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Abstract

Shape analysis concerns the problem of determining �shape invariants� for programs that perform
destructive updating on dynamically allocated storage. TVLA (Three-Valued Logic Analysis)
[LAS00] is a system for shape analysis that can be used in different ways to create different
shape analysis implementations that provide varying degrees of ef�ciency and precision.

A key property of TVLA is that the stores that can possibly arise during execution are repre-
sented (conservatively) using sets of 3-valued logical structures.

While the TVLA system is general, this generality comes at a very high price:

�Often the analysis of small programs is very expensive in terms of time and space.�

Indeed, the algorithms used in TVLA have very high complexity. The overall complexity could
be doubly exponential in the program size.

This thesis is aimed at improving the performance of static analyses in the TVLA system,
with the aid of new algorithms and data structures. In the �rst part, new data structures, which
represent 3-valued �rst-order structures are shown to largely reduce the space consumption. One
of these data structures is based on OBDDs (ordered binary decision diagrams) which are widely
used for �nite state model checking. In the second part, a reduction in the overall analysis cost
is achieved by exploring new abstractions that produce more compact sets of structures.

2



Contents

1 Introduction 5
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 8
2.1 TVLA Primer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Representing Memory States via Logical Structures . . . . . . . . . . . 8
2.1.2 Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Conservative Representation of Sets of Memory States via 3-valued

Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Abstract Interpretation in TVLA . . . . . . . . . . . . . . . . . . . . . 12

2.2 Abstraction in TVLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 The Relational Method . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 The Single-Structure Method . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 OBDDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Compactly Representing First-Order Logical Structures 19
3.1 Evolving First-Order Structures as an Abstract Data Type . . . . . . . . . . . . 19
3.2 TVS Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Base Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 OBDD Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 A Functional Representation . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Tuning Abstraction to Improve Performance 33
4.1 The Mathematical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3



4.2 Exploiting Embedding to Optimize the Relational Method . . . . . . . . . . . 34
4.3 A More Compact Domain Based on Canonical Names . . . . . . . . . . . . . 37
4.4 Using a Staged Analysis to Localize the Abstraction . . . . . . . . . . . . . . . 39
4.5 An Even More Compact Domain Based on Pseudo-Embedding . . . . . . . . . 43
4.6 Comparing the New Domains to the Existing Domains . . . . . . . . . . . . . 44

5 Conclusion 47
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

References 50

List of Figures 54

List of Tables 56

A Normalization of the Functional Representation 57

B Signature of ADT for Evolving First-Order Structure 58

C Explanation of Abstract Counters for Different Representations 60

D Proving the Hardness of Embedding 62

4



Chapter 1

Introduction

1.1 Motivation

Shape analysis concerns the problem of determining �shape invariants� for programs that perform
destructive updating on dynamically allocated storage.

TVLA (Three-Valued Logic Analysis) [LAS00] is a system for shape analysis that can be
used in different ways to create different shape analysis implementations that provide varying
degrees of ef�ciency and precision. TVLA is designed to model dynamic allocation precisely
by representing program states as sets of �rst-order structures. A �rst-order representation
uses a �nite collection of predicates to de�ne states; the predicates range over a universe of
individuals that may evolve�expand and contract�during analysis. The use of �rst-order
structures permits, e.g., dynamic memory allocation or dynamic thread creation to be modeled in
a natural way [SRW02, Yah01]. TVLA has been successfully applied to a wide variety of deep
program analysis and veri�cation problems, including analyzing C programs for �cleanness�
(statically checking for memory leaks and dangling or uninitialized pointers), verifying the
correctness of a simple garbage collector, determining whether clients of a Java library satisfy
the library's conformance constraints for correct usage [RWF+02], and verifying certain safety
properties of a packet router encoded in the Mobile Ambient calculus [CG98]. The appeal of
TVLA can be contributed to the following factors:

� Expressiveness The language in which users express their shape analysis algorithms is
�rst-order predicate logic with transitive closure. This is a very expressive language,
allowing users to express many useful properties that the algorithms seek to predict.

� Soundness for Free The problem of discovering shape invariants is not decidable. A
common method for dealing with undecidability is via abstraction [CC79], which makes it
possible to give approximate solutions. Proving the soundness of static analysis algorithms
is usually a very time-consuming and complex task. TVLA is based on a �rm theoretical
background [SRW02], which lifts this burden. TVLA users can quickly generate and
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experiment with quite complex algorithms without having to implement the abstraction
and without having to worry about the soundness of the generated algorithm.

� Flexibility TVLA employs powerful techniques for re�ning and controlling the precision
(level of approximation) of its analyses, which makes it possible to achieve very accurate
veri�cation results.

However, the same factors that make TVLA so appealing also make it very expensive in
terms of space and time: The worst-case space complexity of the default algorithm is doubly-
exponential in the size of the program for some analyses. Although TVLA analyses do not
always exhibit the worst case behavior, making it possible to solve small programs, scalability
is a major issue. As indicated in [LAS00], a main problem is the space needed for the analysis.

TVLA employs an iterative �x-point algorithm. The number of iterations that are required to
arrive to the solution can be very high, making the analysis very slow even for small programs
(several hours in some cases and in other cases not terminating even after several days). The
number of iterations and amount of overall work of the algorithm is directly related to the amount
of structures it produces.

In this thesis, we attempt to attack the scalability issue. We reduce the space consumption
of the analysis by designing new data structures that represent logical structures by sharing
common information. We then proceed to reduce the overall work of the algorithm by reducing
the number of structures it produces. This is achieved by means of abstractions, which allow us
to represent more compactly large amounts of information by conservative approximations.

1.2 Main Results

This research reports both theoretical and empirical results for tackling the scalability problem
of shape analysis:

1. We describe the properties required from the data structures that represent logical struc-
tures and then describe and evaluate two structure representation techniques. One uses
OBDDs; the other uses a variant of a functional map data structure. Using a suite of
benchmark analysis problems, we systematically compare the new representations with
TVLA's existing state representation. The results show that both the OBDD and functional
implementations reduce space consumption in TVLA by a factor of 4 to 10 relative to the
current TVLA state representation, without compromising analysis time.

2. We describe new abstraction techniques and compare them with the existing abstractions
on a suite of benchmarks. The results show that the new abstraction techniques maintain
the precision achieved by the most precise existing technique. At the same time, the new
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/* list.h */
typedef struct node
{

struct node *n;
int data;

} *L;

/* reverse.c */
#include "list.h"
L reverse(L x) {

L y, t;
y = NULL;
while (x != NULL) {

t = y;
y = x;
x = x->n;
y->n = t;
t = NULL;

}
return y;

}
(a) (b)

Figure 1.1: (a) Declaration of a linked-list data type in C. (b) A C function that uses destructive
updating to reverse the list pointed to by parameter x.

abstractions substantially reduce the amount of work required to compute the solution,
sometimes by several orders of magnitude.

1.3 Outline of the Thesis

The thesis is organized as follows: Chapter 2 contains a short primer on TVLA that describes
the parts relevant for this thesis and a short introduction to OBDDs; Chapter 3 describes the
new representation techniques for logical structures; Chapter 4 describes the new abstraction
techniques; and Chapter 5 concludes the thesis.

A program that destructively reverses a singly linked list is shown in Fig. 1.1. The shape
analysis of this program serves as a running example in this thesis.
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Chapter 2

Background

2.1 TVLA Primer

In this section, we brie�y repeat those aspects of TVLA that will be used in the sequel of this
thesis. Complete details of the system may be found in [LAS00].

Kleene's 3-valued logic is an extension of ordinary 2-valued logic with the special value of
1/2 (unknown) for cases that can be either 1 or 0. Kleene's interpretation of the propositional
operators is given in Table 2.1. We say that the values 0 and 1 are de�nite values and that 1/2

is an inde�nite value, and de�ne a partial order v on truth values to re�ect information content:
l1 v l2 denotes that l1 has more de�nite information than l2:

De�nition 2.1.1 [Information Order]. For l1, l2 ∈ {0, 1/2, 1}, we de�ne the information
order on truth values as follows: l1 v l2 if l1 = l2 or l2 = 1/2. The symbol t (join) denotes the
least-upper-bound operation with respect to v, i.e., l1 t l2 = l1, if l1 = l2 and 1/2 otherwise.

Kleene's semantics of 3-valued logic is monotonic in the information order.

2.1.1 Representing Memory States via Logical Structures

A 2-valued logical structure S is comprised of a set of individuals (nodes) called a universe,
denoted by US , and an interpretation over that universe for a set of predicate symbols. The

∧ 0 1 1/2
0 0 0 0
1 0 1 1/2

1/2 0 1/2 1/2

∨ 0 1 1/2
0 0 1 1/2
1 1 1 1

1/2 1/2 1 1/2

¬
0 1
1 0

1/2 1/2

Table 2.1: Kleene's 3-valued interpretation of the propositional operators.
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Figure 2.1: A possible store for the running example.

interpretation of a predicate symbol p in S is denoted by pS . For every predicate p of arity k, pS

is a function pS : (US)k → {0, 1}. 2-valued structures are used to represent memory states used
in the operational semantics of the program.

TVLA makes an explicit assumption that the set of predicate symbols used throughout the
analysis is �xed. (The number of individuals in structures can vary throughout the analysis.)

In TVLA, predicates are required to have arity ≤ 2; hence it is natural to depict structures in
the form of directed graphs. Consider the 2-valued structure S0 depicted in Fig. 2.2. Here, the
variable x is represented by a unary predicate x, which has value 1 only for u1. In general, a
unary predicate p which holds for a node u is drawn inside the node u, not shown if its value is 0.
A unary predicate that represents a pointer variable is represented graphically by a solid arrow
connecting p to each individual u for which p(u) = 1, and no arrow otherwise. If p is 0-valued
for all individuals, the predicate name p is not depicted; e.g., in S0, the absence of predicate y

indicates that variable y is null in S0. A solid directed edge labeled by p from u1 to u2 denotes
the fact that p(u1, u2) = 1. The name of a node is written inside the node using an italic face.
Node names are only used for ease of presentation and do not affect the analysis.

In the running example, a 2-valued structure represents a memory state (also called a store);
an individual corresponds to a list element. The store in Fig. 2.1 is represented by the 2-valued
structure S2.2 shown in Fig. 2.2. The structure S2.2 has four nodes, u0, u1, u2, and u3 representing
the four list elements. This representation intentionally ignores the values of the data �eld, which
are usually immaterial for the analysis.

Pointer variables are represented by unary predicates (i.e., xS(u) = 1 if the variable x points
to the list element represented by u). In Fig. 2.2, the variable x is represented by the unary
predicate x, which is 1 only for u0. Pointer �elds within the list elements are represented as
binary predicates (i.e., nS(u1, u2) = 1 if the n-�eld of u1 points to u2).

The predicate r[n, x] holds for list elements that are reachable from program variable x,
possibly using a sequence of accesses through the n-�eld. The structure S2.2 in Fig. 2.2 has
r[n, x]S2.2 set to 1 for all the nodes because they are all reachable from x.

The predicate is[n] holds for nodes shared by n-�elds (a node is shared by n-�elds, if it is
pointed to by more than one list element using the �eld n). In Fig. 2.2, all the elements of the
list are unshared, and thus is[n]S2.2 is 0 for all of them.

The predicate c[n] holds for nodes on a cycle of accesses along n-�elds. In Fig. 2.2, the list
is acyclic, and thus c[n]S2.2 is 0 for all of the nodes.
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u0
r[n,x]

u1
r[n,x]

n
x

u2
r[n,x]

n
u3

r[n,x]
n

x y t r[n, x] r[n, y] r[n, t] is[n] c[n]

u0 1 0 0 1 0 0 0 0
u1 0 0 0 1 0 0 0 0
u2 0 0 0 1 0 0 0 0
u3 0 0 0 1 0 0 0 0

n u0 u1 u2 u3

u0 0 1 0 0
u1 0 0 1 0
u2 0 0 0 1
u3 0 0 0 0

Figure 2.2: A logical structure S2.2 representing the store shown in Fig. 2.1 in a graphical and
tabular representation.

2.1.2 Formulae

Properties of structures can be extracted by evaluating formulae. We use �rst-order logic with
transitive closure and equality, but without function symbols and constant symbols. For example,
the formula

∃v1 : (x(v1) ∧ n∗(v1, v)) (2.1)

extracts reachability information. Here, n∗ denotes the re�exive transitive closure of the predicate
n. Therefore, in every structure S, x(v1) evaluates to 1 if v1 is the node pointed to by x and
n∗(v1, v) evaluates to 1 in S if there exists a path of zero or more n-edges from v1 to v.

2.1.3 Conservative Representation of Sets of Memory States via 3-valued
Structures

Like 2-valued structures, a 3-valued logical structure S is also comprised of a universe US , and
an interpretation pS for every predicate symbol p. But, for every predicate p of arity k, pS is a
function pS : (US)k → {0, 1, 1/2}, where 1/2 explicitly captures unknown predicate values.

3-valued logical structures are also drawn as directed graphs. De�nite values are drawn as
in the 2-valued structures. Binary inde�nite (1/2) predicate values are drawn as dotted directed
edges. Unary inde�nite predicate values are drawn inside the nodes and marked as inde�nite
(this does not occur in the running example).

Summary nodes

Nodes in a 3-valued structure that may represent more than one individual from a given 2-valued
structure are called summary nodes. For example, in the structure shown in Fig. 2.2, the nodes
u1, u2, and u3 are represented by the single node u in Fig. 2.3.
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TVLA uses a special designated unary predicate sm to maintain summary-node information.
Such a summary node w has smS(w) = 1/2, indicating that it may represent more than one
node in the embedded 2-valued structures. These nodes are graphically drawn as double circles.
In contrast, if smS(w) = 0 then w is known to represent a unique node. Only nodes with
smS(w) = 1/2 can have more than one node mapped to them by the embedding function.

The exact choice of which nodes should be summarized is crucial for the precision of the
analysis and is discussed in Section 2.2.

Embedding

Although structures may have different individuals, we can de�ne an order on structures, denoted
by v based on the concept of embedding. The goal is to guarantee that if S v S ′ then the value
of every formula in S is less or equal to its value in S ′. In particular, whenever the formula
evaluates to a de�nite value in S ′ then the formula has the same value in S. Formally,

De�nition 2.1.2 Let S and S ′ be two structures. Let f : US → US′ be surjective. We say that f

embeds S in S ′ (denoted by S vf S ′) if (i) for every predicate p (including sm) of arity k and
all u1, . . . , uk ∈ US ,

pS(u1, . . . , uk) v pS′(f(u1), . . . , f(uk)) (2.2)

and (ii) for all u′ ∈ US′

(|{u | f(u) = u′}| > 1) v smS′(u′) (2.3)

We say that S can be embedded in S ′ (denoted by S v S ′) if there exists a function f such
that S vf S ′.

A special kind of embedding is a tight embedding, in which information loss is minimized
when multiple individuals of S are mapped to the same individual in S ′:

De�nition 2.1.3 A structure S ′ is a tight embedding of S if there exists a surjective function
blur : US → US′ such that, for every p 6= sm of arity k,

pS′(u′1, . . . , u
′
k) =

⊔

blur (ui)=u′i,1≤i≤k

pS(u1, . . . , uk) (2.4)

and for every u′ ∈ US′ ,

smS′(u′) = (|{u|blur (u) = u′}| > 1) t
⊔

blur (u)=u′
smS(u) (2.5)

Because blur is surjective, equations (2.4) and (2.5) uniquely determine S ′ (up to isomor-
phism); therefore, we say that S ′ = blur (S).
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u0
r[n,x]

u
r[n,x]

n

n
x

x y t r[n, x] r[n, y] r[n, t] is[n] c[n]

u0 1 0 0 1 0 0 0 0
u 0 0 0 1 0 0 0 0

n u0 u

u0 0 1/2
u 0 1/2

Figure 2.3: A 3-valued structure S2.3 representing lists of length 2 or more that are pointed to
by program variable x (e.g., S2.2).

Example 2.1.4 In the running example, the 3-valued structure S2.3 shown in Fig. 2.3 represents
the 2-valued structure S2.2 for f(u0) = u0 and f(u1) = f(u2) = f(u3) = u. In fact, the structure
shown in Fig. 2.3 represents all the singly-linked lists with two or more elements pointed to by
x.

The unary predicate symbol x has xS2.3(u0) = 1, indicating that the program variable x is
known to point to the list element represented by u0, and xS2.3(u) = 0, indicating that x is known
not to point to any of the list elements represented by u.

The binary predicate symbol n has nS2.3(u0, u) = 1/2, indicating that the n-�eld of the list
element represented by u0 may point to a list element represented by u � namely the second
list element (u1 in Fig. 2.2) � but does not point to all the list elements represented by u (e.g.
u2 in Fig. 2.2). Also, nS2.3(u, u) = 1/2, indicating that the n-�eld of a list element represented
by u may point to another list element represented by u or even to itself but does not point to all
the list elements represented by u (e.g., in Fig. 2.2 the n-�eld of u2 points to u3, but not to u1).

Consider the program shown in Fig. 1.1, which reverses a singly-linked list in place. As an
expository example, let us say that we wish to con�rm that the program never dereferences a
pointer that is NULL. Table 2.2 contains the predicates used for the shape analysis of the running
example.

2.1.4 Abstract Interpretation in TVLA

TVLA takes as input a control �ow graph (CFG) of the program to be analyzed�each edge
of which can be thought of as being annotated with a sequence of actions�and an abstract
representation of a set of initial states. Each action is an operation on the abstract data type
(ADT) used to represent �rst-order structures (the full set of actions is enumerated in Section 3.1),
and the action sequences associated with CFG edges collectively encode those aspects of the
program's semantics that are relevant to the program analysis problem at hand. The TVLA
user speci�es action sequences using a high-level programming language whose core constructs

12



Table 2.2: The predicates used for shape analysis of the program in Fig. 1.1 and their meaning.

Predicate Intended Meaning
x(v) Is v pointed to by variable x?
y(v) Is v pointed to by variable y?
t(v) Is v pointed to by variable t?
n(v1, v2) Does the n-�eld of v1 point to v2?
r[n, x](v) Is v reachable from program variable xusing �eld n?
r[n, y](v) Is v reachable from program variable yusing �eld n?
r[n, t](v) Is v reachable from program variable tusing �eld n?
is[n](v) Is v pointed to by more than one n-�eld?
c[n](v) Does v reside on a directed cycle via dereferences along n-�elds?
sm(v) Can v represent multiple concrete heap cells?

are based on �rst-order logic extended with transitive closure. During analysis, the high-level
TVLA operations are interpreted, and translated into action sequences.

The most important high-level TVLA construct is the predicate update operation, which is
used to encode a state update. For example, the statement x = x->n in Fig. 1.1 is modeled
using a predicate update operation of the form x(v) := ∃v1 : x(v1) ∧ n(v1, v). This update
operation is translated into a loop containing structure ADT actions whose effect is: to evaluate
the right-hand side of the update operation for each possible binding of the free variable v to an
individual in the current structure, and to bind the result to v in the interpretation of x in a new
copy of the structure.

TVLA carries out abstract interpretation by exhaustively exploring the abstract program states
derivable from the initial state set via action sequences associated with CFG edges. The iterative
algorithm used to perform an abstract interpretation over the input program is outlined in Fig. 2.4.
The actions which may be associated with each CFG edge are enumerated in Fig. B.1, and
described in greater detail in Section 3.1. The actions associated with edges are always terminated
by actions that carry out a blur operation, and therefore only blurred structures are added to the
state space. This is explained in more detail in the next section.

The structures generated by abstract interpretation of the �rst iteration of the loop body of
the reverse function are depicted in Fig. 2.5. The analysis begins with the 3-valued structure
S0. Then, the actions modeling the statement y = x have the effect of setting y to point to
u1, resulting in the structure S1. The most interesting case is the assignment x = x->n. This
statement is modeled by the predicate update action for x = x->n described above, preceded
by a focus action. The focus action, which we will not describe in detail here, has the effect
of bifurcating the incoming structure into a set of structures; the basic idea is to replace a
structure in which a predicate p has value 1/2 by a pair of structures, one where p has value 1,
and one where p has value 0. Focus allows us to do a precise �case analysis� on the resulting
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initialize(S0) {
for each S ∈ S0 {

push(stack,[Pentry , S])
}

}

explore() {
while stack is not empty {

[P, S] = pop(stack)
if add(stateSpace(P ), immutableCopy(S)) {
for each outgoing CFG edge (P, P ′) {

S′ = copy(S)
Apply (Action(P, P ′), S′)
push(stack,[P ′, S′])

}
}

}
}

Figure 2.4: The structure of TVLA's abstract interpretation algorithm. P and P ′ denote CFG
nodes where Pentry is the entry node. S and S ′ denote program states, represented by �rst-order
structures, where S0 is the set of initial program states.

set of structures, which frequently sharpens the analysis results. Here, for example, focus
allows us to distinguish the case where x is null (represented by structure S2.0) from the cases
where x is non-null; this distinction is critical for verifying that the when the statement x =
x->n is executed, it does not cause a null dereferencing to the pointer �eld n. The coerce
action, which we will also not describe in detail is then able to determine that the structure
S0 is inconsistent and does not represent a store that can possibly arise from any execution of
the program. This is because the node u is found to be reachable from the pointer variable
x (it has r[n, x](u) = 1) while x is NULL. Coerce infers this inconsistency by solving a set
of constraints. The set of constraints, automatically produced for this analysis, contains the
constraint ¬∃v1 : x(v1) ∧ n∗(v1, v) =⇒ ¬r[n, x](v), which evaluates to 0 for v = u. This
breach of constraint causes the analysis to discard the structure and avoid emitting a false alarm.

2.2 Abstraction in TVLA

The complexity of static analysis algorithms largely depends on the abstractions used. Abstrac-
tion is achieved by choosing an appropriate abstract domain to compactly represent the concrete
properties of a program. A central problem in static analysis is �nding a suitable domain that
provides a good balance between ef�ciency and the level of precision. This is a very tough
problem that currently lacks a general theory for expressing the relationship between ef�ciency
and precision mathematically. Although for some cases there are optimal solutions (in the sense
of join over all paths), in almost all non-trivial analyses research is limited to an empirical eval-
uation of different abstract domains. The remainder of this section brie�y describes the abstract
domains used in TVLA and the related techniques.
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u1
r[n,x]

u
r[n,x]

n

n
xS0

y = x

u1
r[n,x]
r[n,y]

u
r[n,x]
r[n,y]

n

n

y

S1 x

x = x->n

u1
r[n,y]yS2.0

u
r[n,x]
r[n,y]

n
u1

r[n,y]y

u
r[n,x]
r[n,y]

x

nS2.1 u1
r[n,y]

u.0
r[n,x]
r[n,y]

n

n
y

u.1
r[n,x]
r[n,y]

x

nS2.2

Figure 2.5: Structures generated by abstract interpretation of the �rst iteration of the loop in the
reverse function.

In order to ensure termination, TVLA introduces the concept of a bounded structure. We
separate the set of unary predicates into two groups � the abstraction predicates and the non-
abstraction predicates. A bounded structure is obtained from a 3-valued structure by merging
individuals with the same set of unary abstraction predicate values using the blur operation. The
ordered set of unary abstraction predicate values for an individual is called its canonic name. This
procedure limits the number of individuals for a structure with p unary abstraction predicates
to at most 3p. This alone does not ensure termination, since numerous different (but possibly
isomorphic) structures can be propagated into the same CFG node when it contains cycles. The
additional condition that is needed in order to ensure termination is limiting the size of the set
of structures in any CFG node. There are two existing methods to ensure this � the relational
method and the single-structure method.

2.2.1 The Relational Method

This method is based on the following observation. Given that the structures are bounded, there
can only be a �nite number of them that are not isomorphic to one another1. To see this, notice
that two structures can be different, i.e., not isomorphic to one another, if their set of canonic
names are different. In addition, two structures with the same set of canonic names can be
different if a non-abstraction predicate of arity k > 1 has a different interpretation for the two

1The notion of structure isomorphism is de�ned in [LAS00]. Informally, two structures are isomorphic when
there is a one-to-one mapping between their individuals that preserves all predicate values.
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structures and for a k-tuple of nodes with the same canonic name. These are the only reasons that
can cause structures to be distinguishable under the isomorphism equivalence relation. Since,
in TVLA k ≤ 2, then under this equivalence relation, the maximal size of a set of bounded
structures is O(23p · 3p2

) ⊆ O(23p
). We call the abstract domain obtained from this technique

�the relational domain�.

2.2.2 The Single-Structure Method

Single structure analysis is a well known idiom in the program analysis community. It is used
for a more ef�cient (in terms of time and space) but less precise analysis.

Conceptually, a TVLA user can assume that the number of individuals is in�nite, but only a
�nite number of them � the active individuals � are visible by the analysis. The active property
of individuals is maintained by a designated unary predicate ac, where acS(u) = 1 indicates
that the individual u is active in the structure S. In shape analysis, acS(u) can be one of the
following,

� 1 � indicating that u represents at least one concrete node in all the concrete structures
represented by this structure.

� 1/2 � indicating that u may not be present in some structures (i.e., it is possible that u

does not represent a concrete node in one or more of the concrete structures represented
by this structure).

� 0 � indicating that u does not represent any concrete node in any of the concrete structures
represented by this structure, and can thus be discarded by the implementation.

The concept of maybe active nodes gives us a way to represent all the structures in at a
CFG node in a single structure. This is done by merging them and joining the values of their
predicates. When a node exists in one structure and not in the other, it becomes a maybe-active
node.

Using this method can result in very imprecise analyses. This issue was addressed in [LAS00]
where the method was re�ned by avoiding joining structures with different sets of nullary pred-
icates. This modi�cation limits the number of structures in a set to at most 3k, for k nullary
predicates. This method made it possible to analyze certain programs where analysis with the
relational method did not terminate. However, in other cases, the analysis turned out to be
still overly imprecise and more time consuming relative to the relational method. In addition,
achieving precision with the single-structure method often required a modi�cation of the oper-
ational semantics to �nd appropriate nullary predicates, which required human effort and made
it more complex. We call the abstract domain obtained from this technique �the single-structure
domain�.
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Arguments Value
x1 x2 x3 f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

x3 x3 x3 x3

x2 x2

x1

10 0 0 0 1 0 1

(a) (b)

Figure 2.6: (a) A truth table representation of function f . (b) A BDD representation of f . Each
nonterminal tree vertex is labeled by a decision variable. A dashed tree branch denotes the case
where the decision is 0 and a solid branch denotes the case where the decision is 1. The table
entry x1 = 1, x2 = 0, x3 = 1, f = 1 corresponds to the gray path in the decision tree.

2.3 OBDDs

In this section we give a very brief introduction to OBDDs. A more extensive introduction is
given in [Bry86], [Bry92] and [BRB90].

Binary Decision Diagrams (BDDs) are a representation of boolean functions as a binary tree.
The vertices are labeled by boolean variables, and the leaves, usually referred to as terminals,
are labeled by boolean values. A BDD represents a boolean formula in the form of a case
analysis. For example, Fig. 2.6 shows a boolean function and the corresponding BDD. For a
given assignment to the variables, the value yielded by the function is determined by tracing a
path from the root to a terminal vertex, following the branches indicated by the values assigned
to the variables. The function value is then given by the terminal vertex label.

An Ordered BDD (OBDD) is a normal form for BDDs where we impose a total ordering over
the set of variables and require that for any vertex and either nonterminal child, their variables
respect that order. In the decision tree of Fig. 2.6, the variable order is x1 < x2 < x3.

A Reduced OBDD (ROBDD) is a further normal form for OBDDs obtained by repeated
application of the following rules:

� Remove Duplicate Terminals: Eliminate all but one terminal vertex with a given label
and redirect all edges into the eliminated vertices to the remaining one.

� Remove Duplicate Nonterminals: If nonterminal vertices u and v labeled with the same
variable have lo(u) = lo(v), and hi(u) = hi(v) where lo(·) is the vertex obtained by
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Duplicate Terminals Duplicate Nonterminals Redundant Tests

Figure 2.7: The OBDDs of f obtained by applying the reduction rules.

following the edge with a 0 decision and hi(·) is the vertex obtained following the edge
with a 1 decision, then eliminate one of the two vertices and redirect all incoming edges
into the eliminated vertex to the other vertex.

� Remove Redundant Tests: If a nonterminal vertex v has lo(v) = hi(v), then eliminate v

and redirect all incoming edges into v to the vertex lo(v).

Fig. 2.7 shows an example of how the application of the rules results in an acyclic graph with
fewer vertices than in the original decision tree. An extension to ROBDDs [BRB90] supplies a
normal form for any number of boolean functions. The functions are represented by a multiply-
rooted directed acyclic graph that allows sharing sub-graphs between all of the functions. In the
remainder of this thesis we use this extension and refer to it simply as OBDD.
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Chapter 3

Compactly Representing First-Order
Logical Structures

This chapter addresses the problem of space consumption in �rst-order state representations by
describing and evaluating two new structure representation techniques. The �rst representation
uses an existing ordered binary decision diagram [Bry92, YBO+98] (OBDD) implementation
[Som98] to encode �rst-order structures. The second state representation combines ideas from
ef�cient implementations of functional maps (where a map derived by update to another map
shares substructures of the initial map) with normalization via hash-consing. While both of
these core data structures are well-known, it is not obvious that they should be adaptable to,
or bene�cial for, representing evolving �rst-order structures. In addition, both of these data
structures can have poor worst-case performance; thus an empirical evaluation is crucial for
determining their practical bene�t. Our evaluation of the new state representations indicates that
they can reduce TVLA's space consumption by a factor of 4 to 10 without compromising time
performance. In addition, as the number of structures manipulated by the analysis increases, the
relative advantage of the new representations also increases.

3.1 Evolving First-Order Structures as an Abstract Data Type

TVLA's architecture treats �rst-order structures as instances of an abstract data type (ADT); this
data type admits a variety of implementations. The TVLA system can then be viewed as an
engine that traverses the CFG and invokes actions that update instances of the structure ADT.

We are aware of no prior work that directly addresses the issue of ef�ciently manipulating
evolving �rst-order structures. However, a close examination of the operations on states per-
formed by TVLA reveals several opportunities for signi�cant space savings (We expect that
these optimization techniques are applicable even to other state representations used for other
abstract interpretations or other static analyses):
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� Sparse data structures. For many applications, much of the state space accessible at a
particular program point represents trivial values (e.g., null pointers). This fact can be
exploited by avoiding explicit representation of such values.

� Sharing of inherited substates. The TVLA actions that model each program statement
typically affect only a small portion of the program state. State representations that allow
the unchanged, �inherited� portion of the state to be shared between the pre- and post-
update state are therefore advantageous.

� Normalized (or canonical) representations for substates. Many program states contain
substructures that are semantically equivalent, even though the substructures were gener-
ated by unrelated sequences of state updates. By using a canonical representation (e.g., a
hash-consed tree data structure) for substates, such �serendipitous� similarity can be rec-
ognized and exploited to allow the substate to be shared. One reason why such similarity
arises is that typically every program point has an associated set of invariants that hold true
at all states possible at that program point. With a well-designed state abstraction, these
invariants can lead to �equivalent substructures�. This can lead to signi�cant savings es-
pecially for program points inside loops, where different structures may end up with some
�loop invariant substructure�. Further, since nearby program points tend to have many
common invariants, such �equivalent substructures� are possible even across structures
associated with different program points. Another advantage of a canonic representation
is that it enables ef�cient equality-checking of states, via a single pointer check, regardless
of the size of the state representation.

� Phase-sensitive state representations. Structures are initially mutable, and may be updated
as a result of applying TVLA actions. Subsequently, they become immutable, at which
point they may be compared for equality with other structures, but may not be updated.
The system can exploit these phase distinctions, e.g., by using a representation that admits
time-ef�cient update for mutable structures, and a more space-ef�cient representation for
immutable structures.

The full signature of the ADT used to represent evolving �rst-order structures in TVLA is
depicted in Fig. B.1; of Appendix B; here we note that the ADT contains two distinct represen-
tations of structures: a mutable structure (TVS) and an immutable structure (ImmutableTVS).
In addition, it de�nes an interface to a set of structures (TVS_SET), which contains only im-
mutable structures. The add operation for TVS_SET returns true if the structure being added is
not an element of the set, and false otherwise; this entails checking whether the added structure
is isomorphic to any structures already in the set. (The isomorphism check can be done in
polynomial time for blurred structures since a blurred structure has at most one node with any
given canonic name.)
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The distinction between mutable and immutable structures is noteworthy. Mutable structures
require a representation that allows operations such as predicate updates, and addition and
removal of nodes to be done ef�ciently. On the other hand, the only operation performed on
an immutable structure is the isomorphism test implicitly required by the add operation of
TVS_SET. This distinction allows us to use a normalized, space-ef�cient representation for
immutable structures. This property is especially important because immutable structures last
for the duration of the entire analysis, whereas the mutable structures can be discarded after they
are popped from the stack and processed (See Fig. 2.4).

3.2 TVS Representations

In this section, we describe three different implementations of the TVS ADT.

3.2.1 Base Representation

We �rst describe the representation used in the public release of TVLA (TVLA version 0.91).
We will refer to this as the Base representation, and use it as a baseline against which we compare
the other, newer, representations.

The value of an unary (or binary) predicate p in a structure is represented by a HashMap
(a hashtable based implementation of a map available in the Java Collections Framework) that
contains an entry for every node i (or node pair (i, j) in the case of binary predicates) for which
the value of p(i) (or p(i, j) respectively) is nonzero. The predicate p itself is said to have a
nonzero value if the value of p(i) (or p(i, j) in the case of binary predicates) is nonzero for at
least one node i (or node pair (i, j)). The value of a nullary predicate is represented by a single
Kleene value.

The value of a structure itself is represented by a HashMap (which we will refer to as the
�rst-level map) that contains an entry for every predicate p that has a nonzero value. The entry
corresponding to a predicate p contains the value of p (a HashMap for non-nullary predicates
and a Kleene value for nullary predicates), as well as a boolean �ag, which is used to achieve
some amount of sharing between the representations of different structures as explained below.

When a structure is copied, its �rst-level map is duplicated, but the HashMaps representing
the values of (non-nullary) predicates are shared by the original and new structure. The boolean
�ag associated with these predicate values is set to indicate this sharing. When the value of a
predicate with a shared representation needs to be updated, the underlying shared HashMap is
duplicated before the update is performed. The associated boolean �ag is also reset at this point
to indicate the absence of sharing.

The universe of a structure is implemented using a HashSet (a hashtable based implementation
of a set) plus a boolean �ag to implement a similar �copy-on-write� scheme for the universe
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also.

3.2.2 OBDD Representation

We now describe a new implementation of the TVS ADT, which we will refer to as the OBDD
representation. This is a phase-sensitive representation, where mutable structures are repre-
sented using the Base representation, but immutable structures are represented using OBDDs as
explained below.

Our representation uniformly models all predicates as if they were binary predicates. A unary
predicate p is represented as if it were a binary predicate by translating references to p(u) into
a reference to p(0, u). Nullary predicates are modelled using binary predicates by translating
references to p into references to p(0, 0). The representation uses a set P of boolean variables
to identify predicates, a set N1 of boolean variables to identify the �rst argument (a node) of
the predicate, a set N2 of boolean variables to identify the second argument (a node) of the
predicate, and a special boolean variable v1/2, used to extend the representation to 3-valued
logic, as explained below. A 3-valued structure may then be thought of as a boolean function
over these variables, one that returns the value of the predicate identi�ed by P for the tuple of
nodes identi�ed by N1 and N2. Since the value of the predicate is a Kleene ({0, 1, 1/2}) rather
than a boolean, the variable v1/2 is used to encode the third value. We represent the 3-valued
structure using a corresponding OBDD with the variable ordering N < P < {v1/2}, where N

denotes the sets of variables N1 and N2 interleaved.
One of the goals of the representation is to ensure that (blurred) isomorphic structures end

up with the same OBDD representation. We ensure this as follows. Recall that a node's canonic
name is de�ned to be the sequence of values of the unary predicates for that node. When the
OBDD representation of a structure needs to be created, the nodes of the structure are �rst
sorted by canonic name and then contiguously numbered from 0 on. This guarantees that
isomorphic structures will be represented by the same OBDD. Since only immutable structures
are represented with OBDDs, the sets of variables N1 and N2 actually needed to identify nodes
is determined when a structure is converted to an OBDD representation by choosing |N1| =

|N2| = plog |US|q OBDD variables.
For expository purposes, we use a simpler analysis1 than that of the running example. Consider

the program depicted in Fig. 3.1, which prints all the elements of a singly-linked list. Let us say
that we wish to con�rm the (here obvious) assertion that the printf statement is never executed
when the variable x has the value NULL. A very simple heap shape analysis [SRW02] can be
used for this purpose, which uses just the predicates sm, x, y and n with the same meaning as
described in Table 2.2.

1This analysis generates a very small number of simple structures, making it possible to demonstrate our ideas
more concisely.
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/* list.h */
typedef struct node
{
struct node *n;
int data;

} *L;

/* print.c */
#include "list.h"
void print_all(L y) {
L x;
x = y ;
while (x != NULL) {

/* assert x != NULL */
printf("elem=%d ", x->data);
x = x->n;

}
}

(a) (b)

Figure 3.1: (a) Declaration of a linked-list data type in C. (b) A C function that prints all the
elements of the list pointed to by parameter y.
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Figure 3.2: Structures generated by abstract interpretation of the �rst iteration of the loop in the
print_all function.
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The structures generated by abstract interpretation of the �rst iteration of the loop body of the
print_all function are depicted in Fig. 3.2. After two iterations, the abstract interpretation
of the print_all function reaches a �xpoint, with an output state containing the same set of
structures ({S2.0, S2.1, S2.2}) generated after the �rst iteration.

Fig. 3.3 shows the OBDD representation of the structures S0, S1 and S2.2 from Fig. 3.2. The
OBDD nodes labelled u1 or 〈u, u.1〉, for example, represent corresponding tuples of nodes.
Paths from the root to these OBDD nodes correspond to the node tuple boolean variables. Paths
from these OBDD nodes to the terminals 0 and 1 correspond to the predicate variables. For
example, the path 010, starting from S0, conveys the fact that in S0 the predicate x evaluates to
0 on for the node u1. The path 0011 starting from S1 and stopping at the 1/2 node conveys the
fact that the sm predicate evaluates to 1/2 on the node pair (u, u) in the structure S1.

This �gure illustrates the two kinds of sharing described earlier. The difference between the
OBDD representing S0 and the OBDD representing S1 are the two grayed nodes, which follow
the path 010 starting from S0. This re�ects that the only difference between the structures is in
the interpretation of the predicate x for the node u1, leading to inherited sharing between the two
OBDDs. Non-inherited sharing can be seen by observing that the node annotated by u, 〈u, u〉 is
shared by both the OBDD of S1 and S2.2. This re�ects the fact that the node u that represents the
tail of the linked list in S1 and the node u.0 that represents the tail of the list in S2.2 have the same
canonic name. This allows the two structures to share the values of sm and n for this node. This
sharing could easily be missed by implementations relying solely on inheritance-based sharing.
The more a structure S is mutated to produce a structure S ′ less the inherited sharing between
them, even if they contain many similar sub-structures. The OBDD representation is insensitive
to the scenario by which S ′ evolved from S and therefore manages to exploit these similarities.
Also notice that this program has a simple loop invariant that leads to sharing in the OBDD
representation of the structures arising after the statement x = x->n (S2.0, S2.1 and S2.2.) In
every iteration of the loop, the node u1, which represents the head of the list has the predicate
values x(u1) = 0, y(u1) = 1, sm(u1) = 0 and n(u1, u1) = 0, which enables all of the structures
to share these values.

3.2.3 A Functional Representation

We now describe a representation of 3-valued �rst order structures we refer to as a functional
representation. This implementation utilizes techniques similar to those used in OBDDs, but
in the context of a different data structure, namely maps. This makes it more convenient, for
instance, to implement the higher level TVLA operations, without having to encode them in
terms of OBDD operations.

We assume that the nullary predicates are numbered from 0 to n0, that unary predicates are
numbered from 0 to n1, and that all binary predicates are numbered from 0 to n2. We assume
that every node in a structure is assigned a unique integer value. However, unlike in the case
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u , <u,u>u1 <u1,u> , <u.1,u.0>u.1 , <u.0,u.1> u1 <u,u.1>

1/2

1

Figure 3.3: The OBDDs representing the 3-valued structures in Fig. 3.2. Dashed edges denote
0, and solid edges denote 1. The node ordering imposed by the canonic names is u < u1 for S0

and S1, and u.0 < u.1 < u1 for S2.2. The predicates are numbered as follows: sm : 0, x : 1,
y : 2, n : 3.

25



of predicates, the representation places no limit on the number of nodes in a structure. Further,
since the set of nodes in a structure can change dynamically, the nodes in a given structure are not
required to be assigned contiguous numbers. The set of nodes in a structure is implemented as a
linked list, which is manipulated in a functional style to allow sharing between the representations
of different structures.

The values of nullary predicates in a structure is represented by a map from integers in the
range [0 :n0] to Kleene. We use a tree-based functional data structure2, which we will refer to as
a �ik, to implement such a map. A �ik is either a leaf, capable of storing upto some �xed number
l of Kleene values, or a branch, consisting of a �xed number a of children (each of which is a
�ik), as well as an integer size �eld.

A map from [0 : i] to Kleene can be implemented using a single leaf for any i < l − 1. For
i ≥ l, we require a branch �ik. A branch of size s implements a map from [0 :s− 1] to Kleene by
splitting the interval [0 :s− 1] into a equal subintervals, each managed by a corresponding child.
A subinterval where all the Kleene values are 0 need not be represented by a corresponding child
(i.e., the child's value will be null). Further, a branch may be replaced by its �rst child if all of
its other children are null.

A lookup or an update operation can be done with this representation in O(log N) time, where
N is the size of the domain of the map. Note that the implementation is functional: an update
returns a new tree and does not modify the original tree. As with all functional data structures,
the new tree will share the unmodi�ed parts of the old tree with the old tree.

We adapt the above data structure to represent maps from integers to an arbitrary set, by
changing the representation of a leaf to store upto some �xed number l' of object references. We
refer to this modi�ed data structure as an intmap. An intmap can also be adapted to represent a
map from pairs of integers to some arbitrary set, by �rst utilizing any suitable encoding function
that maps every pair of integers to a unique integer. We refer to such an adaptation as an
intpairmap. (Our implementation uses an encoding function that maps a pair (i, j) to the integer
(i + j) ∗ (i + j + 1)/2 + i, but other encoding schemes are possible.)

The values of unary predicates in a structure is represented using a two-level map: this consists
of an intmap (the �rst-level map) that maps every node i in the structure's universe to a �ik (the
second-level map) that maps every unary predicate p's number to the value of p(i) in the universe.
The values of binary predicates is also represented by a two-level map: the �rst-level map (an
intpairmap) maps a pair of individuals (m,n) to a second-level map (a �ik) that maps a binary
predicate p's number to the value of p(m,n) in the structure.

An alternative implementation would be to swap the order in which nodes and predicates are
used as arguments of two-level maps. We chose the above ordering as it makes operations such
as blur and isomorphism testing more ef�cient. In particular, these operations often check for

2The data structure may be logically viewed as a tree, though sharing of subtrees can lead the actual representation
to be a dag, just as in an OBDD.
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Figure 3.4: The functional representation of the 3-valued structures in Fig. 3.2. Lists representing
the universes are not shown in the �gure. Nodes u1 and u of structure S0 are assigned numbers
0 and 1, respectively. Nodes u1 and u of structure S1 are, however, assigned numbers 1 and 0
respectively. Normalization causes this node number reassignment because the canonic name
of node u1 has changed. Nodes u1, u.0, and u.1 of structure S2.2 are assigned numbers 0, 1, and
2 respectively. The lowermost layer represents the second-level maps, while the layers above
represent the �rst-level maps.
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a pair of nodes m and n if the set of all unary predicates' values for m equal the set of all unary
predicates' values for n. Our ordering enables us to perform such a step by looking up the �ik
f1 that represents all unary predicates' values for m, and looking up the �ik f2 that represents all
unary predicates' values for n, and then by comparing �iks f1 and f2 for equality.

Fig. 3.4 shows a representation of the structures S0, S1 and S2.2 from the example of Fig. 3.2.
This representation uses a value of 3 for all the parameters a, l, and l′. Notice that even though
there are a total of 7 nodes in the 3 structures, the representation requires only 4 �iks to represent
their canonic names (i.e., the value of all unary predicates for these nodes).

Since the underlying implementation is functional, a 3-valued structure can be copied using a
shallow copy of the pointers to the data structures described above. The resulting copy completely
shares the underlying representation with the original. If this copy is subsequently modi�ed via
some sequence of operations, it will continue to share unchanged �inherited� portion of the
representation.

Representation of Immutable TVS

Our implementation also utilizes normalization, which replaces distinct occurrences of equiva-
lent data (which may be a fragment of the representation) by a unique or canonical representative.
Normalization has two bene�ts: it increases the sharing between the representations of different
structures and reduces the space requirements; it also makes it possible to check for equality
(isomorphism) between structures more ef�ciently, e.g. through a pointer equality comparison.
We normalize structures when they become immutable.

Normalization is done by �rst sorting nodes, based on their canonic names, and renumbering
them from 0 on, and by then applying hash-consing: a hash table is used to store canonical
representatives; a structured object obj is normalized by �rst recursively normalizing its sub-
structures and by then checking for the occurrence in the hash table of any object equivalent to
obj; if such an object exists, obj is replaced by that object; otherwise, obj is added to the hash
table.

Using Delayed Normalization

Our implementation does not attempt to keep all structure representations normalized all the
time. Recall our earlier discussion about the �lifetime� of a structure. Usually, a structure is
born as a copy a normalized structure. During its active life (growth phase), no attempt is made
to keep the structure's representation normalized. The structure is normalized only at the end of
its growth/active phase.
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3.3 Empirical Evaluation

In this section we present an empirical evaluation of the representations described in Section 3.2.
Though we present timing results as well, our focus is primarily on evaluating the space require-
ments of the different representations. The experiments were conducted using TVLA version
0.92, running with SUN JDK 1.3, on a 1 GHZ Intel Pentium Processor machine with 1 GB
RAM. The OBDD representation was implemented with the CUDD [Som98] package.

Benchmarks

The benchmarks used in the experiments are explained below. The CA benchmark performs
�cleanness analysis� [DRS00] in a C program implementing the instruction selection phase of the
Tiger educational compiler [AG98]. The GC benchmark [RSW01] involves a partial veri�cation
of the mark phase of a mark-and-sweep garbage collector. TheJFE and theKernel benchmarks
are both instances of the Concurrent Modi�cation Problem (CMP) described in [RWFS01].
CMP requires identifying a speci�c type of misuse of Java Collection Classes. Finally, the MA
benchmark [NNS00] veri�es certain safety properties of a packet router in the mobile ambient
calculus [CG98]. This is a particularly challenging veri�cation problem since it describes a
dynamically evolving non-deterministic program and yet TVLA is able to show that the packet
resides in one router.

Results

Table 3.1 presents actual time and space statistics for running TVLA on the benchmark pro-
grams using each of our three implementations. These results indicate that both the OBDD
implementation and the Functional implementations consume signi�cantly less memory than
the Base implementation. In the case of the OBDD implementation the table also shows how
much memory was used by the CUDD package (which measures the memory used by the im-
mutable structures that are represented as OBDDs) which is signi�cantly less than the total
memory used by the system, which additionally includes the memory used by the mutable struc-
tures in the Base representation. This shows the potential space reduction possible using a pure
OBDD representation. The timing results show that the three implementations are comparable
in performance.

Measuring Space Usage Via Instrumentation

Several factors confound a comparison of the different representations by measuring actual
memory usage. In particular, actual memory usage is affected by the factors such as the pro-
gramming language used, the runtime system used (e.g., a 16 byte object overhead in some
Java implementations), libraries used, and the extent to which the implementation was carefully
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Table 3.1: Time and space consumption of the representations. Time is measured in seconds
and space in megabytes. The Struct. column denotes the number of structures. Recall that the
OBDD representation is a phase-sensitive representation that uses the Base representation for
mutable structures and OBDDs for immutable structures. In this case, we show both the memory
used for representing all structures (the column labelled �Total Space�) and the memory used
for representing immutable structures (the column labelled �Immutable Space�).

Benchmark Struct. Base OBDD Func.
Time Space Time Total Immutable Time Space

Space Space
CA 40,000 1,861 168.2 1,874 32.6 12.6 4,567 12.9
GC 189,772 3,822 402.8 2,686 192.1 16.5 2,446 51.6
JFE 10,424 27 12.8 28 5.8 1.1 13 5.5
Kernel 6,079 29 22.7 40.2 6.8 3.4 22.4 16.7
MA 20,000 3,724 187.7 3,758 109 8.6 4,489 9.6

engineered. Hence, the actual memory usage is not a very accurate indicator of the memory that
a representation actually requires.

Therefore, we also instrumented our implementations to compute the actual number of objects
of different type used by the different representations. From these counts we estimated the
memory that would be required by a reasonable implementation, not counting overheads imposed
by different runtime systems. Table 3.2 presents the statistics produced by our instrumentation.
The table also reports two �metrics� (dense and sparse), which are different measures of the
amount of information contained in the actual set of structures produced by the analysis. The
dense metric is the space required to represent the structures, storing every predicate value
explicitly in a bit-packed fashion, using two bits per predicate value. The sparse metric is the
space required to store just the non-zero predicate values, using 4 bytes to identify each non-zero
predicate value. The OBDD metric is obtained by multiplying the maximum number of live
OBDD nodes that existed during the analysis (which is provided by the CUDD package) by 20,
assuming that an OBDD node can be implemented using 20 bytes. The Functional metric is
obtained by multiplying the number of objects used by the representation by 24 (as all objects
in this implementation require 24 bytes or less). The Base representation metric is similarly
computed, using appropriate sizes for the different kinds of objects used by this representation.

These results too indicate that our OBDD and Functional representations do very well and
are better than the Base representation by an order of magnitude.

Asymptotic Trends

Since we are interested in a scalable TVS representation, we also measured how space consump-
tion varies over the duration of the analysis. Speci�cally, we computed the instrumentation-based
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Table 3.2: Space counters for different representations. These counters indicate the number of
bytes required to represent the structures and are computed as explained in Appendix C. The
Struct. column denotes the total number of structures produced by the analysis.

Benchmark Struct. Dense Sparse Base OBDD Func.
CA 40,000 7,473,737 11,053,352 22,516,937 2,302,140 1,749,384
GC 189,772 9,769,618 32,722,016 41,835,001 4,268,780 7,288,032
JFE 10,424 49,172,345 382,156 1,201,570 181,940 300,336
Kernel 6,079 64,768,292 799,604 2,292,436 420,520 315,168
MA 20,000 18,866,654 8,170,412 17,077,413 496,960 724,152

Table 3.3: Abstract counters used to represent TVS at different execution points of the iterative
procedure for the mobile ambients benchmark. We sample every 2000 structures.

Sample Dense Sparse Base OBDD Func.
1 932 395 978 89 70
2 938 399 898 60 52
3 938 400 899 49 48
4 937 403 917 51 47
5 939 405 955 50 45
6 941 406 963 48 44
7 943 407 966 46 41
8 943 408 921 40 36
9 943 408 884 36 32
10 943 409 854 32 29

space usage estimate periodically. Table 3.3, Table 3.4 and Table 3.5 show that as the analysis
proceeds, the average size of the structure increases, as measured by both the dense metric and
the sparse metric. This is consistent with our expectations, since the state space exploration
typically starts examining more complex structures, with more individuals, as time proceeds.
However, it may be seen that the space required to represent an average structure, decreases for
the OBDD and Functional representation, indicating that the bene�ts of sharing increase as more
structures are produced.
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Table 3.4: Abstract counters used to represent TVS at different execution points of the iterative
procedure for the cleanness analysis benchmark. We sample every 5000 structures.

Sample Dense Sparse Base OBDD Func.
1 155 228 505 74 50
2 154 252 531 74 53
3 165 261 539 68 48
4 168 266 547 68 47
5 173 267 554 65 46
6 186 271 561 61 44
7 188 273 565 60 44
8 187 276 563 58 44
9 190 278 561 56 43
10 192 281 564 54 42

Table 3.5: Abstract counters used to represent TVS at different execution points of the iterative
procedure for the garbage-collection benchmark. We sample every 10, 000 structures.

Sample Dense Sparse Base OBDD Func.
1 46 148 162 24 37
2 49 157 209 32 44
3 49 155 204 30 41
4 48 153 190 25 38
5 49 160 215 28 40
6 50 165 203 24 38
7 51 171 193 21 36
8 51 171 193 23 36
9 51 173 211 25 38
10 52 174 225 26 40
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Chapter 4

Tuning Abstraction to Improve
Performance

In this chapter we are interested in �nding abstractions that require lower analysis costs than the
costs required by the relational method. The main idea is to �nd opportunities for compacting sets
of structures, without compromising the goals of the analysis. The new (compacted) sets yield a
conservative solution to the analysis, but can potentially reduce the quality of the approximation.
We empirically evaluate the abstraction methods over a set of benchmarks and show that, in
practice, they give the same precision as the relational method but require signi�cantly less time
and space resources.

To simplify the discussion, we will ignore nullary predicates in the rest of this chapter (their
treatment is straightforward).

Benchmarks

The benchmarks used throughout this chapter are explained below. The GC and the MA bench-
marks were introduced in Chapter 3. The reverse benchmark is our running example.
The merge-sorted benchmark performs partial veri�cation of a procedure that merges two
sorted linked-lists in order to show that it returns a sorted linked-list. The insert-sort and
bubble-sort benchmarks perform partial veri�cation of sorting algorithms on singly-linked
lists.

4.1 The Mathematical Framework

The embedding relation between a pair of three-valued structures de�nes a partial order that can
naturally be extended to sets of structures. Given two sets of three values structures XS1 and
XS2, the partial order is de�ned as XS1 v XS2 if for every structure S in XS1 there exists a
structures S ′ in XS2 such that S1 v S2.

33



We are interested in transformations (denoted by T ) that operate over sets of 3-valued logical
structures (denoted by x) and obey the following rules:

1. Compacting : |T (x)| ≤ |x|

2. Conservative : T (x) w x

Transformations that obey these rules are a spacial case of the widening operator [CC79] that
ignores previous iterates. All of the set compaction techniques that are described in this chapter
obey the rules mentioned above.

4.2 Exploiting Embedding to Optimize the Relational Method

As mentioned in Section 2.2, the single-structure method can lead to imprecise analyses. We
therefore choose to start with the relational method and seek techniques and heuristics to �nd
more ef�cient methods.

Observation 4.2.1 A set of 3-valued structures, obtained from existing TVLA abstraction meth-
ods, can contain two structures S and S ′ such that S v S ′, even though it is suf�cient to keep
only S ′. S is super�uous and removing it will not lead to a loss of soundness, since S ′ already
represents a superset of the 2-valued structures that S represents.

Observation 4.2.1 gives us a way to reduce the size of structure sets. By comparing every
pair of structures in a set, we can decide which structures should be kept and which structures
can be safely discarded.

Example 4.2.1 Fig. 4.1 shows an example of two structures that arise during the analysis of the
running example with the relational method. Structure S1 represents a store that arises when
reverse is invoked with a list containing exactly three elements. Structure S2 represents the
case where reverse is invoked with a list contains any number of cells greater than two.
Structure S1 is a special case of S2 where node u1 represents exactly one list cell. In this case,
the optimization we seek would remove S1 and keep S2.

The following lemma shows that structure embedding is generally a very tough problem for
which there is no known polynomial time solution.

Lemma 4.2.2 GRAPH ISOMORPHISM ≤ρ STRUCTURE EMBEDDING

Proof: Appears in Appendix D.
Although, in general, the embedding problem is hard, there are some restricted cases where

an ef�cient solution exists.
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Figure 4.1: (a) A structure S1 that represents the case of reversing a singly-linked list with three
cells. (b) A structure S2 that represents the case of reversing a singly-linked lists with at least
three cells. Structure S2 embeds structure S1 with the function mapping node ui in S1 to node
ui in S2 for i ∈ {0, 1, 2}.

De�nition 4.2.3 We say that a structure S is de�nite if all abstraction predicates evaluate to
de�nite values for all nodes.

Note that the blur operation is closed under this de�nition, since it never alters that values of
abstraction predicates.

Lemma 4.2.4 Suppose that both S1 and S2 are bounded, de�nite and S1 vf S2 then S1 and
S2 contain the same set of canonical names. That is, f is one-to-one and for every individual
u1 ∈ US1 there is exactly one individual u2 = f(u1) ∈ US2 such that for every unary abstraction
predicate p we have pS1(u1) = pS2(u2).

Proof: Suppose, by contradiction, that f is not one-to-one, so |US1| > |US2|. Since f is surjective
there are two individuals u, v ∈ US1 , such that f(u) = f(v) = w. From the assumption that
S1 vf S2 and the de�nition of embedding we know that, for every unary abstraction predicate
p, the following relations hold : pS1(u) v pS2(w) and pS1(v) v pS2(w). From the assumption
that both structures are de�nite, we get that pS1(u) = pS2(w) = pS1(v). Therefore, u and v

have the same canonical name. This contradicts the assumption that S1 is bounded (canonical
names are unique in bounded structures). The conclusion is that f is one-to-one and every pair
of corresponding individuals u1 ∈ US1 and f(u) ∈ US2 share the same canonical name.
�

Using Lemma 4.2.4 we optimistically attempt to reduce the size of a set of structures with
the algorithm shown in Fig. 4.2. The algorithm directly applies the conditions of the lemma to
every pair of structures and merges pairs of structures if it can resolve that one is embedded in
the other. In cases where the conditions of the lemma do not hold, no compaction is done.
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compact(in : set of structures) {
change = true
while (change) {

change = false
if exist S1, S2 ∈in s.t. S1 6= S2 ∧ compatible(S1, S2) {

in' = (in - {S1, S2})∪{merge(S1, S2)}
change = true
in = in'

}
}

}

// check the conditions of Lemma 4.2.4
compatible(S1 : structure, S2 : structure) : boolean {

if canonicNames(S1) = canonicNames(S2) {
let f : US1 → US2 be the one-to-one map between
individuals with the same canonical name.

// check whether S1 v S2

if for every predicate p of arity k and u1, . . . , uk

pS1 (u1, . . . , uk) v pS2 (f(u1), . . . , f(uk))
return true

// check whether S2 v S1

if for every predicate p of arity k and u1, . . . , uk

pS2 (u1, . . . , uk) v pS1 (f(u1), . . . , f(uk))
return true

}
return false

}

Figure 4.2: Reducing the size of a set of structures by merging pairs of �compatible� structures.

The algorithm requires polynomial costs, and for the actual implementation we employed
several optimizations that enabled a virtually linear time algorithm (by using hashing). The
complexity analysis and actual implementation details are not particularly interesting and are
therefore omitted.

Fortunately, for the benchmarks we experimented with, virtually all of the structures produced
by the analysis were de�nite (in fact, the only case where the structures were not de�nite was
when the input structures were not de�nite.) Thus, our optimization payed off and the algorithm
was able to remove all embedded structures. Table 4.1 shows the improvement gained by using
this method. This experience indicates that shape-analysis typically produces a considerable
amount of super�uous structures. For example, in the bubble-sort benchmark about half of
the explored structures were found to be super�uous and removing then reduced time and space
by approximately the same factor. In the GC benchmark the improvement is even more dramatic
� the number of explored structures was reduced by more than an order of magnitude with
similar effect on the time and space requirements. This technique also allows the MA benchmark
to terminate, in contrast to the analysis that used the relational method (that was aborted after
running for more than 4 hours).
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Table 4.1: Comparison of the results obtained with the relational method and the relational
method with the embedding optimization. #strucs indicates the number of structures explored
by the analysis, the time is measured in seconds and space is measured in Mb. The analysis of
the MAbenchmark did not terminate after 14,400 seconds.

Benchmark Relational Method Optimized Relational Method
#strucs time space #strucs time space

MA >38,784 >14,400 >12.8 746 577 2.5
reverse 70 1 0 70 1 0
merge-sorted 1240 25 4.1 575 13 1.5
insert-sort 2,828 57 9.9 933 19 2.1
bubble-sort 3,012 58 9.9 1430 32 3
GC 189,772 3,231 413.7 11,363 489 19.5

4.3 A More Compact Domain Based on Canonical Names

We now describe a method for obtaining a new abstract domain that is more compact than the
one described in the previous section, and then proceed to show that in practice it is as precise
as the domain obtained with the relational method.

The new method attempts to adopt the principles that are used to de�ne the abstraction function
over single structures to sets of structures. The abstraction of a single structure is obtained by
the blur operation. As noted before, the blur operation transforms a de�nite structure to another
de�nite structure but can modify the values of non-abstraction predicates, thus keeping track of
one group of predicates (abstraction predicates) more precisely than the other (non-abstraction
predicates). We apply this principle to sets of structures by merging structures that contain the
same set of canonical names. Thus, the method discussed in this section uses a condition for
merging structures that is more liberal than the condition used in the previous section. When
two structures are found to be compatible for merging, we use their canonical names to obtain
a one-to-one mapping between the individual of both structures and join the values of the non-
abstraction predicates. The resulting structure preserves the values of the abstraction predicates,
so the result of merging two de�nite structures is also a de�nite structure.

Example 4.3.1 Consider the structures produced during the analysis of the GC benchmark that
are shown in Fig. 4.3. Notice that the merged structure, shown in Fig. 4.3(c) represents the same
set of concrete structures as the structures in Fig. 4.3(a) and Fig. 4.3(b). This is because the only
difference between the two original structures is in exactly one predicate value (that of left). In
such a case, either of the original structures is a special case of the merged structure where the
inde�nite predicate value is re�ned to a de�nite value. In general, a set that contains the pair
of original structures is more precise than a set that contains just the merged structure, but an
analysis that uses the best (induced) abstract transformer [CC79] does not distinguish between
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Figure 4.3: (a) A structure S1. (b) A structure S2 where the only difference is in the interpretation
of the predicate left. (c) The result merging S1 and S2 where the interpretation of left is a non-
de�nite value.

Table 4.2: Comparison of the results obtained with the relational method with the embedding
optimization and the domain obtained from the canonical names method. #strucs indicates
the number of structures explored by the analysis. Time is measured in seconds and space is
measured in Mb.

Benchmark Optimized Relational Method Canonical Names Method
#strucs time space #strucs time space

MA 746 577 2.5 327 178 1.4
reverse 70 1 0 70 1 0
merge-sorted 575 13 1.5 319 6 1
insert-sort 933 19 2.1 932 18 2.1
bubble-sort 1430 32 3 792 15 1.9
GC 11,363 489 19.5 1,128 9 1.9

the two cases. Although the transformer used by current TVLA analyses is not the best one, it
seems to be very close in practice and therefore merging structures as shown in this example does
not lead to loss of precision. This example is important, since many of the structures mergers
that occurred in our benchmarks were conducted for a pair of structures separated by exactly
one predicate value, which helps explain why the precision of the analyses did not deteriorate.

We conducted experiments to evaluate the performance of the new method with respect to
the relational method with the embedding optimization. Table 4.2 contains the results, which
show a dramatic improvement over the method that exploits embedding. The most noticeable
improvement occurred for the GC benchmark where almost every resource metric improved by
two orders of magnitude. It seems that the enormous amount of structures produced by the
relational analysis of the GC benchmark is due to an exponential blow-up caused by binary
predicates.

We may be tempted to think that maintaining precision of non-abstraction predicates is com-
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pletely wasteful and that the same results could be achieved by simply setting their value to
1/2 at the end of every action. This would cause structures that were distinguishable by non-
abstraction predicates to become isomorphic and merged by the relational domain. This is not
the case. Doing so usually results in a deterioration of the overall precision. For example, in the
GC benchmark, the analysis terminates after exploring 17806 structures (as opposed to 1129) in
220 seconds (as opposed to 8.5 seconds) but results with 22 false-alarms. This also demonstrates
how loss of precision can lead to a less ef�cient analysis.

4.4 Using a Staged Analysis to Localize the Abstraction

The abstraction methods presented so far, use the same abstraction for every input program. In
this section, we look for a method that adapts itself to every given input program. Our strategy is
based on selecting an appropriate subset of the set of abstraction predicates for every CFG node.
The modi�ed abstraction is more coarse than the original one, but hopefully it is customized to
the input program in such a way that the overall level of precision is the same.

The technique we use for selecting the subsets of abstraction predicates is inspired by compiler
optimizations that employ a live-variables analysis. It is true that changing the value of a dead
variable does not affect the semantics of a program. This allows, for example, compilers to
allocate the same register to different variables that are never live simultaneously. We can think
of the input to TVLA as a program written in the language of �rst-order logic with transitive
closure. Recall that the goal of a live-variables analysis is to (conservatively) �nd, for each
CFG node, which variables may be later used before they are modi�ed when execution leaves
it along some path. We adopt this goal by thinking of predicates as variables and of TVLA
actions statements in the corresponding programming language. By performing a variant of
live-variables analysis on the predicates of the program, we can assess whether or not the values
of a predicate are to be kept precisely at any CFG node. We use the results of the analysis by
marking predicates as abstraction in the CFG nodes where they are live and as non-abstraction
for the other nodes.

The revised analysis is staged. The �rst phase selects the abstraction predicates for each CFG
node and the second phase works as before, except that when abstraction is performed it is done
relative to the set of abstraction predicates that correspond to the CFG node where the processed
structures are being stored.

A backward liveness analysis requires an association of USE and DEF sets for every CFG
node. The USE set describes the set of facts that are referenced by a statement and the DEF set
describes the set of facts that are modi�ed by a statement. In order to de�ne the liveness analysis
for TVP speci�cations, we proceed by describing how to extract the USE and DEF sets from
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TVLA actions1.
A TVLA action is made of the following components:

� Precondition formulae. The predicates that appear in the formulae are added to the
action's USE set.

� Focus formulae.2 The predicates that appear in the formulae are added to the action's
USE set.

� Update formulae. The predicates that appear on the right hand side of update formulae
are added to the action's USE set and the predicates that appear on left hand side of the
update formulae are added to the action's DEF set.

� Message formulae.3 The predicates that appear in the formulae are added to the action's
USE set.

Another implicit component of an action is the set of constraints formulae that are used by
the Coerce algorithm. The predicates that appear in these formulae are not considered, since
they are not part of the concrete semantics. Focus formulae, on the other hand, are considered
because they are directly speci�ed by the user.

An important note to make here, is that the choice of USE and DEF sets does not affect the
soundness of the algorithm, but can affect the level of precision. The particular choice described
above is based on the intuition that treats predicates as the variables of a program. Indeed, the
abstraction predicates that are used in TVLA speci�cations are often derived from the variables
of the program.

Example 4.4.1 Consider the running example whose CFG is shown in Fig. 4.4. Applying the
the �rst analysis phase gives the result shown in Table 4.3.

The result indicates that no predicate is abstract at the exit node. This is trivial, since the exit
node has no outgoing edges, and thus the predicates values of structures that are stored at that
CFG node are never used in the analysis.

The result also indicates that the predicates y, r[n, y] and t are not abstract at CFG node n_1.
This is because the value of the variable y is modi�ed by the statement y = NULL and the
value of the variable t is modi�ed at the beginning of the loop by the statement t = y. More
signi�cant is the fact that the predicate t is not abstract at CFG nodes n_2 and n_3 in the loop,
and that the predicate y is not abstract at CFG node n_4 in the loop.

1Since, actions correspond to CFG edges, the sets are modi�ed appropriately to obtain the USE and DEF sets
corresponding to CFG nodes.

2Used for modelling conditions.
3Used to report textual messages to users.
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Figure 4.4: CFG of the running example.

In this example, our analysis determined that the predicates t and y are not abstract at exactly
the cases where a live-variables analysis would determine that the corresponding program vari-
ables t and y are not alive (where their values don't affect the semantics of the program), which
explains why the second phase loses no precision.

Interestingly, our analysis did not remove the predicates r[n, t] and r[n, y] from the subsets
inside the loop, where the predicates t and y were removed. The reason is the abstract semantics
of the statement y->n = NULL, which reads and updates the values of all predicates that are
used for tracking reachability from program variables. This is unfortunate, since removing them
from the appropriate subsets will not cause a loss of precision due to the fact that their precision
is only important when the corresponding program variables are alive.

We applied our staged analysis in conjunction with the canonical names method to the bench-
marks. The results are shown in Table 4.4.

The results show no improvement for the MA benchmark. This is not surprising, since its CFG
contains only three nodes, of which only two nodes store structures, and our liveness analysis
determines that the abstraction predicates at these nodes consist of all abstraction predicates in the
speci�cation. On other benchmarks the improvement is more notable. For example, on the last
three benchmarks the number of structures was reduced by a factor of 1.49 for insert-sort,
1.96 for bubble-sort and 1.86 for GC, with similar effect on time and space performance.
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Table 4.3: Result of applying the �predicate-liveness� analysis to the running example. The
entire set of abstraction predicates that appear in the speci�cation is {c[n], is[n], r[n, x], r[n, y],
r[n, t], x, y, t}.

CFG Node Live Abstraction Predicates
n_1 c[n], is[n], r[n, x], r[n, t], x
n_2 c[n], is[n], r[n, x], r[n, t], x, r[n, y], y
n_3 c[n], is[n], r[n, x], r[n, t], x, r[n, y], y
n_4 c[n], is[n], r[n, x], r[n, t], x, r[n, y], t
n_5 c[n], is[n], r[n, x], r[n, t], x, r[n, y], y, t
n_6 c[n], is[n], r[n, x], r[n, t], x, r[n, y], y, t
n_7 c[n], is[n], r[n, x], r[n, t], x, r[n, y], y, t
exit -

Table 4.4: Comparison of the results obtained with the canonical names method and the canonical
names method with the liveness optimization. #strucs indicates the number of structures explored
by the analysis, the time is measured in seconds and space is measured in Mb.

Benchmark Canonical Names Method Canonical Names+Liveness
#strucs time space #strucs time space

MA 327 178 1.4 327 185 1.4
reverse 70 1 0 63 1 0
merge-sorted 319 6 1 315 6 0.6
insert-sort 934 18 2.1 628 14 1.8
bubble-sort 792 15 1.9 404 7 1
GC 1,128 9 1.9 605 5 0.8
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4.5 An Even More Compact Domain Based on Pseudo-Embedding

De�nition 4.5.1 Let S and S ′ be two structures. Let f : US → US′ be surjective. We say that
f pseudo-embeds S in S ′ (denoted by SṽfS ′) if for every unary abstraction predicate p and all
u ∈ US ,

pS(u) v pS′(f(u))

and for all u′ ∈ US′

(|{u|f(u) = u′}| > 1) v smS′(u′)

We say that S can be pseudo-embedded in S ′ (denoted by SṽS ′) if there exists a function f such
that SṽfS ′.

We use pseudo-embedding as a compatibility condition for merging two structures S and
S ′ when SṽS ′. This condition is more liberal than the condition used by the canonical names
method. In particular it allows us to merge two structures with node sets of different size (recall
that the canonical names method only merges structures that have the same set of canonical
names.)

Unlike embedding, pseudo-embedding can be ef�ciently determined for any pair of structures,
since all abstraction predicates have arity k < 2. Merging two structures is done by �nding the
pseudo-embedding function and joining predicate values accordingly.

We further modify the blur operation in the same spirit, by merging any two nodes u and v,
such that for every unary abstraction predicate p the condition p(u) v p(v) holds (the existing
blur operation demanded that p(u) = p(v) holds.) Merging two nodes includes joining the
values of the non-abstraction predicates and setting the value of the sm predicate to 1/2 (i.e.,
the resulting node is a summary node).

Although, this is a theoretically more compact domain than the domain obtained from using
the canonical names method, in practice we discovered that, for all of the benchmarks, it produced
identical results. The reason is that our benchmarks produce only de�nite structures, and under
this condition the method degenerates to the canonical names method (i.e., it is not possible to
merge more nodes than are merged by the existing blur operation and it is not possible to merge
more structures).

In order to achieve more compaction we turn to look for techniques that can generate non-
de�nite structures. One such technique is the one presented in the previous section, which allows
some predicates that were declared as abstraction predicates to become non-abstraction in parts
of the CFG4.

Applying the new compaction technique in conjunction with the liveness analysis technique
we obtained the results shown in Table 4.5.

4In fact, this was one of the motivations for developing the technique of the previous section.
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Table 4.5: Comparison of the results obtained with the canonical names method with the liveness
optimization and the results obtained with the pseudo-embedding method with the liveness
optimization. #strucs indicates the number of structures explored by the analysis, the time is
measured in seconds and space is measured in Mb.

Benchmark Canonical Names+Liveness Pseudo-Embedding Method
#strucs time space #strucs time space

MA 327 185 1.4 327 185 1.4
reverse 63 1 0 63 1 0
merge-sorted 315 6 0.6 314 6 0.8
insert-sort 628 14 1.8 362 5 1
bubble-sort 404 7 1 401 6 1.2
GC 605 5 0.8 413 3 0.7

The results show an improvement mainly for the insert-sort benchmark, where the
number of structures was reduced by a factor of 1.7, and for the GC benchmark, where the
number of structures was reduced by a factor of 1.5.

4.6 Comparing the New Domains to the Existing Domains

In this section, we conduct a comparison of results between the existing methods � relational
and single-structure, and the pseudo-embedding (with liveness) method. Table 4.6 shows the
results obtained with the three abstraction methods.

The results obtained for the reverse benchmark show very little improvement, which
consumes very little resources with any method.

For the MA benchmark we see that the new method vastly improves over the relational method,
which does not terminate in reasonable time. The single-structure does even better than the new
method (about 4.5 times faster), but we note that this required manual labor to design nullary
predicates to get the required precision with this method [NNS00].

On the rest of the benchmarks, the results indicate that the new method provides signi�cant
improvement relative to the relational method by requiring just a fraction of the resources.
For example, the ratio between the number of structures required for the two methods is
between 4 (for merge-sorted) and 460 (for GC), the time speedup is between 4.1 (for
merge-sorted) and 1077 (for GC) and memory consumption is reduced between a factor
of 5.1 (for merge-sorted) and 591 (for GC). It is important to note that the new method
preserves the overall precision level as the relational method.

In contrast, we see that the single-structure method can sometimes be more costly than the
relational method, such as in the case of the sorting benchmarks where it runs out of memory.
For the other benchmarks, the method performs very well in terms of resources, but the analysis
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Table 4.6: The results obtained for three abstraction methods. #strucs indicates the number of
structures explored by the analysis, the time is measured in seconds and space is measured in
Mb (mo indicates that the analysis ran out of memory). The notation a/b that appears rows for
the single-structure method indicates how many structures were explored (the �rst number) and
how many of them caused false alarms (second number). The other methods did not produce
any false alarm.

Benchmark Relational Single-Structure Pseudo-Embedding
#strucs time space #strucs time space #strucs time space

MA >38,784 >14,400 >12.8 72 52 0 327 185 1.4
reverse 70 1 0 35 / 4 1 0 63 1 0
merge-sorted 1240 25 4.1 110 / 35 5 0 314 6 0.8
insert-sort 2,828 57 9.9 mo mo mo 362 5 1
bubble-sort 3,012 58 9.9 mo mo mo 401 6 1.2
GC 189,772 3,231 414 53 / 9 1 0 413 3 0.7

is overly imprecise (indicated by the false alarms).
Although both methods � single-structure and the new method (pseudo-embedding with

liveness) attempt to improve relative to the relational method, there are a few differences between
them that are worth noting:

� The asymptotic complexity of the single-structure method is exponential in the worst case
(without nullary predicates), whereas the new method has the same worst case complexity
as the relational method � doubly-exponential in the number of abstraction predicates.

� When the single-structure method merges a structure S1 = 〈U1, ι1〉 with S2 = 〈U2, ι2〉,
the size of the node set of the resulting structure S3 = 〈U3, ι3〉 is:

max{|U1|, |U2|} ≤ |U3| ≤ |U1|+ |U2|

For the new method, the size is:

|U3| = min{|U1|, |U2|}

� When the single-structure method merges two structure with different node sets, some
of the nodes become maybe-active. This sometimes prevents the analysis from detecting
(by use of TVLA's constraint-solver) structures that represent impossible con�gurations,
where a more precise analysis would detect these situations and remove them (causing a
memory leakage false-alarm on the running example). This can add to the growth in the
size of the structures, as mentioned in the previous item, which leads to memory explosion.
The new method never introduces maybe-active nodes, and avoids this problem.
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� The single-structure method sometimes propagates large structures even though only small
portions of them change between consecutive iterations. On the other hand, the set-based
methods (relational and new method) use an incremental algorithm that propagates only
those structures that caused a change to the set of structures. This can lead to a more
ef�cient analysis.
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Chapter 5

Conclusion

In this thesis, we attempted to attack the scalability issue of shape analysis in the TVLA system.
In the �rst part, we dealt with the memory consumption problem by designing two new

data structures. Both of the data structures employed similar techniques for sharing information,
which resulted in space reduction by a factor of 4 to 10 without compromising time performance.
Our experience has been that these representations also help reduce the time required for software
veri�cation, though we have not addressed that aspect in detail in this thesis.

From the empirical study we are able to conclude the following:

� The most signi�cant contribution to the space reduction is due to the normalization tech-
niques.

� The amount of sharing obtained by canonical representation of substates is signi�cantly
more than the one obtained by using inherited sharing � the normalization techniques
allow to more successfully capture invariants that are common to different program states.

� While OBDDs are based on the principles of propositional logic, the techniques employed
by the Functional representation are data structure oriented. However, both of the repre-
sentations seem to produce results of similar quality. This indicates, that normalization via
hash-consing, which is common to both representations, is the most important principle.

� It is worth noting that the empirical results presented in this thesis show that our represen-
tations use just a few (at most 3) objects per structure per program point, on the average.
This implies that the representations are fairly ef�cient and that room for further savings
exists only if we move on to extensions such as the representation of sets of structures.

TVLA's notion of program state is quite general and expressive, and can be used to encode
a wide variety of program analysis algorithms�particularly those that are �ow- or context-
sensitive, and represent states as maps or directed graphs. We therefore believe that our results
are also likely to be applicable to other static analysis and veri�cation systems.
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In the second part of the thesis, we attempted to reduce the overall work required for analyses
by exploring different abstractions. We were able to �nd several techniques that produced
signi�cant improvement to the space and time performance, sometimes by several orders of
magnitude, without sacri�cing the precision of the analyses.

In addition, the technique we used in Section 4.4 shows that staged analysis, which is an
approach used by other static analysis algorithms, can be useful in the context of shape analysis
as well.

5.1 Related Work

Data Structures for Static Analysis Several recent and ongoing research efforts have explored
the use of OBDDs in the context of static analysis, but mostly for domains simpler than �rst-order
structures. PAG [Mar98] and SLAM [Mic01] use OBDDs to represent sets (�bit vectors�) and
interpretations of propositional (rather than �rst-order) structures. PAG also employs persistent
data structures for static analysis, exploiting inherited sharing. Mona uses BDDs to represent
transitions of a tree automaton [KMS00], which is used to implement a decision procedure used
for Hoare-style veri�cation. Mauborgne [Mau98] explores the use of TDGs (a re�nement of
OBDDs) in abstract interpretation, using them to encode higher-order functions for strictness
analysis, and presents empirical results on analysis time (but not on memory usage). It is not
obvious from this prior work how OBDDs can be used bene�cially for sophisticated analyses,
such as heap shape analysis, that use domains based on �rst-order structures.

Using OBDDs to represent �rst order logical structures Veith [Vei98] describes a representa-
tion of a logical structure, where each predicate interpretation is encoded by a separate OBDD,
and a vector of predicate interpretations is used to represent a structure. We achieve better
sharing by encoding a complete structure using a single OBDD.

Other �rst-order state representations The composite symbolic library [YKTB01] can model
a limited form of �rst-order state using formulae of Presburger arithmetic.

Staged Analysis Finally, we note that the analysis engine of ESP [ABD+] also uses a staged
analysis approach. The engine combines two separate phases of program analysis: Phase one
is a global context-sensitive control-�ow-insensitive analysis that produces a call graph and
information about the �ow of values in the program. Phase two is an inter-procedural context-
sensitive data�ow analysis that incorporates a restricted form of inter-procedural path simulation.
The �rst phase produces the program abstractions used by the second phase. In contrast, to ESP,
which uses the �rst to re�ne the abstraction, our staged analysis uses the �rst phase to �nd
opportunities for coarsening the abstraction without losing too much precision.
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5.2 Further Work

The results reported in this thesis show a signi�cant improvement in the performance of shape
analyses in TVLA. However, the goal of creating scalable shape analyses is still not achievable
with the current techniques. The experience we gained suggests several more opportunities for
improving performance.

Compactly representing sets of �rst-Order structures In our work, we concentrated on devel-
oping data structures for compactly representing structures. The experiments indicate that the
representations are fairly ef�cient and that room for further savings exists only if we move on
to extensions such as the representation of sets of structures. Opportunities for sharing between
sets of structures occur, for example, when program conditions are modelled, since conditions
have the effect of passing a subset of the structures to each of the target CFG nodes.

Increasing the locality of abstractions In section Section 4.4 we noted that the current technique
misses opportunities for localizing abstraction for predicates that track reachability from program
variables. We observe that a better technique can infer that these predicates depend on other
predicates, which correspond to program variables, and should therefore �inherit� their liveness
properties.

Symbolic execution of TVLA operations Currently, one of the major bottle-necks is that of
handling single program statements. The complexity can be high due to the cost of evaluating
formulae in TVLA and the fact that many predicates can be updated by a single statement. We
have begun to consider symbolic execution techniques for reducing the costs of handling program
statements. By breaking the problem of handling a single statement into smaller sub-problems,
the symbolic techniques can identify equivalent sub-problems and avoid repeated computations.

Handling real-life programs In addition to the work discussed in the previous chapters, we
also dedicated effort in creating software infrastructure that will help us to achieve the goal of
obtaining scalable shape analyses. Analyzing programs with TVLA requires the CFG of the
program to be supplied in the TVP language. Although this is a generic format, translating from
a high-level language, such as Java, to TVP is a tedious and error-prone task, which prohibits
analyzing but very small programs. For this reason, we created the J2TVLA toolkit that aims
at automating this process for Java programs, by supplying a set of tools that make this task
feasible.
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Appendix A

Normalization of the Functional
Representation

We now explain how a structure's functional representation is normalized.
(a) First, the �iks used in a structure are normalized. This includes the �ik representing the

nullary predicate values, as well as the �iks occurring as second level maps in the representation
of unary and binary predicate values. Note that since the canonical name of an individual (i.e.,
the value of abstraction unary predicates for that individual) is also represented by a �ik, this
creates unique representatives for the canonical name of individuals. Subsequent to this step,
canonical names can be compared for equality via a pointer equality comparison. During this
process, the unique representatives of canonical names are each assigned an unique integer value.
This also establishes an arbitrary, but �xed, total order on canonical names.

(b) The linked list of individuals (representing the universe) is then sorted with respect to this
total order on canonical names of individuals.

(c) The individuals are then renumbered from 0 to s − 1, where s is the number of individ-
uals. The intmaps and intpairmaps representing the values of unary and binary predicates are
simultaneously regenerated to account for the individual renumbering. The regenerations of
these maps utilizes hash-consing to generate canonical representatives of these maps as well.
A canonical representative for the linked list representing the universe is also obtained trivially
from the cardinality of the universe.

If 〈p1, p2, p3, p4, p4〉 and 〈q1, q2, q3, q4, q5〉 represent two structures completely normalized as
above, these structures are isomorphic iff every pi equal to qi (pointer comparison).
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Appendix B

Signature of ADT for Evolving
First-Order Structure

The ADT for evolving �rst-order logical structures is shown in Fig. B.1.
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type Kleene /∗ 0, 1, or 1/2 ∗/
type Node /∗ individual in structure ∗/
type NullaryPredicate
type UnaryPredicate
type BinaryPredicate
type TVS /∗ mutable 3-valued structure ∗/
type ImmutableTVS /∗ immutable 3-valued structure ∗/
type TVS_SET /∗ set of 3-valued structures ∗/

/∗ evaluate predicate value for specified node(s) in TVS ∗/
eval: TVS ∗ NullaryPredicate -> Kleene
eval: TVS ∗ UnaryPredicate ∗ Node -> Kleene
eval: TVS ∗ BinaryPredicate ∗ Node ∗ Node -> Kleene

/∗ update predicate to specified Kleene value for specified node(s) in TVS ∗/
update: TVS ∗ NullaryPredicate ∗ Kleene -> void
update: TVS ∗ UnaryPredicate ∗ Node ∗ Kleene -> void
update: TVS ∗ BinaryPredicate ∗ Node ∗ Node ∗ Kleene -> void

empty_TVS: TVS /∗ a TVS with empy universe ∗/
empty_SET: void -> TVS_SET /∗ returns a new, empty, set ∗/
copy: TVS -> TVS /∗ copy mutable TVS ∗/
immutableCopy: TVS -> ImmutableTVS /∗ generate immutable copy of mutable TVS ∗/
universe: TVS -> (Set of Node) /∗ enumerate nodes in TVS's universe ∗/
new: TVS -> Node /∗ add a node to the TVS's universe ∗/
remove: TVS ∗ Node -> void /∗remove node from TVS ∗/
add: TVS_SET ∗ ImmutableTVS -> bool /∗ add TVS to set ∗/

Figure B.1: ADT for evolving �rst-order structures.
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Appendix C

Explanation of Abstract Counters for
Different Representations

Let n denote the number of nodes in a TVS and let |NP |, |UP |, and |BP | denote the number
of nullary, unary and binary predicates respectively. We compare the space required by the
three representations with two different measures of the size of the structures produced during
the analysis. The �rst of these metrics, the dense metric, corresponds to the amount the space
required to store every predicate value explicitly. The space required for the dense representation
is (|NP | + n |UP | + n2 |BP |)/4 bytes (assuming that 4 kleene values are stored in each byte).
The second metric is the sparse metric in which only the non-zero predicate values are stored.
Although, the actual number of values stored for the sparse representation is smaller than that
for the dense representation, the overhead required to store each individual value is much higher
as one must store the nullary predicate, or the unary predicate and node, or the binary predicate
and pair of nodes with the kleene value. Assuming that each value can be packed into a single
word (4 bytes), the physical space required for the sparse representation is 4 times the number
of non-zero predicate values.

The Base implementation uses exploits both sparseness and sharing to a limited extent. Let
NP1, UP1, and BP1 denote the number of non-zero nullary, unary, and binary predicate entries
stored in the �rst-level table. Let n1 denote the non-zero entries in the second-level tables for
unary predicates. Note that n1 must be greater than 0 (otherwise, the unary predicate is zero for
all nodes, and should not have an entry in the �rst-level table) and can be n in the worst-case.
Let n2 denote the non-zero entries in the second-level tables for binary predicates. Since each
such entry corresponds to a pair of nodes, n2 can be n2 in the worst case. Let unique denote
a conditional value that is used to count only unique objects. Thus, for each shared object,
unique is 1 for only one occurrence of the object and 0 for all other occurrences. Then, the space
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required for each TVLA structure in the Base representation can be computed as

5 + 4× unique × n + 8× (NP1 + UP1 + BP1) + 5× (UP1 + BP1)+

5× unique × n1 + 9× unique × n2.

The node set requires 4 bytes for the pointer to the possibly shared node set and 1 byte for the
shared bit. If the node set is not shared then 4 bytes are required for each node. For all entries
in the �rst-level table 8 bytes are needed for the predicate id and a pointer to its bindings. For
unary and binary predicates another level of indirection, consisting of a pointer and a shared �ag
take another 5 bytes for each such entry in the �rst-level table. In the second-level table, 5 bytes
are needed for (node,kleene) pairs and 9 bytes are needed for (node,node,kleene) triples.

For the OBDD implementation, the CUDD package provides information about the maximum
number of live OBDD nodes that existed during the analysis. We multiply this number by 20,
assuming that an OBDD node can be implemented using 20 bytes, to get the space statistic for
the OBDD implementation,

The number reported for the Functional implementation is obtained by multiplying the number
of objects used by the representation by 24 (as all objects in this implementation require 24 bytes
or less).
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Appendix D

Proving the Hardness of Embedding

Lemma D.0.1 GRAPH ISOMORPHISM ≤ρ STRUCTURE EMBEDDING

Proof: Notice that �rst-order logical structures generalize directed graphs, since the edge relation
can be encoded with a suitable binary predicate � edge. To prove the claim, we use the following
reduction. Given a pair of possibly isomorphic graphs G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉, we
pass the same input to the embedding problem � the graphs are viewed as structures where the
edgeG1(u, v) ⇔ (u, v) ∈ E1 and edgeG2(u, v) ⇔ (u, v) ∈ E2.

=⇒ Suppose that G1 and G2 are isomorphic. Then there exists a one-to-one function
f : V1 → V2, such that for all u, v ∈ V1 we have (u, v) ∈ E1 ⇔ (f(u), f(v)) ∈ E2. Therefore,
edge(u, v)G1 v edge(f(u), f(v))G2 and G1 vf G2.
⇐= Suppose that G1 vf G2. Then for the predicate edge we have

edge(u, v)G1 v edge(f(u), f(v))G2 , but since for all u, v ∈ UG1 and for all u, v ∈ UG2 ,
it is true that edge(u, v) ∈ {0, 1} (a graph edge either exists or doesn't exist) and therefore
edge(u, v)G1 ⇔ edge(f(u), f(v))G2 . From the de�nition of embedding we also know that f is
surjective. In addition, for all u ∈ G2 it is true that sm(u) ∈ {0, 1} (a graph vertex represents
only itself) and therefore f is one-to-one.
�
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