
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Function All No incremental No transitive No None
formula closure constraint
evaluation memoization ordering

insert 1.714 2.672 2.769 2.956 6.305
reverse 0.625 0.861 1.116 1.085 2.392
getlast 0.359 0.479 0.811 0.515 1.5
search 0.29 0.357 0.706 0.458 1.177
create 0.247 0.294 0.314 0.299 0.321
delete 1.645 2.134 3.254 2.663 6.993
swap 0.305 0.378 0.481 0.396 0.737
null deref 0.402 0.36 0.75 0.497 1.308
del all 0.168 0.164 0.147 0.144 0.172
fumble 0.628 0.85 1.264 0.898 2.481
rotate 0.288 0.346 0.335 0.343 0.551
merge 5.503 8.47 11.909 11.209 35.801

insert sort 114.359 187.504 173.207 302.761 702.744

Table 8: Timing for Coerce with various levels of optimization
.

Proof: By the De Morgan laws it is sufficient to show the theorem for
formulae involving ∧, ¬, ∃, and TC . The proof is by structural induction
on ϕ:
Basis: For atomic formula p(v1, v2, . . . , vk), u1, u2, . . . , uk ∈ US , and Z =
[v1 .→ u1, v2 .→ u2, . . . , vk .→ uk] we have

[[p(v1, v2, . . . , vk)]]
S(Z)

= pS(u1, u2, . . . , uk) (Definition 7.3)
" pS′

(f(u1), f(u2), . . . , f(uk)) (Definition 2.3)
= [[p(v1, v2, . . . , vk)]]S

′

(f ◦ Z) (Definition 7.3)

Also, for l ∈ {0, 1, 1/2}, we have:

[[l]]S(Z)

= l (Definition 7.3)
" l (Definition 2.1)
= [[l]]S

′

(f ◦ Z) (Definition 7.3)

Let us now show that

[[v1 = v2]]
S(Z) " [[v1 = v2]]

S′

(f ◦ Z).

81



Function Multiple Structures Single Structure
Number of Time Number of Time
Structures (seconds) Structures (seconds)

insert 140 2.862 60 3.233
reverse 70 1.217 54 2.121
getlast 40 0.785 30 1.687
search 40 0.708 30 1.45
create 21 0.511 10 0.434
delete 145 2.739 92 6.073
swap 31 0.7 19 0.663
null deref 48 0.752 37 1.511
del all 11 0.42 9 0.446
fumble 81 1.406 56 2.135
rotate 25 0.629 17 0.92
merge 327 8.253 96 14.308

splice ([SRW99]) 22 1.968
splice (here) 22 1.144
insert sort 3773 160.132
bubble sort 3946 186.609

Table 9: Time and number of structures for functions analyzed.
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First, if [[v1 = v2]]S
′

(f ◦ Z) = 1/2 then the theorem holds for v1 = v2, triv-
ially. Second, if [[v1 = v2]]S

′

(f ◦ Z) = 1 then by Definition 7.3, (i) f(Z(v1)) =
f(Z(v2)) and (ii) smS′

(f(Z(v1))) = 0. Therefore, by Definition 2.3, Z(v1) =
Z(v2) and smS(Z(v1)) = 0 both hold. Hence, by Definition 7.3, [[v1 = v2]]S(Z) =
1. Finally, suppose that [[v1 = v2]]S

′

(f ◦ Z) = 0 holds. In this case, by
Definition 7.3, f(Z(v1)) *= f(Z(v2)). Therefore, Z(v1) *= Z(v2), and by Def-
inition 7.3 [[v1 = v2]]S(Z) = 0.
Induction step: Suppose ϕ is a formula with free variables v1, v2, . . . vk. Let
Z be a complete assignment for ϕ. If [[ϕ]]S

′

(Z) = 1/2, then the theorem
holds trivially. Therefore assume that [[ϕ]]S

′

(f ◦ Z) ∈ {0, 1}. We distin-
guish between the following cases:

Logical-and ϕ ≡ ϕ1 ∧ ϕ2. The proof splits into the following subcases:

Case 1 : [[ϕ1 ∧ ϕ2]]S
′

(f ◦ Z) = 0.
In this case, either [[ϕ1]]S

′

(f ◦ Z) = 0 or [[ϕ2]]S
′

(f ◦ Z) = 0. Without
loss of generality assume that [[ϕ1]]S

′

(f ◦ Z) = 0. Then, by the induc-
tion hypothesis for ϕ1, we conclude that [[ϕ1]]S(Z) = 0. Therefore, by
Definition 7.3, [[ϕ1 ∧ ϕ2]]S(Z) = 0.

Case 2 : [[ϕ1 ∧ ϕ2]]S
′

(f ◦ Z) = 1.
In this case, both [[ϕ1]]S

′

(f ◦ Z) = 1 and [[ϕ2]]S
′

(f ◦ Z) = 1. Then, by
the induction hypothesis for ϕ1 and ϕ2, we conclude that [[ϕ1]]S(Z) = 1
and
[[ϕ2]]S(Z) = 1. Therefore, by Definition 7.3, [[ϕ1 ∧ ϕ2]]S(Z) = 1.

Logical-negation ϕ ≡ ¬ϕ1. The proof splits into the following subcases:

Case 1 : [[¬ϕ1]]S
′

(f ◦ Z) = 0.
In this case, [[ϕ1]]S

′

(f ◦ Z) = 1.
Then, by the induction hypothesis for ϕ1, we conclude that [[ϕ1]]S(Z) =
1.
Therefore, by Definition 7.3, [[¬ϕ1]]S(Z) = 0.

Case 2 : [[¬ϕ1]]S
′

(f ◦ Z) = 1.
In this case, [[ϕ1]]S

′

(f ◦ Z) = 0.
Then, by the induction hypothesis for ϕ1, we conclude that [[ϕ1]]S(Z) =
0.
Therefore, by Definition 7.3, [[¬ϕ1]]S(Z) = 1.

Existential-Quantification ϕ ≡ ∃v0 : ϕ1. The proof splits into the fol-
lowing subcases:

Case 1 : [[∃v1 : ϕ1]]S
′

(f ◦ Z) = 0.
In this case, for all u ∈ US , [[ϕ1]]S

′

((f ◦ Z)[v1 .→ f(u)]) = 0. Then,
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by the induction hypothesis for ϕ1, we conclude that for all u ∈ US

[[ϕ1]]S(Z[v1 .→ u]) = 0. Therefore, by Definition 7.3, [[∃v1 : ϕ1]]S(Z) =
0.

Case 2 :[[∃v1 : ϕ1]]S
′

(f ◦ Z) = 1.
In this case, there exists a u′ ∈ US′

such that [[ϕ1]]S
′

((f ◦ Z)[v1 .→ u′]) =
1. By Definition 7.3, acS′

(u′) = 1, thus by Definition 7.1, there ex-
ists a u ∈ US such that f(u) = u′ and [[ϕ1]]S

′

((f ◦ Z)[v1 .→ f(u)]) = 1.
Then, by the induction hypothesis for ϕ1, we conclude that [[ϕ1]]S(Z[v1 .→ u]) =
1, and by Definition 7.1 acS(u) = 1. Therefore, by Definition 7.3,
[[∃v1 : ϕ1]]S(Z) = 1.

Transitive Closure ϕ ≡ (TC v1, v2 : ϕ1)(v3, v4). The proof splits into the
following subcases:

Case 1 : [[(TC v1, v2 : ϕ1)(v3, v4)]]S
′

(f ◦ Z) = 1.
Let Z(v3) = u1 and Z(v4) = un+1 thus (f ◦ Z)(v3) = u′

1, and
(f ◦ Z)(v4) = u′

n+1. By Definition 7.3, there exist u′
1, u

′
2, . . . , u

′
n+1 ∈

US′

such that for all 1 ≤ i ≤ n,
[[ϕ1]]S

′

((f ◦ Z)[v1 .→ u′
i, v2 .→ u′

i+1]) = 1. Also, for all 2 ≤ i ≤ n,

acS′

(u′
i) = 1.

Thus, by Definition 7.3, there exist u2, . . . , un ∈ US such that for all
2 ≤ i ≤ n, f(ui) = u′

i. Therefore, by the induction hypothesis, for
all 1 ≤ i ≤ n, [[ϕ1]]S(Z[v1 .→ ui, v2 .→ ui+1]) = 1. Also, by Defini-
tion 7.3, for all 2 ≤ i ≤ n, acS(ui) = 1. Hence, by Definition 7.3,
[[(TC v1, v2 : ϕ1)(v3, v4)]]S(Z) = 1.

Case 2 : [[(TC v1, v2 : ϕ1)(v3, v4)]]S
′

(f ◦ Z) = 0.
We need to show that [[(TC v1, v2 : ϕ1)(v3, v4)]]S(Z) = 0. Assume on
the contrary that [[(TC v1, v2 : ϕ1)(v3, v4)]]S

′

(f ◦ Z) = 0, but [[(TC v1, v2 : ϕ1)(v3, v4)]]S(Z) *=
0. Because [[(TC v1, v2 : ϕ1)(v3, v4)]]S(Z) *= 0, by Definition 7.3 there
exist u1, u2, . . . , un+1 ∈ US such that Z(v3) = u1, Z(v4) = un+1,
and for all 1 ≤ i ≤ n, [[ϕ1]]S(Z[v1 .→ ui, v2 .→ ui+1]) *= 0. Hence, by
the induction hypothesis there exist u′

1, u
′
2, . . . , u

′
n+1 ∈ US′

such that
(f ◦ Z)(v3) = u′

1, and (f ◦ Z)(v4) = u′
n+1 and for all 1 ≤ i ≤ n,

[[ϕ1]]S
′

((f ◦ Z)[v1 .→ u′
i, v2 .→ u′

i+1]) *= 0. Therefore, by Definition 7.3,

[[(TC v1, v2 : ϕ1)(v3, v4)]]S
′

(f ◦ Z) *= 0, which is a contradiction.
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%n = {u, u0}
%p = {

sm = {u:1/2}
n = {u ->u:1/2, u0 ->u:1/2}
x = {u0:1}
nn[x] = 1
r[n,x] = {u:1, u0:1}

}

nn[x]

nn[y]

u0
x

r[n,x]

u
r[n,x]

n

n

Figure 42: The TVS of an input structure for the reverse function analysis
and its graphical representation.

C User’s Manual

This Appendix is intended as a user’s manual for the TVLA system. The
reader should be familiar with Three-Valued Logic based Analysis before
consulting with this manual. The manual is accompanied by an example of
the analysis of the reverse function in Figure 1.

C.1 Graphical Representation

3-valued structures are displayed using graphical representation. For exam-
ple an input structure for the reverse function is given in Figure 42.

Colors: Colors are used to represent the different values for predicates.
Solid black is true (1), dotted black is unknown (1/2), and red is false (0).

Shapes: A diamond represents a nullary predicate. The name of the
predicate is written within the diamond. For example, in Figure 42, nn[x]
is true thus it is drawn as a solid black diamond and nn[y] is false thus it is
drawn as a red diamond.

An ellipsis represents a node (annotated with its name if -significant is
used). If the ellipsis is dotted then the node is a summary node, and if it is
green then the node is maybe active. Unary predicates are written within
the ellipsis. If the value if different from 1 it is appended to predicate’s name
(i.e., = 0 or = 1/2).

Edges: Binary predicates are represented as directed arrows between the
left and right arguments and annotated by the name of the predicate. If a
binary predicate has the same value for both u1->u2 and u2->u1 the two
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/* Set of the program variables */
%s PVar {x, y, t}
/* Program variables definition */
foreach (z in PVar) { %p z(v1) unique box }
/* Selector definition */
%p n(v1, v2) function
/* Is shared instrumentation */
%i is[n](v) = E(v1, v2) (v1 ! = v2 & n(v1, v) & n(v2, v))
/* Reachability instrumentation */
foreach (z in PVar) { %i r[n, z](v) = E(v1) (z(v1) & n∗(v1, v)) }
/* Non-Null instrumentation */
foreach (z in PVar) { %i nn[z](v) = E(v1) z(v1) {1, 0, 1/2} }
/* Cyclicity instrumentation */
%i c[n](v) = n+(v, v)

Figure 43: The declarations part of the TVP program for the reverse func-
tion shown in Figure 1.

edges are replaced with a bidirected edge.

C.2 TVP

The specification of the analysis including the control flow graph of the
analyzed program is given in a format called TVP (Three Valued Program).
A TVP file should end with the extension ’.tvp’. The TVP for the analysis
of the reverse function is given in Figures 43, 44, and 45. The syntax of a
TVP program is given in Figure 46. The syntax is in extended BNF when
A "% B denotes a (possibly empty) sequence of A’s separated by B’s.

C.2.1 Predicates

TVLA supports nullary, unary and binary single-sorted predicates. The
predicates are 3-valued, i.e. the value of the predicate at each tuple of nodes
from the structure’s universe is either true (1), false (0) or unknown (1/2).

The predicate name can be either <id> or <id>[<id>, . . . , <id>], the
latter is used when the predicate name is dependent on the names of other
predicates (this is especially good for instrumentations). The predicate’s
arity is determined by the number of variables in parenthasis (currently
the names of the variables are of no consequence). For a description of
the proprties that can be used in predicate declaration see Table 10. The
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/******************************** Generic Actions *****************************/
%action Is Not Null Var(x1) { %t x1 + ” != NULL”

%f { x1(v) } %p E(v) x1(v)
}
%action Is Null Var(x1) { %t x1 + ” == NULL”

%f { x1(v) } %p ! (E(v) x1(v))
}
/********************************* List Actions *******************************/
%action Set Null L(x1) { %t x1 + ” = NULL”

{ x1(v) = 0
nn[x1]() = 0
r[n, x1](v) = 0}

}
%action Copy Variable L(x1, x2) { %t x1 + ” = ” + x2

%f { x2(v) }
{ x1(v) = x2(v)

nn[x1]() = nn[x2]()
r[n, x1](v) = r[n, x2](v)}

}
%action Get Next L(x1, x2) { %t x1 + ” = ” + x2 + ”->” + n

%f { E(v1) x2(v1) & n(v1, v)}
{ x1(v) = E(v1) x2(v1) & n(v1, v)

nn[x1]() = E(v1, v) x2(v1) & n(v1, v)
r[n, x1](v) = r[n, x2](v) & (c[n](v) | ! x2(v))}

}
%action Set Next Null L(x1) { %t x1 + ”->” + n + ” = NULL”

%f { x1(v) }
{ n(v1, v2) = n(v1, v2) & ! x1(v1)

is[n](v) = is[n](v) & ( ! (E(v1) x1(v1) & n(v1, v)) |
E(v1, v2) v1 ! = v2 & (n(v1, v) & ! x1(v1)) &
(n(v2, v) & ! x1(v2)))

r[n, x1](v) = x1(v)
foreach(z in PVar-{x1}) {

r[n, z](v) =(c[n](v) & r[n, x1](v)?
z(v) | E(v1) z(v1) & TC(v1, v)(v3, v4)(n(v3, v4) & ! x1(v3)) :
r[n, z](v) & ! (r[n, x1](v) & ! x1(v) & E(v1) r[n, z](v1) & x1(v1)))

}
c[n](v) = c[n](v) & ! (E(v1) x1(v1) & c[n](v1) & r[n, x1](v))}

}
%action Set Next L(x1, x2) { %t x1 + ”->” + n + ” = ” + x2

%f { x1(v), x2(v) }
{ n(v1, v2) = n(v1, v2) | x1(v1) & x2(v2)

is[n](v) = is[n](v) | E(v1) x2(v) & n(v1, v)
foreach(z in PVar) {

r[n, z](v) = r[n, z](v) | r[n, x2](v) & E(v1) r[n, z](v1) & x1(v1)
}
c[n](v) = c[n](v) | (r[n, x2](v) & E(v1) x1(v1) & r[n, x2](v1))}

}

Figure 44: The actions part of the TVP program for the reverse function
shown in Figure 1.
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/* The program’s CFG and theeffect of its edges */
n 1 Set Null L(y) n 2 /* y = NULL; */
n 2 Is Null Var(x) exit /* x == NULL */
n 2 Is Not Null Var(x) n 3 /* x != NULL */
n 3 Copy Variable L(t, y) n 4 /* t = y; */
n 4 Copy Variable L(y, x) n 5 /* y = x; */
n 5 Get Next L(x, x) n 6 /* x = x->n; */
n 6 Set Next Null L(y) n 7 /* y->n = NULL; */
n 7 Set Next L(y, t) n 8 /* y->n = t; */
n 8 Set Null L(t) n 2 /* t = NULL; */

n_8

n_2

t = NULL

n_3

x != NULL

exit

x == NULL

n_7

y->n = t

n_6

y->n = NULL

n_5

x = x->n

n_4

y = x

t = y

n_1

y = NULL

Figure 45: The CFG part of the TVP program for the reverse function
shown in Figure 1 and its corresponding CFG.

<display> flag controls which values of the predicate are shown in the graph
(in DOT). The default is {1, 1/2} specifying that true and unknown values
are to be shown.

Instrumentation predicates are declared very similarly to core predicates.
They use the same naming mechanism and the same flag specification. The
only difference is that for a instrumentation predicate the user has to attach
its defining formula. The formula’s free variables should match the variables
given in the parenthasis (with the exception of precondition free variables
explained later).

C.3 Formulae

The formula is evaluated in the context of a three valued logical structure
using the semantics of Kleene’s 3-valued logic. Transitive closure of a gen-
eral binary formula works as follows, the last pair of variables are the free
variables of the subformula, and the first pair of variables are the variables
of the result TC relation. The formula ϕcond?ϕtrue : ϕfalse is an if-then-else
formula. If ϕcond evaluates to true the value of the formula is ϕtrue. If ϕcond

evaluates to false the value of the formula is ϕfalse. If ϕcond evaluates to
false the value of the formula is ϕtrue & ϕfalse.

C.3.1 Consistency Rules

Most of the needed consistency rules for an analysis are automatically gen-
erated from the functional properties of predicates (see Table 10) and from
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<tvp> ::= <decl>∗ %% <action>∗ %%
<cfg edge>∗ [%%<cfg node>"%,]

<decl> ::= %s <id> <set expr>
| %p <pred> ( <var>"%, ) <flags>
| %i <pred> ( <var>"%, )

= <formula> <flags>
| %r <formula> ==> <formula>

<pred>::= <id>[ [ <id>"%, ] ]
<flags> ::= <prop>∗ [<display>]
<display> ::= {<kleene>"%,}
<kleene> ::= 1 | 0 | 1/2
<action> ::= %action <id> ( <id>"%, ) {

[%t <message>]
[%f { <formula>"%,]
[%p <formula>]
(%message <formula> -> <message>)∗

[%new [<formula>]
[{ <update>∗ }]
[%retain <formula>]}

<message> ::= (<quoted string>|<pred>)"%+
<set expr> ::= <set name> | { <id>"%, }

| <set expr> - <set expr>
| <set expr> + <set expr>

<update> ::= <pred> ( <var>"%, ) = <formula>
<formula> ::= <formula> & <formula>

| <formula> | <formula>
| <formula> -> <formula>
| <formula> <-> <formula>
| !<formula>
| (<formula> ? <formula> : <formula>)
| <var> == <var>
| <var> != <var>
| A( <var>"%, )<formula>
| E( <var>"%, )<formula>
| <pred>( <var>"%, )

| <pred>+( <var> , <var> )

| <pred>*( <var> , <var> )

| TC( <var> , <var> )
( <var> , <var> ) <formula>

| <kleene>
<cfg edge> ::= <cfg node>

<id> ( <id>"%, ) <cfg node>

// TVP Program

// Set declaration
// Core predicate
// Instrumentation predicate

// Consistency rule
// Predicate name
// Predicate’s flags
// Display properties
// Atomic values
// Action declaration
// Action title
// Focus formulae
// Precondition
// Report messages
// New formula
// Update formulae
// Retain formula
// Message for user

// Set difference
// Set union
// Update formula
// logical ∧
// logical ∨
// logical implication
// logical equivalence
// logical ¬
// if-then-else
// equality
// inequality
// ∀v1, v2, . . . , vn

// ∃v1, v2, . . . , vn

// Predicate (nullary, unary
// or binary)
// Transitive closure on
// binary predicate
// Reflexive and transitive
// closure on binary predicate
// Transitive closure on a
// general binary formula
// Atomic values
// CFG edge

Figure 46: The syntax of a TVP program.
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Property Arity Meaning Consistency Rule
unique unary true for p(v1) & p(v2) ==> v1 == v2

atmost E(v1) p(v1) & v1 != v ==> !p(v)
one node

function binary partial E(v) p(v, v1) & p(v, v2) ==> v1 == v2
function E(v) p(v1, v) & v2 != v ==> !p(v1, v2)

invfunction binary inverse of E(v) p(v1, v) & p(v2, v) ==> v1 == v2
a partial E(v) p(v, v2) & v1 != v ==> !p(v1, v2)
function

symmetric binary p(v1, v2) ==> p(v2, v1)
antisymmetric binary p(v1, v2) & p(v2, v1) ==> v1 == v2

p(v1, v2) & v1 != v2 ==> !p(v2, v1)
reflexive binary v1 == v2 ==> p(v1, v2)
antireflexive binary v1 == v2 ==> !p(v1, v2)
transitive binary E(v2) p(v1, v2) & p(v2, v3) ==> p(v1, v3)

abs unary p is an N/A
abstraction
predicate

nonabs unary p is not an N/A
abstraction
predicate

box unary display p N/A
in a box

Table 10: Properties of predicate p, their meaning and the generated con-
sistency rules.
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Head Condition Result
0 The structure is invalid - discard.
1 Never breached.
predicate The value of the predicate for the The structure is invalid - discard.

assignment is false
The value of the predicate for the Coerce it to true.
assignment is unknown

negated The value of the predicate for the The structure is invalid - discard.
predicate assignment is true

The value of the predicate for the Coerce it to false.
assignment is unknown

variable The two variables are assigned The structure is invalid - discard.
equality to different nodes

The variables are assigned to the Coerce into a non summary node.
same node and it is a summary node

variable The two variables are assigned The structure is invalid - discard
inequality to the same node

Table 11: Result of a consistency rule breach according to its head.

the instrumentation predicates defining formulae. Sometimes it is useful to
write explicit consistency rules. The left hand side of the consistency rules
(the body) is a general formula, The right hand side (the head) is either
an atomic formula or the negation of an atomic formula, ==> stands for ".
Notice that the free variables of the body must match the free variables of
the head exactly. A consistency rule state that for each assignment to the
free variables of the body that evaluate the body to 1, the head should also
evaluate to 1. The action performed in case of a consistency rule breach
(i.e., the body of the consistency rule is evaluated to 1 and the head to 0 or
1/2 for a certain assignment) depends on the head of the consistency rule
as seen in Table 11.

C.3.2 Actions

The arguments of an action are predicate names that can be used in the
following formulae and will be replaced with the actual arguments when the
action is used (see Section C.4). The actions section of the reverse program
is given in Figure 44.

Title (%t): The title of the action, used when printing the action’s
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structures.
Focus (%f): The focus formulae for this action. Applied before the

precondition.
Precondition (%p): The precondition formula is evaluated to check

whether this action should be performed. If the formula is closed then a
result of true or unknown triggers the application of this action. If the for-
mula contains free variables then the action is performed for each assignment
into these variables potentially satisfying the formula. The free variables can
be used in the following formulae and have the expected assignment.

Report Messages (%message): Messages that are reported to the user
if the formula given is potentially satisfied.

New (%new): A mechanism for creating new nodes. An optional unary
formula can be supplied. If no formula is supplied then a single new node
is created. If a formula is supplied then each node potentially satisfying the
formula is duplicated, a new temporary binary predicate called instance is
created matching the old node with the new node. In both cases an unary
predicated called isNew is created an set true only for the nodes created
in this action. Both these predicates can be used in the following formulae.
The default value of all the predicates when applied to the new nodes is
false. If the unary formula supplied evaluates to uknown for a certain node,
the matching new node becomes maybe active.

Update Formulae: Update formulae dictate how predicates should be
updated as a result of an action. If a predicate does not have an update
formula then its value before the action is retained. The formula is evaluated
on the old structure with the exception that nodes and predicates added in
the %new declaration are available. The variables is parenthesis should
number as the predicate’s arity and should match the free variables of the
formula. Notice that the update clauses are not comma separated.

Retain (%retain): A mechanism for removing unwanted nodes. An
unary formula must be supplied. Only nodes that potentially satisfy the
formula are retained. If the formulae supplied evaluates to uknown for a
certain node, it becomes maybe active instead of being removed.

C.4 Control Flow Graph

The program to be analyzed is composed of CFG nodes with edges con-
necting between them and actions to be performed on these edges. A flow
insensitive analysis can be done by using a single CFG node with actions on
self loops. A CFG node is declared implicitly by the existence of incoming or
outgoing CFG edges. The action used in the CFG edge must be predefined
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in the actions section. The actual arguments passed to the action substitute
the formal arguments used in its definition.

If only a subset of the nodes should be printed the list of CFG nodes to
print should be supplied as the last section. The default behavior is printing
the structures available in each CFG node.

C.5 Usability

TVP was designed to be written generically. Several constructs are used to
support this notion.

C.5.1 Comments

TVP supports C++ style comments: everything between /* and */ or from
// to the end of that line is ignored.

C.5.2 Preprocessing

The TVP file can be preprocessed using the standrard C preprocessor before
being parsed by the system. The preprocessor enables file inclusion (using
the #include directive), macro expenasion (using the #define directive), and
conditional evaluation (using the #if, #endif, etc. directives).

C.5.3 Sets

Sets are a mechanism for grouping together several predicate names to be
used later in a foreach clause or a composite formula. Set operation such
as union (+), and subtraction (−) can be used to create set expressions.

C.5.4 Foreach

Sometimes a declaration, a focus formula or an update formula should be
repeated several times for different predicates, to avoid code duplication
TVP support the mechanism of foreach. The syntax is:
foreach (<pred> in <set expr> ){code }

The code between the curly braces is duplicates once for each set member
and each time the predicate is substituted with the appropriate set member.
Foreach can be applied to any declaration (core predicate, instrumentation
predicate, consistency rule), to focus formulae and to update formulae in
actions.

The foreach mechanism can handle composite predicate names, in this
case only the identifiers within the square braces are substituted.

93



<tvs> ::= <structure>∗

<structure> ::= <universe> <predicates>
<universe> ::= %n = { <node>"%, }
<predicates> ::= %p = { <predicate>∗ }
<predicate> ::= <pred> = <kleene> /* Nullary */

| <pred> = { (<node> [<value>])"%, } /* Unary */
| <pred> = { (<leftnode>-><rightnode> [<value>])"%, } /* Binary */

<node> ::= <id>
| [ <node>"%, ]
| <node>.(0|1)

<value> ::= : <kleene>

Figure 47: The syntax of a TVS file.

C.5.5 Composite Operations

Composite operations are a mechanism for applying a logical operation (only
& and | are supported) on a set of formulae. This is similar to foreach but
can be used inside a formula. The syntax is:
<op>/{<formula> : <pred> in <set expr>}

If the set is empty the natural member for the operation is used (0 for
| and 1 for &). For example, the expression |/{z(v) : z in {x, y, t} } is
expanded to x(v) | y(v) | t(v).

C.6 TVS

The input structures for the analysis are described in a format call TVS
(Three Valued Structure). For example, the TVS for input structure used
in the analysis of the reverse function is given in Figure 42. A TVS file
should end with the extension ’.tvs’. The syntax of a TVS file is given in
Figure 47.

The value of a predicate defaults to false if not specified differently in
the TVS structure. All the node names used in the predicates must be
predefined. All the predicate names used must be declared in the TVP
program. If a node (or a node pair) are specified without a value, the
default of true (1) is taken. TVS supports the same commenting style as
TVP.
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C.7 Command Line Options

Usage: tvla <program name> <input file> [-ms <number>] [-mm <number>] [-d] [-post]

[-join {all$|$ext}] [-b2] [-action [f][c]pu[c][b]] [-significant]

[-single] [-log logfile] [-dump <number>] [-noautomatic] [-rotate]

Maximum number of structures: A complex analysis may take a very
long time and especially in debug time may run idefinitly. To see a partial
result, you can limit the number of structures generated using the -ms
<number> flag.

Maximum number of messages: The number of messages reported by
the system can be limited. This can be used to supply a condition that if
holds the system stops (by limiting the number of messages to 1).

Debugging : When debugging a new analysis it is useful to see the anal-
ysis as it progresses and not just its final result. Use the -d flag to see the
structure in the different phases of execution. In debug mode all the con-
sistency rules are printed together with their dependencies and each time a
structure is discarded because of an ireparable consistency rule breach, the
problematic consistency rule, assignment and structure are shown. Notice
that this mode generates very large PostScript files so you would probably
want to use the -ms flag.

Order of action evaluation: The default order of evaluation in the iter-
ative algorithm is reverse post order. However, when the analysis is very
time/space consuming and you want to see the structures that reach the end
of the analyzed program as soon as possible, use the -post flag to use post
order and get the desired effect.

Join locations: The default behaviour of the system is to preform a join
(thus saving all the structures that reached the program location) only in
every back edge in the control graph (approximatly once in every loop).
Performing join at every program location is the most efficient in terms
of the number of structures generated (use -join all). However, it is very
space consuming since structures are saved at every program location. For a
compromise between the two extremes use -join ext which preforms a join
only at the beginning of each extended block (i.e., at every merge point in
the control graph).

Blur : Two rules are implemented when determining which node should
remain distinguished in the blur. The default is two nodes must be different
in the value of at least one abstraction predicate. The second is two nodes
must be different in a definite value of at least one abstraction predicate.
Use the -b2 flag to use the second rule.
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Computing the effect of an action: Sometime you what to try and run
the algorithms (Coerce, Focus, Precondition, Update, Blur) in a different
order or quantity then the default one (Focus, Precondition, Update, Co-
erce, Blur). Use the -action <seq> flag to control the computation of the
action’s effect. The argument is of the form [f][c]pu[c][b] when: f - Focus, c
- Coerce, p - Precondition, u - Update, b - Blur.

Node names: It may be useful to track the nodes themselves from the
original structures and during the different actions. Use the -significant to
try and keep the names of the nodes significant. A materialization creates
two nodes <node>.0 and <node>.1 according to the focused value of the
predicate in question. A blur that causes merging of nodes names the new
nodes [<node>,. . . ,<node>]. However, the nodes allocated by the new
operation use never before used node names in the form m<number>. In
complex analyses using significant names may create very large names that
create unreadable graphs.

Single Structure: The system supports single structure analysis using
the -single flag. All the structures in a CFG node that match with their
nullary predicates’ values are merged into a single structure. The option is
very useful for analyses that would otherwise take a very long time and create
many structures. It is worth considering the -action fcpucb specification
when working in single structure mode.

Log file: A log file name can be supplied. In this case the majority of
the information written to the stderr is redirected to the log file.

Dumping intermidate results: Some of the analyses can take a very long
time. To see intermidate results the -dump flag can be used. The number
supplied is the number of structures generated between each dump of the
current set of structures per program location.

No automatic constraint generation: Sometimes it is useful to supply all
the constraints by hand without the automatically generated constraints.
To do this supply the -noautomatic flag.

Landscape graphs: To draw the graphs from left to right instead of top
to bottom use the -rotate flag.
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