On the utility of cutpoints for monitoring program
execution

Shachar Rubinstein

School of Computer Science, Tel-Aviv University, Israel

August 2006

Ishacharl@post.tau.ac.il

Acknowledgements

| would like to thank:

Prof. Shmuel (Mooly) Sagiv for his trust in me, guidance amdhluable
support.

Noam Rinetzky for his always positive outlook and encoeragnts, advice
and ideas.

The rest of Prof. Sagiv’s group for their advice and assista

Dr. Erez Petrank and Dr. Harel Paz, for pointing out the igy of using
garbage collection algorithms to detect cutpoints.

The Jikes RVM group and researchers mailing list, esggchedsoc. Prof.
J. Eliot B. Moss, for their help in learning how to use this aing software.

Prof. Sivan Toledo and his students for providing compatatesources.
Prof. Amiram Yehudai for assisting in the area of design dytract.
Anat Lotan for improving the thesis write up.

Dr. Ran Shaham and Liam Roditty, who have helped me whens$eashing
for directions.

Yotam Shtossel, Dr. Zur Izhakian and Daphna Amit for theimpany and
companionship along the way.

Dan, Micha, Carine, Asi, Noa, Irit, Orit, Dana and Yael, wéiodured and
encouraged me during my work. | apologize if | have omittegose.

For my loving family, without whom | would not be here today.

The Israeli National Academy of Science for their finansigbport.

Abstract

Sharing mutable data is a powerful programming techniquiif lnakes programs
hard to understand.ocal heapsandcutpointsare a notion introduced by Rinetzky
et. al. ([29]) in order to understand and analyze programs.

In this work we develop a runtime tool for measuring the nurmddeutpoints
which can occur in a given program. The tool encourages progrers to reduce
the number of cutpoints, thus eliminating erroneous al@$tading to cutpoints.
We introduce a way to refine the results of the tool by addingteon of live and
dead cutpointand an algorithm for their detection. Finally, we demortst@use
for cutpoints by developing a new algorithm for runtime dhe€class invariants.

Contents

1 Introduction 5
1.1 Background 5
1.2 Mainresults 6
1.3 Thesisorganization 7
2 Local heaps and cutpoints 8
21 Localheap e 8
22 Cutpoint e e 9
2.3 Usage e 10
3 Computing cutpoints 11
3.1 Preliminaries 11
3.2 Naiveattempts e 11
3.2.1 Scanningtheglobalheap 11
3.2.2 Usingasourcelist 12
3.3 Oursolution 12
3.4 The cutpoint detection algorithm 13
3.4.1 Acyclicdatatypes e 14
3.4.2 Arunningexample e 14
4 Computing live and dead cutpoints 18
4.1 Liveanddeadcutpoints 18
4.2 Computing live cutpoints 19
4.2.1 Collecting cutpoint referencing fields 22
4.2.2 Findingliveness e 23
4.3 Computing external sources using source lists 23
5 Early detection of class invariant violations 35
5.1 Designbycontract 35
5.1.1 The sharing problem 36
5.2 Computing invalid class invariants 40
5.2.1 Usingcutpoints 40
5.2.2 Holding cutpoints L L 40
5.2.3 Thecutpointlist 41
5.24 Backwardscan 41

5.3 The computation algorithm 42

Results 46

6.1 Motivation 46

6.2 Measurements 46
6.2.1 Top cutpoint producingmethods 46
6.2.2 Well-known classeseffect 46
6.2.3 Methods’ maximum cutpoints disparity a7

6.3 Thebenchmarks 48
6.3.1 Soot: a Java optimization framework 8 4
6.3.2 The Kawa language framework 48
6.3.3 SPECJVM98 benchmarks 48
6.3.4 TVLA: 3-valued logic analysisengine 48

6.4 Results e 49
6.4.1 Shared immutable objects 49
6.4.2 StriNg 50
6.4.3 Methods’ maximum cutpoints disparity 50

Related work 52

Future Work 54

8.1 Suggestions for futurework o oL 4 5
8.1.1 Prototype 55

8.2 Limitations e 55

Prototype implementation 63

A.l Pickingaplatform 63
A.l.lLimitations e 63
A.l2Thebuildprocess 64

A.2 Common preliminaries e 64
A.2.1 Workingontheuserprogram. 64
A22Holdingsources e 67

A.3 Computations specific00 68
A.3.1 Computing cutpoints preparations 68
A.3.2Liveanddeadcutpoints. 68
A.3.3 Early detection of class invariants violation 68

A.4 Otherimplementationnotes 9 6
A.4.1 Uninterruptiblecode 69
A.4.2 Summary of object headerchanges 71

Results processing 72

B.1 The prototype raw file 72

B.2 The summaryfile 73

B.3 Database processing e 75

Chapter 1

Introduction

1.1 Background

Understanding the behavior of heap manipulating (objeented) programs is a
challenge. Such programs exhibit complex relationshife/dsen the structure of
the program and the reference structure of heap allocatgdteb Aliasing be-
tween references makes programs hard to understand, agetaugerify. Visibility
keywords such aprivate suggest that some data should be encapsulated, but do
not prevent public methods from returning aliases to thaifgesedly) internal data.
Indeed sharing mutable data complicates reasoning abogitgons both informally
and formally.

On the other hand, sharing mutable data is a powerful pragiagtechnique.
For example, the model-view-controller design patterr fbtures the essential
structure of many graphical user interfaces: many cometr®land views share the
same object. Indeed it is obvious that while sharing andialipis problematic
some sharing, e.g., temporary sharing created inside despnpcedure is usually
harmless and very useful.

In [29], Rinetzky et. al. define the notion twfical heapsandcutpoint objects
The local heap of a procedure contains only the objects addelirom the formal
parameters. Cutpoints are objects which separate the heeq (that can be ac-
cessed by a procedure) from the rest of the heap (which—fhenviewpoint of
that procedure—is non-accessible and immutable).

Programs with few (or even no) cutpoints can be simpler teetstdnd and to
analyze. For example, in [30], a shape analysis for cutgoiet programs was
developed. The main idea is that the absence of cutpoiraw/salo extract the
meaning of a procedure as an input/output relation whicimdependent of the
sharing created in the calling context, and thus suppoésthion of procedural
abstraction. Gotsman et. al. [13] developed an analysipragrams with few
cutpoints.

1.2 Main results

This thesis develops a runtime tool for measuring the nurobeutpoints which
can occur in a given program. The tool is totally automatibe Tool encourages
programmers to reduce the number of cutpoints, this elitimga&rroneous aliasing
leading to cutpoints. It can also be used by tool designarsderstand the behavior
of existing programs. Finally, it can be used for more effecthecking of cases
where the class (object) invariant is violated.

The main algorithm in the tool uses a runtime garbage caligct reduce the
cost of scanning the entire global heap. Specifically, ogorghm is based on the
solution presented in [2] for the cycle detection problemefierence counting based
garbage collection.

We make two observations concerning [2] solution. The filstenvation is
that the cycle collection algorithm divides the global h&ap two regions: The
potential roots of cyclic garbage and their transitive gles and the rest. The
second observation is that cycles, which are not garbagejetected by finding
references from the second region to the first.

By changing the potential roots to be the method’s formahpeaters, the first
region becomesthe local heap. Applying the second obsematthis modification
adjusts [2] solution to solve the cutpoint detection prable

The tool is implemented on top of Jikes RVM [16] which is a Jairdual
machine written in Java. Jikes RVM already implements thgerithm of [2] and
is freely available.

The contributions of this thesis can be summarized as fatiow

» We develop a novel algorithm for computing cutpoints usiiegcle collection
algorithm. The cost of the algorithm is linear in the sizeaufdl heap.

» We define the notion diive cutpoint objects, which are cutpoints that are
referred by the program after the procedure returns via aasacpath by-
passing the local heap. The main idea is that cutpoint abjehtch are not
live (dead) represent harmless sharing.

* We develop an algorithm for computing live cutpoints.

» We develop a new algorithm for checking class invariantse main idea is
to use cutpoints for checking violations due to mutationshared objects.

» We applied the algorithm to several benchmarks.

We limit our work to programming languages that pass objecfrocedures
by reference only, not by value. For example, The C++ prognarg language can
pass objects on the call stack.

1.3 Thesis organization

The rest of the thesis is organized as follows: Chapter 2 eefiatpoints and local
heaps. Chapter 3 presents the cutpoint detection algari@impter 4 defines live
and dead cutpoints and presents two new algorithms: liygoauts detection and
external sources computation. Chapter 5 introduces thingharoblem in design
by contract and presents a cutpoint-based algorithm fdy eatection of class
invariants violation. Chapter 6 shows our empirical resulChapter 7 discusses
related work and Chapter 8 concludes this thesis with ideafufure work. The
appendices include prototype implementation details ipekglix A and details
about results processing in Appendix B

Chapter 2

Local heaps and cutpoints

This chapter defines the local heap and cutpoint notions.

2.1 Local heap

Definition 2.1.1 (Local Heap)Thelocal heapfor an invocation of a procedure
is the part of the heap which is accessible to the procedune.dbjects thabelong
to the local-heapre those reachable from the procedure’s formal paramedecs
local variables.

A local heap exists only in the context of a procedure’s ettenuand during
that execution only. Thehis pointer in instance methods is considered a formal
parameter too.

Definition 2.1.2 (Global Heap)Theglobal heapis the whole heap
This definition is used to prevent confusion with the locajne

Observation 2.1.3 Object stack continuous reachablility An object is reachable
from the program’s call stack continuously.

If an object becomes unreachable from the stack at depth, not because
it has become garbage, and the stack depth grows, then thet atijl not be
reachable again until the stack depth returng.tolf an object is unreachable,
there is no possibility for deeper stack procedures to rélaelobject (excluding
objects reachable from static fields). Therefore the staaklrability of an object
is continuous.

The object stack continuous reachability property is ukealighout the paper
as a basis for computations, appearing in Section 4.3 artib8&c2.3.

fi
f1 u9

700 X2 f1 -

>

>
g X1
S y
s |
< Kl
é i 22
7 main /zl
Stack Heap

Figure 2.1: An illustration of the cutpoints for an invoatiof the method oo .

2.2 Cutpoint

Cutpoints are objects in the local heap that separate taetieap from the rest of the
heap (excluding the objects pointed to by formal paramgtditsey are additional
“entry points” to the local heap and extend a procedurescetio include parts of
the heap that are not part of the local heap (also known asteonist'side effect”).

Definition 2.2.1 (Cutpoints)A cutpointfor an invocation of procedurgis a heap-
allocated object that, in the program state in which the exien ofp’s body starts,
is: (i) reachable from a formal parameter of (but not pointed to by one) and
(i) pointed to by an object in the global heap, that doespads througlany object
that is reachable from one @fs formal parameters.

Example 2.2.2 Fig. 2.1 depicts the memory state at the entryztio. The call
stack is depicted on the left side of the diagram. Each cabmis labeled with the
name of the function it is associated with. Heap-allocatbjbcts are depicted as
rectangles labeled with their location. The value of a peintariable (resp. field)
is depicted by an edge labeled with the name of the varialgsp(rfield). The
shaded cloud marks the part of the heap thab can access. The cutpoints for the
invocation ofzoo (u7 and«9) are heavily shaded. Note that 0 is not a cutpoint
although it is pointed-to by pending access paths that ddanaetrse through the
shaded part of the heap, e.x2 andy. f1.f1. This is because10 is also
pointed-to byh, zoo’s formal parameter. (Taken from [29])

2.3 Usage

We suggest using the local heap, instead of the global heamderstand a pro-
gram’s memory behavior. The global heap can contain a greabar of objects
while a procedure may access only a very small fraction ahth&herefore the
local heap perspective assists in gaining a better undelista of the effect of a
procedure.

Using cutpoints complements the local heap perspectivgether they provide
a novel way of investigating the behavior of programs andt tiige of memory.
The following chapters will provide ways to utilize the two gain interesting
information about programs.

10

Chapter 3

Computing cutpoints

This chapter defines a new algorithm for computing cutpoifte chapter presents
two naive solutions and shows why the new algorithm is hetter

3.1 Preliminaries

Recall that cutpoints are defined for a method at the timeefrtbocation.

In order to identify a cutpoint, the algorithm has to deterenivhich objects
belong to the local heap of the invoked method and are reféwen outside without
passing through a formal parameter.

An objectdenotes a class object or an array objecfiefd in a class object is
a class member variable. An array element is referred tdfiiatdan an array.

3.2 Naive attempts

3.2.1 Scanning the global heap

A simple method to compute cutpoints is to scan the local bedghen to scan the
global heap. This is performed in two stages:

1. The local heap is scanned and each object is marked as local

2. The global heap is scanned and cutpoints are identifiedicéNthat here
references between local heap objects are not traversed.

The cost of the first stage 3(n + e) wheren is the number of objects and
e is the number of references in the local heap . The cost ofébersl stage is
O(N + E) whereN is the number of objects anfd is the number of references in
the global heap. Therefore, since usuallg. N ande < F, the dominant cost is
O(N + E).

11

3.2.2 Using a source list

Scanning the global heap on each method is expensive. Onesappto reduce this
cost is to maintain a list of objects which refer to a giveneabfinverse reference
fields). This allows to check if an object in the local heapeferred from outside
without scanning the global heap. This listis referred ta&eurce List An object
o, which has a reference field pointing to an obj&cis referred to as aourceof
o' and mentioned asrefers too'.

This is performed in two stages:

1. The local heap is scanned. Every object in the local heaparked as local
in the list of each of the objects it refers-to.

2. The local heap is scanned and each object’s source lisecked. If the list
has objects not marked as local, the object is a cutpoint.

The cost of the first stage 8(n + e x s) wheres is the cost of searching the
source list for an object. The search cost is implementategendent. The cost of
the second stage B(n x d + e) whered is the cost of finding if there is at least
one unmarked object in the list €an be done in constant time, reducing the cost
of this stage t@(n + e). Therefore the dominant costi¥n + e x s).

The cost of maintaining the source lists for the objects édglobal heap is an
additional cost, which does not appear in the above. Thist@ssto be taken into
account when comparing the total cost of different soliiddevertheless, for the
sake of brevity we do not add it here.

3.3 Our solution

Our algorithm is based on the solution presented in [2] ferdycle detection prob-
lem in reference counting based garbage collection. Speltifi the synchronous
cycle collection algorithm, which is single-threaded. Beteless, other than the
following observations and their application, understagaf the aforementioned
work is not mandatory.

We make two observations concerning [2] solution. The filstepvation is
that the cycle collection algorithm divides the global he&ap two regions: The
potential roots of cyclic garbage and their transitive gles and the rest. The
second observation is that cycles, which are not garbagejetected by finding
references from the second region to the first.

By changing the potential roots to be the method’s formahpeaters, the first
region becomes the local heap and the second the global éezpding the local
heap. Applying the second observation to this modificatjnsts [2] solution to
solve the cutpoint detection problem.

This solution obliges a reference count garbage collectipim the case of other
garbage collection, a mechanism which maintains a refereognt for all objects.

The algorithm proceeds in three stages:

12

1. The local heap is scanned. Reference counts are deceinfentinternal
references.

2. The local heap is scanned. An object with a positive refarecount is a
cutpoint.

3. The local heap is scanned. Reference counts are increthértinternal
references.

The third stage restores the reference counts to theimafigalue.

The cost of each stage@¥(n + ¢) and, as a result, it is the dominant cost too.
The linear-in-the-local-heap cost is achieved by usinghglsicounter instead of
scanning the actual referencing objects.

Maintaining the reference counts adds another cost, whachbe ignored if
using a reference count garbage collector.

3.4 The cutpoint detection algorithm

Each objecT has a color and a reference count, denotexbdr (T) andRC(T)
respectively. The colors used are shown in Table 8Hi.| dr en(S) is a multi-
set of objects that obje& references, including duplicates, @snay reference an
object more than once. The algorithm is shown in Fig. 8dmrput eCut poi nt s

is invoked at the beginning of each relevant method. Theofdake procedures are
internal to the algorithmiar kGr ay andScanRoot s are identical to their version
in [2].

ComputeCutpoints(f) Whenever a cutpoint computation is needed on method
this procedure is invoked. There are three pa@st Root s, which gathers
the roots for the algorithmvar kRoot s, which decrements the internal ref-
erences, anfican, which finds cutpoints and restores the internal references
to their original values.

GetRoots(f) The formal reference parameters of the methaake extracted and
inserted into théRoot s set.

MarkRoots(Roots) The first stage removes internal references in the local heap
by runningMar kGr ay on each reference collectedRoot s.

MarkGray(S) This procedure performs a simple depth-first traversal ®ftaph
beginning atS, marking visited nodes gray and removing internal refezenc
counts as it goes.

ScanRoots(Roots)For each objectiRoot s thatwas considered iar kGray(S) ,
this procedure invokes Scan(S,Roots) to detect cutpaintssstore reference
counts.

13

Color Meaning
Gray Reference count decremented
Black Initial color/Checked for cutpoint

Table 3.1: Colors in use

Scan(S,Roots)The second and third stages are optimized and implementatkas
stage, reducing one local heap scan. This procedure scarisctd heap,
detecting cutpoints and restoring reference counts ta thr@inal value.
Object reference count is restored by performing a depth dearch and
incrementing references as it goes. References are reéstfiez the object
is checked for being a cutpoint. If the objegbelongs to thdRoot s set, it
is not reported as a cutpoint, since the formal parameteraarcutpoints.

3.4.1 Acyclic data types

[2] implements a scheme to determine acyclic classes. Ttw@uhypothesize
that this kind of objects compromise the majority of objantsnany applications.
Therefore the cutpoint detection algorithm includes acydata types, as this is
interesting information, which may help support this hyyasis.

3.4.2 A running example

Example 3.4.1 Fig. 3.2 shows the initial memory status. The graphics cotiwes
used here are used throughout the rest of the thesis. Thearathbllipses on each
object represent the number of references an object hascdlbe of the ellipse is
the currentcol or (T) of that object. References from the stack are not counted.
The call stack is labeled with the invoked methods when tee@rogram with the
example. The heap outside the local heap is printed as wiaaat.

ObjectB is passed as an actual parameter to an invoked method. Thikings
local heap is shown in Fig. 3.3 inside the cloud. The objee#sihable fromB are
C, E and F. Therefore they are part of the local heap.

Roots = {B}. The result of runnindvar kGr ay(B) is shown in Fig. 3.4. A
surrounding cloud is added to help locate the current loocad. The rest of the
heap is printed as translucent. Objectis referenced by object8 and F', which
are inside the local heap. Therefore the reference counbjgiodC' is down to zero.
ObjectsB, E and F' are referenced from outside the local hedpby A, E by D
and G by F'. The objects’ reference count indicates this fact and het@nd F
are cutpoints. ObjecB is not a cutpoint because it is a formal parameter.

RunningScan(B, Root s) returns the reference count to their original values
and colors the objects from gray to black. The result is thaeas in Fig. 3.3.

14

Comput eCut poi nt s(f)
Root s = Get Root s(f)
Mar kRoot s(Root s)
ScanRoot s(Root s)

Cet Root s(f)
Roots = {}
for each AP fornal paranmeter of nethod f
if (AP is an object reference)
add AP to Roots
return Roots

Mar kRoot s(Root s)
For each S in Roots
Mar kG ay(S)

Mar KGray(S)
if (color(S) !'= gray)
color(S) = gray
for each T in children(S)
RC(T) = RUT) - 1
Mar kGray(T)

ScanRoot s(Root s)
for each S in Roots
Scan(S, Root s)

Scan(S, Root s)
if (color(S) == gray)
if((RC(S) > 0) and (S not in Roots))
S is a cutpoint
color(S) = black
for each T in children(S)
Scan(T, Root s)

RO(T) = RO(T) + 1

Figure 3.1: Cutpoints detection algorithm

15

Stack grows this way

Figure 3.2: Detecting cutpoints example initial memory

Stack grows this way

Figure 3.3: Detecting cutpoints example method call

16

Stack grows this way

Figure 3.4: Detecting cutpoints example MarkGray result

17

Chapter 4

Computing live and dead
cutpoints

This chapter introduces live and dead cutpoints and presenalgorithm for their
detection.

4.1 Live and dead cutpoints

The cutpoints in a local heap provide a description of a nméthexternal sharing.
Nevertheless, the reported numbers may present an infietagei of the actual
impact of these cutpoints. A reference causing a cutpoint meaer be used, due
to being overwritten or because the reference owning oligeleased. In this
case, the cutpoint does not have any effect. This informatém be used to refine
the results from Section 3.4. Therefore the cutpoint défimits refined here. A
cutpoint referencing fiel@s an object’s field referencing a cutpoint, where the object
does not belong to the local heap at the time of the referetupaint detection. A
live cutpoint fieldis a cutpoint referencing field, which was read after the aintp
was detected and before it was overwritten, or before thereating object was
released. Otherwise the field iglaad cutpoint field A live cutpointis a cutpoint
where at least one of its cutpoint referencing fields is adipoint field. Otherwise

it is adead cutpoint The termlivenessis used to describe the process of finding
live cutpoints. This should not be confused with other usagieghe term, such as
variable liveness used in optimizing compilers.

Example 4.1.1 The following exemplifies the aforementioned terms. Thmpba
is shown in Fig. 4.2. The program uses a singly linked lissgJaNode, which is
shown in Fig. 4.1. The program initializes its data struetum lines 1-4. The result
of this initialization is shown in Fig. 4.3. Objedt is referenced by objectd, B
and C and has a reference count of three. The latter are referetged-cArray
and have a reference count of one each.

18

cl ass Node {
private Node mNext = null;
private int nData = O;

public Node(int _data, Node next) {
mMNext = _next;
mDat a = _dat a;

}

public void set Next (Node next) {
mMNext = _next;
}

publ i c Node get Next () {
return mNext;

}

public int getData() {
return nDat a;

}

Figure 4.1: Liveness example node class

After initializing, the program callpri nt at line 5. The actual parameter
passed is objecti. The resulting local heap is shown in Fig. 4.4. Running the cu
point detection algorithm at the beginningmfi nt detects objecL as a cutpoint
(The result of thé/ar kG- ay stage is shown in Fig. 4.5). Objedtis not a cutpoint
because it passes through a formal parameter, itself.

There are two cutpoint referencing fields (Objets field referencingB is
irrelevant as A is part of the local heap): ObjecB’s nNext and objectC’s
mMNext . The next call at line 6 assignsul | to objectB cutpoint referencing
field. Therefore objecB’s field is a dead cutpoint field. In lines 7 and 8 objéts
cutpoint referencing field is read. Thus obj&cs field is a live cutpoint field. As
a result the cutpoint detected pr i nt , objectL, is a live cutpoint.

4.2 Computing live cutpoints

Note: This computation handles heap references and dodgndte stack refer-
ences.
Finding live or dead cutpoints is carried out in three stages

1. Collecting cutpoint referencing fields into a list

19

public static void main(String[] args) {

1: Node tgt = new Node(O0, null);
2: Node[] srcArray = new Node[3];
3: for(int i=0;i<3;++i)
{
4. srcArray[i] = new Node(i+1,tqgt);
}
5: print(srcArray[0]);
6: srcArray[1] . set Next (null);
7: if(srcArray[2].getNext() != null)
{
8: print(srcArray[2].getNext());
}
}
public static void print(Node _toPrint)
{
9: if(_toPrint !'= null)
{
10: Systemout.println(_toPrint.getData());
}
}
Figure 4.2: Liveness example program
g
2
5
main q

Figure 4.3: Liveness example memory status of the progrdrigird.2
before line 5

20

Stack grows this way
I

print L

main

I —

Figure 4.4: Liveness example memory status of the progrdrigird.2
before line 9

=~

>

©

B

2

i

=

(2]

=

o

o

O]

ISl

O

i =
2 print [

main

oo |

Figure 4.5: Liveness example memory status of the progrdamgind.2
before line 9 after MarkGray

21

OnDet ect edCut poi nt (CP)
for each object Src referencing CP
if (Src is external to the |ocal heap)
for each field FId in Src referencing CP
add (Src,Fld) to TestedCutpoints

Figure 4.6: Collecting cutpoints for liveness

2. Finding if a cutpoint referencing field on the list is liveaead
3. Aggregating cutpoint referencing fields results inte lor dead cutpoints

The third stage can be carried out post or in-processing.fdlleeving compu-
tation performs the first two stages.

4.2.1 Collecting cutpoint referencing fields

Cutpoints are discovered on each method entry and theicepare collected there.
The collection is described in Fig. 4.6.

TestedCutpoints is a liveness candidate list. The list holds cutpoint refeiregy
fields as pairs of owning object and field. The cutpoint obpactbe obtained
by dereferencing the object and field.

OnDetectedCutpoint(CP) When a cutpoint is detected its referencing fields and
their owning objects are added T@st edCut poi nt s for tracking. The
added objects are outside the local heap. Selecting whigttslio add is
explained in Section 4.3

In order to compute live or dead cutpoints, the computatiaokis the objects
referencing a cutpoint. References are a one way addrassiciganism. Therefore
an object lacks any knowledge as to which objects referén&eanning the global
heap each time is one solution. Another possibility is tontan a source list for
each object and to find the external sources. Section 4.3sshow to find the
external sources in the source list.

A cutpoint referencing field may be detected again and agdoréitis accessed
and tested for liveness. This is because the object ownijdltl is unaccessible
until it becomes internal to the local heap (Observation3}. When the field is ac-
cessed, itisremoved by the computation fromftaet edCut poi nt s list. There-
fore there is no need to check for an existing entry when agadifield and source
pair to the list. Nevertheless, adding a source and its fielfisst edCut poi nt's
requires some work, which can be reduced, as shown in Setfon

22

WiteBarrier(Qbj, Fld)
if((Obj,Fld) is in TestedCutpoints)
remove (Obj, Fld) from Test edCut poi nts
CP = Cbj.Fld
report CP from (Qbj,Fld) as dead cutpoint referencing field

ReadBarri er (Qoj, Fl d)
if((Obj,Fld) is in TestedCutpoints)
remove (Obj, Fld) from Test edCut poi nts
CP = Cbj.Fld
report CP from (Qbj,Fld) as live cutpoint referencing field

On(Obj ect Rel ease(bj)
for each object reference field FlId in j
WiteBarrier(Qbj, Fld)

Figure 4.7: Finding object liveness

4.2.2 Finding liveness

There is one procedure for each case in the live and deadicutpéerence field
definitions.

WriteBarrier(Obj,FId) This procedure is called on every assignment to an object
reference field. Firstest edCut poi nt s is searched for the written source
and field. If found, then this field is reported as a dead cuatp@ferencing
field.

ReadBarrier(Obj,Fld) This procedure is called on every read from an object ref-
erence field. The procedure is the samaMast eBarri er (Qoj , Fl d)
but reports live cutpoint referencing field.

OnObjectRelease(Obj) When an object is released, its fields are not read any-
more. If the fields are tracked for liveness, then they areoxemu from
Test edCut poi nt s and declared as dead. This is conducted by iterating
overthe released object’s objectreference fields anahgaifii t eBar ri er
for each object-field pair.

4.3 Computing external sources using source lists

This section presents a new algorithm for determining lbeap external sources
in source lists.

23

Thefirst part of the liveness process, appearing in Figcél&cts only external
sources. When using a global heap scan for cutpoint detectigpoints are found
through external sources. If utilizing source lists, détgcof external sources can
be carried out as follows:

1. The local heap is scanned. Sources scanned are markedraalin

2. The local heap is scanned. The external sources are tlobgeanked as
internal. All internal markings are cleared.

Using this algorithm, the same external source can be eetexter and over
again. As mentioned in Section 4.2.1, overwriting does mesgnt a computation
error. Nevertheless it introduces additional work that barprevented. The fol-
lowing algorithm adds discovery information, providingthbility to distinguish
when a source has become external.

The algorithm takes advantage of the object stack contmueachablility prop-
erty (Observation 2.1.3) to mark objects in the source ligh the stack depth in
which they have become external. Comparing the referengijgct's external
depth to the current method’s stack depth will provide thewasr to whether the
object is internal or external and when it has become externa

Definition 4.3.1 (External depth flag) An external depth flags a numeric value

e, wheree € IN, marking the depth in which a source became unreachable from
procedurep’s formal parameters and local variables. The flag is stored source

s’s entry in the source list of objeet, which implies that refers-too. There are

two reserved values,nt er nal andScan i nt er nal .

An object’s reachability in the current procedure, notdgthe external sources
computation, is determined using the external depth flaglasnfs:

Internal If the flag is marked aknt er nal or has a numeric value larger than the
current procedure’s depth.

External If the flag has a numeric value equal or smaller than the cupwte-
dure’s depth.

The possible values for the external depth flag appear irePabl Thescan | nt er nal
value is used only during the computation. This value alltvesalgorithm to dif-
ferentiate between previously internal sources and theecualgorithm’s internal
objects. | nt er nal indicates a referencing object, which is internal to thealoc
heap. A natural number valueindicates a referencing object which has become
external at the depth ef

Every object in the source list is added an external depth flewe flag has
to be maintained on each method call to be up-to-date. Refierg objects may
have more than one cutpoint referencing field for the sanygoautt Therefore the
referencing object’s fields are also kept in the sourcelisen though, the external

24

Value Meaning
Scan Internal Temporary scan value
Internal The referencing object is in the local heap
1-Maximal stack depth The value is the stack depth
where the object has become external.
The referencing object is either inside
or outside the local heap, relatively to the current
method stack depth

Table 4.1: External depth flag possible values

depth flag is saved at source object and not for each fieldgaexternal depth flag
has the same value for all the object fields.

The algorithm is shown in Fig. 4.&our ce_1i st (T) is the group of objects
referencingT. The initial external depth flag value lisit er nal . The algorithm
uses similar procedures as the cutpoint detection algor{tippears in Fig. 3.1)
and naturally integrates with it. The first stage of the dtbar runs with the
Mar KGrey(S) procedure. The second stage runs with Stan(S, Root s)
procedure, but does not use fReot s group, as if a root object is reachable from
another root, the object should be marked too. Neverthelesgresent here a
stand-alone algorithm.

(S, T) is an entry in objecT’s source list when obje@ is refers-to objecT.
Ext ernal (S, T) is the external depth flag of sour&in T's source list. The
algorithm uses the colors in Table 3.1.

The following procedures are identical to the ones in theaint detection al-
gorithm, Fig. 3.1:Get Root s, Mar kScanl nt er nal Root s andMar kRoot s,
Mar kExt er nal Root s andScanRoot s.

MarkScaninternalRoots(Roots) The first stage scans the reachable objects from
Root s, marking them as belonging to the local heap.

MarkScaninternal(S) ObjectS is marked asscan | nt er nal on each source
list of the objects refers-to.

MarkExternalRoots(Roots) The second stage scansRuot s reachable objects,
finding external sources.

Scan(S) ObjectS's source list objects are marked as internal or externalrdatgy
totheir external depth flag value. Afterthatthe obj&xtsfers-to are scanned.

MarkExternals(T) Finds objecil’s external sources and marks them with the cur-
rentdepth. IfasourcBwas marked bivar kScanl nt er nal Root s(Root s)
asScan | nt er nal , itis internal and marked dst er nal . The rest of
the sources are externab is marked with the current stack depth in two
cases:

25

« If the current value id nt er nal , then the source has just become
external.

« If the current value is equal or higher than the currentkstiepth, then
the source was external, became internal again and now lcasnbe
external.

If Sis marked with a lower stack depth, then it has become exteman

earlier method in the call stack and hence the flag is left angbd. The
source can not be internal while its external depth flag hasvarl value
than the current stack depth, because otherwise the soondd vave been
scanned and found as internal.

Example 4.3.2 The example program is shown in Fig. 4.9. The program uses a
singly linked list class, Node, which is shown in Fig. 4.1.9.F.10 shows the
example’s initial status, after initialization in lines4.- ObjectsA, B, C and D
are referenced by an arrayr ef Arr ay, one in each cell. Each of them references
objectS. The list above object is its source list. Each source is represented in
the list with its external depth flag. The flag’s initial valisd nt er nal .

Fig. 4.11 shows the local heap after the call to metlpod nt Fi r st in line
5, with objectsA and B as the actual parameters. The result of
Mar kScanl nt er nal Root s is shown in Fig. 4.12. Objectd and B have ref-
erence fields to objed and therefore are marked &an | nt er nal in object
S’s source list. Fig. 4.13 shows the result of
Mar KExt er nal Root s. ObjectsA and B are marked ad nt er nal in ob-
ject S’s source list because they were markedSasin | nt er nal . ObjectsC
and D are marked with the current stack depth, because they werecaoned in
Mar kScanl nt er nal Root s andtheywere found asit er nal byMar kExt er nal Root s.
Therefore object§’ and D are external.

Methodpr i nt Fi r st calls to methodpr i nt in line 7. The resulting local
heap is shown in Fig. 4.14. The actual parameter is objecThe result of
Mar kScanl nt er nal Root s is shown in Fig. 4.15. Objecd is marked as
Scan | nt ernal inobjectS’s source list. Fig. 4.13 shows the result of
Mar kExt er nal Root s. ObjectA is marked ad nt er nal in objectS’s source
list. ObjectsC' and D are not changed since their external depth flag is lower than
the current stack depth. They are already external. On therdhand, ObjeciB
has become external and is marked with the current staclhdept

In line 6 methodpr i nt Two is called. The actual parameters are objects
andC. The resulting local heap is shown in Fig. 4.17. The result of
Mar kScanl nt er nal Root s is shown in Fig. 4.18. Objectd andC' are marked
asScan | nternal inobjectS’s source list. Fig. 4.19 shows the result
of Mar kExt er nal Root s. ObjectsA andC are marked a$ nt er nal in object
S’s source list. ObjectD is not changed since it is still external. ObjeBtwas
external at a deeper stack depth, became internal wirémt returned and now

26

Conput eExt er nal Sour ces(f)
Root s = Get Root s(f)
Mar kScanl nt er nal Root s(Root s)
Mar KExt er nal Root s(Root s)

Mar kScanl nt er nal Root s(Root s)
For each S in Roots
Mar kScanl nt er nal (S)

Mar kScanl nt er nal (S)
if (color(S) != gray)
color(S) = gray
for each T in children(S)
External (S, T) = Scan | nternal
Mar kScanl nt ernal (T)

Mar kExt er nal Root s(Root s)
for each S in Roots
Scan(S)

Scan(S)
if (color(S) == gray)
color(S) = black
Mar KExt er nal s(S)
for each T in children(S)
Scan(T)

Mar KExt er nal s(T)
for each S in source_list(T)

if(External (S, T) == Scan Internal)
External (S, T) = Internal

el se
if(External (S, T) == Internal or

External (S, T) > current stack depth)
External (S, T) = current stack depth

Figure 4.8: Computing external sources algorithm

27

is external again at a shallower depth. Hence the externptidiag of objectB is
larger than the current stack depth and marked now with threect depth.

28

N

a

public static void main(String[] args)

{
Node tgt = new Node(O, null);
Node[] ref Array = new Node[4];
for(int i=0;i<4;++i)
{
refArray[i] = new Node(i+1,tgt);
}
printFirst(refArray[0],refArray[1]);
printTwo(ref Array[O], refArray[2]);
}
public static void printFirst(Node first, Node _second)
{
print(_first);
}
public static void print(Node _node)
{
System out. println(_node.getData());
}

public static void printTwo(Node first, Node _second)

{
print(_first);
print(_second);

Figure 4.9: Computing external sources example program

29

A B C D

Internal Internal Internal Internal

Stack grows this way

main q

Figure 4.10: Computing external sources example initatkstFig. 4.9 before line
5)

A B C D

Internal Internal Internal Internal

>

©|

2

2

S

12

2

O

O)

|

[S)

@

2 printFirst

main

O

Figure 4.11: Computing external sources example in callriatfarst (Fig. 4.9
before line 7)

30

A B C D

scan scan Internal Internal

>

©|

2

2

S

12

2

O

O)

|

O

@

2 printFirst

main

O

Figure 4.12: Computing external sources example in callriatfarst (Fig. 4.9
before line 7) after MarkScanlinternalRoots

A B

Internal Internal 2 2

>

©|

2

2

S

12

2

O

O)

|

[S)

@

2 printFirst

main

O

Figure 4.13: Computing external sources example in callriatfarst (Fig. 4.9
before line 7) after MarkExternalRoots

31

A B
Internal Internal 2 2

=
>
©|
e
|2
=
D)
2
o
O} .
o print
1o =
2 printFirst
main
0

Figure 4.14: Computing external sources example in caltitat gFig. 4.9 before
line 8)

A B
Scan Internal 2 2

=
>
©|
=
|2
=
D)
2
o
O] .
= print
i =
2 printFirst
main
I

Figure 4.15: Computing external sources example in caltittt gFig. 4.9 before
line 8) after MarkScaninternalRoots

32

A B
Internal 3 2 2

="
>
©|
=
(2]
S
[z
B
(<
U .
% print
S =
2 printFirst
main
oo |

Figure 4.16: Computing external sources example in caltittt gFig. 4.9 before
line 8) after MarkExternalRoots

A B C D

Internal 3 2 2

=

>

©|

3

[

=)

(2]

3

<

O}

|

O

o

2 printTwo

main

0

Figure 4.17: Computing external sources example in callriotpvo (Fig. 4.9
before line 9)

33

=
>
©|
3
(2]
=
[z
3
O|
o
O}
4
O
(T
2 .
2 printTwo
main
oo |

Figure 4.18: Computing external sources example in callriotfwo (Fig. 4.9
before line 9) after MarkScaninternalRoots

A B C D

Internal 2 Internal 2

="

>

©|

3

(2]

=]

[z

3

(<

O)

|

O

\©

2 printTwo

main

I

Figure 4.19: Computing external sources example in callriotpwvo (Fig. 4.9
before line 9) after MarkExternalRoots

34

Chapter 5

Early detection of class invariant
violations

This chapter explains the design by contract sharing pnolaled shows an early
detection algorithm of class invariants violation.

5.1 Design by contract

Also known as “Programming by Contract".

A major component of quality in software is reliability: astgm’s ability to
perform its job according to the specification (correcthessl to handle abnor-
mal situations (robustness). Put more simply, reliabiitthe absence of bugs. In
order to guarantee reliability, a systematic approach ézifggng and implement-
ing object-oriented software elements and their relations software system is
required.

The central idea dDesign by Contracis that software entities have obligations
to other entities based upon formalized rules between thefanctional specifi-
cation, or 'contract’, is created for each module in theaysbefore and during its
implementation. Program execution is then viewed as tleantion between the
various modules as bound by these contracts.

Ingeneral, routines have explipiteconditionghat the caller must satisfy before
calling the routine, and expliciphostconditionsthat describe the conditions that
the routine will guarantee to be true after the routine fiessh Thus, a contract
takes the following general form: “If you, the caller, setagrtain preconditions,
then | will establish certain other results when | return ¢ay If you violate the
preconditions, then | promise nothing.” Each module’s iempéntation can then
be written assuming the correctness of the modules it usesulbcontractors), as
long as it satisfies their preconditions.

Contracts are also made for each class, ensuring the classigalid state.
A class invariant or invariant, is a set of conditions used to constrain objects of
a class. Methods of the class should preserve the invar@laiss invariants are

35

established during construction and constantly maintaetween calls to public
methods. Temporary breaking of class invariance betwegatprmethod calls is
possible, although not encouraged.

(The text is based on [36, 35, 32].)

5.1.1 The sharing problem

The concept of invariants, as presented earlier, and olgéetences are appar-
ently two unrelated programming tools. Combining them thgemay result in
undesirable behavior. The problem is caused by dynamisiadja

If z andy are of reference types ands not void, the assignment= y causes:
andy to be attached to the same object. This is callgaamic aliasingr aliasing
The consequence of this assignment is that modifying thecblijroughe affects
any access throughtoo.

Therefore dynamic aliasing prevents checking the coresstiof a class on the
basis of that class alone. Objets attributes may be modified by an operation on
another objectp. During this modification A’s invariants are not tested and may
be violated, because the modified objecBis

(The text is based on [22].)

Example 5.1.1 Fig. 5.1 and Fig. 5.2 show an examplef the sharing problem as
presented in [22] (Class invariants and reference semanpages 403-406).

ClassA has a reference to cla€® namedf or war d (line 1). ClassB has a
reference to clasé calledbackwar d (line 10). A has a method calledt t ach
(line 4), which assigns parametebl tof or war d (line 5) and callsB's at t ach
(line 11) on b1 with itself as a parameter (line 7B has a method calledt t ach
(line 11) which assigns its parameterl, to backwar d (line 12). UnlikeA’s
at t ach (line 4), it doesn't make a call t&'s method. Clas#\ has an invariant
which required or war d to be emptyrful | , line 2) or to point to an object which
points back to itself (line 3). This is carried out Bs f or war d pointing to aB
instance whosbackwar d points back toA.

Themai n method (line 13) creates two class instances, one ofAypeferenced
byal (line 14), and one of typB, referenced b1 (line 15). Callingal. att ach
(line 16) automatically creates two references, one forhefmrmal parameter.
They are nametlhi s and b1. Their scope is the method so they will cease to
exist when the method returns. Nevertheless, assigriago f or war d (line 5)
creates a new reference shared with. Sending this tob1. att ach creates
another new reference by assigningl to backwar d (line 12). This reference
is shared withal. In this call the class invariant is checked and found to loe tr
asf orward. backwar d does point to the instance owning forwatl. The
next call from tharai n (line 17) invalidates this invariant by removing the shared
instance ofA by b1 (line 12). Despite that, the invariant is part of cla8sand as
such is not tested in clagd Next, when a completely unrelated method of class

1The example is written in Java and the class invariants gpéeimented using JML ([18]).

36

A, doSonet hi ngEl se (line 8), is called on instancal (line 18), the class
invariants are tested and found not to hold true. The JML ltdsuseen in figure
Fig. 5.3.

The program ends with a violated class invariant, but witheny information
as to where this violation has happened. On the next secequr@sent our solution
to help pinpoint where this kind of violations occurs.

Example 5.1.2 This example shows the importance of early detection o ¢tas
variants violation. In this example, as opposed to the previexample, Exam-
ple 5.1.1, the objects tested for class invariants do noelaveference to each
other. Therefore verifying the other object’s invariargsharder.

Fig. 5.4 shows two objects,i st 1 andLi st 2. Both objects are of the
same clasd.i st. The class has two field$tead, a reference to a list composed
of a single linked list nodes argi ze, a counter indicating the size of the list. In
Fig. 5.4 two rectangles composing edchst class: the upper rectangle lsead
and the lower rectangle isi ze. Both lists have &i ze value of 3. Thd.i st
class invariant verifies thai ze and the actual length of the list is the same, thus
assuring the consistency of the object’s state. Verifytrginvariant is performed
by traversing the list froninead, counting the nodes and comparing the result to
si ze.

The program creates two listisi st 1 andLi st 2, withacommon tail node,
n5. Li st 1 is made out of the nodesl, n2 andnb5, in this order. Li st 2 is
made out of the nodes3, n4 andn5, in this order. Next, the program runs areverse
procedure, which is part of thei st class, onLi st 2. The reverse procedure
traverses the list and reverses the references it encasinfdrerhead is updated
to reference the former tail of the list. The resulting Istihe reverse of the input
list. The result of executing reverse bhst 2 is shown in Fig. 5.5Li st 2 is
of size 3 and contains three node, n4 andn3, in this order. The reverse side
effectis thati st 1 now contains 5 nodeg,1,n2,n5, n4 andn3, in this order.

The reverse procedure tests forst class invariants when it endd.i st 2
invariants are tested as the procedure ran on it. The clagariant is found to be
correct asLi st 2 is of size 3 and contains three nodes. Therefore the program
seems to be in a consistent condition. Nevertheless, thdimexthe program will
execute any instance method.ofst 1, the class invariants test will fail. This is
becauséd.i st 1 now contains 5 nodes, while g$ ze field is of value 3Li st 1
is not in a consistent state anymore. Unfortunately, thisloa detected much later
than when the violation actually occurred.

The following suggested solution detects the class inmtgigiolation in the
method where it occurred.

37

public class A {

1: B forward = nul |;
2: [*@ invariant forward == null ||
3: @ f orwar d. backward == this;
@/
4. public void attach(B _bl)
{
5: forward = _bl;
6: if(_bl!=null)
{
7: _bl.attach(this);
}
}
8: public void doSonet hi ngEl se()
{
9: System out. println("Doi ng sonet hing el se");
}
}
public class B {
10: A backward = nul | ;
11: public void attach(A _al)
{
12: backward = _al;
}
}

Figure 5.1: Classical sharing example

38

public class Main {
13: public static void main(String[] args)
{
14; A al = new A();
15: B bl = new B();
16: al.attach(bl);
17: bl.attach(null);
18: al. doSonet hi ngEl se() ;
}
}

Figure 5.2: Classical sharing example continued

Exception in thread "min"
org.jmspecs.jmrac.runtinme.JMInvariantError: by nethod

A. doSonet hi ngEl se@re<File "A java", line 32, character 15>
regardi ng specifications at File "A java", line 13, character 34
when

"forward' is B@lrfeebfc

"this’ is A@leed786

at A checkl nv$i nstance$A(A. j ava: 126)
at A. doSonet hi ngEl se(A.java: 465)

at nmeyer. mai n(neyer.java: 17)

Figure 5.3: Classical sharing example class invariangimh

List 1 "—ﬁ n1 H n2

List 2 »\ﬁ n3 H nd

Figure 5.4: List tail sharing example

39

List 1 o> M e

List 2 5) ‘ n3 e + nd ‘

Figure 5.5: List tail sharing example after list reverse

5.2 Computing invalid class invariants

5.2.1 Using cutpoints

Cutpoints create a sharing between the local heap and thaldleap. When a
method modifies a cutpoint, or objects reachable from thgioduot, it may in-
validate class invariants of objects in the global heap ¢hatreach the cutpoint.
Furthermore, the method does not test them, as, in Exambl2, Sometimes the
affected objects are not reachable at all by the method arideamethod tests
only the class invariants of the class it belongs to. Theestoitpoints are a useful
property for verifying the validity of class invariants objects outside the local
heap.

The cutpoints are used as the roots of a backward scan ofdheldieap. Each
object scanned is tested for its class invariants. As a comesee the computation
finds the class invariants violated by a modification in thmldeap.

We believe testing for invalidated class invariants by thd ef each method
results in the best tradeoff between performing a long caatjmn and providing
enough information for locating invalidated invariantsise.

5.2.2 Holding cutpoints

The computation is carried out in two stages:
1. Detecting cutpoints
2. Using cutpoints to detect class invariants invalidation

Cutpoint detection is performed at the beginning of a metkioitk class invari-
ants violation computation is performed at the end of a nebtiuring the method’s
execution parts of the local heap may become unreachabhafir®method’s formal
parameters. Therefore the detected cutpoints have to bektthe method ends.

A naive solution is to use a list for this purpose. Because thogecan call
other methods during its execution, a list must be held fohemaethod call. This
is highly inefficient in space. Section 5.2.3 presents aep#icient solution.

40

5.2.3 The cutpoint list

The cutpoint list has to hold each cutpoint once and matcleil@oints with the
method they have been detected in.

Once alocal heap object becomes external, it will not bedntamal again until
the method, in which it has become external, returns (Obsierv2.1.3). Hence if
this object is a cutpoint, then it is used by the class invasigiolation computation
from the method the cutpoint has appeared first until the atetiefore the method
where the object has become external. Therefore each nuipdhe list has two
stored values:

* Discovered stack depthiXS D)

* Maximum stack depth/.S D) - The last stack depth in which this cutpoint
was detected

MSD > DSD. A cutpoint is removed from the list wheld SD = DSD.

When detecting cutpoints, new cutpoints are added withiaalin/ S D value of
the current stack depth; Cutpoints detected, that aretlieghe list, are updated by
setting theirM/ S D to the current stack depth. Cutpoints used by the classamtar
computation, thei/ S D is decremented by one. This way the cutpoints with the
highestM S D equal the current method’s stack depth. Therefore the outpihat
the class invariants violation computation uses are thaeam M SD equals to
the current stack depth.

Observation 5.2.1 The cutpoints list produces at each method’s exit the exdet c
points that have been detected at the method’s entry.

A simple optimization to prevent searching when matchingpaints with the
methods they have been detected in, is to hold the list sadeatding to thé/.S D.
Using a linked list, for example, makes this optimizationyeasorting is performed
by moving a rediscovered cutpoint entry to the head of thellpdating the\l S D
while traversing the list for the computation (Section g@arantees that the list is
left sorted.

5.2.4 Backward scan

In order to perform a backward scan, the computation has farb#iar with the
refer-to objects of each objegtin the heap. This information can be achieved, for
example, by using source lists (Section 3.2.2). The scardepth first search of
the global heap, starting at each cutpoint detected by titerdumnethod, and going
backward.

As in the cutpoint detection computation (See Table 3.1ethas to be a way
to limit the scan. A problem arises as there is only one sceh &ae and no way
to clear a flag. This can be remedied by adding a second scdartumately each
backward scan is time consuming (The cosPisV + E)). Another solution is to

41

add a counter to each object and increment it on each scas.cdtinter has to be
large enough not to repeat itself too soon (The current impldation aborts the
computation when the flag overflows).

5.3 The computation algorithm

The algorithm is explained using a simple linked list, whikkept sorted according
totheM S D. Thelist entry fields appear in figure Fig. 5.6. Tdiescover ed field

is the DS D and themmaxi numfield is theM S D. The backward scan is handled
by a counter flagscanFl ag, initially zero. ScanFl ag(T) is the scanning flag
at objectT, initially zero. The scan flag ensures that an object’s dlasgiants are
not tested more than once, even if more than one cutpoinachable from this
object (The current implementation aborts the computafitime flag overflows).
The computation algorithm appears in figure Fig. 5.7 and 5:&).

OnCutpointDetection(CP) When a cutpoinCP is detected it is added to the cut-
point list.

AddToList(CP,currentDepth) If a cutpointCP is not on the list, this procedure
adds an entry to the cutpoint list and assignsfheD to the current stack
depth,current Dept h. The M SD is assigned the current stack depth
whether the cutpoint is new or not.

OnMethodEXxit(currentDepth) Called when a method exits, normally or excep-
tionally. In order to start a new backward scan sessiorsttenFl ag is
incremented. This procedure runs a backward scan only aetieeted cut-
points for the current method. Thé.S D is maintained by decrementing its
value for each cutpoint backward scanned. If the cutpoiit®D is the cur-
rent method'’s stack deptlur r ent Dept h, then the cutpoint is removed
from the list.

BackScanStart(CP) This procedure starts the backward scan from the cutpoint
CP’s sources since the cutpoint itself is not scanned.

BackScan(T) ObjectT’s class invariants are tested. Thé&ns marked with the
currentscanFl ag and its sources are backward scanned too.

OnObjectRelease(Object) This procedure removes the cutpoint from the list and
does not perform a backward scan. The reason is that becauspant is
referenced by an object outside the local heap, it can nalbased between
its detection at the beginning of a method, and its usagepas by the class
invariants computation, when the method exits. The exoeps when all
the objects referencing the cutpoint are already garbamgthid case, testing
for class invariants violation is meaningless.

42

Li stEntry
Cut poi nt cut poi nt
i nt eger di scovered
i nt eger maxi num
Li stEntry next

Figure 5.6: Cutpoints list entry

OnCut poi nt Det ect i on(CP)
AddToLi st (CP, net hod current stack depth)

AddTolLi st (CP, cur r ent Dept h)

if(CPis in list)
le = ListEntry for CP
nove le to list head

el se
le = new ListEntry
| e.cutpoint = CP
| e. di scovered = currentDepth
add le to list head

| e. maxi mum = current Depth

Figure 5.7: Class invariants violation computation usiagpoints

Testlnvariants(T) Tests an object class invariants for a violation and repdves
assume there is a way for the computation to tests an ob@as's invariants).

Example 5.3.1 This example demonstrates Observation 5.2.1.

Fig. 5.9 shows the cutpoint list (Section 5.2.3) content @asage along three
method calls,net hod_a, net hod_b and met hod_c. The leftmost column
shows the cutpoints detected at the beginning of each methddhe cutpoints
used as roots for the backward scan (Section 5.2.4) when lzoahekits. The next
column to the right shows the current stack. The last colunomws the contents of
the cutpoint list. Each item on the list has three fields, flefnto right: An object
identifier, M.SD and DSD.

nmet hod_a is called and cutpointsl and B are detected. They are added to
the list with the current stack depth,as theirA/ SD and D.SD. Whenret hod_b
is called, cutpoints4, C and D are detected. Cutpoind is already on the list.
ThereforeA is forwarded to the list's head and it/ S D is updated to the current
stack depth(' and D are new to the list and are added with théif.SD and DS D
values equal to the current stack dep#h, At met hod_c the cutpoints detected

43

Oniet hodExi t (current Dept h)
scanFlag = scanFlag + 1
le = list head
while(le '= null)
i f(le.maxi mum < current Dept h)

return
BackScanStart (1 e. cut poi nt)
i f(le.discovered == current Depth)
renmove le fromli st
el se
| e. maxi mum= | e. maxi rum- 1
le = | e.next

BackScanSt art (CP)
for each S in source_list(CP)
BackScan(S)

BackScan(T)
if (ScanFlag(T) != scanFl ag)
Test I nvariants(T)
ScanFl ag(T) = scanFl ag
for each Sin source list(T)
BackScan(S)

On(Obj ect Rel ease(bj ect)
if(Object is in list)
le = Listentry for Object
remove le fromli st

Test | nvari ants(T)
Test T class invariants
Report if invalid

Figure 5.8: Class invariants violation computation usiagpoints continued

44

Cutpoints Stack List head
S
st oan P Lo
A, B [method_a | B Al1]1
Found main
ACD - _
Found |_method b \ D [Cl2[2 efy2 o [A[2[1 ey ™ e [B[1]1]
method_a
main l
AC - —
Found |_method_c \ C [A]3]1] efy* o [D[2[2 eqB o [B[1][1 0]
method_b
method_a l
main = =
Roots C [Al2[1eTfyh e [D[2][2 efyA e [B[1[16]
CA method_b
method_a
main - =
Roots
C.AD | method_a \ A B[171
main
Roots /——— 7
oA (Cman) L)

Figure 5.9: Cutpoint list example

are objectsd andC. Both already exist on the cutpoint list. TherefetandC are
forwarded to the list head and thel/ S D is updated to the current stack dep#h,
When a method exits, the class invariants violation contfmtauns. The roots
for the computation are the cutpoints at the beginning ofdhgpoint list, whose
MSD equals to the current stack depth. Foet hod_c these are cutpointst
andC. TheMSD is decremented by one for each cutpoint used as root. When
met hod_b exits, the cutpoints with the current stack depth areC and D.
While traversing the cutpoints lis; and D’'s M S D is found to be equal to their
DSD. HenceC' and D have been detected at these stack depth and are not needed
anymore. Therefor€' and D are removed from the cutpoint list. Cutpoiats
MSD is decremented. Onaeet hod_a exits, cutpoint4d and B are the roots for
the computationA and B’s DS D equals to theirM/ S D and they are removed.

45

Chapter 6

Results

6.1 Motivation

The motivations for investigating the results are:
» Finding common traits for cutpoints in programs

» Pinpointing highly shared data patterns, which also mightlesign bugs

6.2 Measurements

All the measurements here are done for cutpoints referefioaedthe heap only
and neither from the stack nor from static variables. Momualesult processing
in Appendix B.

6.2.1 Top cutpoint producing methods

First, the maximum number of cutpoints per method invocat®omeasured for
all methods. The top ten most cutpoint causing methods apeated further. A
list of causing cutpoints is measured for each method indpden list. With this
information, each program is examined in order to find a nedgothe cutpoints.

6.2.2 Well-known classes effect

A list is used to separate cutpoints of specific classes. iShisicharacterized by
the following properties:

* Immutability
* We assume that highly shared

 Less interesting for understanding a program'’s sharingtherefore can be
processed separately

46

Class identifier
java.lang.String
java.lang.Integer
java.lang.Boolean
java.lang.Byte
java.lang.Character
java.lang.Double
java.lang.Float
java.lang.Long
java.lang.Short

Table 6.1: The well-known classes list

The well-known classes list appears in Table 6.1.

The results of cutpoint detection are separated to twordiffieparts according
to the well-known classes list: One part contains the resultere cutpoints are of
the classes in the list and the second part contains thdsegliére cutpoints are
not of the classes in the list.

For each program the total number of cutpoints of classekamiell known
classes list are measured throughout the program’s erecuthe purpose is to get
an indication whether the Java language designers’ dedisimake these classes
immutable and shared is justified.

6.2.3 Methods’ maximum cutpoints disparity

The purpose of this measurement is to provide an initial voéwthe amount of
cutpoints in a program. Each method is placed in a base tvasithgiic scale ac-
cording to the maximum number of cutpoints it had during ttegjpam’s execution.
If a method is placed in the location of valueit means the method had between
oleg27)=1 1 1 andz, inclusive, maximum number of cutpoints during the pro-
gram’s execution. For example, if a method is placed at theevaf 256, it means
the maximum number of cutpoints this method had during thgnam’s execution
is between 129 and 256, inclusive. Subsequently the pegertf methods, from
the total number of methods, is calculated for each entrliérstale.

The measurements are conducted once for all classes ofrmtistpad once for
cutpoints not belonging to the well-known classes list.slikidone in order to see
the effect the well-known classes have on cutpoints in nastho

a7

6.3 The benchmarks

6.3.1 Soot: a Java optimization framework

Soot ([17]) is a Java optimization framework. It providesrfintermediate repre-
sentations for analyzing and transforming Java bytecoad: & streamlined rep-
resentation of bytecode which is simple to manipulate. [Bma typed 3-address
intermediate representation suitable for optimizatiohinle: an SSA variation
of Jimple. Grimp: an aggregated version of Jimple suitabtelecompilation and
code inspection. Soot can be used as a stand alone tool hoipgtr inspect class
files, as well as a framework to develop optimizations ordfammations on Java
bytecode.

6.3.2 The Kawa language framework

Kawa ([4]) is:

A framework written in Java for implementing high-level adgnamic lan-
guages, compiling them into Java bytecodes.

An implementation of Scheme, which is in the Lisp family obgramming
languages. Kawa is a featureful dialect in its own right, additionally provides
very useful integration with Java. It can be used as a “sogptanguage”, but
includes a compiler and all the benefits of a “real” programgtanguage, including
optional static typing.

Implementations of other programming languages, incyc{Query (Qexo)
and Emacs Lisp (JEmacs).

6.3.3 SPEC JVYM98 benchmarks

JVM98 ([7]) features:
» Measures performance of Java Virtual Machines

» Applicable to networked and standalone Java client coerpueither with
disk (e.g., PC, workstation) or without disk (e.g., netwodknputer) execut-
ing programs in an ordinary Java platform environment.

» Requires Java Virtual Machine compatible with JDK 1.1 Adrllater

6.3.4 TVLA: 3-valued logic analysis engine

TVLA ([20]) is an evolving research vehicle for abstracteirretation, featuring:

» A powerful language for expressing concrete semantics
» Automatic generation of abstract interpreters from cetecsemantics
» Tunable abstractions

 Naturally suited for checking properties of heap allodadata

48

Package| Class Method Maximum
value
soot/util/ | ArrayNumberer add (Ljava/lang/Object;)V 1523
soot/util/ | HashChain$Link unlinkSelf)V 1464
soot/util/ | HashChain$Link getltem ()Ljava/lang/Object; 1464
soot/util/ | HashChain$Link bind (Lsoot/util/HashChain$Link;... 1464
...Lsoot/util/HashChain$Link;)V
soot/util/ | HashChain$Link setPrevious (Lsoot/util/HashChain$Link;)V 1464
soot/util/ | HashChain$Linklterator next ()Ljava/lang/Object; 1464
soot/util/ | HashChain$Link setNext (Lsoot/util/HashChain$Link;)V 1464
soot/util/ | HashChain$Link getNext ()Lsoot/util/HashChain$Link; 1464
soot/util/ | HashChain access$300 (Lsoot/util/HashChain;)J 1464
soot/util/ | HashChain size ()| 1464

Table 6.2: Soot run on null example top ten cutpoint causiethods

6.4 Results

6.4.1 Shared immutable objects

An example of the top methods appears in Table 6.2. In the tgipear the methods

with the maximum number of cutpoints throughout Soot'’s exiec on null example

input.

By looking at the code of two of the benchmarks, Soot and TVaégording
to their top cutpoint producing methods, a common propertyiscovered. Both
programs load their input into a data structure in memorys @hta carries out two

properties:

* The data is immutable

* The data is shared, as it either goes through more than aocegsing, re-
quiring different views of it or, to improve its read time,gan be accessed
by more than one manner

As a result, when accessing the shared data structure thrang of its access
objects, the other manners of access cause the appearaneaytutpoints.

Soot reads Java bytecode files and loads them into memoryehyirgy a de-
scription of the class structure. The various objects irttags description structure
are also accessible by a number. For this purpose, anotfest dlolds a mapping

from numbers to objectss¢ot.util. ArrayNumberer). When Soot accesses the

class structure, the class responsible for numbering sausaerous cutpoints.
TVLA loads a list of formulas and stores them in memory. Salésts of
constraints on the formula are loaded and described byeratarg the formulas.

Whenever a constraint is processed, the other constrainseaumerous cutpoints

on the formulas.

49

60%

50% -

40% +

30% A

% of total cutpoints

20% -

10% -

0%

intro null example sll_reverse

test db

soot kawa jvm98 tvla

Program & input

Figure 6.1: String percentage out of the total cutpoints

6.4.2 String

The results in Fig. 6.1 show thatwa.lang.String is a major player in causing
cutpoints. String’s effect is much more apparent in the fhrste bars. Soot and
Kawa load Java classes into memory. The classes are loadeddigg files, which

is performed by reading many strings. As seen from the iesstitings are highly
shared. From this we conclude that makifga.lang.String immutable and

shared was a good design decision.

6.4.3 Methods’ maximum cutpoints disparity

The maximum cutpoints disparity graph shown in Fig. 6.2siitates how much
sharing exists in each program. Other than Kawa, the pragifzave more than
half their methods with less than 128 cutpoints per methdld ca

When looking at the maximum disparity graph without the vkelbwn class
cutpoints in Fig. 6.3 and comparing it to the previous grapl,well-known class
cutpoints indeed contribute a fair amount. As seen in Fifjtiis contribution is
mostly due tojava.lang.String.

50

Method percentage

80%

70%

60%

50%

40%

30%

20%

10%

0%

0 1 2 4 8 16 32 64 128 256 512

1024 2048 4096

Maximum cutpoint buckets

‘l Soot intro B Soot null example O Kawa test O0jvm98 db EMTVLA sll reverse ‘

Figure 6.2: Disparity of method maximum cutpoints in total

Methods percent

80%

70%

60%

50%

40%

30%

20%

10%

0%

0 1 2 4 8 16 32 64 128 256 512

1024 2048

4096

Maximum cutpoint buckets

‘lsoot intro @soot null example Okawa test Ojvm98 db Mtvla sll reverse ‘

Figure 6.3: Disparity of method maximum unknown cutpoimtsatal

51

Chapter 7

Related work

There are several works and tools dealing with heap profil@ter related works
use cutpoints with static shape analysis. (As far as we kitoave is no existing
work dealing with dynamic computation of cutpoints)

Interprocedural shape analysis The importance of cutpoints was first identified
in works regarding static interprocedural shape analyisig29], Rinetzky
et. al. developed compile-time algorithms for automalycegrifying prop-
erties of imperative programs that manipulate dynamicalltycated storage.
Cutpoints are used in the analysis to characterize a progediehavior. The
work in [30] takes advantage of the absence of cutpoints veldp a pro-
cedural abstraction, which is used in a framework for imaecpdural shape
analysis. An interprocedural shape analysis that suppdstainded number
of cutpoints in the local heap is presented in [13] by Gotsetanl..

Heap profilers Modern development languages use dynamically allocatad-me
ory extensively, using complex data structures. Heap prgfis used to
isolate performance problems involving memory usage aefficient code.

General information General tools provide statistical information about the
heap during and at the end of a program’s execution. HPROH)([2
is part of Sun’s JVM library and provides heap and garbaglecidn
statistics. HAT ([11]) is atool for analyzing the resultsHPROF. More
sophisticated tools provide information and specific aghan different
ways to improve the profiled program. Forexample, on memamuip-
tion and leaks, application performance bottlenecks add coverage.
Optimizelt ™ ([5]), JProbé™ Memory Debugger ([33]) and Rational
PurifyPlug™™ ([6]) are some well known commercial tools. More heap
profilers are The NetBeans Profiler project [25] and Cougaamnary
profiler [8].

Garbage collection behavior The importance of garbage collection perfor-
mance has led to the creation of tools that investigate hadier. Sun

52

provides a Garbage Collector Spy Tool ([23]), which viseedi a large
range of memory systems. Shaham et. al. ([31]) developedla to
which measures the difference between the actual colfetitice and
the actual object death time. The output of the tool is usedirect
the rewriting of an application’s source code in a way thived more
timely garbage collection of objects, thus saving spacertz-. al.
([15], [14]) present a theoretical framework for analyzoybage col-
lection and a tracing algorithm (called “Merlin”), whicht@emines the
exact point an object in the heap has become unreachabldinNser
implemented as part of the Jikes RVM.

Object ownership The general heap profiling tools usually provide man-
ual browsing and flat summaries, making it hard to understadaly’s
programs. Mitchell ([26]) creates a hierarchical summdrthe heap
using object’s ownership. Jackson et. al. ([28]) facit@rogram
understanding by revealing objects ownership and shasimgLa vi-
sualization tool.

The sharing problem (Section 5.1.1) is tackled by Barnetiletin [24] and [3].
Barnett et. al. presentfaendship systemFriendship describes a formal protocol
for agranting classto grant a friend class permission to express its invarigat o
fields in the granting class. The protocol permits the saftateof the granter's
fields without violating the friend’s invariant. Rustan at. ([19]) deal with static
class invariants, which describe the consistency of diatits. Static fields usually
hold data that is shared among objects. The authors preseettedology for
specifying and verifying static class invariants in objedented programs.

53

Chapter 8

Future Work

8.1 Suggestions for future work

We believe cutpoints may be used as an indicator for progreimazior. The fol-
lowing topics should be investigated to find out whether ati@h exists.

» Confinement - Cutpoints indicate externally shared datasges should be
written in such a way that their data is confined and handlgtidoglass or by
its package only. Therefore cutpoints may indicate whettesses actually
confine their data.

— Method access modifiers - Private, protected and packadenweshare
more data than public to public method calls, because theingernal
to the class. Therefore these methods should have moremistjtioan
public to public method calls.

— Cross Package - Packages are independent execution maddldgais
should confine their own data. As a result, cross packageaueills
should have more cutpoints than inner package method calls.

— Source Origin - Looking at the type of the sources for cutfggan help
find explanations for cutpoints. Comparing the cutpoindskage and
its sources’ package shows how much data is confined witltkgoges
or how much of it is shared.

» JDK - Focus on the JDK as it is used by all Java programs. Eerdason
results discovered here have a large impact.

The cutpoint detection computation runs on the local heaking advantage
of this can provide more information, such as:

» The amount of acyclic objects (Section 3.4.1) in the loeh
* Information that may help find common limits for cutpoirdsich as distance

from the formal parameters, stack depth when detected.

54

 Properties of the local heap, such as

— Dimensions, for example maximum length, number of objects
— Usability - How much of the local heap is actually accessed
— Internal sharing - How many objects are shared in the locah he

Works [28] and [26] present heap profiling results hierarally using object
ownership. An integration of these works with the compotai presented here
should be examined in order to provide more interestingltesu

Finding live or dead cutpoints is performed only for heaperefices. The
process can be extended to support stack and static fiektemegs.

The Jikes RVM has an implementation of tkierlin algorithm ([15]). Merlin
is a trace generation algorithm, which determines when ggtbbecomes unreach-
able. As a result, using the liveness computation with Meidir detecting dead
cutpoint fields should be examined.

Using Merlin and a heap modeler should be examined as anpittéorm for
detecting cutpoints.

8.1.1 Prototype
The following are additions and modifications to the propety
» Optimizing for execution speed.

» Creating a relation between the cutpoint detection coatfmrt and the live-
ness computation such that only live cutpoints are reported

* Since the prototype was written, new versions of the Jikéd Rave been re-
leased. The MMTK, the memory management module, has beesigeed.
Therefore the prototype should be adapted to the new design.

8.2 Limitations

The current cutpoints detection algorithm is single-tbiezh hence it does not han-
dle a large group of programs.

The use of Address type (Section A.2.2) forces the use ofmowing garbage
collectors only. In order to support all garbage collectte following should be
done:

» Adding an option to perform reference counting.
» Supporting moving garbage collectors.

The prototype has a large runtime overhead, as it runs dtdessach method
entry. Nevertheless, some of the overhead can be reducecen@y the main rea-
son for the slowdown is the results printing overhead. Imeneents have already

55

been made, such as displaying a summary of the number ofictigpal types for
each method call, instead of typing each cutpoint sepgrafélese improvements
have resulted in lower overhead, but further work shoulddreed

56

Bibliography

[1]

2]

[3]

[4]

[5]
[6]
[7]

[8]
[9]

[10]

[11]
[12]

[13]

S.M. Blackburn M. Butrico A. Cocchi P Cheng J. Dolby S. kiD. Grove
M. Hind K.S. McKinley M. Mergen J.E.B. Moss T. Ngo V. Sarkar 8pern,

S. Augart and M. Trapp. The jikes research virtual machiogegt: Buliding

an open-source research communigM Systems Journa#4(2):399-417,
2005.

D.F. Bacon and V.T. Rajan. Concurrent cycle collectiomaference counted
systems. InProceedings of the Fifteenth European Conference on Object
Oriented Programmingvolume 2072 of.ecture Notes in Computer Science
pages 207-235, Budapest, Hungary, June 2001. Springkg\Ver

M. Barnett and D.A. Naumann. Friends need a bit more: Nédéiring invari-
ants over shared state. MiPC, pages 54-84, 2004.

P. Bothner. The kawa language framework.
http://www.gnu.org/software/kawa/.

Borland Software Corporation. Optimiz&it’ enterprise suite, 2006.
IBM Corporation. Rational purifyplus, 2006.

Standard Performance Evaluation Corporation. Spec@8/menchmarks.
http://www.spec.org/jvm98/.

Cougaar. Cougaar memory profiler, 2006.

L. P. Deutsch and D. G. Bobrow. An efficient, incremengaliomatic garbage
collector. Commun. ACM19(9):522-526, 1976.

Jikes RVM development tearithe Jikes™ Research Virtual Machine User’s
Guide 2.3.5 edition, 2005.

B. Foote. Hat: The java heap analysis tool, 2006.

E. Gamma, R. Helm, R. Johnson, and J. Vlissid&ssign PatternsAddison-
Wesley Professional Computing Series, 2005.

A. Gotsman, J. Berdine, and B. Cook. Interproceduralpshanalysis with
separated heap abstractions SIS 2006.

57

[14] M. Hertz, S.M. Blackburn, J.E.B. Moss, K.S. McKinleyadD. Stefanowv.
Generating object lifetime traces with merlilACM Trans. Program. Lang.
Syst, 28(3):476-516, 2006.

[15] M. Hertz, N. Immerman, and J.E.B. Moss. Framework falgning garbage
collection.

[16] Authors in http://jikesrvm.sourceforge.net/infore.shtml. Jike§™ rvm
home page. http://jikesrvm.sourceforge.net/.

[17] Authors in http://www.sable.mcgill.ca/soot/cregitSoot: a java optimization
framework. http://www.sable.mcgill.ca/soot/.

[18] G.T. Leavens and Y. Cheon. Design by contract with jrmhuary 2006.

[19] K. Rustan M. Leino and P. Muller. Modular verification sthtic class invari-
ants. InFM, pages 26—42, 2005.

[20] T. Lev-Ami, R. Manevich, and more. Tvla: 3-valued loginalysis engine.
http://www.cs.tau.ac.il/ tvia/.

[21] T. Lindholm and F. Yellin.The Java Virtual Machine Specification, Second
Edition. Addison-Wesley, 1999.

[22] B. Meyer. Object-Oriented Software ConstructioRrentice Hall PTR, 800
East 96th Street Indianapolis, Indiana, 2nd edition, 1997.

[23] Sun Microsystems. Garbage collector spy tool, 2006.

[24] D.A. Naumann and M. Barnett. Towards imperative modul®easoning
about invariants and sharing of mutable stateLl@S '04: Proceedings of
the 19th Annual IEEE Symposium on Logic in Computer Scidd€s(04),
pages 313-323, Washington, DC, USA, 2004. IEEE Computeegoc

[25] NetBeans. The netbeans profiler project, 2006.

[26] M. Nick. The runtime structure of object ownership.Haropean Conference
on Object-Oriented Computing (ECOQR)06.

[27] K. O’Hair. Hprof: A heap/cpu profiling tool in j2se 5.0,dfember 2004.

[28] D. Rayside, L. Mendel, and D. Jackson. A dynamic analysr revealing
object ownership and sharing. WODA '06: Proceedings of the 2006 in-
ternational workshop on Dynamic systems analységes 57-64, New York,
NY, USA, 2006. ACM Press.

[29] N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilheltnsemantics for
procedure local heaps and its abstractions3and Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languag&#(F05),
2005.

58

[30] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedurabsh analysis for
cutpoint-free programs. IBAS pages 284-302, 2005.

[31] R. Shaham, E.K. Kolodner, and S. Sagiv. Heap profilingsfpace-efficient
java. InSIGPLAN Conference on Programming Language Design andeimpl
mentation pages 104-113, 2001.

[32] Eiffel Software. Building bug-free 0-0 software: Antinduction to design
by contract(tm), 2004.

[33] Quest Software. Jprob& memory debugger, 2006.
[34] Open Source. Gnu classpath project.

[35] Wikipedia. Class invariant, 2006.

[36] Wikipedia. Design by contract, 2006.

59

List of Tables

31 Colorsinuse. 14
4.1 External depth flag possiblevalues 25
6.1 Thewell-knownclasseslist 7 4
6.2 Soot run on null example top ten cutpoint causing methods. . . . 49

A.1 Classifying array objects. true - user object. falseheowise. n/p -
not possible. check - call stack check required65

B.1 Database and summary filefields 76

60

List of Figures

2.1 Anillustration of the cutpoints for an invocation of threethodzoo . . 9
3.1 Cutpoints detection algorithm 15
3.2 Detecting cutpoints example initialmemory 16
3.3 Detecting cutpoints example methodcall 16
3.4 Detecting cutpoints example MarkGray result 17
4.1 Livenessexamplenodeclass 19
4.2 Liveness example programo 20
4.3 Liveness example memory status of the program in Fig. 4.2

beforeline5 20
4.4 Liveness example memory status of the program in Fig. 4.2

beforeline9 21
4.5 Liveness example memory status of the program in Fig. 4.2

before line 9 after MarkGray 21
4.6 Collecting cutpoints forliveness 22
4.7 Finding objectliveness, 23
4.8 Computing external sources algorithm27
4.9 Computing external sources example program 29

4.10Computing external sources example initial state. @&before line 5) 30
4.11Computing external sources example in call to pristfiig. 4.9 before

INe7) . . . e 30
4.12Computing external sources example in call to pristiiig. 4.9 before

line 7) after MarkScaninternalRoots 13
4.13Computing external sources example in call to pristiiig. 4.9 before

line 7) after MarkExternalRoots 31
4.14Computing external sources example in call to pring.(Bi9 before

INe8) e 32
4.15Computing external sources example in call to pring.(Bi9 before

line 8) after MarkScaninternalRoots 2 3
4.16Computing external sources example in call to pring.(Bi9 before

line 8) after MarkExternalRoots 33
4.17Computing external sources example in call to print{wig. 4.9 before

INe Q) e 33

61

4.18Computing external sources example in call to print{ig. 4.9 before

line 9) after MarkScaninternalRoots 4 3
4.19Computing external sources example in call to print{vig. 4.9 before

line 9) after MarkExternalRoots 34
5.1 Classical sharingexample 8. 3
5.2 Classical sharing example continued 39
5.3 Classical sharing example class invariant violation..... 39
5.4 Listtail sharingexample 39
5.5 Listtail sharing example after listreverse 40
5.6 Cutpointslistentry 43
5.7 Class invariants violation computation using cutmint 43
5.8 Class invariants violation computation using cutgocuntinued . . . 44
5.9 Cutpointlistexample 45
6.1 String percentage out of the total cutpoints 50
6.2 Disparity of method maximum cutpointsintotal 51
6.3 Disparity of method maximum unknown cutpoints in total. 51
A.l Classifyingobjects, 66
A2GCenabledscan. 70
A.3 Modified cutpoint detection computation procedures@ enabled

SCAN . . o e e e e e e e e e e 71
B.1 Rawfileentry 73
B.2 Method heap only summary fileexample 5.7
B.3 Program method heap only cutpoint type cutpoints tollbeap ratio

queryresultexample e 76

62

Appendix A

Prototype implementation

This chapter discusses the prototype’s implementatiaresss

A.1 Picking a platform

Bacon and Rajan [2] implemented their algorithms using tdap#.0 Java VM
developed by IBM. Since then this VM has become an open squagect named
Jikes™ Research Virtual Maching/16, 1]). Bacon and Rajan’s algorithm has
been implemented and has become a part of this VM. Thereficee RVM was
the natural choice for a platform.

Jikes RVM is written in Jav& . As a result modifying and adding new features
is relatively easy. A good portion of Jikes RVM is platfornd@épendent due to the
use of Java.

A.1.1 Limitations

Limitations implied from using Jikes RVM:
» The implementation is only in Java.
» Uninterruptible mode (Section A.4.1).
* Uses GNU’s implementation of the Java libraries, GNU qa8s ([34]).
This implementation is limited to:
« Single threaded applications.

» Non-copying garbage collectors.

63

A.1.2 The build process

The Jikes RVM has an initial “bootstrap” build process in gfha VM boot image
is compiled and saved. A boot image builder process uset@ndgi to run the
Jikes RVM compiler to compile itself. The resulting boot ipeds used to bootstrap
the Jikes RVM whenever it is run. The image is loaded to memod/the RVM
starts to run from there. Hence, the Jikes RVM is a VM writtedava, which runs
on the host platform without a VM mediator. This fact makes fikes RVM a
more efficient solution than other research platforms.

A.2 Common preliminaries

A.2.1 Working on the user program

MostRVM services, like memory allocation, run on all obgegghd methods, without
distinction. Therefore the cutpoint detection computatias to distinguish user
methods and objects from those belonging to the RVM.

The first step is classifying each class according to its pgek This step is car-
ried out when the class is loaded and, hence, only once . Clde classification
is saved in the RVM class description object. The classeslassified as RVM
classes, JDK classes and user classes.

Object classification

Objects are classified for the following reasons:

» Some user accessible objects reference internal VM datatstes. For
example, java.lang.Class references internal VM reptaten of a class
in order to provide class information. As a result, the cutpdetection
computation can reach these objects too.

» Source lists, used on several occasions, should be nregdtfor user objects
and hold only user objects.

» We were not interested in running other computations on Fljécts.

Class instances are classified according to their classayérare classified
according to their creator and their most inner element.tyjay classification
appears in Table A.1.

In some cases static information is not enough and objeetslassified dy-
namically. Both the user program and the RVM use JDK clagartgs and arrays.
Their classification is conducted by traversing the caltlstand searching for the
creator. There are occurrences where JDK objects are drbgtéhe RVM and
returned to the user through the JDK. For example, whenmgaafile. The user
calls the JDK. The JDK uses JNI to access operating systenifispgode. The
native code handles the call, and uses the RVM to allocateaneior the returned

64

Creator RVM | User| JDK
Created type

RVM false | n/p | false
User true true | true
JDK check| true | check
Primitive check| true | check

Table A.1: Classifying array objects. true - user objedsda otherwise. n/p - not
possible. check - call stack check required

data. Therefore, to simplify matters, if the call stack sads a user frame, the
object is classified as a user object.

Objects are classified when created. Classification stalysafter the VM is
fully booted. The result is saved in a flag at the object’s kead

The object classification computation

The object classification computation appears in Fig. A.4Cl ass(Qbj ect)

indicates whether an objectis a classinstance orlr@ér r ay (Obj ect) doesthe

same forarraysGet Cbj ect Cl assType(Obj ect) returnsthe class describing

the object’s class. Eachdescription class has a clasgidig,Cl assFl ag(Type) .

The possible values arélser , JDKandRVM Get Ar r ayMost | nner El enent Tabl e(Type)
returns the most inner element type of the given array typetiner single or multi-
dimensional array.

IsUserObject(Object, Creator) Classifies the created objedbj ect according
to its type, a class instance or an array.

IsUserClass(Object) Classifies the class instan®lej ect accordingtoitstype. If
the class belongstothe JDK, itis classified using a runtasig@heck For User .

IsUserArray(Object, Creator) Classifies the array obje€bj ect according to
its creator typeCr eat or and the most inner element type. The array is
classified according to Table A.1.

CheckForUser() This procedure searches forauserframe onthe call stackngt
from the frame where the current object was created.

Limiting methods

The cutpoint detection computation is inserted into thdrbegg of user methods
after they are loaded and before they are compiled to maadde. The instru-
mented methods are those belonging to user classes, agtodhe classification

65

| sUser Obj ect (Obj ect, Creator)
if(lsCass(Object))
return I sUserd ass(hj ect)
el se if(IsArray(Qbject))
return I sUser Array(Qbject, Creator)
el se
return fal se

| sUser Cl ass(hj ect)

cl assType = Get Obj ect O assType(hj ect)

i f(C assFlag(classType) == User)
return true

el se i f(C assFl ag(cl assType) == RVM
return fal se

el se i f(C assFl ag(cl assType) == JDK)
return CheckFor User ()

| sUser Array(Qbj ect, Creator)
i f(ClassFlag(Creator) == User)
return true
i nner El enent Type = Get ArrayMost | nner El enent Tabl e(Cbj ect)
i f(1sd ass(innerEl ement Type))

i f(C assFlag(innerEl ement Type) == User)
return true
el se i f(C assFl ag(i nnerEl ement Type) == RVM

return fal se
return CheckFor User ()

CheckFor User ()
Traverse the call stack | ooking for
a frame whose nethod belongs to a class
where |IsUserCl assType(stack-franme class) == true
if found return true
el se return fal se

Figure A.1: Classifying objects

66

presented in Section A.2.1. RVM methods are not instrunteriethods belong-
ing to the JDK are optionally instrumented, because theyachtha considerable
number of cutpoints. Furthermore, before the cutpointali&e computation runs
on a JDK method, it checks who asked for the JDK service, adfsser RVM class,
and performs the computation or not accordingly.

In addition, in the following occasions, methods are notrimeented:

» Before the RVM is fully booted.

Static methods without parameters.

Methods without reference parameter types.

* Themainmethod.

A.2.2 Holding sources

The source lists can not hold references to objects wheg asieference counting
garbage collection due to the creation of reference cydlasre are some possible
solutions:

» Reference count special case - Handles specifically thresdiat references.
This solution complicates the garbage collection code shauld be kept
simple and fast.

» WeakReference - WeakReference solves the problem cayseiny a reg-
ular reference. However WeakReference may pose a problémRMM
uninterruptible code (see Section A.4.1), since it is méanise by user
programs and not by internal RVM code.

» The Address typeAddresds an RVM internal type, which appears as a class
but which is replaced by the RVM compiler with an actual numbiéence
no object is created. The advantage of using Address is ladimgdamental
part of the RVM memory module and, for this reason, is efficiddecause
Address is not treated as a reference , it is not updated byngngarbage
collections (such as Mark & Sweep) and hence can not be ugbdheim.

The source list is updated at four locations:

PutField write barrier - Object field assignment

ArrayStore write barrier - Array element assignment

» Copying array write barrier for reference arrays

When an object is released

67

The references of areleased object are not cleared. Camstfygiine referenced
objects are explicitly taken care of. When the object isasdel, it is removed from
the source lists of all the objects it still references.

Each entry in the source list holds the following properties

» The address of the source that the entry represents.
 Alist of the fields referencing the object.

» External depth flag (See Section 4.3).

A.3 Computations specific

A.3.1 Computing cutpoints preparations

Coalescing (or deferred) Reference Counting ([9]) delafsrence count updates
to the actual garbage collection in order to reduce the \wetéer cost. As a result,
objects’ reference counters do not hold their real valugvben collections. This
results in inaccurate results when computing cutpoints.a Assult the prototype
runs a garbage collection without time quanta limit befaehecutpoint detection
computation.

The cutpoint detection computation’s input is the actuahpeeters passed to
the method. The parameters are read from the call stack dndlgect references
are used. If all the references are null, the computationt€xrecuted.

A.3.2 Live and dead cutpoints

When detecting cutpoints the liveness computation stavasce objects as can-
didates for liveness. For each cutpoint detected, the rmadterources, and their
cutpoint referencing fields, are stored. The liveness caation is required to be
quick when inside the read and write barriers. Thereforectraputation uses a
hash table for storing the candidates . The hash table keytharsources. Each
source’s value holds a hash table of its targets, since time saurce may be a
candidate for several targets. Furthermore, the hashstalitevs finding whether
the source and the target existiX{1) in average.
The target’s value in the targets hash table for each sosiecksi of the cutpoint

referencing fields for that source and target. The list iatere easily by duplicating
the list of fields for the source in the target’s source list.

A.3.3 Early detection of class invariants violation

In order to test the class invariants in the user programctmputation has to
be able to run the invariants test. For this purpose therel@éa interface with a
single method, which the computation uses to test the iawtsi The user has to
implement the interface such that when the computatios tadl method the class

68

invariants are tested and the result of that test is returifatie user has a single
way for testing class invariants, this implementation cardbne only once.

The computation implementation uses an index for quickextethe cutpoint
objectsinthe cutpointlist (Section5.2.3akdid ToLi st (CP, cur r ent Dept h)
in Fig. 5.7).

A method may exit normally or exceptionally. Therefore iritboases
OnMet hodExi t (current Dept h) (Fig. 5.7) has to be called.

A.4 Other implementation notes

A.4.1 Uninterruptible code

Uninterruptible code (see "What are the Semantics of Unmimt¢ible Code?" sub-
section in the "Magic" section of [10]) prevents "losing troii' of execution to
other threads. Hence in this code, more delicate operagimndone. The cutpoint
detection computation, source lists maintenance and tteere source compu-
tation are implemented as uninterruptible code. Uninfdiiole code allows the
usage of only a subset of the Java language, for example th®newoperator or
the cast operator is not allowed. Therefore uninterruptddde must be short and
simple.

Adding new candidates for tracking in the liveness detediud class invariants
violation detection is done in interruptible code in ordekéep memory allocation
simple. However the input to these computations is cutppinhich are detected
in uninterruptible code. Therefore some mechanism is rieeleonnect the two.

Our solution is to add a scan, which runs in interruptibleecodlhe scan runs
right after the scans of the cutpoint detection computatidme cutpoint detection
computation marks all the objects detected as a cutpoihiavgpecial flag, eutpoint
flag. Theinterruptible scanrunsonthe same objects and looksdobjects marked
with the cutpoint flag. Each cutpoint is then passed to theptations as their
input.

The scan can be interrupted by, among others, the garbalgetmni thread.
Therefore the scan is callglC enabled scanThe potential problem is that the
garbage collection might run and collect objects. Even ke, dbjects the GC
enabled scan is scanning are not collected because thegaieable from the
method’s formal parameters, which are on the call stack.

The GC enabled scan is a depth first scan. As such, it has to snaried
objects. Because the GC enabled scan scans the same digenifpint detection
computation does, a cooperation between the two scansaisliseed. The GC
enabled scan uses a scanning flag, calk&ti enabled scan flag The cutpoint
detection computation first scalhr kRoot s(Root s) , clears the GC enabled
scan flag for all objects, ensuring, as the GC enabled scais fta same objects,
that the GC enabled scan has a clear slate. The GC enabledlsranis to clear
the cutpoint flag for the scanned objects.

69

GCEnabl edScan(Root s)
For each S in Roots
Scan(S)

Scan(S)
if (CGCESFl ag(S) == fal se)

CGCESFl ag(S) = true

i f(CutpointFlag(S) == true)
use S in relevant computations
Cut poi ntFl ag(S) = fal se
for each T in children(S)

Scan(T)

Figure A.2: GC enabled scan

GCESFI ag(S) isthe GC enabled scan boolean flag for obfectut poi nt FI ag(S)
is the cutpoint boolean flag for objest Fig. A.2 shows the GC enabled scan al-
gorithm.

GCEnabledScan(Roots)Runs the GC enabled scan for the same roots as in Sec-
tion 3.4.

Scan(S) Perform a depth first scan starting at objgctOnly objects not marked
with the GC enabled scan flag are scanned. If an olfjfeist found with
a marked cutpoint flagS is passed to the relevant computations and the
cutpoint flag is cleared. Clearing is necessary in orderootislead the next
computation.

Fig. A.3 shows the modifications to the cutpoint detectiogoathm (Sec-
tion 3.4), which provides cutpoint information and initids the scanning flag
for the GC enabled scan.

The modified procedures (the new lines have the vadidkedat their beginning)
are:

MarkGray(S) This procedure clears the GC enabled scan flag for each adbject
scans. Hence this scan ensures that the objects are maitldor the GC
enabled scan.

Scan(S) This procedure marks the cutpoints found using the cutgiaigt By this
marking the detected cutpoints are passed to the GC enatdad s

70

Mar kG ay(S)
if (color(S) != gray)
color(S) = gray
added CGCESFl ag(S) = cleared
for each T in children(S)

RC(T) = R(T) - 1

Mar KGray(T)
Scan(S)
if (color(S) == gray)
i f(RC(S) > 0)
S is a cutpoint
added CutpointFlag(S) = true

color(S) = black

for each T in children(S)
Scan(T)
RC(T) = R(T) + 1

Figure A.3: Modified cutpoint detection computation prasexs for GC enabled
scan

A.4.2 Summary of object header changes
The list of changes to the object header

» Cutpoint source list reference (Section A.2.2)

User flag (Section A.2.1)

Cut point flag (Section A.4.1)

GC scan flag (Section A.4.1)

Backward scan counter (Section 5.2.4)

71

Appendix B

Results processing

The results output by the prototype are processed untilieegme comprehendible
tables. The processing stages are explained here.

B.1 The prototype raw file

The prototype outputis the the datafile. The rawfile has addooeach invocation
of a method with cutpoints detection potential. Such a netltas at least one object
reference and, hence, a local heap. Therefore recordsragpeaif a cutpoint was
not detected.

There are four reported cutpoint types. The types indidaekind of source
that created the cutpoint. The cutpoint type values areusik@. The possible
cutpoint types are:

Heap only (HO) The source is an object in the global heap (and not in the local

heap).

Root only (RO) The source is a local variable on the execution’s stack cat&st

field.

Heap and root (HR) At least two sources, one from the heap and the second a

local variable on the execution’s stack or a static variable

Parameter (P) An object, which is also a formal parameter, is not considiere

cutpoint (Definition 2.2.1), even ifitis referenced fromabject in the global
heap (A formal parameter is always referenced from the ktack

The record includes the following parts:

1.

Method’s fully qualified name in the JVM descriptor fornfa¢e [21]). For
example:java.util. HashMap Object put(Object key, Object valappears as
Ljava/util/HashMap;.put (Ljava/lang/Object;Ljava/lgfObject;)Ljava/lang/Object;

. (Optional) Method’s local heap size measured in a numbebjects

72

Met hod Ltest/ Test HashEntry; . det ect Cut Poi nts(Ljava/util/HashMap;|)V
Heap si ze=64

Lj ava/ uti |/ HashMap$HashEnt ry; =HO=20=

Ljava/ util/ HashMap; =Pr nrl=

Figure B.1: Raw file entry

3. (Optional) A cutpoint description made out of the followi

(&) A JVM descriptor of a class which appeared as a cutpoirthisrcall.
For examplejava.lang.Classappears akjava/lang/Class;

(b) For each cutpoint type this class has appeared as

i. The cutpoint type
ii. The number of cutpoints of this type

Example B.1.1 The entry in Fig. B.1 shows a typical raw file entry. Tdetect-

CutPointsmethod was called and the cutpoint detection computatisnodiered
20 cutpoints of typgava.util. HashMap.HashEntgriginating from the heap (HO).
java.util.LHashMapwas the actual parameter to the method. There Wédrebjects

in the local heap on this call.

B.2 The summary file

The summary file is a summarized version of the raw file. Thecfiletains ab-
breviated data, arranged hierarchically according to odsttand the classes that
appeared as cutpoints in a method.

The summary file adds a level of distinction to the cutpoimety. Cutpoint
types are separated by the cutpoint class, according tbaf ligell known classes.
This list contains common classes, which usually appeant@®ints and therefore
may obscure other interesting results. The list appearalife6.1. The new well-
known cutpoint types ard/ K HO, W K RO, W K H R, which are the same as the
cutpoint types in Section B.1, but for cutpoints of well-kmoclasses only. The
original cutpoint typesHO, RO, HR now stand for cutpoints from all classes
except those in the well-known list.

The summary file contains only one record for each methodwdgipeared in
the raw file, as opposed to one record for each methwaatation in the raw file.
The record is made out of the following sections:

1. Method summary

(a) Number of method calls, including calls without any aiitys.

(b) Summarized cutpoint information for each cutpoint typdiich ap-
peared in this method throughout the program. In additioa total of

73

well-known types, the total for not well-known types and bl of all
types. Parameter cutpoint type does not appear in any obthis t

i. Number of cutpoints of this type
ii. Size of local heap when this type occurred

2. For each class, which appeared as a cutpoint in this mefinodghout the
program

(a) Summarized cutpoint information for each cutpoint typéich ap-
peared in this method throughout the program. In additioa total of
well-known types, the total for not well-known types and bl of all
types. Parameter cutpoint type does not appear in any obthis t

i. Number of cutpoints of this type
ii. Size of local heap when this type occurred

For each item in the list above, except the number of methitel tae following
statistical information is calculated:

e Total - Sum of this item

 Call count - The number of method invocations in which thigpoint type
appeared

» Average - Equals to the total divided by the call count

* Minimum - Minimum value of this item

* Maximum - Maximum value of this item

 Variance - Variance compared to the average of this item

» Standard deviation - Standard deviation (square root)isfitem

The structure of the summary file line is the same as in thébdataline (Sec-
tion B.3) and appears in Table B.1.

Example B.2.1 Table B.2 shows a partial summary of the method summary. The
name of the method is omitted for brevity. The method is theesas in Exam-

ple B.1.1. The summary concerns all the heap only cutpoietscted for this
method, along the program’s execution. The first half shdwsheap only (HO)
cutpoint statistics and the second half shows the stagi$ticthe local heap when
heap only cutpoints were detected.

74

Summary File line

xMethod Call count Heap only 20

xMethod Total Heap only 397

xMethod Average Heap only 19.85

xMethod Minimum Heap only 18

xMethod Maximum Heap only 20

xMethod Variance Heap only 0.2275

xMethod Standard deviation Heap only 0.476969601
xMethod Call count Heap only local heap 20
xMethod Total Heap only local heap 1279

xMethod Average Heap only local heap 63.95
xMethod Minimum Heap only local heap 63

xMethod Maximum Heap only local heap 64
xMethod Variance Heap only local heap 0.0475
xMethod Standard deviation Heap only local heap 0.217944947

Figure B.2: Method heap only summary file example

B.3 Database processing

Due to the size of the summary file, a third stage is necess@he summary
file is loaded into a database where it is further processeoceBsing is done by
SQL queries, which produce summarized information acogrdd the following
divisions:

» Program, package or individual entries

» Methods or cutpoints. The method division summarizesaintp according
to where they occurred. The cutpoints division shows theaints them-
selves

» Well-known cutpoints and the rest
» Cutpoint types

The database table fields appear in Table B.1.

Example B.3.1 Table B.3 shows the results of a database query. The quewssho
cutpoints to local heap ratio. The data spans the whole @oymaccording to
methods for all heap only cutpoints, not including well4kmocutpoint classes.

75

Field Name Meaning

method_package Package identifier of the method’s class

method_class Method’s class identifier

method Method identifier

type_package Cutpoint class package identifier

type Cutpoint class identifier

value_type One of the statistical values, call count, el

cutpoint_type Cutpoint type, such as HO, RO

value Numerical value

Table B.1: Database and summary file fields

Query result

Value

AVG(cutpoints.value/ local_heap.value)
COUNT (cutpoints.valu¢ local_heap.value)
MIN(cutpoints.value/ local_heap.value)
MAX(cutpoints.value/ local_heap.value)
STDDEV(cutpoints.valu¢ local_heap.value)

0.310398751
1
0.310398751
0.310398751
8.11E-10

Figure B.3: Program method heap only cutpoint type cutgdimiocal heap ratio

query result example

76

