
On the utility of cutpoints for monitoring program
execution

Shachar Rubinstein1

School of Computer Science, Tel-Aviv University, Israel

August 2006

1shachar1@post.tau.ac.il

Acknowledgements

I would like to thank:

• Prof. Shmuel (Mooly) Sagiv for his trust in me, guidance andinvaluable
support.

• Noam Rinetzky for his always positive outlook and encouragements, advice
and ideas.

• The rest of Prof. Sagiv’s group for their advice and assistance.

• Dr. Erez Petrank and Dr. Harel Paz, for pointing out the possibility of using
garbage collection algorithms to detect cutpoints.

• The Jikes RVM group and researchers mailing list, especially Assoc. Prof.
J. Eliot B. Moss, for their help in learning how to use this amazing software.

• Prof. Sivan Toledo and his students for providing computation resources.

• Prof. Amiram Yehudai for assisting in the area of design by contract.

• Anat Lotan for improving the thesis write up.

• Dr. Ran Shaham and Liam Roditty, who have helped me when I wassearching
for directions.

• Yotam Shtossel, Dr. Zur Izhakian and Daphna Amit for their company and
companionship along the way.

• Dan, Micha, Carine, Asi, Noa, Irit, Orit, Dana and Yael, whoendured and
encouraged me during my work. I apologize if I have omitted anyone.

• For my loving family, without whom I would not be here today.

• The Israeli National Academy of Science for their financialsupport.

1

Abstract

Sharing mutable data is a powerful programming technique, but it makes programs
hard to understand.Local heapsandcutpointsare a notion introduced by Rinetzky
et. al. ([29]) in order to understand and analyze programs.

In this work we develop a runtime tool for measuring the number of cutpoints
which can occur in a given program. The tool encourages programmers to reduce
the number of cutpoints, thus eliminating erroneous aliasing leading to cutpoints.
We introduce a way to refine the results of the tool by adding a notion of live and
dead cutpointsand an algorithm for their detection. Finally, we demonstrate a use
for cutpoints by developing a new algorithm for runtime check of class invariants.

2

Contents

1 Introduction 5
1.1 Background . 5
1.2 Main results . 6
1.3 Thesis organization . 7

2 Local heaps and cutpoints 8
2.1 Local heap . 8
2.2 Cutpoint . 9
2.3 Usage . 10

3 Computing cutpoints 11
3.1 Preliminaries . 11
3.2 Naive attempts . 11

3.2.1 Scanning the global heap . 11
3.2.2 Using a source list . 12

3.3 Our solution . 12
3.4 The cutpoint detection algorithm 13

3.4.1 Acyclic data types . 14
3.4.2 A running example . 14

4 Computing live and dead cutpoints 18
4.1 Live and dead cutpoints . 18
4.2 Computing live cutpoints . 19

4.2.1 Collecting cutpoint referencing fields 22
4.2.2 Finding liveness . 23

4.3 Computing external sources using source lists 23

5 Early detection of class invariant violations 35
5.1 Design by contract . 35

5.1.1 The sharing problem . 36
5.2 Computing invalid class invariants 40

5.2.1 Using cutpoints . 40
5.2.2 Holding cutpoints . 40
5.2.3 The cutpoint list . 41
5.2.4 Backward scan . 41

3

5.3 The computation algorithm . 42

6 Results 46
6.1 Motivation . 46
6.2 Measurements . 46

6.2.1 Top cutpoint producing methods 46
6.2.2 Well-known classes effect . 46
6.2.3 Methods’ maximum cutpoints disparity47

6.3 The benchmarks . 48
6.3.1 Soot: a Java optimization framework 48
6.3.2 The Kawa language framework 48
6.3.3 SPEC JVM98 benchmarks . 48
6.3.4 TVLA: 3-valued logic analysis engine48

6.4 Results . 49
6.4.1 Shared immutable objects . 49
6.4.2 String . 50
6.4.3 Methods’ maximum cutpoints disparity50

7 Related work 52

8 Future Work 54
8.1 Suggestions for future work . 54

8.1.1 Prototype . 55
8.2 Limitations . 55

A Prototype implementation 63
A.1 Picking a platform . 63

A.1.1 Limitations . 63
A.1.2 The build process . 64

A.2 Common preliminaries . 64
A.2.1 Working on the user program 64
A.2.2 Holding sources . 67

A.3 Computations specific . 68
A.3.1 Computing cutpoints preparations68
A.3.2 Live and dead cutpoints . 68
A.3.3 Early detection of class invariants violation 68

A.4 Other implementation notes . 69
A.4.1 Uninterruptible code . 69
A.4.2 Summary of object header changes 71

B Results processing 72
B.1 The prototype raw file . 72
B.2 The summary file . 73
B.3 Database processing . 75

4

Chapter 1

Introduction

1.1 Background

Understanding the behavior of heap manipulating (object oriented) programs is a
challenge. Such programs exhibit complex relationships between the structure of
the program and the reference structure of heap allocated objects. Aliasing be-
tween references makes programs hard to understand, debug,and verify. Visibility
keywords such asprivate suggest that some data should be encapsulated, but do
not prevent public methods from returning aliases to that (supposedly) internal data.
Indeed sharing mutable data complicates reasoning about programs both informally
and formally.

On the other hand, sharing mutable data is a powerful programming technique.
For example, the model-view-controller design pattern [12] captures the essential
structure of many graphical user interfaces: many controllers and views share the
same object. Indeed it is obvious that while sharing and aliasing is problematic
some sharing, e.g., temporary sharing created inside a simple procedure is usually
harmless and very useful.

In [29], Rinetzky et. al. define the notion oflocal heapsandcutpoint objects.
The local heap of a procedure contains only the objects reachable from the formal
parameters. Cutpoints are objects which separate the localheap (that can be ac-
cessed by a procedure) from the rest of the heap (which—from the viewpoint of
that procedure—is non-accessible and immutable).

Programs with few (or even no) cutpoints can be simpler to understand and to
analyze. For example, in [30], a shape analysis for cutpoint-free programs was
developed. The main idea is that the absence of cutpoints allows to extract the
meaning of a procedure as an input/output relation which is independent of the
sharing created in the calling context, and thus supports the notion of procedural
abstraction. Gotsman et. al. [13] developed an analysis forprograms with few
cutpoints.

5

1.2 Main results

This thesis develops a runtime tool for measuring the numberof cutpoints which
can occur in a given program. The tool is totally automatic. The tool encourages
programmers to reduce the number of cutpoints, this eliminating erroneous aliasing
leading to cutpoints. It can also be used by tool designers tounderstand the behavior
of existing programs. Finally, it can be used for more effective checking of cases
where the class (object) invariant is violated.

The main algorithm in the tool uses a runtime garbage collector to reduce the
cost of scanning the entire global heap. Specifically, our algorithm is based on the
solution presented in [2] for the cycle detection problem inreference counting based
garbage collection.

We make two observations concerning [2] solution. The first observation is
that the cycle collection algorithm divides the global heapinto two regions: The
potential roots of cyclic garbage and their transitive closure, and the rest. The
second observation is that cycles, which are not garbage, are detected by finding
references from the second region to the first.

By changing the potential roots to be the method’s formal parameters, the first
region becomes the local heap. Applying the second observation to this modification
adjusts [2] solution to solve the cutpoint detection problem.

The tool is implemented on top of Jikes RVM [16] which is a Javavirtual
machine written in Java. Jikes RVM already implements the algorithm of [2] and
is freely available.

The contributions of this thesis can be summarized as follows:

• We develop a novel algorithm for computing cutpoints usinga cycle collection
algorithm. The cost of the algorithm is linear in the size of local heap.

• We define the notion oflive cutpoint objects, which are cutpoints that are
referred by the program after the procedure returns via an access path by-
passing the local heap. The main idea is that cutpoint objects which are not
live (dead) represent harmless sharing.

• We develop an algorithm for computing live cutpoints.

• We develop a new algorithm for checking class invariants. The main idea is
to use cutpoints for checking violations due to mutations ofshared objects.

• We applied the algorithm to several benchmarks.

We limit our work to programming languages that pass objectsto procedures
by reference only, not by value. For example, The C++ programming language can
pass objects on the call stack.

6

1.3 Thesis organization

The rest of the thesis is organized as follows: Chapter 2 defines cutpoints and local
heaps. Chapter 3 presents the cutpoint detection algorithm. Chapter 4 defines live
and dead cutpoints and presents two new algorithms: live cutpoints detection and
external sources computation. Chapter 5 introduces the sharing problem in design
by contract and presents a cutpoint-based algorithm for early detection of class
invariants violation. Chapter 6 shows our empirical results. Chapter 7 discusses
related work and Chapter 8 concludes this thesis with ideas for future work. The
appendices include prototype implementation details in Appendix A and details
about results processing in Appendix B

7

Chapter 2

Local heaps and cutpoints

This chapter defines the local heap and cutpoint notions.

2.1 Local heap

Definition 2.1.1 (Local Heap)Thelocal heapfor an invocation of a procedurep
is the part of the heap which is accessible to the procedure. The objects thatbelong
to the local-heapare those reachable from the procedure’s formal parametersand
local variables.

A local heap exists only in the context of a procedure’s execution and during
that execution only. Thethis pointer in instance methods is considered a formal
parameter too.

Definition 2.1.2 (Global Heap)Theglobal heapis the whole heap

This definition is used to prevent confusion with the local heap.

Observation 2.1.3 Object stack continuous reachablility- An object is reachable
from the program’s call stack continuously.

If an object becomes unreachable from the stack at depthi + 1, not because
it has become garbage, and the stack depth grows, then the object will not be
reachable again until the stack depth returns toi. If an object is unreachable,
there is no possibility for deeper stack procedures to reachthe object (excluding
objects reachable from static fields). Therefore the stack reachability of an object
is continuous.

The object stack continuous reachability property is used throughout the paper
as a basis for computations, appearing in Section 4.3 and Section 5.2.3.

8

f1

f2

f1

f1

f1

f2

f1

f1 f2

f1

u10

u11
u12

u7
u8 u9u6

u5

u1
u2

u3

u4

f2
f1

Stack Heap

S
ta

ck
 g

ro
w

s
th

is
 w

ay

f1

zoo

bar

foo

main z1

h

y

x2

x1

z3

z2

Figure 2.1: An illustration of the cutpoints for an invocation of the methodzoo .

2.2 Cutpoint

Cutpoints are objects in the local heap that separate the local heap from the rest of the
heap (excluding the objects pointed to by formal parameters). They are additional
“entry points” to the local heap and extend a procedure’s effect to include parts of
the heap that are not part of the local heap (also known as a method’s “side effect”).

Definition 2.2.1 (Cutpoints)Acutpointfor an invocation of procedurep is a heap-
allocated object that, in the program state in which the execution ofp’s body starts,
is: (i) reachable from a formal parameter ofp (but not pointed to by one) and
(ii) pointed to by an object in the global heap, that does notpass throughany object
that is reachable from one ofp’s formal parameters.

Example 2.2.2 Fig. 2.1 depicts the memory state at the entry tozoo. The call
stack is depicted on the left side of the diagram. Each call record is labeled with the
name of the function it is associated with. Heap-allocated objects are depicted as
rectangles labeled with their location. The value of a pointer variable (resp. field)
is depicted by an edge labeled with the name of the variable (resp. field). The
shaded cloud marks the part of the heap thatzoo can access. The cutpoints for the
invocation ofzoo (u7 andu9) are heavily shaded. Note thatu10 is not a cutpoint
although it is pointed-to by pending access paths that do nottraverse through the
shaded part of the heap, e.g.,x2 and y.f1.f1. This is becauseu10 is also
pointed-to byh, zoo’s formal parameter. (Taken from [29])

9

2.3 Usage

We suggest using the local heap, instead of the global heap, to understand a pro-
gram’s memory behavior. The global heap can contain a great number of objects
while a procedure may access only a very small fraction of them. Therefore the
local heap perspective assists in gaining a better understanding of the effect of a
procedure.

Using cutpoints complements the local heap perspective. Together they provide
a novel way of investigating the behavior of programs and their use of memory.
The following chapters will provide ways to utilize the two to gain interesting
information about programs.

10

Chapter 3

Computing cutpoints

This chapter defines a new algorithm for computing cutpoints. The chapter presents
two naive solutions and shows why the new algorithm is better.

3.1 Preliminaries

Recall that cutpoints are defined for a method at the time of the invocation.
In order to identify a cutpoint, the algorithm has to determine which objects

belong to the local heap of the invoked method and are referred from outside without
passing through a formal parameter.

An objectdenotes a class object or an array object. Afield in a class object is
a class member variable. An array element is referred to as afield in an array.

3.2 Naive attempts

3.2.1 Scanning the global heap

A simple method to compute cutpoints is to scan the local heapand then to scan the
global heap. This is performed in two stages:

1. The local heap is scanned and each object is marked as local

2. The global heap is scanned and cutpoints are identified. Notice that here
references between local heap objects are not traversed.

The cost of the first stage isO(n + e) wheren is the number of objects and
e is the number of references in the local heap . The cost of the second stage is
O(N + E) whereN is the number of objects andE is the number of references in
the global heap. Therefore, since usuallyn ≪ N ande ≪ E, the dominant cost is
O(N + E).

11

3.2.2 Using a source list

Scanning the global heap on each method is expensive. One approach to reduce this
cost is to maintain a list of objects which refer to a given object (inverse reference
fields). This allows to check if an object in the local heap is referred from outside
without scanning the global heap. This list is referred to asaSource List. An object
o, which has a reference field pointing to an objecto′, is referred to as asourceof
o′ and mentioned aso refers too′.

This is performed in two stages:

1. The local heap is scanned. Every object in the local heap ismarked as local
in the list of each of the objects it refers-to.

2. The local heap is scanned and each object’s source list is checked. If the list
has objects not marked as local, the object is a cutpoint.

The cost of the first stage isO(n + e × s) wheres is the cost of searching the
source list for an object. The search cost is implementationdependent. The cost of
the second stage isO(n × d + e) whered is the cost of finding if there is at least
one unmarked object in the list (d can be done in constant time, reducing the cost
of this stage toO(n + e). Therefore the dominant cost isO(n + e × s).

The cost of maintaining the source lists for the objects in the global heap is an
additional cost, which does not appear in the above. This cost has to be taken into
account when comparing the total cost of different solutions. Nevertheless, for the
sake of brevity we do not add it here.

3.3 Our solution

Our algorithm is based on the solution presented in [2] for the cycle detection prob-
lem in reference counting based garbage collection. Specifically, the synchronous
cycle collection algorithm, which is single-threaded. Nevertheless, other than the
following observations and their application, understanding of the aforementioned
work is not mandatory.

We make two observations concerning [2] solution. The first observation is
that the cycle collection algorithm divides the global heapinto two regions: The
potential roots of cyclic garbage and their transitive closure, and the rest. The
second observation is that cycles, which are not garbage, are detected by finding
references from the second region to the first.

By changing the potential roots to be the method’s formal parameters, the first
region becomes the local heap and the second the global heap,excluding the local
heap. Applying the second observation to this modification adjusts [2] solution to
solve the cutpoint detection problem.

This solution obliges a reference count garbage collectionor, in the case of other
garbage collection, a mechanism which maintains a reference count for all objects.

The algorithm proceeds in three stages:

12

1. The local heap is scanned. Reference counts are decremented for internal
references.

2. The local heap is scanned. An object with a positive reference count is a
cutpoint.

3. The local heap is scanned. Reference counts are incremented for internal
references.

The third stage restores the reference counts to their original value.
The cost of each stage isO(n + e) and, as a result, it is the dominant cost too.

The linear-in-the-local-heap cost is achieved by using a single counter instead of
scanning the actual referencing objects.

Maintaining the reference counts adds another cost, which can be ignored if
using a reference count garbage collector.

3.4 The cutpoint detection algorithm

Each objectT has a color and a reference count, denoted ascolor(T)andRC(T)
respectively. The colors used are shown in Table 3.1.children(S) is a multi-
set of objects that objectS references, including duplicates, asS may reference an
object more than once. The algorithm is shown in Fig. 3.1.ComputeCutpoints
is invoked at the beginning of each relevant method. The restof the procedures are
internal to the algorithm.MarkGrayandScanRootsare identical to their version
in [2].

ComputeCutpoints(f) Whenever a cutpoint computation is needed on methodf
this procedure is invoked. There are three parts:GetRoots, which gathers
the roots for the algorithm,MarkRoots, which decrements the internal ref-
erences, andScan, which finds cutpoints and restores the internal references
to their original values.

GetRoots(f) The formal reference parameters of the methodf are extracted and
inserted into theRoots set.

MarkRoots(Roots) The first stage removes internal references in the local heap
by runningMarkGray on each reference collected inRoots.

MarkGray(S) This procedure performs a simple depth-first traversal of the graph
beginning atS, marking visited nodes gray and removing internal reference
counts as it goes.

ScanRoots(Roots)For eachobject inRoots that was consideredbyMarkGray(S),
this procedure invokes Scan(S,Roots) to detect cutpoints and restore reference
counts.

13

Color Meaning
Gray Reference count decremented
Black Initial color/Checked for cutpoint

Table 3.1: Colors in use

Scan(S,Roots)The second and third stages are optimized and implemented asone
stage, reducing one local heap scan. This procedure scans the local heap,
detecting cutpoints and restoring reference counts to their original value.
Object reference count is restored by performing a depth first search and
incrementing references as it goes. References are restored after the object
is checked for being a cutpoint. If the objectS belongs to theRoots set, it
is not reported as a cutpoint, since the formal parameters are not cutpoints.

3.4.1 Acyclic data types

[2] implements a scheme to determine acyclic classes. The authors hypothesize
that this kind of objects compromise the majority of objectsin many applications.
Therefore the cutpoint detection algorithm includes acyclic data types, as this is
interesting information, which may help support this hypothesis.

3.4.2 A running example

Example 3.4.1 Fig. 3.2 shows the initial memory status. The graphics conventions
used here are used throughout the rest of the thesis. The numbered ellipses on each
object represent the number of references an object has. Thecolor of the ellipse is
the currentcolor(T) of that object. References from the stack are not counted.
The call stack is labeled with the invoked methods when thereis a program with the
example. The heap outside the local heap is printed as translucent.

ObjectB is passed as an actual parameter to an invoked method. The resulting
local heap is shown in Fig. 3.3 inside the cloud. The objects reachable fromB are
C, E andF . Therefore they are part of the local heap.

Roots = {B}. The result of runningMarkGray(B) is shown in Fig. 3.4. A
surrounding cloud is added to help locate the current local heap. The rest of the
heap is printed as translucent. ObjectC is referenced by objectsB andF , which
are inside the local heap. Therefore the reference count of objectC is down to zero.
ObjectsB, E andF are referenced from outside the local heap;B by A, E by D
andG by F . The objects’ reference count indicates this fact and henceE andF
are cutpoints. ObjectB is not a cutpoint because it is a formal parameter.

RunningScan(B,Roots) returns the reference count to their original values
and colors the objects from gray to black. The result is the same as in Fig. 3.3.

14

ComputeCutpoints(f)
Roots = GetRoots(f)
MarkRoots(Roots)
ScanRoots(Roots)

GetRoots(f)
Roots = {}
for each AP formal parameter of method f

if (AP is an object reference)
add AP to Roots

return Roots

MarkRoots(Roots)
For each S in Roots

MarkGray(S)

MarkGray(S)
if (color(S) != gray)

color(S) = gray
for each T in children(S)

RC(T) = RC(T) - 1
MarkGray(T)

ScanRoots(Roots)
for each S in Roots

Scan(S,Roots)

Scan(S,Roots)
if (color(S) == gray)

if((RC(S) > 0) and (S not in Roots))
S is a cutpoint

color(S) = black
for each T in children(S)

Scan(T,Roots)
RC(T) = RC(T) + 1

Figure 3.1: Cutpoints detection algorithm

15

0

0

0 1

2

2

2

A B C

D E F

G

S
ta
c
k
 g
ro
w
s
 t
h
is
 w
a
y

Figure 3.2: Detecting cutpoints example initial memory

0

0

0 1

2

2

2

A B C

D E F

G

S
ta
c
k
 g
ro
w
s
 t
h
is
 w
a
y

Figure 3.3: Detecting cutpoints example method call

16

0

0

0 1

1

0

1

A B C

D E F

G

S
ta
c
k
 g
ro
w
s
 t
h
is
 w
a
y

Figure 3.4: Detecting cutpoints example MarkGray result

17

Chapter 4

Computing live and dead
cutpoints

This chapter introduces live and dead cutpoints and presents an algorithm for their
detection.

4.1 Live and dead cutpoints

The cutpoints in a local heap provide a description of a method’s external sharing.
Nevertheless, the reported numbers may present an inflated image of the actual
impact of these cutpoints. A reference causing a cutpoint may never be used, due
to being overwritten or because the reference owning objectis released. In this
case, the cutpoint does not have any effect. This information can be used to refine
the results from Section 3.4. Therefore the cutpoint definition is refined here. A
cutpoint referencing fieldis an object’s field referencing a cutpoint, where the object
does not belong to the local heap at the time of the referencedcutpoint detection. A
live cutpoint fieldis a cutpoint referencing field, which was read after the cutpoint
was detected and before it was overwritten, or before the referencing object was
released. Otherwise the field is adead cutpoint field. A live cutpoint is a cutpoint
where at least one of its cutpoint referencing fields is a livecutpoint field. Otherwise
it is a dead cutpoint. The termlivenessis used to describe the process of finding
live cutpoints. This should not be confused with other usages of the term, such as
variable liveness used in optimizing compilers.

Example 4.1.1 The following exemplifies the aforementioned terms. The example
is shown in Fig. 4.2. The program uses a singly linked list class, Node, which is
shown in Fig. 4.1. The program initializes its data structure in lines 1-4. The result
of this initialization is shown in Fig. 4.3. ObjectL is referenced by objectsA, B
andC and has a reference count of three. The latter are referencedby srcArray
and have a reference count of one each.

18

class Node {
private Node mNext = null;
private int mData = 0;

public Node(int _data, Node _next) {
mNext = _next;
mData = _data;

}

public void setNext(Node _next) {
mNext = _next;

}

public Node getNext() {
return mNext;

}

public int getData() {
return mData;

}
}

Figure 4.1: Liveness example node class

After initializing, the program callsprint at line 5. The actual parameter
passed is objectA. The resulting local heap is shown in Fig. 4.4. Running the cut-
point detection algorithm at the beginning ofprint detects objectL as a cutpoint
(The result of theMarkGray stage is shown in Fig. 4.5). ObjectA is not a cutpoint
because it passes through a formal parameter, itself.

There are two cutpoint referencing fields (ObjectA’s field referencingB is
irrelevant asA is part of the local heap): ObjectB’s mNext and objectC ’s
mNext. The next call at line 6 assignsnull to objectB cutpoint referencing
field. Therefore objectB’s field is a dead cutpoint field. In lines 7 and 8 objectC ’s
cutpoint referencing field is read. Thus objectC ’s field is a live cutpoint field. As
a result the cutpoint detected inprint, objectL, is a live cutpoint.

4.2 Computing live cutpoints

Note: This computation handles heap references and does nothandle stack refer-
ences.

Finding live or dead cutpoints is carried out in three stages:

1. Collecting cutpoint referencing fields into a list

19

public static void main(String[] args) {
1: Node tgt = new Node(0,null);

2: Node[] srcArray = new Node[3];
3: for(int i=0;i<3;++i)

{
4: srcArray[i] = new Node(i+1,tgt);

}
5: print(srcArray[0]);
6: srcArray[1].setNext(null);
7: if(srcArray[2].getNext() != null)

{
8: print(srcArray[2].getNext());

}
}

public static void print(Node _toPrint)
{

9: if(_toPrint != null)
{

10: System.out.println(_toPrint.getData());
}

}

Figure 4.2: Liveness example program

main

A

B

C

L

S
ta
c
k
 g
ro
w
s
 t
h
is
 w
a
y

1

1

1

3

0

Figure 4.3: Liveness example memory status of the program inFig. 4.2
before line 5

20

print

main

A

B

C

L

S
ta
c
k
 g
ro
w
s
 t
h
is
 w
a
y

1

1

1

3

0

Figure 4.4: Liveness example memory status of the program inFig. 4.2
before line 9

print

main

A

B

C

L

S
ta
c
k
 g
ro
w
s
 t
h
is
 w
a
y

1

1

1

2

0

Figure 4.5: Liveness example memory status of the program inFig. 4.2
before line 9 after MarkGray

21

OnDetectedCutpoint(CP)
for each object Src referencing CP

if (Src is external to the local heap)
for each field Fld in Src referencing CP

add (Src,Fld) to TestedCutpoints

Figure 4.6: Collecting cutpoints for liveness

2. Finding if a cutpoint referencing field on the list is live or dead

3. Aggregating cutpoint referencing fields results into live or dead cutpoints

The third stage can be carried out post or in-processing. Thefollowing compu-
tation performs the first two stages.

4.2.1 Collecting cutpoint referencing fields

Cutpoints are discovered on each method entry and their sources are collected there.
The collection is described in Fig. 4.6.

TestedCutpoints is a liveness candidate list. The list holds cutpoint referencing
fields as pairs of owning object and field. The cutpoint objectcan be obtained
by dereferencing the object and field.

OnDetectedCutpoint(CP) When a cutpoint is detected its referencing fields and
their owning objects are added toTestedCutpoints for tracking. The
added objects are outside the local heap. Selecting which objects to add is
explained in Section 4.3

In order to compute live or dead cutpoints, the computation tracks the objects
referencing a cutpoint. References are a one way addressingmechanism. Therefore
an object lacks any knowledge as to which objects reference it. Scanning the global
heap each time is one solution. Another possibility is to maintain a source list for
each object and to find the external sources. Section 4.3 shows how to find the
external sources in the source list.

A cutpoint referencing field may be detected again and again before it is accessed
and tested for liveness. This is because the object owning the field is unaccessible
until it becomes internal to the local heap (Observation 2.1.3). When the field is ac-
cessed, it is removedby the computation from theTestedCutpoints list. There-
fore there is no need to check for an existing entry when adding a field and source
pair to the list. Nevertheless, adding a source and its fieldstoTestedCutpoints
requires some work, which can be reduced, as shown in Section4.3

22

WriteBarrier(Obj,Fld)
if((Obj,Fld) is in TestedCutpoints)

remove (Obj,Fld) from TestedCutpoints
CP = Obj.Fld
report CP from (Obj,Fld) as dead cutpoint referencing field

ReadBarrier(Obj,Fld)
if((Obj,Fld) is in TestedCutpoints)

remove (Obj,Fld) from TestedCutpoints
CP = Obj.Fld
report CP from (Obj,Fld) as live cutpoint referencing field

OnObjectRelease(Obj)
for each object reference field Fld in Obj

WriteBarrier(Obj,Fld)

Figure 4.7: Finding object liveness

4.2.2 Finding liveness

There is one procedure for each case in the live and dead cutpoint reference field
definitions.

WriteBarrier(Obj,Fld) This procedure is called on every assignment to an object
reference field. FirstTestedCutpoints is searched for the written source
and field. If found, then this field is reported as a dead cutpoint referencing
field.

ReadBarrier(Obj,Fld) This procedure is called on every read from an object ref-
erence field. The procedure is the same asWriteBarrier(Obj,Fld)
but reports live cutpoint referencing field.

OnObjectRelease(Obj) When an object is released, its fields are not read any-
more. If the fields are tracked for liveness, then they are removed from
TestedCutpoints and declared as dead. This is conducted by iterating
over the releasedobject’s object reference fields and callingWriteBarrier
for each object-field pair.

4.3 Computing external sources using source lists

This section presents a new algorithm for determining localheap external sources
in source lists.

23

The first part of the liveness process, appearing in Fig. 4.6,collects only external
sources. When using a global heap scan for cutpoint detection, cutpoints are found
through external sources. If utilizing source lists, detection of external sources can
be carried out as follows:

1. The local heap is scanned. Sources scanned are marked as internal.

2. The local heap is scanned. The external sources are those not marked as
internal. All internal markings are cleared.

Using this algorithm, the same external source can be detected over and over
again. As mentioned in Section 4.2.1, overwriting does not present a computation
error. Nevertheless it introduces additional work that canbe prevented. The fol-
lowing algorithm adds discovery information, providing the ability to distinguish
when a source has become external.

The algorithm takes advantage of the object stack continuous reachablility prop-
erty (Observation 2.1.3) to mark objects in the source list with the stack depth in
which they have become external. Comparing the referencingobject’s external
depth to the current method’s stack depth will provide the answer to whether the
object is internal or external and when it has become external.

Definition 4.3.1 (External depth flag)Anexternal depth flagis a numeric value
e, wheree ∈ N, marking the depth in which a source became unreachable from
procedurep’s formal parameters and local variables. The flag is stored in a source
s’s entry in the source list of objecto, which implies thats refers-too. There are
two reserved values,Internal andScan internal.

An object’s reachability in the current procedure, not during the external sources
computation, is determined using the external depth flag as follows:

Internal If the flag is marked asInternal or has a numeric value larger than the
current procedure’s depth.

External If the flag has a numeric value equal or smaller than the current proce-
dure’s depth.

The possible values for the external depthflagappear in Table 4.1. TheScan Internal
value is used only during the computation. This value allowsthe algorithm to dif-
ferentiate between previously internal sources and the current algorithm’s internal
objects. Internal indicates a referencing object, which is internal to the local
heap. A natural number valuee indicates a referencing object which has become
external at the depth ofe.

Every object in the source list is added an external depth flag. The flag has
to be maintained on each method call to be up-to-date. Referencing objects may
have more than one cutpoint referencing field for the same cutpoint. Therefore the
referencing object’s fields are also kept in the source list.Even though, the external

24

Value Meaning
Scan Internal Temporary scan value
Internal The referencing object is in the local heap
1-Maximal stack depth The value is the stack depth

where the object has become external.
The referencing object is either inside
or outside the local heap, relatively to the current
method stack depth

Table 4.1: External depth flag possible values

depth flag is saved at source object and not for each field, as the external depth flag
has the same value for all the object fields.

The algorithm is shown in Fig. 4.8.source_list(T) is the group of objects
referencingT. The initial external depth flag value isInternal. The algorithm
uses similar procedures as the cutpoint detection algorithm (appears in Fig. 3.1)
and naturally integrates with it. The first stage of the algorithm runs with the
MarkGrey(S) procedure. The second stage runs with theScan(S,Roots)
procedure, but does not use theRoots group, as if a root object is reachable from
another root, the object should be marked too. Nevertheless, we present here a
stand-alone algorithm.

(S,T) is an entry in objectT’s source list when objectS is refers-to objectT.
External(S,T) is the external depth flag of sourceS in T’s source list. The
algorithm uses the colors in Table 3.1.

The following procedures are identical to the ones in the cutpoint detection al-
gorithm, Fig. 3.1:GetRoots, MarkScanInternalRoots andMarkRoots,
MarkExternalRoots andScanRoots.

MarkScanInternalRoots(Roots) The first stage scans the reachable objects from
Roots, marking them as belonging to the local heap.

MarkScanInternal(S) ObjectS is marked asScan Internal on each source
list of the objects refers-to.

MarkExternalRoots(Roots) The secondstage scans theRoots reachable objects,
finding external sources.

Scan(S) ObjectS’s source list objects are marked as internal or external according
to their external depth flag value. After that the objectsS refers-to are scanned.

MarkExternals(T) Finds objectT’s external sources and marks them with the cur-
rent depth. If a sourceSwas markedbyMarkScanInternalRoots(Roots)
asScan Internal, it is internal and marked asInternal. The rest of
the sources are external.S is marked with the current stack depth in two
cases:

25

• If the current value isInternal, then the source has just become
external.

• If the current value is equal or higher than the current stack depth, then
the source was external, became internal again and now has become
external.

If S is marked with a lower stack depth, then it has become external on an
earlier method in the call stack and hence the flag is left unchanged. The
source can not be internal while its external depth flag has a lower value
than the current stack depth, because otherwise the source would have been
scanned and found as internal.

Example 4.3.2 The example program is shown in Fig. 4.9. The program uses a
singly linked list class, Node, which is shown in Fig. 4.1. Fig. 4.10 shows the
example’s initial status, after initialization in lines 1-4. ObjectsA, B, C and D
are referenced by an array ,refArray, one in each cell. Each of them references
objectS. The list above objectS is its source list. Each source is represented in
the list with its external depth flag. The flag’s initial valueis Internal.

Fig. 4.11 shows the local heap after the call to methodprintFirst in line
5, with objectsA andB as the actual parameters. The result of
MarkScanInternalRoots is shown in Fig. 4.12. ObjectsA andB have ref-
erence fields to objectS and therefore are marked asScan Internal in object
S’s source list. Fig. 4.13 shows the result of
MarkExternalRoots. ObjectsA and B are marked asInternal in ob-
ject S’s source list because they were marked asScan Internal. ObjectsC
andD are marked with the current stack depth, because they were not scanned in
MarkScanInternalRootsand they were foundasInternalbyMarkExternalRoots.
Therefore objectsC andD are external.

MethodprintFirst calls to methodprint in line 7. The resulting local
heap is shown in Fig. 4.14. The actual parameter is objectA. The result of
MarkScanInternalRoots is shown in Fig. 4.15. ObjectA is marked as
Scan Internal in objectS’s source list. Fig. 4.13 shows the result of
MarkExternalRoots. ObjectA is marked asInternal in objectS’s source
list. ObjectsC andD are not changed since their external depth flag is lower than
the current stack depth. They are already external. On the other hand, ObjectB
has become external and is marked with the current stack depth.

In line 6 methodprintTwo is called. The actual parameters are objectsA
andC. The resulting local heap is shown in Fig. 4.17. The result of
MarkScanInternalRoots is shown in Fig. 4.18. ObjectsA andC are marked
asScan Internal in objectS’s source list. Fig. 4.19 shows the result
ofMarkExternalRoots. ObjectsA andC are marked asInternal in object
S’s source list. ObjectD is not changed since it is still external. ObjectB was
external at a deeper stack depth, became internal whenprint returned and now

26

ComputeExternalSources(f)
Roots = GetRoots(f)
MarkScanInternalRoots(Roots)
MarkExternalRoots(Roots)

MarkScanInternalRoots(Roots)
For each S in Roots

MarkScanInternal(S)

MarkScanInternal(S)
if (color(S) != gray)

color(S) = gray
for each T in children(S)

External(S,T) = Scan Internal
MarkScanInternal(T)

MarkExternalRoots(Roots)
for each S in Roots

Scan(S)

Scan(S)
if (color(S) == gray)

color(S) = black
MarkExternals(S)
for each T in children(S)

Scan(T)

MarkExternals(T)
for each S in source_list(T)

if(External(S,T) == Scan Internal)
External(S,T) = Internal

else
if(External(S,T) == Internal or

External(S,T) > current stack depth)
External(S,T) = current stack depth

Figure 4.8: Computing external sources algorithm

27

is external again at a shallower depth. Hence the external depth flag of objectB is
larger than the current stack depth and marked now with the current depth.

28

public static void main(String[] args)
{

1: Node tgt = new Node(0,null);

2: Node[] refArray = new Node[4];
3: for(int i=0;i<4;++i)

{
4: refArray[i] = new Node(i+1,tgt);

}
5: printFirst(refArray[0],refArray[1]);
6: printTwo(refArray[0],refArray[2]);

}

public static void printFirst(Node _first, Node _second)
{

7: print(_first);
}

public static void print(Node _node)
{

8: System.out.println(_node.getData());
}

public static void printTwo(Node _first, Node _second)
{

9: print(_first);
10: print(_second);

}

Figure 4.9: Computing external sources example program

29

main

A

B

C

S

S
ta
c
k
 g
ro
w
s
 t
h
is
 w
a
y

1

1

1

4

D

1

A

Internal

B

Internal

C

Internal

D

Internal

0

Figure 4.10: Computing external sources example initial state (Fig. 4.9 before line
5)

printFirst

main

A

B

C

S

S
ta
c
k
 g
ro
w
s
 t
h
is
 w
a
y

1

1

1

4

D

1

A

Internal

B

Internal

C

Internal

D

Internal

0

Figure 4.11: Computing external sources example in call to printFirst (Fig. 4.9
before line 7)

30

printFirst

main

A

B

C

S

S
ta
c
k
 g
ro
w
s
 t
h
is
 w
a
y

1

1

1

4

D

1

A

scan

B

scan

C

Internal

D

Internal

0

Figure 4.12: Computing external sources example in call to printFirst (Fig. 4.9
before line 7) after MarkScanInternalRoots

printFirst

main

A

B

C

S

S
ta
c
k
 g
ro
w
s
 t
h
is
 w
a
y

1

1

1

4

D

1

A

Internal

B

Internal

C

2

D

2

0

Figure 4.13: Computing external sources example in call to printFirst (Fig. 4.9
before line 7) after MarkExternalRoots

31

print

printFirst

main

B

C

S

S
ta
c
k
 g
ro
w
s
 t
h
is
 w
a
y

1

1

1

4

D

1

A

Internal

B

Internal

C

2

D

2

0

A

Figure 4.14: Computing external sources example in call to print (Fig. 4.9 before
line 8)

print

printFirst

main

B

C

S

S
ta
c
k
 g
ro
w
s
 t
h
is
 w
a
y

1

1

1

4

D

1

A

Scan

B

Internal

C

2

D

2

0

A

Figure 4.15: Computing external sources example in call to print (Fig. 4.9 before
line 8) after MarkScanInternalRoots

32

print

printFirst

main

B

C

S

S
ta
c
k
 g
ro
w
s
 t
h
is
 w
a
y

1

1

1

4

D

1

A

Internal

B

3

C

2

D

2

0

A

Figure 4.16: Computing external sources example in call to print (Fig. 4.9 before
line 8) after MarkExternalRoots

printTwo

main

B S

S
ta
c
k
 g
ro
w
s
 t
h
is
 w
a
y

1

1

1

4

D

1

0

A

Internal

B

3

C

2

D

2

C

A

Figure 4.17: Computing external sources example in call to printTwo (Fig. 4.9
before line 9)

33

printTwo

main

B S

S
ta
c
k
 g
ro
w
s
 t
h
is
 w
a
y

1

1

1

4

D

1

0

A

scan

B

3

C

scan

D

2

C

A

Figure 4.18: Computing external sources example in call to printTwo (Fig. 4.9
before line 9) after MarkScanInternalRoots

printTwo

main

B S

S
ta
c
k
 g
ro
w
s
 t
h
is
 w
a
y

1

1

1

4

D

1

0

A

Internal

B

2

C

Internal

D

2

C

A

Figure 4.19: Computing external sources example in call to printTwo (Fig. 4.9
before line 9) after MarkExternalRoots

34

Chapter 5

Early detection of class invariant
violations

This chapter explains the design by contract sharing problem and shows an early
detection algorithm of class invariants violation.

5.1 Design by contract

Also known as “Programming by Contract".
A major component of quality in software is reliability: a system’s ability to

perform its job according to the specification (correctness) and to handle abnor-
mal situations (robustness). Put more simply, reliabilityis the absence of bugs. In
order to guarantee reliability, a systematic approach to specifying and implement-
ing object-oriented software elements and their relationsin a software system is
required.

The central idea ofDesign by Contractis that software entities have obligations
to other entities based upon formalized rules between them.A functional specifi-
cation, or ’contract’, is created for each module in the system before and during its
implementation. Program execution is then viewed as the interaction between the
various modules as bound by these contracts.

In general, routines have explicitpreconditionsthat the caller must satisfy before
calling the routine, and explicitpostconditionsthat describe the conditions that
the routine will guarantee to be true after the routine finishes. Thus, a contract
takes the following general form: “If you, the caller, set upcertain preconditions,
then I will establish certain other results when I return to you. If you violate the
preconditions, then I promise nothing.” Each module’s implementation can then
be written assuming the correctness of the modules it uses (its subcontractors), as
long as it satisfies their preconditions.

Contracts are also made for each class, ensuring the class isin a valid state.
A class invariant, or invariant, is a set of conditions used to constrain objects of
a class. Methods of the class should preserve the invariant.Class invariants are

35

established during construction and constantly maintained between calls to public
methods. Temporary breaking of class invariance between private method calls is
possible, although not encouraged.

(The text is based on [36, 35, 32].)

5.1.1 The sharing problem

The concept of invariants, as presented earlier, and objectreferences are appar-
ently two unrelated programming tools. Combining them together may result in
undesirable behavior. The problem is caused by dynamic aliasing.

If x andy are of reference types andy is not void, the assignmentx = y causesx
andy to be attached to the same object. This is calleddynamic aliasingor aliasing.
The consequence of this assignment is that modifying the object throughx affects
any access throughy too.

Therefore dynamic aliasing prevents checking the correctness of a class on the
basis of that class alone. ObjectA’s attributes may be modified by an operation on
another object,B. During this modification,A’s invariants are not tested and may
be violated, because the modified object isB.

(The text is based on [22].)

Example 5.1.1 Fig. 5.1 and Fig. 5.2 show an example1 of the sharing problem as
presented in [22] (Class invariants and reference semantics, pages 403-406).

ClassA has a reference to classB namedforward (line 1). ClassB has a
reference to classA calledbackward (line 10). A has a method calledattach
(line 4), which assigns parameter _b1 toforward (line 5) and callsB’s attach
(line 11) on _b1with itself as a parameter (line 7).B has a method calledattach
(line 11) which assigns its parameter, _a1, to backward (line 12). UnlikeA’s
attach (line 4), it doesn’t make a call toA’s method. ClassA has an invariant
which requiresforward to be empty (null, line 2) or to point to an object which
points back to itself (line 3). This is carried out byA’s forward pointing to aB
instance whosebackward points back toA.

Themainmethod (line 13) creates two class instances, one of typeA, referenced
bya1 (line 14), and one of typeB, referenced byb1 (line 15). Callinga1.attach
(line 16) automatically creates two references, one for each formal parameter.
They are namedthis and _b1. Their scope is the method so they will cease to
exist when the method returns. Nevertheless, assigning _b1 to forward (line 5)
creates a new reference shared withb1. Sending this to _b1.attach creates
another new reference by assigning _a1 to backward (line 12). This reference
is shared witha1. In this call the class invariant is checked and found to be true,
as forward.backward does point to the instance owning forward,a1. The
next call from themain (line 17) invalidates this invariant by removing the shared
instance ofA byb1 (line 12). Despite that, the invariant is part of classA and as
such is not tested in classB. Next, when a completely unrelated method of class

1The example is written in Java and the class invariants are implemented using JML ([18]).

36

A, doSomethingElse (line 8), is called on instancea1 (line 18), the class
invariants are tested and found not to hold true. The JML result is seen in figure
Fig. 5.3.

The program ends with a violated class invariant, but without any information
as to where this violation has happened. On the next section we present our solution
to help pinpoint where this kind of violations occurs.

Example 5.1.2 This example shows the importance of early detection of class in-
variants violation. In this example, as opposed to the previous example, Exam-
ple 5.1.1, the objects tested for class invariants do not have a reference to each
other. Therefore verifying the other object’s invariants is harder.

Fig. 5.4 shows two objects,List 1 and List 2. Both objects are of the
same class,List. The class has two fields:head, a reference to a list composed
of a single linked list nodes andsize, a counter indicating the size of the list. In
Fig. 5.4 two rectangles composing eachList class: the upper rectangle ishead
and the lower rectangle issize. Both lists have asize value of 3. TheList
class invariant verifies thatsize and the actual length of the list is the same, thus
assuring the consistency of the object’s state. Verifying the invariant is performed
by traversing the list fromhead, counting the nodes and comparing the result to
size.

The program creates two lists,List 1 andList 2, with a common tail node,
n5. List 1 is made out of the nodesn1, n2 andn5, in this order. List 2 is
made out of the nodesn3,n4 andn5, in this order. Next, the program runs a reverse
procedure, which is part of theList class, onList 2. The reverse procedure
traverses the list and reverses the references it encounters. Thenhead is updated
to reference the former tail of the list. The resulting list is the reverse of the input
list. The result of executing reverse onList 2 is shown in Fig. 5.5.List 2 is
of size 3 and contains three nodes,n5, n4 andn3, in this order. The reverse side
effect is thatList 1 now contains 5 nodes,n1, n2, n5, n4 andn3, in this order.

The reverse procedure tests forList class invariants when it ends.List 2
invariants are tested as the procedure ran on it. The class invariant is found to be
correct asList 2 is of size 3 and contains three nodes. Therefore the program
seems to be in a consistent condition. Nevertheless, the next time the program will
execute any instance method ofList 1, the class invariants test will fail. This is
becauseList 1 now contains 5 nodes, while itssize field is of value 3.List 1
is not in a consistent state anymore. Unfortunately, this can be detected much later
than when the violation actually occurred.

The following suggested solution detects the class invariants violation in the
method where it occurred.

37

public class A {
1: B forward = null;

2: /*@ invariant forward == null ||
3: @ forward.backward == this;

@*/

4: public void attach(B _b1)
{

5: forward = _b1;

6: if(_b1 != null)
{

7: _b1.attach(this);
}

}

8: public void doSomethingElse()
{

9: System.out.println("Doing something else");
}

}

public class B {
10: A backward = null;

11: public void attach(A _a1)
{

12: backward = _a1;
}

}

Figure 5.1: Classical sharing example

38

public class Main {

13: public static void main(String[] args)
{

14: A a1 = new A();
15: B b1 = new B();

16: a1.attach(b1);
17: b1.attach(null);
18: a1.doSomethingElse();

}
}

Figure 5.2: Classical sharing example continued

Exception in thread "main"
org.jmlspecs.jmlrac.runtime.JMLInvariantError: by method
A.doSomethingElse@pre<File "A.java", line 32, character 15>
regarding specifications at File "A.java", line 13, character 34
when

’forward’ is B@1fee6fc
’this’ is A@1eed786
at A.checkInv$instance$A(A.java:126)
at A.doSomethingElse(A.java:465)
at meyer.main(meyer.java:17)

Figure 5.3: Classical sharing example class invariant violation

n1 n2

n3 n4

n5

3

3

List 1

List 2

Figure 5.4: List tail sharing example

39

n1 n2

n3 n4

n5

3

3

List 1

List 2

Figure 5.5: List tail sharing example after list reverse

5.2 Computing invalid class invariants

5.2.1 Using cutpoints

Cutpoints create a sharing between the local heap and the global heap. When a
method modifies a cutpoint, or objects reachable from that cutpoint, it may in-
validate class invariants of objects in the global heap thatcan reach the cutpoint.
Furthermore, the method does not test them, as, in Example 5.1.2, sometimes the
affected objects are not reachable at all by the method and asthe method tests
only the class invariants of the class it belongs to. Therefore cutpoints are a useful
property for verifying the validity of class invariants of objects outside the local
heap.

The cutpoints are used as the roots of a backward scan of the global heap. Each
object scanned is tested for its class invariants. As a consequence the computation
finds the class invariants violated by a modification in the local heap.

We believe testing for invalidated class invariants by the end of each method
results in the best tradeoff between performing a long computation and providing
enough information for locating invalidated invariants cause.

5.2.2 Holding cutpoints

The computation is carried out in two stages:

1. Detecting cutpoints

2. Using cutpoints to detect class invariants invalidations

Cutpoint detection is performed at the beginning of a methodwhile class invari-
ants violation computation is performed at the end of a method. During the method’s
execution parts of the local heap may become unreachable from the method’s formal
parameters. Therefore the detected cutpoints have to be kept until the method ends.

A naive solution is to use a list for this purpose. Because a method can call
other methods during its execution, a list must be held for each method call. This
is highly inefficient in space. Section 5.2.3 presents a space efficient solution.

40

5.2.3 The cutpoint list

The cutpoint list has to hold each cutpoint once and match thecutpoints with the
method they have been detected in.

Once a local heap object becomes external, it will not becomeinternal again until
the method, in which it has become external, returns (Observation 2.1.3). Hence if
this object is a cutpoint, then it is used by the class invariants violation computation
from the method the cutpoint has appeared first until the method before the method
where the object has become external. Therefore each cutpoint in the list has two
stored values:

• Discovered stack depth (DSD)

• Maximum stack depth (MSD) - The last stack depth in which this cutpoint
was detected

MSD ≥ DSD. A cutpoint is removed from the list whenMSD = DSD.
Whendetectingcutpoints, new cutpoints are added with an initial MSD value of

the current stack depth; Cutpoints detected, that are already in the list, are updated by
setting theirMSD to the current stack depth. Cutpoints used by the class invariants
computation, theirMSD is decremented by one. This way the cutpoints with the
highestMSD equal the current method’s stack depth. Therefore the cutpoints that
the class invariants violation computation uses are those with anMSD equals to
the current stack depth.

Observation 5.2.1 The cutpoints list produces at each method’s exit the exact cut-
points that have been detected at the method’s entry.

A simple optimization to prevent searching when matching cutpoints with the
methods they have been detected in, is to hold the list sortedaccording to theMSD.
Using a linked list, for example, makes this optimization easy. Sorting is performed
by moving a rediscovered cutpoint entry to the head of the list. Updating theMSD
while traversing the list for the computation (Section 5.3)guarantees that the list is
left sorted.

5.2.4 Backward scan

In order to perform a backward scan, the computation has to befamiliar with the
refer-to objects of each objecto in the heap. This information can be achieved, for
example, by using source lists (Section 3.2.2). The scan is adepth first search of
the global heap, starting at each cutpoint detected by the current method, and going
backward.

As in the cutpoint detection computation (See Table 3.1) there has to be a way
to limit the scan. A problem arises as there is only one scan each time and no way
to clear a flag. This can be remedied by adding a second scan. Unfortunately each
backward scan is time consuming (The cost isO(N + E)). Another solution is to

41

add a counter to each object and increment it on each scan. This counter has to be
large enough not to repeat itself too soon (The current implementation aborts the
computation when the flag overflows).

5.3 The computation algorithm

The algorithm is explained using a simple linked list, whichis kept sorted according
to theMSD. The list entry fields appear in figure Fig. 5.6. Thediscoveredfield
is theDSD and themaximum field is theMSD. The backward scan is handled
by a counter flag,scanFlag, initially zero. ScanFlag(T) is the scanning flag
at objectT, initially zero. The scan flag ensures that an object’s classinvariants are
not tested more than once, even if more than one cutpoint is reachable from this
object (The current implementation aborts the computationif the flag overflows).
The computation algorithm appears in figure Fig. 5.7 and Fig.5.8.

OnCutpointDetection(CP) When a cutpointCP is detected it is added to the cut-
point list.

AddToList(CP,currentDepth) If a cutpointCP is not on the list, this procedure
adds an entry to the cutpoint list and assigns theDSD to the current stack
depth,currentDepth. The MSD is assigned the current stack depth
whether the cutpoint is new or not.

OnMethodExit(currentDepth) Called when a method exits, normally or excep-
tionally. In order to start a new backward scan session thescanFlag is
incremented. This procedure runs a backward scan only on thedetected cut-
points for the current method. TheMSD is maintained by decrementing its
value for each cutpoint backward scanned. If the cutpoint’sDSD is the cur-
rent method’s stack depth,currentDepth, then the cutpoint is removed
from the list.

BackScanStart(CP) This procedure starts the backward scan from the cutpoint
CP’s sources since the cutpoint itself is not scanned.

BackScan(T) ObjectT’s class invariants are tested. ThenT is marked with the
currentscanFlag and its sources are backward scanned too.

OnObjectRelease(Object)This procedure removes the cutpoint from the list and
does not perform a backward scan. The reason is that because acutpoint is
referenced by an object outside the local heap, it can not be released between
its detection at the beginning of a method, and its usage as input by the class
invariants computation, when the method exits. The exception is when all
the objects referencing the cutpoint are already garbage. In this case, testing
for class invariants violation is meaningless.

42

ListEntry
Cutpoint cutpoint
integer discovered
integer maximum
ListEntry next

Figure 5.6: Cutpoints list entry

OnCutpointDetection(CP)
AddToList(CP,method current stack depth)

AddToList(CP,currentDepth)
if(CP is in list)

le = ListEntry for CP
move le to list head

else
le = new ListEntry
le.cutpoint = CP
le.discovered = currentDepth
add le to list head

le.maximum = currentDepth

Figure 5.7: Class invariants violation computation using cutpoints

TestInvariants(T) Tests an object class invariants for a violation and reports(We
assume there is a way for the computation to tests an object’sclass invariants).

Example 5.3.1 This example demonstrates Observation 5.2.1.
Fig. 5.9 shows the cutpoint list (Section 5.2.3) contents and usage along three

method calls,method_a, method_b and method_c. The leftmost column
shows the cutpoints detected at the beginning of each methodand the cutpoints
used as roots for the backward scan (Section 5.2.4) when a method exits. The next
column to the right shows the current stack. The last column shows the contents of
the cutpoint list. Each item on the list has three fields, fromleft to right: An object
identifier,MSD andDSD.

method_a is called and cutpointsA andB are detected. They are added to
the list with the current stack depth,1, as theirMSD andDSD. Whenmethod_b
is called, cutpointsA, C and D are detected. CutpointA is already on the list.
ThereforeA is forwarded to the list’s head and itsMSD is updated to the current
stack depth.C andD are new to the list and are added with theirMSD andDSD
values equal to the current stack depth,2. At method_c the cutpoints detected

43

OnMethodExit(currentDepth)
scanFlag = scanFlag + 1
le = list head
while(le != null)

if(le.maximum < currentDepth)
return

BackScanStart(le.cutpoint)
if(le.discovered == currentDepth)

remove le from list
else

le.maximum = le.maximum - 1
le = le.next

BackScanStart(CP)
for each S in source_list(CP)

BackScan(S)

BackScan(T)
if (ScanFlag(T) != scanFlag)

TestInvariants(T)
ScanFlag(T) = scanFlag
for each S in source_list(T)

BackScan(S)

OnObjectRelease(Object)
if(Object is in list)

le = ListEntry for Object
remove le from list

TestInvariants(T)
Test T class invariants
Report if invalid

Figure 5.8: Class invariants violation computation using cutpoints continued

44

List headCutpoints

Start main

A, B

Found
method_a

main

11B 11A

A,C,D

Found
method_b

method_a

22D 11B

main

22C 12A

A,C

Found
method_c

method_b

23C 11B

method_a

13A 22D

main

Roots

 C,A

22C 11B12A 22D

method_a

main

method_b

Roots

C,A,D method_a

main

11A 11B

main

Roots

B,A

Stack

Figure 5.9: Cutpoint list example

are objectsA andC. Both already exist on the cutpoint list. ThereforeA andC are
forwarded to the list head and theirMSD is updated to the current stack depth,3.

When a method exits, the class invariants violation computation runs. The roots
for the computation are the cutpoints at the beginning of thecutpoint list, whose
MSD equals to the current stack depth. Formethod_c these are cutpointsA
and C. TheMSD is decremented by one for each cutpoint used as root. When
method_b exits, the cutpoints with the current stack depth areA, C and D.
While traversing the cutpoints list,C andD’s MSD is found to be equal to their
DSD. HenceC andD have been detected at these stack depth and are not needed
anymore. ThereforeC and D are removed from the cutpoint list. CutpointA’s
MSD is decremented. Oncemethod_a exits, cutpointA andB are the roots for
the computation.A andB’s DSD equals to theirMSD and they are removed.

45

Chapter 6

Results

6.1 Motivation

The motivations for investigating the results are:

• Finding common traits for cutpoints in programs

• Pinpointing highly shared data patterns, which also mightbe design bugs

6.2 Measurements

All the measurements here are done for cutpoints referencedfrom the heap only
and neither from the stack nor from static variables. More about result processing
in Appendix B.

6.2.1 Top cutpoint producing methods

First, the maximum number of cutpoints per method invocation is measured for
all methods. The top ten most cutpoint causing methods are inspected further. A
list of causing cutpoints is measured for each method in the top ten list. With this
information, each program is examined in order to find a reason for the cutpoints.

6.2.2 Well-known classes effect

A list is used to separate cutpoints of specific classes. The list is characterized by
the following properties:

• Immutability

• We assume that highly shared

• Less interesting for understanding a program’s sharing and therefore can be
processed separately

46

Class identifier
java.lang.String
java.lang.Integer
java.lang.Boolean
java.lang.Byte
java.lang.Character
java.lang.Double
java.lang.Float
java.lang.Long
java.lang.Short

Table 6.1: The well-known classes list

The well-known classes list appears in Table 6.1.
The results of cutpoint detection are separated to two different parts according

to the well-known classes list: One part contains the results where cutpoints are of
the classes in the list and the second part contains the results where cutpoints are
not of the classes in the list.

For each program the total number of cutpoints of classes in the well known
classes list are measured throughout the program’s execution. The purpose is to get
an indication whether the Java language designers’ decision to make these classes
immutable and shared is justified.

6.2.3 Methods’ maximum cutpoints disparity

The purpose of this measurement is to provide an initial viewof the amount of
cutpoints in a program. Each method is placed in a base two logarithmic scale ac-
cording to the maximum number of cutpoints it had during the program’s execution.
If a method is placed in the location of valuex, it means the method had between
2(log

2
x)−1 + 1 and x, inclusive, maximum number of cutpoints during the pro-

gram’s execution. For example, if a method is placed at the value of 256, it means
the maximum number of cutpoints this method had during the program’s execution
is between 129 and 256, inclusive. Subsequently the percentage of methods, from
the total number of methods, is calculated for each entry in the scale.

The measurements are conducted once for all classes of cutpoints and once for
cutpoints not belonging to the well-known classes list. This is done in order to see
the effect the well-known classes have on cutpoints in methods.

47

6.3 The benchmarks

6.3.1 Soot: a Java optimization framework

Soot ([17]) is a Java optimization framework. It provides four intermediate repre-
sentations for analyzing and transforming Java bytecode: Baf: a streamlined rep-
resentation of bytecode which is simple to manipulate. Jimple: a typed 3-address
intermediate representation suitable for optimization. Shimple: an SSA variation
of Jimple. Grimp: an aggregated version of Jimple suitable for decompilation and
code inspection. Soot can be used as a stand alone tool to optimize or inspect class
files, as well as a framework to develop optimizations or transformations on Java
bytecode.

6.3.2 The Kawa language framework

Kawa ([4]) is:
A framework written in Java for implementing high-level anddynamic lan-

guages, compiling them into Java bytecodes.
An implementation of Scheme, which is in the Lisp family of programming

languages. Kawa is a featureful dialect in its own right, andadditionally provides
very useful integration with Java. It can be used as a “scripting language”, but
includes a compiler and all the benefits of a “real” programming language, including
optional static typing.

Implementations of other programming languages, including XQuery (Qexo)
and Emacs Lisp (JEmacs).

6.3.3 SPEC JVM98 benchmarks

JVM98 ([7]) features:

• Measures performance of Java Virtual Machines

• Applicable to networked and standalone Java client computers, either with
disk (e.g., PC, workstation) or without disk (e.g., networkcomputer) execut-
ing programs in an ordinary Java platform environment.

• Requires Java Virtual Machine compatible with JDK 1.1 API,or later

6.3.4 TVLA: 3-valued logic analysis engine

TVLA ([20]) is an evolving research vehicle for abstract interpretation, featuring:

• A powerful language for expressing concrete semantics

• Automatic generation of abstract interpreters from concrete semantics

• Tunable abstractions

• Naturally suited for checking properties of heap allocated data

48

Package Class Method Maximum
value

soot/util/ ArrayNumberer add (Ljava/lang/Object;)V 1523
soot/util/ HashChain$Link unlinkSelf ()V 1464
soot/util/ HashChain$Link getItem ()Ljava/lang/Object; 1464
soot/util/ HashChain$Link bind (Lsoot/util/HashChain$Link;… 1464

…Lsoot/util/HashChain$Link;)V
soot/util/ HashChain$Link setPrevious (Lsoot/util/HashChain$Link;)V 1464
soot/util/ HashChain$LinkIterator next ()Ljava/lang/Object; 1464
soot/util/ HashChain$Link setNext (Lsoot/util/HashChain$Link;)V 1464
soot/util/ HashChain$Link getNext ()Lsoot/util/HashChain$Link; 1464
soot/util/ HashChain access$300 (Lsoot/util/HashChain;)J 1464
soot/util/ HashChain size ()I 1464

Table 6.2: Soot run on null example top ten cutpoint causing methods

6.4 Results

6.4.1 Shared immutable objects

An example of the top methods appears in Table 6.2. In the table appear the methods
with the maximum number of cutpoints throughout Soot’s executiononnull example
input.

By looking at the code of two of the benchmarks, Soot and TVLA,according
to their top cutpoint producing methods, a common property is discovered. Both
programs load their input into a data structure in memory. This data carries out two
properties:

• The data is immutable

• The data is shared, as it either goes through more than one processing, re-
quiring different views of it or, to improve its read time, itcan be accessed
by more than one manner

As a result, when accessing the shared data structure through one of its access
objects, the other manners of access cause the appearance ofmany cutpoints.

Soot reads Java bytecode files and loads them into memory by creating a de-
scription of the class structure. The various objects in theclass description structure
are also accessible by a number. For this purpose, another object holds a mapping
from numbers to objects (soot.util.ArrayNumberer). When Soot accesses the
class structure, the class responsible for numbering causes numerous cutpoints.

TVLA loads a list of formulas and stores them in memory. Several lists of
constraints on the formula are loaded and described by referencing the formulas.
Whenever a constraint is processed, the other constraints cause numerous cutpoints
on the formulas.

49

0%

10%

20%

30%

40%

50%

60%

intro null example test db sll_reverse

soot kawa jvm98 tvla

Program & input

%
 o

f
to

ta
l c

u
tp

o
in

ts

Figure 6.1: String percentage out of the total cutpoints

6.4.2 String

The results in Fig. 6.1 show thatjava.lang.String is a major player in causing
cutpoints. String’s effect is much more apparent in the firstthree bars. Soot and
Kawa load Java classes into memory. The classes are loaded byreading files, which
is performed by reading many strings. As seen from the results, strings are highly
shared. From this we conclude that makingjava.lang.String immutable and
shared was a good design decision.

6.4.3 Methods’ maximum cutpoints disparity

The maximum cutpoints disparity graph shown in Fig. 6.2 illustrates how much
sharing exists in each program. Other than Kawa, the programs have more than
half their methods with less than 128 cutpoints per method call.

When looking at the maximum disparity graph without the well-known class
cutpoints in Fig. 6.3 and comparing it to the previous graph,the well-known class
cutpoints indeed contribute a fair amount. As seen in Fig. 6.1 this contribution is
mostly due tojava.lang.String.

50

0%

10%

20%

30%

40%

50%

60%

70%

80%

40962048102451225612864321684210

Maximum cutpoint buckets

M
et

h
o

d
 p

er
ce

n
ta

g
e

Soot intro Soot null example Kawa test jvm98 db TVLA sll reverse

Figure 6.2: Disparity of method maximum cutpoints in total

0%

10%

20%

30%

40%

50%

60%

70%

80%

40962048102451225612864321684210

Maximum cutpoint buckets

M
et

h
o

d
s

p
er

ce
n

t

soot intro soot null example kawa test jvm98 db tvla sll reverse

Figure 6.3: Disparity of method maximum unknown cutpoints in total

51

Chapter 7

Related work

There are several works and tools dealing with heap profiling. Other related works
use cutpoints with static shape analysis. (As far as we know,there is no existing
work dealing with dynamic computation of cutpoints)

Interprocedural shape analysis The importance of cutpoints was first identified
in works regarding static interprocedural shape analysis.In [29], Rinetzky
et. al. developed compile-time algorithms for automatically verifying prop-
erties of imperative programs that manipulate dynamicallyallocated storage.
Cutpoints are used in the analysis to characterize a procedure’s behavior. The
work in [30] takes advantage of the absence of cutpoints to develop a pro-
cedural abstraction, which is used in a framework for interprocedural shape
analysis. An interprocedural shape analysis that supportsa bounded number
of cutpoints in the local heap is presented in [13] by Gotsmanet. al..

Heap profilers Modern development languages use dynamically allocated mem-
ory extensively, using complex data structures. Heap profiling is used to
isolate performance problems involving memory usage and inefficient code.

General information General tools provide statistical information about the
heap during and at the end of a program’s execution. HPROF ([27])
is part of Sun’s JVM library and provides heap and garbage collection
statistics. HAT ([11]) is a tool for analyzing the results ofHPROF. More
sophisticated tools provide information and specific advice on different
ways to improve the profiled program. For example, on memory corrup-
tion and leaks, application performance bottlenecks and code coverage.
OptimizeItTM ([5]), JProbeTM Memory Debugger ([33]) and Rational
PurifyPlusTM ([6]) are some well known commercial tools. More heap
profilers are The NetBeans Profiler project [25] and Cougaar memory
profiler [8].

Garbage collection behavior The importance of garbage collection perfor-
mance has led to the creation of tools that investigate its behavior. Sun

52

provides a Garbage Collector Spy Tool ([23]), which visualizes a large
range of memory systems. Shaham et. al. ([31]) developed a tool,
which measures the difference between the actual collection time and
the actual object death time. The output of the tool is used todirect
the rewriting of an application’s source code in a way that allows more
timely garbage collection of objects, thus saving space. Hertz et. al.
([15], [14]) present a theoretical framework for analyzinggarbage col-
lection and a tracing algorithm (called “Merlin”), which determines the
exact point an object in the heap has become unreachable. Merlin is
implemented as part of the Jikes RVM.

Object ownership The general heap profiling tools usually provide man-
ual browsing and flat summaries, making it hard to understandtoday’s
programs. Mitchell ([26]) creates a hierarchical summary of the heap
using object’s ownership. Jackson et. al. ([28]) facilitate program
understanding by revealing objects ownership and sharing using a vi-
sualization tool.

The sharing problem (Section 5.1.1) is tackled by Barnett et. al. in [24] and [3].
Barnett et. al. present afriendship system. Friendship describes a formal protocol
for a granting classto grant a friend class permission to express its invariant over
fields in the granting class. The protocol permits the safe update of the granter’s
fields without violating the friend’s invariant. Rustan et.al. ([19]) deal with static
class invariants, which describe the consistency of staticfields. Static fields usually
hold data that is shared among objects. The authors present amethodology for
specifying and verifying static class invariants in object-oriented programs.

53

Chapter 8

Future Work

8.1 Suggestions for future work

We believe cutpoints may be used as an indicator for program behavior. The fol-
lowing topics should be investigated to find out whether a relation exists.

• Confinement - Cutpoints indicate externally shared data. Classes should be
written in such a way that their data is confined and handled bythe class or by
its package only. Therefore cutpoints may indicate whetherclasses actually
confine their data.

– Method access modifiers - Private, protected and package methods share
more data than public to public method calls, because they are internal
to the class. Therefore these methods should have more cutpoints than
public to public method calls.

– Cross Package - Packages are independent execution modulesand thus
should confine their own data. As a result, cross package method calls
should have more cutpoints than inner package method calls.

– Source Origin - Looking at the type of the sources for cutpoints can help
find explanations for cutpoints. Comparing the cutpoint’s package and
its sources’ package shows how much data is confined within packages
or how much of it is shared.

• JDK - Focus on the JDK as it is used by all Java programs. For this reason
results discovered here have a large impact.

The cutpoint detection computation runs on the local heap. Taking advantage
of this can provide more information, such as:

• The amount of acyclic objects (Section 3.4.1) in the local heap.

• Information that may help find common limits for cutpoints,such as distance
from the formal parameters, stack depth when detected.

54

• Properties of the local heap, such as

– Dimensions, for example maximum length, number of objects

– Usability - How much of the local heap is actually accessed

– Internal sharing - How many objects are shared in the local heap

Works [28] and [26] present heap profiling results hierarchically using object
ownership. An integration of these works with the computations presented here
should be examined in order to provide more interesting results.

Finding live or dead cutpoints is performed only for heap references. The
process can be extended to support stack and static fields references.

The Jikes RVM has an implementation of theMerlin algorithm ([15]). Merlin
is a trace generation algorithm, which determines when an object becomes unreach-
able. As a result, using the liveness computation with Merlin for detecting dead
cutpoint fields should be examined.

Using Merlin and a heap modeler should be examined as anotherplatform for
detecting cutpoints.

8.1.1 Prototype

The following are additions and modifications to the prototype.

• Optimizing for execution speed.

• Creating a relation between the cutpoint detection computation and the live-
ness computation such that only live cutpoints are reported.

• Since the prototype was written, new versions of the Jikes RVM have been re-
leased. The MMTk, the memory management module, has been redesigned.
Therefore the prototype should be adapted to the new design.

8.2 Limitations

The current cutpoints detection algorithm is single-threaded, hence it does not han-
dle a large group of programs.

The use of Address type (Section A.2.2) forces the use of non-moving garbage
collectors only. In order to support all garbage collectors, the following should be
done:

• Adding an option to perform reference counting.

• Supporting moving garbage collectors.

The prototype has a large runtime overhead, as it runs at least on each method
entry. Nevertheless, some of the overhead can be reduced. Currently the main rea-
son for the slowdown is the results printing overhead. Improvements have already

55

been made, such as displaying a summary of the number of cutpoint and types for
each method call, instead of typing each cutpoint separately. These improvements
have resulted in lower overhead, but further work should be done.

56

Bibliography

[1] S.M. Blackburn M. Butrico A. Cocchi P Cheng J. Dolby S. Fink D. Grove
M. Hind K.S. McKinley M. Mergen J.E.B. Moss T. Ngo V. Sarkar B.Alpern,
S. Augart and M. Trapp. The jikes research virtual machine project: Buliding
an open-source research community.IBM Systems Journal, 44(2):399–417,
2005.

[2] D.F. Bacon and V.T. Rajan. Concurrent cycle collection in reference counted
systems. InProceedings of the Fifteenth European Conference on Object-
Oriented Programming, volume 2072 ofLecture Notes in Computer Science,
pages 207–235, Budapest, Hungary, June 2001. Springer-Verlag.

[3] M. Barnett and D.A. Naumann. Friends need a bit more: Maintaining invari-
ants over shared state. InMPC, pages 54–84, 2004.

[4] P. Bothner. The kawa language framework.
http://www.gnu.org/software/kawa/.

[5] Borland Software Corporation. OptimizeitTM enterprise suite, 2006.

[6] IBM Corporation. Rational purifyplus, 2006.

[7] Standard Performance Evaluation Corporation. Spec jvm98 benchmarks.
http://www.spec.org/jvm98/.

[8] Cougaar. Cougaar memory profiler, 2006.

[9] L. P. Deutsch and D. G. Bobrow. An efficient, incremental,automatic garbage
collector.Commun. ACM, 19(9):522–526, 1976.

[10] Jikes RVM development team.The Jikes™ Research Virtual Machine User’s
Guide, 2.3.5 edition, 2005.

[11] B. Foote. Hat: The java heap analysis tool, 2006.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns. Addison-
Wesley Professional Computing Series, 2005.

[13] A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with
separated heap abstractions. InSAS, 2006.

57

[14] M. Hertz, S.M. Blackburn, J.E.B. Moss, K.S. McKinley, and D. Stefanovíc.
Generating object lifetime traces with merlin.ACM Trans. Program. Lang.
Syst., 28(3):476–516, 2006.

[15] M. Hertz, N. Immerman, and J.E.B. Moss. Framework for analyzing garbage
collection.

[16] Authors in http://jikesrvm.sourceforge.net/info/core.shtml. JikesTM rvm
home page. http://jikesrvm.sourceforge.net/.

[17] Authors in http://www.sable.mcgill.ca/soot/credits. Soot: a java optimization
framework. http://www.sable.mcgill.ca/soot/.

[18] G.T. Leavens and Y. Cheon. Design by contract with jml. January 2006.

[19] K. Rustan M. Leino and P. Müller. Modular verification ofstatic class invari-
ants. InFM, pages 26–42, 2005.

[20] T. Lev-Ami, R. Manevich, and more. Tvla: 3-valued logicanalysis engine.
http://www.cs.tau.ac.il/ tvla/.

[21] T. Lindholm and F. Yellin.The Java Virtual Machine Specification, Second
Edition. Addison-Wesley, 1999.

[22] B. Meyer. Object-Oriented Software Construction. Prentice Hall PTR, 800
East 96th Street Indianapolis, Indiana, 2nd edition, 1997.

[23] Sun Microsystems. Garbage collector spy tool, 2006.

[24] D.A. Naumann and M. Barnett. Towards imperative modules: Reasoning
about invariants and sharing of mutable state. InLICS ’04: Proceedings of
the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04),
pages 313–323, Washington, DC, USA, 2004. IEEE Computer Society.

[25] NetBeans. The netbeans profiler project, 2006.

[26] M. Nick. The runtime structure of object ownership. InEuropean Conference
on Object-Oriented Computing (ECOOP), 2006.

[27] K. O’Hair. Hprof: A heap/cpu profiling tool in j2se 5.0, November 2004.

[28] D. Rayside, L. Mendel, and D. Jackson. A dynamic analysis for revealing
object ownership and sharing. InWODA ’06: Proceedings of the 2006 in-
ternational workshop on Dynamic systems analysis, pages 57–64, New York,
NY, USA, 2006. ACM Press.

[29] N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm.A semantics for
procedure local heaps and its abstractions. In32nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’05),
2005.

58

[30] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for
cutpoint-free programs. InSAS, pages 284–302, 2005.

[31] R. Shaham, E.K. Kolodner, and S. Sagiv. Heap profiling for space-efficient
java. InSIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 104–113, 2001.

[32] Eiffel Software. Building bug-free o-o software: An introduction to design
by contract(tm), 2004.

[33] Quest Software. JprobeTM memory debugger, 2006.

[34] Open Source. Gnu classpath project.

[35] Wikipedia. Class invariant, 2006.

[36] Wikipedia. Design by contract, 2006.

59

List of Tables

3.1 Colors in use . 14

4.1 External depth flag possible values 25

6.1 The well-known classes list . 47
6.2 Soot run on null example top ten cutpoint causing methods. 49

A.1 Classifying array objects. true - user object. false - otherwise. n/p -
not possible. check - call stack check required 65

B.1 Database and summary file fields . 76

60

List of Figures

2.1 An illustration of the cutpoints for an invocation of themethodzoo . . 9

3.1 Cutpoints detection algorithm .. 15
3.2 Detecting cutpoints example initial memory 16
3.3 Detecting cutpoints example method call 16
3.4 Detecting cutpoints example MarkGray result 17

4.1 Liveness example node class . 19
4.2 Liveness example program . 20
4.3 Liveness example memory status of the program in Fig. 4.2

before line 5 . 20
4.4 Liveness example memory status of the program in Fig. 4.2

before line 9 . 21
4.5 Liveness example memory status of the program in Fig. 4.2

before line 9 after MarkGray . 21
4.6 Collecting cutpoints for liveness 22
4.7 Finding object liveness . 23
4.8 Computing external sources algorithm 27
4.9 Computing external sources example program 29
4.10Computing external sources example initial state (Fig. 4.9 before line 5) 30
4.11Computingexternal sources example in call toprintFirst (Fig. 4.9before

line 7) . 30
4.12Computingexternal sources example in call toprintFirst (Fig. 4.9before

line 7) after MarkScanInternalRoots 31
4.13Computingexternal sources example in call toprintFirst (Fig. 4.9before

line 7) after MarkExternalRoots . 31
4.14Computing external sources example in call to print (Fig. 4.9 before

line 8) . 32
4.15Computing external sources example in call to print (Fig. 4.9 before

line 8) after MarkScanInternalRoots 32
4.16Computing external sources example in call to print (Fig. 4.9 before

line 8) after MarkExternalRoots . 33
4.17Computing external sources example in call to printTwo(Fig. 4.9 before

line 9) . 33

61

4.18Computing external sources example in call to printTwo(Fig. 4.9 before
line 9) after MarkScanInternalRoots 34

4.19Computing external sources example in call to printTwo(Fig. 4.9 before
line 9) after MarkExternalRoots . 34

5.1 Classical sharing example . 38
5.2 Classical sharing example continued 39
5.3 Classical sharing example class invariant violation 39
5.4 List tail sharing example . 39
5.5 List tail sharing example after list reverse 40
5.6 Cutpoints list entry . 43
5.7 Class invariants violation computation using cutpoints 43
5.8 Class invariants violation computation using cutpoints continued . . . 44
5.9 Cutpoint list example . 45

6.1 String percentage out of the total cutpoints 50
6.2 Disparity of method maximum cutpoints in total 51
6.3 Disparity of method maximum unknown cutpoints in total 51

A.1 Classifying objects . 66
A.2 GC enabled scan . 70
A.3 Modified cutpoint detection computation procedures forGC enabled

scan . 71

B.1 Raw file entry . 73
B.2 Method heap only summary file example 75
B.3 Program method heap only cutpoint type cutpoints to local heap ratio

query result example . 76

62

Appendix A

Prototype implementation

This chapter discusses the prototype’s implementation issues.

A.1 Picking a platform

Bacon and Rajan [2] implemented their algorithms using the Jalapẽno Java VM
developed by IBM. Since then this VM has become an open sourceproject named
JikesTM Research Virtual Machine([16, 1]). Bacon and Rajan’s algorithm has
been implemented and has become a part of this VM. Therefore Jikes RVM was
the natural choice for a platform.

Jikes RVM is written in JavaTM . As a result modifying and adding new features
is relatively easy. A good portion of Jikes RVM is platform independent due to the
use of Java.

A.1.1 Limitations

Limitations implied from using Jikes RVM:

• The implementation is only in Java.

• Uninterruptible mode (Section A.4.1).

• Uses GNU’s implementation of the Java libraries, GNU classpath ([34]).

This implementation is limited to:

• Single threaded applications.

• Non-copying garbage collectors.

63

A.1.2 The build process

The Jikes RVM has an initial “bootstrap” build process in which a VM boot image
is compiled and saved. A boot image builder process uses another VM to run the
Jikes RVM compiler to compile itself. The resulting boot image is used to bootstrap
the Jikes RVM whenever it is run. The image is loaded to memoryand the RVM
starts to run from there. Hence, the Jikes RVM is a VM written in Java, which runs
on the host platform without a VM mediator. This fact makes the Jikes RVM a
more efficient solution than other research platforms.

A.2 Common preliminaries

A.2.1 Working on the user program

Most RVM services, like memoryallocation, runonall objects and methods, without
distinction. Therefore the cutpoint detection computation has to distinguish user
methods and objects from those belonging to the RVM.

The first step is classifying each class according to its package. This step is car-
ried out when the class is loaded and, hence, only once per class. The classification
is saved in the RVM class description object. The classes areclassified as RVM
classes, JDK classes and user classes.

Object classification

Objects are classified for the following reasons:

• Some user accessible objects reference internal VM data structures. For
example, java.lang.Class references internal VM representation of a class
in order to provide class information. As a result, the cutpoint detection
computation can reach these objects too.

• Source lists, used on several occasions, should be maintained for user objects
and hold only user objects.

• We were not interested in running other computations on RVMobjects.

Class instances are classified according to their class. Arrays are classified
according to their creator and their most inner element type. Array classification
appears in Table A.1.

In some cases static information is not enough and objects are classified dy-
namically. Both the user program and the RVM use JDK class instances and arrays.
Their classification is conducted by traversing the call stack and searching for the
creator. There are occurrences where JDK objects are created by the RVM and
returned to the user through the JDK. For example, when reading a file. The user
calls the JDK. The JDK uses JNI to access operating system specific code. The
native code handles the call, and uses the RVM to allocate memory for the returned

64

Creator RVM User JDK
Created type
RVM false n/p false
User true true true
JDK check true check
Primitive check true check

Table A.1: Classifying array objects. true - user object. false - otherwise. n/p - not
possible. check - call stack check required

data. Therefore, to simplify matters, if the call stack scanfinds a user frame, the
object is classified as a user object.

Objects are classified when created. Classification starts only after the VM is
fully booted. The result is saved in a flag at the object’s header.

The object classification computation

The object classification computation appears in Fig. A.1.IsClass(Object)
indicates whether an object is a class instance or not.IsArray(Object)does the
same for arrays.GetObjectClassType(Object) returns the class describing
the object’s class. Eachdescriptionclass has a classificationflag,ClassFlag(Type).
The possible values are:User,JDKandRVM.GetArrayMostInnerElementTable(Type)
returns the most inner element type of the given array type, whether single or multi-
dimensional array.

IsUserObject(Object, Creator) Classifies the created objectObject according
to its type, a class instance or an array.

IsUserClass(Object) Classifies the class instanceObjectaccording to its type. If
the class belongs to the JDK, it is classifiedusinga runtime test,CheckForUser.

IsUserArray(Object, Creator) Classifies the array objectObject according to
its creator typeCreator and the most inner element type. The array is
classified according to Table A.1.

CheckForUser() This procedure searches for a user frame on the call stack, starting
from the frame where the current object was created.

Limiting methods

The cutpoint detection computation is inserted into the beginning of user methods
after they are loaded and before they are compiled to machinecode. The instru-
mented methods are those belonging to user classes, according to the classification

65

IsUserObject(Object, Creator)
if(IsClass(Object))

return IsUserClass(Object)
else if(IsArray(Object))

return IsUserArray(Object, Creator)
else

return false

IsUserClass(Object)
classType = GetObjectClassType(Object)
if(ClassFlag(classType) == User)

return true
else if(ClassFlag(classType) == RVM)

return false
else if(ClassFlag(classType) == JDK)

return CheckForUser()

IsUserArray(Object, Creator)
if(ClassFlag(Creator) == User)

return true
innerElementType = GetArrayMostInnerElementTable(Object)
if(IsClass(innerElementType))

if(ClassFlag(innerElementType) == User)
return true

else if(ClassFlag(innerElementType) == RVM)
return false

return CheckForUser()

CheckForUser()
Traverse the call stack looking for
a frame whose method belongs to a class
where IsUserClassType(stack-frame class) == true
if found return true
else return false

Figure A.1: Classifying objects

66

presented in Section A.2.1. RVM methods are not instrumented. Methods belong-
ing to the JDK are optionally instrumented, because they canadd a considerable
number of cutpoints. Furthermore, before the cutpoint detection computation runs
on a JDK method, it checks who asked for the JDK service, a Useror an RVM class,
and performs the computation or not accordingly.

In addition, in the following occasions, methods are not instrumented:

• Before the RVM is fully booted.

• Static methods without parameters.

• Methods without reference parameter types.

• Themainmethod.

A.2.2 Holding sources

The source lists can not hold references to objects when using a reference counting
garbage collection due to the creation of reference cycles.There are some possible
solutions:

• Reference count special case - Handles specifically the source list references.
This solution complicates the garbage collection code thatshould be kept
simple and fast.

• WeakReference - WeakReference solves the problem caused by using a reg-
ular reference. However WeakReference may pose a problem with RVM
uninterruptible code (see Section A.4.1), since it is meantto use by user
programs and not by internal RVM code.

• The Address type -Addressis an RVM internal type, which appears as a class
but which is replaced by the RVM compiler with an actual number. Hence
no object is created. The advantage of using Address is beinga fundamental
part of the RVM memory module and, for this reason, is efficient. Because
Address is not treated as a reference , it is not updated by moving garbage
collections (such as Mark & Sweep) and hence can not be used with them.

The source list is updated at four locations:

• PutField write barrier - Object field assignment

• ArrayStore write barrier - Array element assignment

• Copying array write barrier for reference arrays

• When an object is released

67

The references of a released object are not cleared. Consequently the referenced
objects are explicitly taken care of. When the object is released, it is removed from
the source lists of all the objects it still references.

Each entry in the source list holds the following properties:

• The address of the source that the entry represents.

• A list of the fields referencing the object.

• External depth flag (See Section 4.3).

A.3 Computations specific

A.3.1 Computing cutpoints preparations

Coalescing (or deferred) Reference Counting ([9]) delays reference count updates
to the actual garbage collection in order to reduce the writebarrier cost. As a result,
objects’ reference counters do not hold their real value between collections. This
results in inaccurate results when computing cutpoints. Asa result the prototype
runs a garbage collection without time quanta limit before each cutpoint detection
computation.

The cutpoint detection computation’s input is the actual parameters passed to
the method. The parameters are read from the call stack and only object references
are used. If all the references are null, the computation is not executed.

A.3.2 Live and dead cutpoints

When detecting cutpoints the liveness computation stores source objects as can-
didates for liveness. For each cutpoint detected, the external sources, and their
cutpoint referencing fields, are stored. The liveness computation is required to be
quick when inside the read and write barriers. Therefore thecomputation uses a
hash table for storing the candidates . The hash table keys are the sources. Each
source’s value holds a hash table of its targets, since the same source may be a
candidate for several targets. Furthermore, the hash tables allows finding whether
the source and the target exist inO(1) in average.

The target’s value in the targets hash table for each source is a list of the cutpoint
referencing fields for that source and target. The list is created easily by duplicating
the list of fields for the source in the target’s source list.

A.3.3 Early detection of class invariants violation

In order to test the class invariants in the user program, thecomputation has to
be able to run the invariants test. For this purpose there is aJava interface with a
single method, which the computation uses to test the invariants. The user has to
implement the interface such that when the computation calls the method the class

68

invariants are tested and the result of that test is returned. If the user has a single
way for testing class invariants, this implementation can be done only once.

The computation implementation uses an index for quick access to the cutpoint
objects in the cutpoint list (Section 5.2.3andAddToList(CP,currentDepth)
in Fig. 5.7).

A method may exit normally or exceptionally. Therefore in both cases
OnMethodExit(currentDepth) (Fig. 5.7) has to be called.

A.4 Other implementation notes

A.4.1 Uninterruptible code

Uninterruptible code (see "What are the Semantics of Uninterruptible Code?" sub-
section in the "Magic" section of [10]) prevents "losing control" of execution to
other threads. Hence in this code, more delicate operationsare done. The cutpoint
detection computation, source lists maintenance and the external source compu-
tation are implemented as uninterruptible code. Uninterruptible code allows the
usage of only a subset of the Java language, for example, using thenewoperator or
the cast operator is not allowed. Therefore uninterruptible code must be short and
simple.

Adding new candidates for tracking in the liveness detection and class invariants
violation detection is done in interruptible code in order to keep memory allocation
simple. However the input to these computations is cutpoints, which are detected
in uninterruptible code. Therefore some mechanism is needed to connect the two.

Our solution is to add a scan, which runs in interruptible code. The scan runs
right after the scans of the cutpoint detection computation. The cutpoint detection
computationmarks all the objects detectedas a cutpoint with a special flag, acutpoint
flag. The interruptible scan runs on the same objects and looks for the objects marked
with the cutpoint flag. Each cutpoint is then passed to the computations as their
input.

The scan can be interrupted by, among others, the garbage collection thread.
Therefore the scan is calledGC enabled scan. The potential problem is that the
garbage collection might run and collect objects. Even so, the objects the GC
enabled scan is scanning are not collected because they are reachable from the
method’s formal parameters, which are on the call stack.

The GC enabled scan is a depth first scan. As such, it has to markscanned
objects. Because the GC enabled scan scans the same objects the cutpoint detection
computation does, a cooperation between the two scans is established. The GC
enabled scan uses a scanning flag, calledGC enabled scan flag. The cutpoint
detection computation first scan,MarkRoots(Roots), clears the GC enabled
scan flag for all objects, ensuring, as the GC enabled scan scans the same objects,
that the GC enabled scan has a clear slate. The GC enabled scanshare is to clear
the cutpoint flag for the scanned objects.

69

GCEnabledScan(Roots)
For each S in Roots

Scan(S)

Scan(S)
if (GCESFlag(S) == false)

GCESFlag(S) = true
if(CutpointFlag(S) == true)

use S in relevant computations
CutpointFlag(S) = false
for each T in children(S)

Scan(T)

Figure A.2: GC enabled scan

GCESFlag(S) is the GC enabledscanbooleanflag for objectS. CutpointFlag(S)
is the cutpoint boolean flag for objectS. Fig. A.2 shows the GC enabled scan al-
gorithm.

GCEnabledScan(Roots)Runs the GC enabled scan for the same roots as in Sec-
tion 3.4.

Scan(S) Perform a depth first scan starting at objectS. Only objects not marked
with the GC enabled scan flag are scanned. If an objectS is found with
a marked cutpoint flag,S is passed to the relevant computations and the
cutpoint flag is cleared. Clearing is necessary in order not to mislead the next
computation.

Fig. A.3 shows the modifications to the cutpoint detection algorithm (Sec-
tion 3.4), which provides cutpoint information and initializes the scanning flag
for the GC enabled scan.

The modified procedures (the new lines have the wordaddedat their beginning)
are:

MarkGray(S) This procedure clears the GC enabled scan flag for each objectit
scans. Hence this scan ensures that the objects are initialized for the GC
enabled scan.

Scan(S) This procedure marks the cutpoints found using the cutpointflag. By this
marking the detected cutpoints are passed to the GC enabled scan.

70

MarkGray(S)
if (color(S) != gray)

color(S) = gray
added GCESFlag(S) = cleared

for each T in children(S)
RC(T) = RC(T) - 1
MarkGray(T)

Scan(S)
if (color(S) == gray)

if(RC(S) > 0)
S is a cutpoint

added CutpointFlag(S) = true
color(S) = black
for each T in children(S)

Scan(T)
RC(T) = RC(T) + 1

Figure A.3: Modified cutpoint detection computation procedures for GC enabled
scan

A.4.2 Summary of object header changes

The list of changes to the object header

• Cutpoint source list reference (Section A.2.2)

• User flag (Section A.2.1)

• Cut point flag (Section A.4.1)

• GC scan flag (Section A.4.1)

• Backward scan counter (Section 5.2.4)

71

Appendix B

Results processing

The results output by the prototype are processed until theybecome comprehendible
tables. The processing stages are explained here.

B.1 The prototype raw file

The prototype output is the the data file. The raw file has a record for each invocation
of a method with cutpoints detection potential. Such a method has at least one object
reference and, hence, a local heap. Therefore records appear even if a cutpoint was
not detected.

There are four reported cutpoint types. The types indicate the kind of source
that created the cutpoint. The cutpoint type values are exclusive. The possible
cutpoint types are:

Heap only (HO) The source is an object in the global heap (and not in the local
heap).

Root only (RO) The source is a local variable on the execution’s stack or a static
field.

Heap and root (HR) At least two sources, one from the heap and the second a
local variable on the execution’s stack or a static variable.

Parameter (P) An object, which is also a formal parameter, is not considered a
cutpoint (Definition 2.2.1), even if it is referenced from anobject in the global
heap (A formal parameter is always referenced from the stack).

The record includes the following parts:

1. Method’s fully qualified name in the JVM descriptor format(see [21]). For
example:java.util.HashMap Object put(Object key, Object value)appears as
Ljava/util/HashMap;.put (Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;

2. (Optional) Method’s local heap size measured in a number of objects

72

Method Ltest/TestHashEntry;.detectCutPoints(Ljava/util/HashMap;I)V
Heap size=64
Ljava/util/HashMap$HashEntry;=HO=20=
Ljava/util/HashMap;=Prm=1=

Figure B.1: Raw file entry

3. (Optional) A cutpoint description made out of the following:

(a) A JVM descriptor of a class which appeared as a cutpoint onthis call.
For example:java.lang.Classappears asLjava/lang/Class;

(b) For each cutpoint type this class has appeared as

i. The cutpoint type

ii. The number of cutpoints of this type

Example B.1.1 The entry in Fig. B.1 shows a typical raw file entry. Thedetect-
CutPointsmethod was called and the cutpoint detection computation discovered
20 cutpoints of typejava.util.HashMap.HashEntryoriginating from the heap (HO).
java.util.HashMapwas the actual parameter to the method. There were64 objects
in the local heap on this call.

B.2 The summary file

The summary file is a summarized version of the raw file. The filecontains ab-
breviated data, arranged hierarchically according to methods and the classes that
appeared as cutpoints in a method.

The summary file adds a level of distinction to the cutpoint types. Cutpoint
types are separated by the cutpoint class, according to a list of well known classes.
This list contains common classes, which usually appear as cutpoints and therefore
may obscure other interesting results. The list appears in Table 6.1. The new well-
known cutpoint types areWKHO, WKRO, WKHR, which are the same as the
cutpoint types in Section B.1, but for cutpoints of well-known classes only. The
original cutpoint types,HO, RO, HR now stand for cutpoints from all classes
except those in the well-known list.

The summary file contains only one record for each method which appeared in
the raw file, as opposed to one record for each methodinvocation in the raw file.
The record is made out of the following sections:

1. Method summary

(a) Number of method calls, including calls without any cutpoints.

(b) Summarized cutpoint information for each cutpoint type, which ap-
peared in this method throughout the program. In addition, the total of

73

well-known types, the total for not well-known types and thetotal of all
types. Parameter cutpoint type does not appear in any of the totals.

i. Number of cutpoints of this type

ii. Size of local heap when this type occurred

2. For each class, which appeared as a cutpoint in this methodthroughout the
program

(a) Summarized cutpoint information for each cutpoint type, which ap-
peared in this method throughout the program. In addition, the total of
well-known types, the total for not well-known types and thetotal of all
types. Parameter cutpoint type does not appear in any of the totals.

i. Number of cutpoints of this type

ii. Size of local heap when this type occurred

For each item in the list above, except the number of method calls, the following
statistical information is calculated:

• Total - Sum of this item

• Call count - The number of method invocations in which this cutpoint type
appeared

• Average - Equals to the total divided by the call count

• Minimum - Minimum value of this item

• Maximum - Maximum value of this item

• Variance - Variance compared to the average of this item

• Standard deviation - Standard deviation (square root) of this item

The structure of the summary file line is the same as in the database line (Sec-
tion B.3) and appears in Table B.1.

Example B.2.1 Table B.2 shows a partial summary of the method summary. The
name of the method is omitted for brevity. The method is the same as in Exam-
ple B.1.1. The summary concerns all the heap only cutpoints detected for this
method, along the program’s execution. The first half shows the heap only (HO)
cutpoint statistics and the second half shows the statistics for the local heap when
heap only cutpoints were detected.

74

Summary File line

∗Method Call count Heap only 20
∗Method Total Heap only 397
∗Method Average Heap only 19.85
∗Method Minimum Heap only 18
∗Method Maximum Heap only 20
∗Method Variance Heap only 0.2275
∗Method Standard deviation Heap only 0.476969601
∗Method Call count Heap only local heap 20
∗Method Total Heap only local heap 1279
∗Method Average Heap only local heap 63.95
∗Method Minimum Heap only local heap 63
∗Method Maximum Heap only local heap 64
∗Method Variance Heap only local heap 0.0475
∗Method Standard deviation Heap only local heap 0.217944947

Figure B.2: Method heap only summary file example

B.3 Database processing

Due to the size of the summary file, a third stage is necessary.The summary
file is loaded into a database where it is further processed. Processing is done by
SQL queries, which produce summarized information according to the following
divisions:

• Program, package or individual entries

• Methods or cutpoints. The method division summarizes cutpoints according
to where they occurred. The cutpoints division shows the cutpoints them-
selves

• Well-known cutpoints and the rest

• Cutpoint types

The database table fields appear in Table B.1.

Example B.3.1 Table B.3 shows the results of a database query. The query shows
cutpoints to local heap ratio. The data spans the whole program according to
methods for all heap only cutpoints, not including well-known cutpoint classes.

75

Field Name Meaning
method_package Package identifier of the method’s class
method_class Method’s class identifier
method Method identifier
type_package Cutpoint class package identifier
type Cutpoint class identifier
value_type One of the statistical values, call count, total, etc.
cutpoint_type Cutpoint type, such as HO, RO
value Numerical value

Table B.1: Database and summary file fields

Query result Value
AVG(cutpoints.value/ local_heap.value) 0.310398751
COUNT(cutpoints.value/ local_heap.value) 1
MIN(cutpoints.value/ local_heap.value) 0.310398751
MAX(cutpoints.value/ local_heap.value) 0.310398751
STDDEV(cutpoints.value/ local_heap.value) 8.11E-10

Figure B.3: Program method heap only cutpoint type cutpoints to local heap ratio
query result example

76

