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Abstract

We present a interprocedural C String Static Verifier (iCSSV), a whole program analysis algo-

rithm for verifying the safety of string operations in C programs. The algorithm automatically

proves linear relationships among pointer expressions. The algorithm is conservative, i.e., it in-

fers only valid relationships although it may fail to detect some of them. The algorithm is targeted

to programs with “shallow” pointers and complex integer relationships. Therefore, the algorithm

combines context-sensitive flow-insensitive pointer analysis of pointer updates with context-

sensitive and flow-sensitive integer analysis of properties of allocation sites. Context-sensitivity

is achieved by specializing pointer aliases to the context and functional integer analysis.

The algorithm is powerful enough to verify the absence of string manipulation errors such as

accesses beyond buffer length and null terminating character. Here the interprocedural analysis

guarantees that our algorithm is fully automatic, i.e., does not require user annotations or any

other intervention.

A prototype of the algorithm was implemented. Several novel techniques are employed to

make the interprocedural analysis of realistic programs feasible.
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Chapter 1

Introduction

1.1 Motivation

The area of software quality is a rapidly growing source of concern as our daily life becomes

increasingly dependent on software. Users expect applications to be secure, protected and

reliable. However, we often learn about new security vulnerabilities that have caused loss of

time, money, and which sometimes penetrate the privacy of users. Across all operating systems

and all programming languages, it is up to the programmer to write a safe and reliable code

[15, 30]. Some languages, such as Java, are more secure where a runtime error can mostly cause

a denial-of-service. In other languages, such as C, errors are more dangerous as they can provide

a mechanism for attackers to gain privileges over the system.

Many software defects result from a misuse of strings and standard library functions (e.g.,

gets(), strcpy() ) which are inherently unsafe. The programmer is responsible for check-

ing that basic operations cannotoverrunthe buffer, i.e., writing beyond the bounds of the array.

A string in C is an array of characters ending with the special null-termination byte (′\0′). Again,

it is up to the programmer to ensure the existence of the null-termination byte within the bounds

of the array. This is a tricky task since some functions have a misleading behavior. Although the

awareness of the string vulnerability has increased and companies have put a significant amount

of resource in fixing existing code, new vulnerabilities are found and exploited, see [4] for a

typical string concatenation.

Dynamic testing techniques can aid in finding errors, e.g., [1, 16, 24]. However, their effec-

tiveness depends on the chosen inputs and they can never verify the absence of errors. Due to

these limitations there is an increasing demand for static techniques that can detect all errors and

provide a code quality assurance against specific error types. Indeed, many interesting static

analysis algorithms and tools have been developed to aid in finding defects, e.g., [20, 12]. Fur-

thermore, theconservativeapproach takes into account all possible inputs and behaviors, and

thus does not miss any violation. By proving the absence of errors, we achieve a code quality
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assurance guaranteeing that the program does not contain any unexpected behavior such as core

dump or an unhandled exception. Thus, the behavior of the program is defined on all inputs.

However, this code quality assurance is achieved at a cost of sometimes generating superfluous

messages. To avoid as many superfluous messages as possible, the static analysis must infer

complex conditions that arise during the program execution. It is a challenging task to define

an abstraction of the program’s runtime state that is efficient both in terms of scalability as well

as in its small percentage of superfluous messages. One of the main challenges in such static

analyses is the handling of procedure calls.

1.2 Main Results

In [13], a conservative static analysis algorithm that uncovers all potential string violations in

C programs was presented. Thus, the algorithm can prove the absence of string violations in C

programs. The algorithm was successfully applied to Avionic software. However, the algorithm

presented there is not fully automatic — it requires procedure contracts defining pre- and post-

conditions for every procedure. Therefore, the algorithm cannot be applied to legacy software.

Moreover, many programmers are reluctant to define contracts.

This thesis presents a fully automatic algorithm for proving the absence of string errors

using a new interprocedural analysis. This paper presents a new interprocedural pointer and

integer analysis that computes for every procedure a summary information according to calling

contexts. A new C string analysis algorithm is defined using this interprocedural analysis.

It can verify the absence of string-related errors, including read or write beyond the bound

of a buffer, missing null-termination or insecure calls to the standard C library. This algorithm

compares favorably with the existing algorithm due to its automation and precision, see Section 6.

Since user annotations or procedural contracts are not required, the analysis is more usable for

the typical programmer. Due to the rather precise integer analysis, algorithm verification of

the absence of errors is achieved, even in complex conditions, such as in the case of string

concatenation. A prototype implementation was used to check this new algorithm to detect

string manipulation errors. Our results indicate that the interprocedural analysis is feasible in

terms of cost-effectiveness, number of false messages and ease of use. We elaborate on the

theoretical and technical contributions in the following subsections.

1.2.1 Interprocedural Integer and Pointer Analysis

Our analysis proves linear relationships between integer properties of pointer expressions. The

analysis does not require any annotations or specifications of conditions from the user. This

automation is achieved by combining global pointer analysis with an inter-procedural pointer

and integer analysis. Procedure calls are handled by summarizing the effect of a procedure for
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each givenpointer aliasingconfiguration.

1.2.2 String Analysis

Our algorithm translates string manipulations to integer operations. Each operation involving a

string, such as string references, updates and manipulations through library routines, is translated

to operations over integer variables associated with each string, that represent the size of the buffer

allocated for the string, whether the buffer contains a null-terminated string or not, and the length

of the string. After this translation is performed, safety conditions such as "A pointer to a string

never overflows" can be verified.

1.2.3 Empirical Results

We have implemented iCSSV using the AST-Tooklit [23], CoreC, the Golf pointer analysis [9,

10], and the polyhedra integer analysis of [6] from [2]. We have applied the implementation

to real-life programs. iCSSV was run on the applicationfixwrites, part of web2c and on

apr_getpass part of apache’s apr libraries.

1.2.4 Outline of this Thesis

The rest of this thesis is organized as follows. Chapter 2 provides an overview of the interpro-

cedural analysis by presenting the derived string analysis on an example. Chapter 3 presents

the translation from C program to procedural integer program. Chapter 4 presents the interpro-

cedural analysis. Chapter 5 describes the prototype implementation and the empirical results.

Related work is discussed in Chapter 6. Chapter 7 concludes this thesis and presents ideas for

further work.
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Chapter 2

Overview

This chapter presents our interprocedural analysis informally by showing how the derived C

string analysis works on an example. Consider the code section, based onfixwrites shown

in Fig. 2.1. This program reads input, and while the input ends with a ’.’ another input is

concatenated. Note that the procedureremove_newline is called with different pointer

aliasing configurations. The call on line[12] is with different memory-aliasing on the first and

proceeding iterations of the containing while-loop. On the call during the first iteration there

is nooverlappingbetweenbuf andcp . During other calls on line[12] buf andcp overlap,

i.e., they point within the same array but at potentially different offsets. The memory aliasing

configuration on the call toremove_newline from line [7] is different and involves only the

local temp array.

Our analysis detects two errors in this program. The first error reports that thecp pointer

may underflow at line[14]. This results from the fact that the program unsafely assumes the

existence of a non-space character in the input stream. The second error reported concerns a

potential buffer overrun during the call tostrcpy() at line[10] in join , due to the fact thatcp

may not point to sufficient memory space to copy the string intemp . Other string manipulation

statements have been verified to be safe, including complicated statements such as the pointer

increment and the destructive update at line[8] of join .

2.1 Operational Semantic

We sketch an instrumented operational semantics for C that verifies the absence of out-of-bound

violations while allowing pointer arithmetic, destructive updates and casting. The general idea is

to define a non-standard low-level semantics that explicitly represents the base address of every

memory location and the allocated size starting from the base address. This semantics is rigorous.

It forbids programs with undefined ANSI-C behavior, but it also checks additional requirements

reflecting good programming styles, such as dereferences beyond the null-termination byte. This
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void remove_newline (char* s) {
[1] char *temp = strrchr (s, ’\n’);
[2] if (temp == NULL)
[3] exit (1);
[4] *temp = 0;

}

void join (char *cp) {
char temp[BUFSIZ], *tp;

[5] if (!fgets (temp, BUFSIZ, stdin))
[6] return;
[7] remove_newline (temp);
[8] *cp++ = ’ ’;
[9] for (tp = temp; *tp == ’ ’; ++tp) ;
[10] strcpy (cp, tp);

}

void main () {
char buf[BUFSIZ];
char *cp;

[11] while (fgets (buf, BUFSIZ, stdin)) {
[12] remove_newline (buf);
[13] for (cp = buf; *cp ; ++cp) ;
[14] while (*- -cp == ’ ’ ) ;
[15] while (*cp == ’.’ )
[16] join (cp + 1);

}
}

Figure 2.1: a string manipulation program based on the code offixwrites .
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semantics provides the foundation of the abstract interpretation conducted by the analysis, i.e.,

the abstract interpretation conservatively represents the states of this semantics. In addition,

the string analysis statically verifies the absence of string errors by conservatively checking the

preconditions of this semantics.

Definition 2.1.1 A concrete state at a procedureP is a tuple:

state\ = (L\,BA\, aSize\, loc\, st\, numBytes\, base\)

where:

• L\ is a finite set of all static, stack, and dynamically allocated locations.

• BA\ ⊆ L\ is the set of base addresses inL\.

• aSize\ : BA\ → N defines the allocation size in bytes of the memory region starting at a

base address.

• loc\ : visvarP → BA\ maps visible variables into their assigned global or stack locations

(which is always a base address).

• st\ : L\ → val defines the memory content, where

val = {uninit , undefined} ∪ primitive ∪ L\

is the set of possible values. The valueuninit represents uninitialized values;undefined

represents results from illegal memory access;primitive refers to the set of C primitive

type (char , int , etc.) values.

• numBytes\ : L\ → N defines for each location the number of bytes of the value stored

starting at the location.

• base\ : L\ → BA\ maps every location to its base address.

Intuitively, the state keeps track of the set of allocated locations (L\). The origin location of

each memory region that is guaranteed to be contiguous is inBA\. In order to handle a destructive

update to a variable via the address-of operation,loc\ represents the address of variables, andst\

maps locations into their values.

The reader is referred to [13, 11] for further elaboration on this semantics.
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Attribute Type Intended Meaning

E.base BA\ The base address ofE
E.offset int The displacement in bytes ofE from its base
E.alloc int The number of bytes allocated fromE
E.string Boolean DoesE point-to to a null-terminated string?
E.strlen int The length in bytes of the string pointed-to byE
overlap(E1, E2) int The displacement ofE2 from E1, i.e.,E2 − E1

is_overlap(E1, E2) Boolean Do E1 andE2 point-to locations with the same base

Table 2.1: Sugared expression over the instrumental semantics.Ei’s are pointer expressions
without side effects.

2.2 Adding Safety Precondition

The first step in our string algorithm is a source to source transformation to include runtime

checking for array bounds and string violations. This is concluded by addingassert statements

over our instrumental semantics of a precondition that must hold prior to statement execution.

For clarity, sugared expression as defined in Table 2.1 are used.

For every C expression, there is a condition that verifies the validity of the expression. Ta-

ble 2.2 lists the generated assert expressions. On every dereference to an address, a check that

the address is within bounds is generated. The upper bound is checked depending on whether the

buffer is null-terminated. If it is, the dereferenced location is checked to be at or before the null-

termination byte. For pointer arithmetic, the generated assert statement checks the requirement

that the resultant reference is within bounds of the buffer. Similarly, for each library function,

the user of our tool must provide a contract defining the function’s precondition that must hold

and a stub implementation describing the function’s affect. For example, the precondition of

strcpy(char *dst, const char *src) is

src.string && dst.alloc> src.strlen && is_within_bounds(dst) && !is_overlap(dst,src)

2.3 Pointer Analysis

The next step of our analysis is a whole-program flow-insensitive pointer analysis designed to

detect statically which pointers may point to the same base address. In particular, for every func-

tion, it provides a summary of all of its calling contexts. In principle, a conservative analysis can

utilize this information and analyze a function with all possible calling contexts. However, this

can yield many false alarms. For example, the whole-program analysis ofremove_newline

see Fig. 3.2(a) yields thats (represented by node labeledlvremove_newline
s ) may point to either

the localbuf or temp arrays (represented bylvmain
buf and lvjoin

temp). Conservatively analyzing the
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C Exp. Generated Precondition

*E
E.offset≥ 0 &&
((E.string && E.strlen≥ 0) ||
(!E.string && E.alloc> 0))

E 0 ≥ E.offset< E.alloc

E + N
(0 ≥ N ≤ E.alloc) ||
(0 < N ≥ E.offset)

Table 2.2: Asserted preconditions for C expressions.E andN are pointer and integer expression,
respectively, without side effects.

function’s body with the two calling contexts, requires treating updates to integer properties

as weak updates, for example the null-termination property due to execution of*temp = 0 .

Therefore, the analysis will fail to infer that the resulting pointer points-to a string. As a result,

a false alarm will be issued. Our interprocedural analysis computes the effect of a procedure in

a parameterized manner which enables, in many cases, to regard destructive updates as strong

updates.

For every call site acall points-to graphs, CPT for short are computed. A CPT represents

the possible pointer values that may arise at this call site. In each CPT each pointer argument is

evaluated to point to a single node in a graph. In order to consider all possibilities, more than one

CPT will be generated for a single call statement. The CPT for the calls toremove_newline

at line[12] and at line[7] are shown in Fig. 3.2(b) and (c), respectively.

2.4 Static Integer Analysis

The analysis conservatively analyzes the generated program and computes an abstract repre-

sentation for each program point representing all possible concrete states that may arise at this

point for all execution paths. The abstract representation follows the concrete semantics and

infers the interesting numeric properties of base addresses. Since the number of base addresses

is potentially infinite, potentially multiple base addresses are abstractly represented by a single

abstract base address. The abstract representation used in iCSSV infers numeric relations among

integer variables and the string, strlen and alloc properties of abstract base addresses.

In theory, any sound integer analysis can be used. Because many of the tracked semantic

properties are external to the procedure, and sometimes even to the whole application, it is

essential to track relationships between constraint variables and not just possible values. Fur-

thermore, many of the conditions inferred involve three or more properties. Given that our goal

is to generate as few false messages as possible, the algorithm applies the linear-relation analy-

sis [6, 14] which discovers linear inequalities among numerical variables. This method identifies
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linear inequalities of the form:Σn
i=1cixi + b ≥ 0, wherexi is an integer variable andci andb

are constants. In our case,xi are the integer variables and the numerical properties of abstract

base addresses. Upon termination of the integer analysis, the information at every control-flow

node conservatively represents the inequalities that are guaranteed to hold whenever the control

reaches the respective point. The reader is referred to [6, 14, 12] for information about integer

analysis.

During integer analysis, eachassert statement is verified. This is carried out by checking if

the asserted integer expression is implied by the linear inequalities that hold at the corresponding

control-flow node. If the assertion cannot be verified, a counter-example is generated. The

counter-example describes the values of the constraint variables where a string error in the C

program may arise.

Fig. 4.2 demonstrates how the static integer-analysis algorithm identifies the error in the

pointer arithmetic in line[14] of main . The algorithm discovers that the inequalities shown in

Fig. 4.2 (a) hold before the execution of line[10], and that when the equality shown in Fig. 4.2 (b)

holds, a violation of the pointer arithmetic precondition occurs.

2.4.1 Interprocedural Analysis

Handling procedure calls, one of the more complicated tasks in static analysis, strongly influences

the scalability and the precision of the entire analysis. CSSV handles procedure calls by requiring

the user to provide a contract for each procedure, allowing one to specify what to check and

where. Contracts have another advantage as they make it easier to scale to large programs.

However, in many cases, providing contracts is not a feasible task. In iCSSV the need to

provide contracts is avoided by computing a combined summary information for each procedure.

The summary information is computed for each possible CPT graph. We check whether a

precomputed summary information can be used. The summary information contains the exit

state as a linear relationship of the entry state.

During the intraprocedural analysis, when a function call is encountered, we first compute

the CPT graphs for this call. We check if this procedure has been previously analyzed and if the

summary analysis can be used. Informally, the summary analysis can be used if the CPT graphs

are isomorphic and the existing entry state is a subset of the computed entry state. This algorithm

enables us in may cases to avoid multiple analyses of the same function. In our example, each

function is analyzed once. Thus, the summary information ofremove_newline is used during

the intraprocedural analysis ofjoin and the summary ofjoin is used during the analysis of

thewhile loop inmain .
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Chapter 3

Converting C programs to procedural IP

In this section, we present an algorithm for converting C programs into a pointer-free integer

programs. The resultant program is not equivalent to the original program. Instead we guarantee

that any string violation in the original program leads to a violation of an integer assertion in the

resultant program.

The main idea is a transformation that maps integer properties of interest toconstraint vari-

ablesand generates an integer program manipulating the constraint variables. The IP contains

assertions representing safety conditions of the original C program. If our analysis concludes that

an assert condition in the IP is always satisfied, then the algorithm guarantees that the equivalent

string violation in the C program can never occur. This transformation process has to handle the

following complications:

• Pointer expressions and specifically cases where a pointer may or may-not point to a

specific location.

• Dynamic locations, and specifically allocations sites where more than one location can be

allocated

• C expressions that are too complex to transform or are of no interest to the IP

• Handle procedure calls in cases where there is no IP for the called function.

We propose a solution that uses a flow-insensitive whole-program pointer information to

compute abstract locations. This unifies the treatment of ordinary stack allocated buffers with

the treatment of pointers to buffers and dynamically allocated buffers. The generated integer

program is non-deterministic, supporting C expressions that are not translated to IP.

This chapter explains the transformation and demonstrates it by using our running example

in Fig. 2.1.
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3.1 Preliminaries

3.1.1 CoreC

CoreCis a subset of C with the following restrictions:

1. Control-flow statements are eitherif , goto , break , or continue ;

2. expressions are side-effect free and cannot be nested;

3. all assignments are statements;

4. declarations do not have initializations;

5. address-of formal variables is not allowed.

An algorithm for transforming C programs to CoreC is presented in [31]. Given a C program,

it generates an equivalent CoreC program by adding new temporaries. iCSSV is defined and

implemented for CoreC. In the rest of this paper, CoreC is used instead of C.

3.1.2 Contracts

iCSSV uses contracts to simulate the behavior of procedures whose code is not available, e.g.

library routines. Contracts describe their expected inputs, side-effects, and expected output. In

this thesis, contracts are written in the style of Larch [21]. Our implementation actually supports

a more general executable language similar to [25], which can include loops. Contracts are

specified in the.h file. Every prototype declaration of a functionf has the form:

〈type〉 f (· · · ) requires 〈e〉
modifies 〈e〉, 〈e〉, . . . , 〈e〉
ensures 〈e〉;

The contract defines the precondition required to hold wheneverf is invoked, the side-effects of

the functionf, i.e., the objects that may be modified during invocations off, and the postcondition

that is guaranteed to hold on the modified objects. Here,〈e〉 is a C expression, without function

calls, over global variables and the formal parameters off. We allow attributesof the form

defined in Table 3.1 and displayed in Fig. 3.1. A designated variablereturn_value denotes

the return value off. The special syntaxd〈e〉epre denotes the value of〈e〉 when f is invoked.

Although not required, the contract mechanism enables specification of pointer values. In

addition, a shorthand expressionis_within_bounds(arg) is allowed to indicate thatarg

points within the bounds of a buffer.

In our running example, since the code offgets, strcpy, strrchr is not supplied, contracts will be
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Attribute Intended Meaning
exp.base The base address ofexp
exp.offset The offset ofexp, i.e., exp - exp.base
exp.is_nullt Is exppointing to a null-terminated string?
exp.strlen The length of the string pointed-to byexp
exp.alloc The number of bytes allocated fromexp

Table 3.1: Attributes in the contract language.

0


exp
.offset
 exp
.strlen


exp
.alloc


exp
.base


exp


Figure 3.1: Graphical representation of the contract-language attributes.

used.

In iCSSV, the contracts are translated to CoreC and then to IP, and they are used as a replacement

to the actual code of the functions with the contracts. Consequently, in the rest of the paper,

functions having contracts instead of code will be treated exactly like functions with available

code.

3.2 Call points-to graph

The first phase of the iCSSV algorithm computes an abstraction of all potential pointer rela-

tionships between locations in concrete states that may occur in each procedure entry site. For

this computation the algorithm uses the global abstract points-to state of the entire program,

which is a sound approximation of the pointer relationships in the entire program. Formally, the

definition of the global points-to state is as follows:

Definition 3.2.1 The global abstract points-to state of the whole program, GPT for short,

Gstate = (BA, loc, pt, sm) where:

• BA is a set of abstract locations.

• loc: var→ 2BA maps a variable into a set of abstract locations representing the variable’s

global or stack locations.
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• pt: BA → 2BA abstracts the pointers from one location to another.

• sm: BA → {1,∞} abstracts the number of concrete base addresses represented by an

abstract location. It represents summary information as discussed above.

A GPT summarizes locations into summary locations yielding a finite set of abstract locations.

In addition, theGstate ensures us that if two pointers expressions, saye1 ande2 may point to

the same concrete location then additional dereferences frome1 ande2 are represented by the

same abstract locations, i.e., ifp andq may point to the same location thenp → n andq → n

are represented by the same abstract location.

When analyzing a single procedure,referred to asP , called from a call site, referred to asC,

only locations that can be accessed during the execution ofP when it is called fromC are of

interest. Therefore, we define the notion of reachable locations.

Definition 3.2.2 In a concrete state, a locationl\ is reachable if there exists a visible variable

whose store contents can (indirectly) includel\ (i.e., there is an expression whose L-value isl\).

Using the notion of reachable locations, we can definecall points-to graphs.

Definition 3.2.3 A call points-to state, CPT for short, is a subset of the program’s GPT, con-

taining all the abstract locations reachable from a procedure’s local variables and the program’s

global variables, as well as abstract locations reachable from both the formal parameters and

corresponding actual arguments at the call site C.

A distinct CPT is associated with each possible combination of abstract locations associated

with the actual arguments at the call site. A CPT represents all the potential pointer relationships

between locations in concrete states that may occur during a specific call to that procedure. It

is computed from the program’s complete points-to state. For every call-site, a unique CPT is

generated for each possible combination of abstract locations, representing memory locations

pointed by the program pointers in the call’s actual arguments. Therefore, each call site introduces

one or many such states. This ensures us that our analysis operates on every possible case of

pointer aliasing. Due to the finite number of abstract locations the number of CPT states is

bounded.

During the translation of C programs to IP, iCSSV relies on the notion of points-to-isomorphism

which is a strict isomorphism between points-to states.

Definition 3.2.4 A state isomorphism mappingi between two points-to statesG andG’ is a

points-to-isomorphism iff all the following conditions are satisfied:

1. varG ≡ varG′
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Figure 3.2: The whole-program points-to information for the running example (a), excluding
pointers of the library proceduresstrcpy , strrchr and fgets and the CPT for the calls
to remove_newline at line [12] (b) and at line[7]. Note that the two CPTs are points-to-
isomorphic.
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2. ∀v ∈ varG : locG(v) = locG′(v)

For example, in Fig. 3.2 the two CPT graphs (b) and (c) which abstract the points-to graphs in

the calls to remove_newline in lines[12] and[7] respectively, are points-to isomorphic.

3.3 C2IP

In order to apply the interprocedural integer analysis, iCSSV transforms a C procedure with a

specific CPT to an integer program (IP for short). The generated IP tracks the string and integer

manipulations of the program. The IP is nondeterministic, reflecting the fact that not all values

are known. The symbolunknown stands for an undetermined value. This value can be assigned

and used as a branch condition.

The semantics of theassumeconstruct in the IP is to restrict the behavior of nondeterministic

programs. Finally, for clarity, mathematical constructs are used in the IP. The IP includes

constraint variablesused to denote interesting semantic properties ofabstract base location.

An abstract base location represents potentially many concrete base locations. For example, a

constraint variablervbuf .aSize represents the allocation size of the base address which is the

stack location ofbuf . The translation to IP generates update statements assigning new values

to constraint variables, reflecting the changes in the semantic properties.Assert statements

over the constraint variables are generated for checking the safety of basic C expressions. The

constraint variables iCSSV tracks are:

• l.val to represent potential primitive values stored in the locations represented byl.

• l.offset to represent potential offsets of the pointers represented byl, i.e. l.offset conser-

vatively representsindex\(st\(l\)) for every locationl\ represented byl.

• l.aSize, l.is_nullt , l.len to describe the allocation size, whether the base address contains a

null terminated string, and the length of the string (excluding the null byte) of all locations

represented byl.

Safety checks Transforming C expressions to IP statements involves querying the CPT to

obtain the abstract location a pointermaypoint to. For simplicity, we will now assume that

every pointer may point to only a single non-summary abstract location. Table 3.2 shows the

translated asserts. We denote bylvx (rvx) the resulting abstract location representing the L-

value (R-value) of expression x. iCSSV handling of arbitrary CPT graphs is explained later

in this section. For each C statement, iCSSV generates conditions validating the safety of the

statement. For example, for every address dereference iCSSV generates a check that the address
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C Exp. Generated IP Condition

*p

lvp.offset ≥ 0∧
((rvp.is_nullt ∧ lvp.offset ≤ rvp.len)∨
(¬rvp.is_nullt) ∧ lvp.offset < rvp.aSize))

p + i
lvp.offset + lvi.val ≥ 0∧
lvp.offset + lvi.val ≤ rvp.aSize

Table 3.2: Generated safety conditions

is within bounds. The upper bound used in this check, depends on whether the buffer contains

a null-terminated string or not.

C statements The IP program also includes update statements to reflect semantic changes

regarding the properties tracked. Table 3.3 displays the generated statements from transform-

ing CoreC statements and conditional expressions involving pointers to buffers, which is the

interesting part of the translation.

On allocation, the resultant pointer always points to a base address. Therefore, its offset

is always zero. We set the allocation size of the abstract location that represents the newly

allocated location. Destructive updates are separated into two cases: (i) The assignment of the

null character, which sets the buffer to a null-terminated string. The length of the string is the

location of the first zero byte. C2IP generates a check that all dereferences reference bytes

preceding the null-termination byte (if it exists). We can therefore safely assume that when

assigning a null-termination byte it is the first null value in the buffer. (ii) In the assignment of

a non-zero character, it is checked whether an existing null-termination byte is overwritten.

To increase precision, certain program conditions are interpreted. The second part of Table 3.3

shows the interpreted conditions. When checking for null-termination, C2IP replaces the original

condition with a condition over constraint variables that track the existence of a null-character

and the string’s length. Pointer comparisons are replaced by expressions over the appropriate

offset constraint variables.

The third part of Table 3.3 shows how procedure calls and returns are translated. When

translating calls, iCSSV replaces pointers with pointer-offsets. For every abstract location visible

to both the calling and the called procedure, the generated call passes the constraint variables

associated with the abstract location as parameters to the called procedure. These parameters are

labelled "in out", meaning that upon return from the called procedure, the values of the actual

arguments are updated to the values of the matching formal parameters. This behavior soundly

simulates cross-procedural updates through pointers.

Return statements are translated as assignments to a variable with a unique name. The

successor instruction to this assignment is the procedure’s exit node. When the return value is
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C Construct IP Statements

p = Alloc(i);
lvp.offset := 0;
rvp.aSize := lvi.val ;
rvp.is_nullt := false;

p = q + i; lvp.offset := lvq.offset + lvi.val ;

*p = c;

if c = 0 {
rvp.len := lvp.offset ;
rvp.is_nullt := true; }

else
if rvp.is_nullt ∧ lvp.offset = rvp.len

lvp.is_nullt := unknown;

c = *p;
if rvp.is_nullt ∧ lvp.offset = rvp.len

lvc.val := 0;
elselvc.val := unknown;

*p == 0 rvp.is_nullt ∧ rvp.len = lvp.offset

p > q lvp.offset > lvq.offset

f (v1, . . . , vm,
p1, . . . , pn);

f (lvv1.val , . . . , lvvm.val ,
lvp1.offset , . . . , lvpn.offset ,
. . . rvli .aSize, rvli .is_nullt , rvli .len . . .);

return p; lv__return_val:= lvp.offset ;
return i; lv__return_val:= lvi.val ;

p.alloc rvp.aSize − lvp.offset

p.offset lvp.offset

p.is_nullt rvp.is_nullt
p.strlen rvp.len − lvp.offset

Table 3.3: The generated transformation for C statements, conditional expressions and for
contract-language attributes.p andq are variables of type pointer to char.i andc are variables
of int type. Alloc is a memory allocation routine, e.g.,malloc andalloca .
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Figure 3.3: Translating the C statement *p = 0. In the case wherep is associated with the abstract
points-to set{loc1, loc2} (fig. a) the IP instructions are duplicated. Note that the two generated
paths merge only at the end of the C statement and not after every IP instruction, thus achieving
better accuracy.

a pointer, our analysis assigns the constraint variable abstracting the pointer offset to the return

value variable. The justification for this behavior is that the abstract locations that represent the

target of this pointer are shared between the calling procedure and the called one. Therefore, all

the constraint variables associated with these locations would be updated upon return through

the use of appropriate "in out" parameters. The offset, however, is the only property associated

with the pointer, and therefore should be updated through the return statement.

From pointers to integers C2IP uses CPT graphs to find the suitable constraint variable for

each statement concerning pointers in the C program. For each statement, the tables in the

following paragraphs define which constraint variables must be checked or modified to ensure

the safety of the statement and to simulate the program run. The CPT is used to find which

abstract locations are manipulated in every statement in order to generate IP statements with the

suitable constraint variables.

In the case where an L-value (R-value) in the abstract points-to state includes more than

one abstract location or a summary abstract location, the translation rules of Table 3.3 need to

be changed to guarantee sound results. To reflect the fact that a base address represented byl

may or may not be modified, C2IP generates every statement (shown in Table 3.3) to operate

on every abstract location in the abstract points-to set. For a summary abstract location, the

analysis translates the statement as a nondeterministic assignment, under anif (unknown)

statement. In addition, the analysis must take into account all possible values of a pointer, and
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verify expressions on all possible pointer values. This applies to all generated assert statements

and program conditions. The translation of C statement referencing a pointer associated with an

abstract points-to set with several abstract locations, is demonstrated in Fig. 3.3.

For each procedure iCSSV partitions the set of CPT graphs associated with calls to that

procedure to equivalency classes defined by points-to-isomorphism. iCSSV then translates the

procedure from C to IP once for each such equivalency class, using one of the CPT graphs of that

class to find the L-values and R-values of the pointers in the procedure. In the running example,

the two calls to remove_newline are associated with points-to isomorphic CPT graphs. Therefore,

the function is translated only once. Without losing generality, we assume that it is translated

with the CPT associated with the call at line[12]. A call to that clone will be generated in both line

[7] and[12]. However, the call at line[12] is associated with the identity points-to isomorphism,

while the call at line[7] is associated with the points-to isomorphism mapping abstract location

M to abstract location N. The isomorphism is used during the integer analysis to update the

constraint variables associated with the abstract location whenremove_newline() returns.

The Complexity of C2IP For each procedure, the number of constraint variables in the IP

is O(V ) whereV is the number of variables and allocation sites in the C program. Because a

pointer may point toV abstract locations, the translation of a C expression that contains one

pointer generatesO(V ) IP statements. Therefore, the size of the IP isO(S ∗ V ), whereS is the

number of C expressions in the procedure. This is an order-of-magnitude improvement over the

transformation in [12], which generatesO(V 2) variables andO(S ∗ V 2) statements.

To calculate the complexity of the IP of the entire program, this number is multiplied by the

numberP of procedures in the code. Since each procedure is cloned according to the number

of non-isomorphic CPT graphs associated with calls to it, this complexity is multiplied by2V .

This stems from the fact that each combination of abstract locations in the procedure’s actual

arguments may result in a new CPT graph, not isomorphic to any existing graph. Therefore, the

complexity of the entire IP isO(P ∗2V ∗V ∗S) statements. However, in practice, because of CPT

isomorphisms, the number of cloned routines isO(P ), resulting in the IP havingO(P ∗ V ∗ S)

statements.
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Chapter 4

Interprocedural analysis of a procedural

IP

4.1 The abstraction

CSSV analyzes the IP and reports potential assert violations. In theory, any sound integer

abstraction can be used. Because many of the tracked semantic properties are external to the

procedure, and sometimes even to the entire application, it is essential to track relationships

between constraint variables and not just possible values. Furthermore, many of the inferred

conditions involve three and more properties, e.g., dereference safety checks. Given that our goal

is to generate as few false alarms as possible, iCSSV applies the linear-relation analysis [6, 14]

which discovers linear inequalities among numerical variables. This method identifies linear

inequalities of the form:Σn
i=1cixi + b ≥ 0, wherexi is an integer variable andci andb are

constants. In our case,xi are the constraint variables. Upon termination of the integer analysis,

the information at every control-flow node conservatively represents the inequalities that are

guaranteed to hold whenever the control reaches the respective point. The reader is referred to

[6, 14, 12] for information about integer analysis.

A unique aspect of our usage of the linear-relation analysis is the use of a 2-vocabulary. To

summarize the effects of a procedure, its side effects and outputs are required to be expressed

as a function of the procedure’s inputs. 2-vocabulary is the device through which this goal is

achieved. A 2-vocabulary polyhedron is a polyhedron that has two dimensions associated with

each IP variablev visible in a procedureP — one dimension is labelledv[in] and the other

v[out]. v[in] represents the possible values to the variablev at the entry to the procedure, and

v[out] represents the possible values tov during and at the end of the execution of the procedure.

The analysis will express the variables inVP [out] as a function of variablesVP [in].
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4.2 Interprocedural linear-relation analysis

Pseudo code for the interprocedural linear-relation analysis is given in Fig. 4.1. It is used

throughout this section.

The algorithm is a work-list algorithm. The work-list used here contains control-flow graph

nodes and the abstract value calculated for that node during the analysis. The work-list is

initialized in line[4] with the start node ofMain, the analyzed program’s entry point. This node

is associated with the abstract value>, reflecting the fact that at the beginning of the analysis,

there is no knowledge about the state of the program.

Other data structures used are a call stack,CallStack, which stores the call nodes in a stack

structure. The stack is used so that the solution would be over valid paths only. Another structure,

also based on a stack , isV aluesForMeet. This stack holds the abstract values representing

the call context at each call site. The usage of the abstract values of this stack will be discussed

in Section 4.2.2.

4.2.1 Processing procedure calls

Our analysis uses linear relations to express the relationships between the state at the return

site and the state at the call site. As previously discussed, this summarization of a procedure’s

effects is achieved by using a 2-vocabulary representation. At call sites, the analysis needs to

set up the input variables to the called procedureP , i.e. VP [in]. This task is performed by the

BuildContext routine. The input to this routine isv, the input abstract value to the call site.

For every variable inVP , two dimensions are added tov, generating a 2-vocabulary forVP (lines

[43]-[45]). After that, the context of the call is initialized by performing for each formal parameter

f , an assignment wheref [in] is assigned the value of the corresponding actual argument (lines

[46]-[49]). Afterwards,f [out] is assigned the value off [in] (line [51]-[53]), generating the initial

connection between the context at the start of the called procedure and the state during and after

its execution. From this point until returning from the called procedure, all of the operations are

performed onout variables. After all of the dimensions associated with the variables ofP have

been initialized, the dimensions associated with variables of the called procedure are eliminated

from the abstract value (line[54]). This transformation retains only the context of the call in the

abstract value.

After the specific call context has been calculated, the algorithm tries to use previous calcula-

tions of the called procedure in order to save analysis time and space. In order to use a previous

call to the procedure as a summary, the context of that previous call must contain the current

context. If so, the analysis will insert the return node along with the previous exit value to the

work list. If the context of the previous call does not contain the current, a join between the two

contexts is performed, so that the chances for summarizing the procedure in the next call will

increase.
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algorithm Analyze(G#
IP )

begin
[1] for eachp ∈ Callp do
[2] Context(p) :=⊥
[3] od
[4] WorkList := {〈smain,>〉}
[5] CallStack :=∅
[6] ValuesForMeet :=∅
[7] while WorkList 6= ∅ do
[8] Select and remove a node〈n, v〉 from WorkList
[9] switch n
[10] casen ∈ CallP :
[11] contextn = BuildContext(n, P, v)
[12] AllContextsP := Context(P )
[13] if contextn v AllContextsP then
[14] Insert〈returnSite(n), exitV al(P )〉 to WorkList
[15] else
[16] Context(P ) := AllContextsP t contextn
[17] Insert〈sP , Context(P )〉 to WorkList
[18] pushn to CallStack
[19] fi
[20] end case

[21] casen = ExitP
[22] exitVal(P ) := v
[23] ncall := top CallStack
[24] CallStack pop
[25] Insert〈returnSite(ncall), v〉 to WorkList
[26] end case

[27] casen ∈ ReturnP

[28] vret = PerformMeet(n, P, v)
[29] for eachn′ ∈ N such that(n, n′) ∈ E do
[30] if n’ is in WorkList then
[31] remove〈n′, v′〉 from WorkList
[32] Insert〈n′, v′ t vret〉 to WorkList
[33] else
[34] Insert〈n′, vret〉 to Worklist
[35] fi
[36] od
[37] end case

[38] otherwise
[39] Perform the integer operation in noden. Update

successors and perform widenings on back-edges
[40] end case
[41] end switch
[42] od

end
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procedure BuildContext(n, P, v)
begin

[43] for eachvar ∈ visvarsP do
[44] Add two dimensions and embed to polyhedronv.

Label onevar[in] and the othervar[out].
[45] od
[46] for eachfi ∈ formalsP do
[47] ai := actual argument matchingfi

[48] v := affine_image(v, fi[in] = ai)
[49] od
[50] pushv in ValuesForMeet
[51] for eachfi ∈ formalsP do
[52] v = affine_image(v, fi[out] = fi[in])
[53] od
[54] Remove fromv all dimensions corresponding

to VprocOfn

[55] return v
end

procedure PerformMeet(n, P, ve)
begin

[56] vcall = top ValuesForMeet
[57] pop ValuesForMeet
[58] Add dimensions tov corresponding with

VprocOf(n) and embed the old dimensions.
[59] v = v u vcall

[60] for eachf in formalsP do
[61] if out ∈ mode(f ) then
[62] a := matching actual argument
[63] v = affine_image(v, a = f [out])
[64] fi
[65] od
[66] Remove fromv all dimensions corresponding withVP

[67] return v
end

Figure 4.1: The interprocedural integer analysis algorithm
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4.2.2 Returning from a procedure

When the algorithm returns from a procedure, it performs two tasks:

1. Makes the returned abstract value specific to the call site — using a meet (u) operation.

2. Updates the state according to the returned information.

Due to the fact that the algorithm may have used a summary in the matching procedure call,

in order to increase precision, the algorithm performs a meet between the abstract value returned

from the called procedure, i.e.exitval and the abstract value at the call site, i.e.v. Technically, in

order to perform this task, the dimensions of the two polyhedrons need to be matched. Therefore

the meet is performed on thevcall abstract value instead ofv. vcall is similar tov, but it contains

dimensions associated with the variables of the called proceduresP . Theout variables ofP are

unconstrained inVcall. Theexitval polyhedron is added unconstrained dimensions before the

actual meet, representing the variables of the calling procedure. Therefore, the only dimensions

that are constrained in both polyhedrons are the ones which represent thein variables ofVP , i.e.

the call context. Furthermore, inVcall these variables hold the possible values at the specific call

site, whereas inexitval they are associated with all possible values in all call sites toP . The

meet operation will therefore make the dimensions associated withVP [out] contain only values

specific to the call site.

After the meet is performed, for every formal parameter which is labelled as an "out" parame-

ter, the algorithm updates the appropriate actual argument with the value of the formal parameter

at the return site. This is used to simulate an update of shared data between the calling and called

procedure through pointers.

4.2.3 Assert Checking

During integer analysis, eachassert statement is verified. This is performed by checking

whether the asserted integer expression is implied by the linear inequalities that hold at the

corresponding control-flow node. If the assertion cannot be verified, a counter-example is

generated. The counter-example describes the values of the constraint variables where a string

error in the C program may arise.

Fig. 4.2 demonstrates how the static integer-analysis algorithm identifies the error in the while

loop in line [14] of main . The algorithm discovers that the inequalities shown in Fig. 4.2 (a)

hold before and during the execution of line[14], causing a violation of the dereference safety

condition when the equality in Fig. 4.2 (b) holds.
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rvbuf.aSize = BUFSIZE
rvbuf.is_nullt = true
rvbuf.len ≥ 1
rvbuf.aSize ≥ rvbuf.len + 2
rvbuf.len ≥ lvcp.offset

(a)

[14] while(*–cp == ’ ’);
require(lvs.offset ≥ 0)
error: the requirement may be violated when:

lvcp ≤ 0
(b)

Figure 4.2: A report on the error in line [14] ofmain . The derived inequalities before execution
of line [14] of main (a), and a counter example (b).
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Figure 4.3: Flow of abstract values in interprocedural analysis from the caller on the left (a) to
the called procedure on the right (b).
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4.3 Optimizations

4.3.1 Calculating theUse& Mod sets

The most significant factor effecting efficiency, in terms of both computation time and space,

is the space dimension of the polyhedron. An optimization to the basic algorithm that reduces

the space dimension of the polyhedrons, is presented here. The optimization is to precede the

algorithm by a simple, linear analysis that conservatively determines which variables are needed

to be associated with dimensions in the polyhedron, and which are not.

Definition 4.3.1 A function’s Useset contains all of the variables and properties of abstract

locationsusedby that function, or by a function that is called by it.

Definition 4.3.2 A function’s Mod set contains all of the variables and properties of abstract

locationsmodifiedby that function, or by a function that is called by it.

Calculating theUse& Mod sets of each function involves a recursive traversal of the call graph

and combining theUse& Mod sets of each function with those of the functions called by it.

After these sets are calculated, they are used to decrease the dimensions of the polyhedrons while

still preserving soundness. A variable which is not used by a procedure or by any procedure

called by it, i.e., is not in theuseset, does not need to be associated with a dimension of a

polyhedron in the analysis of that procedure. Similarly, for a variable which is not in theMod

set of a function, the analysis does not need to use a 2-vocabulary — one dimension associated

with this variable will suffice.
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Chapter 5

Empirical Results

We implemented a prototype of iCSSV. The implementation relies on the CoreC translator

developed by Greta Yorsh at Tel-Aviv University. This tool and our CoreC to IP translator are

built upon the AST-toolkit developed at Microsoft Research. iCSSV uses Golf, a flow-insensitive

context-sensitive points-to analysis technique, as the underlying whole program pointer analysis.

Golf uses flow edges to represent assignments. Partial must information on pointer aliases is

extracted from these edges. The integer analysis was implemented using the Parma Polyhedra

library, developed at the University of Parma.

Due to fact that the most dominant factor effecting computation time and space is the space

dimension of the polyhedrons during the analysis, several optimizations to the basic algorithm

were made in the implementation of iCSSV. Liveness analysis was added because the translation

to CoreC introduces a very large number of temporary variables. Another optimization resulted

from an analysis of some early results, which identified that in many cases several dimensions

of the polyhedrons hold a single constant value, i.e. the dimensionxi is constrained to some

constantC: xi = C, and not, for example,xi ≤ C. Due to this fact, iCSSV uses a cross-domain

of constants and polyhedrons, adding dimensions to the polyhedrons only when a variable can

be assigned more than one value.

We ran our implementation on the following program:

1. fixwrites - a TEXutility with numerous string manipulations.

2. apr_getpass - a password retrieving library routine from the apr libraries, part of the apache

web-server.

We used both the polyhedra abstract domain and the octagons domain in our analysis. Octagons

are polyhedrons that contain only constraints of the form±x ± y ≥ c. Other constraints have

been discarded. This behavior is sound, yet inaccurate. The results are in Table 5.2.
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Polyhedra
Program Procedures loc Errors FA Time Space summary
fixwrites 12 424 2 143 1190s 206MB 51.8%

apr_getpass 7 277 0 23 2.0s 9MB 48%

Table 5.1: Test results using the Polyhedra abstract domains.
Octagons

Program Procedures loc Errors FA Time Space summary
fixwrites 12 424 2 175 226.1s 44MB 77.5%

apr_getpass 7 277 0 22 0.7s 12MB 48%

Table 5.2: Test results using the Octagons abstract domains.

5.1 False alarms

As evident from the empirical results, many false alarms were reported by iCSSV on the two

test-programs. The major sources of the false alarms are:

1. Inexact simulation of the contents of the string.

2. Unlimited widenings.

3. Information loss during join operations on convex polyhedra.

To explain these, I will portray them on a simple implementation of strlen, which is portrayed

in Fig. 5.1 along with its translation to CoreC. The translation of CoreC to integer program is in

Fig. 5.2. Let us assume that the algorithm is analyzing a call to strlen with a string parameter of

length 10 in a buffer of size 15. The polyhedron representing the context to the call will be:

s.offset = 0

L.aSize = 15

L.is_nullt = 1

L.len = 10

For simplicity, I leave out the details of the 2-vocabulary representation for the analysis of

this example. At the end of the strlen, the __return_val variable should be 10, representing the

exact return value in the given context, and no assertion errors should be reported. However,

our analysis fails to realize this, failing the assertions and assigning __return_val with all values

between 0 and 14. Each one of the following inaccuracies can alone cause this behavior.

5.1.1 Inexact simulation of the string’s contents

Lines[6]−[9] are the translation of the c =∗src; statement in the CoreC program. The translation

here is not accurate enough — if the offset of s is not equal to the string’s length, c is assigned
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int strlen(const char∗ src)
{

int len;
while(∗src) {

src++;
len++;

}
return len;

}
(a)

int strlen(const char∗ src)
{

int len;
char c

label1:
c = ∗src;
if (c != 0) {

src = src + 1;
len = len + 1;
goto label1;

}
return len;

}

(b)

Figure 5.1: An implementation of strlen (a) and its translation to CoreC (b).
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istrlen(in s.offset,
in out L.aSize, in out L.is_nullt, in out L.len)

{
[1] len := 0;
[2]label1:
[3] assert(s.offset≥ 0∧
[4] ((L.is_nullt∧ s.offset≤ L.len)∨
[5] ((¬L.is_nullt)∧ s.offset < L.aSize)));
[6] if(L.is_nullt ∧ s.offset = L.len)
[7] c := 0;
[8] else
[9] c := unknown;
[10] if (unknown) {
[11] assume(c != 0);
[12] assert(s.offset + 1geq 0∧
[13] s.offset + 1≤ L.aSize);
[14] s.offset := s.offset + 1;
[15] len := len + 1;
[16] goto label1;
[17] }
[18] else {
[19] assume(c = 0);
[20] }
[21] __return_val := len;

}

Figure 5.2: The result of the translation of the CoreC version of strlen to IP. L is an abstract
location pointed-to by s.
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the valueunknown (>). The effect of this assignment is that in line[19], the assume(c = 0)

statement results in the following non empty polyhedron:

s.offset = 0

L.aSize = 15

L.is_nullt = 1

L.len = 10

c = 0

len = 0

Consequently, in line[21] the assignment to __return_val will add the value 0 to the possible

values of this variable. Due to the fact that the assignment toc is performed in a loop on several

values of the offset ofs, and thus also on several values oflen, this erroneous behavior will repeat

itself for all of the possible values ofs.offset/len. Therefore each value oflen that is in the

polyhedron in line[8], will be assigned later to __return_val. The next inaccuracy concerning

the widening operation manages to make all values oflen possible in line[8] (except for values

outside the buffer, which are eliminated by the safety check of line[5]).

In order to solve this problem, the translation of statements of the fromc = ∗src; must

be changed. My suggestion is to add another case, translating the statement to:

if rvp.is_nullt ∧ lvp.offset = rvp.len

lvc.val := 0;

else {

lvc.val := unknown;

if rvp.is_nullt ∧ lvp.offset = rvp.len

assume(c ≥ 1);

}

The addition ensures us that if R-value ofp is a null-terminated string andp points inside the

string, i.e. before the null character,c will be higher than 0. This translation is sound and yet

more accurate than the current one. It will ensure thatc is definitely 0 only when the offset ofp

is equal to the length of the string, and possibly 0 only after the first null character.

5.1.2 Unlimited widenings

the goto command in line[16] results in a back-edge to line[2]. Widening operations are

made on back-edges and in this case, the widening will result in the constraint on the offset

s.offset ≥ 0. This will result in an assert violation, and after performing error-recovery, the

constraints on the offset will be0 ≤ s.offset ≥ 14 (recall that in our example,L.aSize, the

allocation size of the buffer, is 15, therefore, in order to satisfy the assertion condition,s.offset
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is less than 15). Combined with the previous inaccuracy concerning the contents of the string,

this will result in the constraint0 ≤ __return_val ≤ 14 in the exit value of strlen.

The origin of this false alarm and inaccuracy in the return-value is the fact that the performed

widening is unlimited, meaning that the widened dimensions are not bounded. Using loop invari-

ants, the widened dimensions can be bounded. For example, in the loopwhile( ∗src) { . . . src++;} ,

if the conditionrvsrc.is_nullt ∧ lvsrc.offset ≤ rvsrc.len is satisfied in an iteration, then it will also

be satisfied before the next iteration. This observation can be used in the analyzer to bound

the offset, using the notion of widening with constraint implemented in the Parma library. The

Parma library implements a widening operation where if a set of constraints is satisfied by both

arguments to the widening, the widening will return a polyhedron which satisfies the given con-

straints. The conditionality of the bounded widening makes the analysis sound in cases where

the loop does not satisfy the constraints, i.e. writes the null character or points beyond the null.

In these cases the widening will not use the constraints and the widened dimensions will be

unbounded.

The challenging problem here is therefore to automatically find during translation the set of

constraints that can be used in the limited widening operation.

5.1.3 Information loss in the join operation

Even if the two suggested changes above are implemented, there will still be an inaccuracy

in the return value of the function. This happens due to the loss of information caused by

the join operation on convex polyhedra. Let us assume that the two changes above have been

implemented, i.e. the analysis now differentiates between the contents before the null character

and after it, and the widening is now bounded. Because of these changes, the offset of s would

be, in our example, between 0 and 10, and the corresponding polyhedron:

0 ≤ s.offset ≤ 10

L.aSize = 15

L.is_nullt = 1

L.len = 10

0 ≤ len ≤ 10

c = unknown

Due to the more exact analysis of the string contents we would get the following polyhedrons.

For the case wheres.offset = L.len:

s.offset = 10

L.aSize = 15

L.is_nullt = 1

L.len = 10
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len = 10

c = 0

For the case where the offset is lower than the length:

0 ≤ s.offset ≤ 9

L.aSize = 15

L.is_nullt = 1

L.len = 10

0 ≤ len ≤ 9

c ≥ 1

Because the widening is limited, the case where the offset is larger then the length of the string

is non-existent in the portrayed call context. At the end of the if …then …else … clause the

two abstract values will be joined, in our case a poly-hull operation will be performed. This will

result in the following polyhedron:

0 ≤ s.offset ≤ 10

L.aSize = 15

L.is_nullt = 1

L.len = 10

0 ≤ len ≤ 10

c ≥ 0

In the above polyhedron, the two separate cases have been joined, and the information that the

contents of the string preceding the null character must be greater than 0, was lost. As previously

explained, this will result in the values of 0 to 9 to be included in the possible values of the return

value. Furthermore, because c can be greater than 0 when the offset equals the length, the loop

will not stop at this point, the offset will increase to infinity, and we will get the same result as

before - a false alarm and all values between 0 and 14 as possible return values.

The reason for this behavior is that the join of convex polyhedra is not distributive. Therefore,

when our translation turns one if into two, we lose information due to the interim join.

To conclude, although many false alarms exist, they are not a result of the interprocedural

integer analysis algorithm, but rather due to a non-exact translation from C to IP.
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Chapter 6

Related Work

This work is contributive in two main areas: interprocedural analysis and static detection of

string errors.

6.1 Static Detection of String Errors

Many academic and commercial projects produce practical tools that detect string manipulation

errors at runtime, e.g., [16, 1, 22, 7]. The main disadvantage of runtime checking is that its

effectiveness strongly depends on the input tested, and it does not ensure against future bugs on

other inputs. Our goal is to achieve a conservative static tool that detects all string errors and

provides an assurance against all such errors.

Although the problem of string manipulation safety checking is to verify that accesses are

within bounds [19, 3, 26], the domain of string programs requires that the analysis be capable

of tracking the following features of the C programming language:

• handling standard C functions, such asstrcpy() andstrlen() , which perform an

unbounded number of loop iterations;

• statically estimating the length of strings (in addition to the sizes of allocated base ad-

dresses); this length is dynamically changed based on the index of the first null character;

• simultaneously analyzing pointer and integer values, which is required in order to precisely

handle pointer arithmetic and destructive updates.

Many academic projects produce unsound tools to statically detect string manipulation errors.

In [20] an extension to LCLint is presented. Unsound lightweight techniques, heuristics, and

in-code annotations are employed to check for buffer overflow vulnerabilities. Eau claire [5],

a tool based on ESC-Java, checks for security holes in C programs by translating a subset of C

to guarded commands. Its annotation language is similar in a sense to CSSV. In [29] Wagner et
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al. present an algorithm that statically identifies string errors by performing a flow insensitive

unsound analysis. The main disadvantage of all of these unsound tools is that they miss errors

while we target a tool that does not miss any error. Furthermore, none of them can track effects of

pointer arithmetic, a widely used method for string manipulation. Sound algorithms for statically

detecting string errors are presented in [12, 28]. However, they cannot handle all C, in particular

multi-level pointers and structures. In [13] CSSV is presented which is a sound tool that handle

all C and in a rather precise manner. However, CSSV analyze procedure calls by requiring the

user to provide contracts. This can be a difficult task for large programs. This work is does not

require contracts and handles procedure calls by a precise and efficient interprocedural analysis.

6.2 Interprocedural Pointer and Integer Analysis

The algorithm presented in this thesis is a variation of the "functional approach" to interprocedural

static analysis, introduced in [27]. Our algorithm was also inspired by the functional approach

and the coincidence theorem from [18]. The usage of 2-vocabulary to represent procedures

summaries was inspired from shape analysis. This technique was used in [17].

In [8], interprocedural integer analysis using the polyhedra abstract domain was used for

parallelizing FORTRAN programs. The algorithm presented here achieves improved accuracy

over PIPS by using the polyhedra intersection operator as the abstract meet operator in return-

sites. Furthermore, iCSSV handles a more complex problem than PIPS, because of the usage of

pointers in C and iCSSV requirement to track both the indexes to strings and the string contents,

i.e. the location of the null character.
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Chapter 7

Conclusion

Buffer overflow is one of the most harmful sources of defects in C programs. Moreover, it

makes software vulnerable to hacker attacks. We believe that iCSSV provides evidence that

sound analysis can be automatically applied to statically verify the absence of all string errors

in realistic applications.
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