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Abstract

Automatic garbage collection (GC) reclaims memory that can no longer be used by the running program,

and makes this memory available for reuse. Current GC techniques do not (and in general cannot) collect all

the garbage that a program produces. This may lead to a performance slowdown and to programs running

out of memory space. Some programmers try to circumvent these memory leaks by rewriting their source

code, i.e., explicitly assigning null to object references that are guaranteed not to be used again. Such

solutions may lead to erroneous (or slower) programs and may even be eliminated by optimizing compilers.

In this thesis, we present a practical algorithm for statically detecting such memory leaks occurring in

arrays of objects. No previous algorithm exists. The algorithm is conservative, i.e., it never reports a leak

on a piece of memory that is subsequently used by the program, although it may fail to identify some leaks.

The presence of the detected leaks is exposed to the GC, thus allowing GC to collect more storage.

We have instrumented the Java virtual machine to measure the effect of memory leaks in arrays. Our

initial experiments indicate that this problem occurs in many Java applications. Our measurements of heap

size show improvement on some example programs. The algorithm operates on Java Bytecode and can

analyze one class at a time. We believe that this will allow our algorithm to scale for large programs.
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1 Introduction

Programming languages such as Java relieve the programmer from the burden of explicit memory manage-

ment through the use of an automatic garbage collection algorithm (GC) that is applied behind the scenes.

This makes programming in these languages significantly easier than in C or C++ since many run-time errors

are avoided. Moreover, consider an object used by several modules. It should be deallocated only when all

modules are no longer interested in that object. In explicit memory management model, the deallocation of

such an object creates an inter-module dependency. In an automatic memory management model, modular

programming is supported naturally since storage reclamation of the object is performed automatically.

Java’s Run-Time GC does not (and in general cannot) collect all the garbage that a program produces.

GC typically collects objects that are no longer reachable from a set of root references. However, there are

some objects that the program never accesses again, even though they are reachable. This may lead to a

performance slowdown and to programs running out of memory space. This may also have a negative effect

on Java usability1.
1The third top ranked bug by Java users in Sun’s bug parade site as for August 1999 (http://developer.java.sun.com/

developer/bugStats/top25bugs.shtml) regards Java’s image memory leaks. Users report system crashes due to such memory

2



1.1 A Running Example

A standard Java implementation of a stack data structure is shown in Figure 1(a). After a successful pop,

the current value of stack[top] is not subsequently used. Current garbage collection techniques fail to

identify memory leaks of this sort; thus, storage allocated for elements popped from the stack may not be

freed in a timely manner. This example class serves as running example throughout the thesis2.

1.2 Existing Solutions

A typical solution to avoid these memory leaks is to explicitly assign null to array elements that are no

longer needed. For example, a stack implementation, which avoids these leaks, is shown in Figure 1(b),

where null is explicitly assigned to stack[top].

Such solutions is currently being employed in the JDK library, e.g., in the jdk.util.Vector class3 and

by some “GC-aware programmers.” These solutions have the following drawbacks:

• Explicit memory management complicates program logic and may lead to bugs; by trying to avoid

memory leaks, a programmer may inadvertently free an object prematurely.

• GC considerations are not part of the program logic; thus, they are surely not a good programming

practice. In fact, the whole idea of GC-aware programs defeats some of the purposes of automatic GC.

• Aiding the memory management task may require knowledge of the GC algorithm, which is implemen-

tation dependent. This may lead to programs that depend on a particular GC algorithm.

• The solution of explicitly assigning null may slow the program, since such null assignments are

performed as part of the program flow. For example, consider the method removeAllElements of class

java.util.Vector shown in Figure 2(b). The only reason for the loop is to allow GC to free the array

elements. In contrast, our compile-time solution eliminates the need for such a loop. The method can

be rewritten as shown in Figure 2(a); thus, at least elementCount instructions are saved. In Section 5

we give a potential interface to GC, which will allow unit-time operation in this case.

• An optimizing compiler may deduce that null assignment statements have no effect, thus eliminating

them!

leaks.
2We purposely do not check for overflow of the stack array in push and pop, as this leads to a more interesting analysis.

Our algorithm would yield more precise results for a more robust class implementation.
3Null assignments in Vector are documented as “/* let GC do its work */”
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public Class Stack {

private Object stack[];

private int top;

public Stack(int len) {

stack = new Object[len];

top = 0;

}

public Object pop() {

top--;

s: return stack[top];

}

public void push(Object o) {

s’: stack[top]=o;

top++;

}

public void print() {

for (int i=0; i<top; i++) {

s’’: System.out.println(stack[i]);

}

}

}

public Class Stack {

private Object stack[];

private int top;

public Stack(int len) {

stack = new Object[len];

top = 0;

}

public Object pop() {

Object tmp;

top--;

tmp = stack[top];

stack[top]=null;

return tmp;

}

public void push(Object o) {

stack[top]=o;

top++;

}

public void print() {

for (int i=0; i<top; i++) {

System.out.println(stack[i]);

}

}

}

(a) (b)

Figure 1: (a) The Running Example Stack Class. (b) The Stack Class explicitly assigning null to prevent

a memory leak.

Consider the Vector class in the java.util package, which implements a dynamic array of objects.

Though it has already been instrumented4 with assignment to null in appropriate places in order to avoid

leaks, it suffers from some of the limitations outlined above. Furthermore, our experimental results show
4in Sun’s implementation of the Vector class.
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void removeAllElements() {

elementCount=0;

}

void removeAllElements() {

for (int i=0; i < elementCount; i++) {

elementData[i]= null;

}

elementCount=0;

}

(a) (b)

Figure 2: (a) removeAllElments method without the loop. Our algorithm detects that when calling

removeAllElements, all elementData elements references are not subsequently used. (b) removeAllElments

method of java.util.Vector class. The loop was added to allow GC to free the removed elements.

that instead of using a “standard” implementation of such abstract data types (ADTs), programmers use a

“tailored” implementation in many cases, due to considerations such as speed, or strong typing. Examples

include rewriting a non synchronized version of Vector or a well-typed version of Vector, maintaining

only objects of a specific class. There are some Java language extensions for parameterized types [AFM97,

MBL97, CS98, BOSW98] being considered, and work showing how to reduce the cost of synchronization,

e.g., [BKMS98], which may eliminate the need for some of these tailored implementations. Nevertheless, the

above limitations lead us to conclude that programmers should be freed from dealing with these memory

management considerations and that the leaks should be detected by automatic means, e.g., by compiler

analyses.

1.3 Main Results and Related Works

Section 2 presents our motivating experiments for showing that array memory leaks pose a real problem, and

that the problem is worth solving, performance-wise. We performed simple string search on Java program

files and found some of the occurrences of the array memory leak problem. For several programs we also

measured the potential benefit of solving the problem and found that there are cases where there is a

significant savings of memory.

This research was inspired by work on liveness analysis for Java for local variables holding references [ADM98].

This liveness analysis leads to a reduced root set, enabling more memory to be reclaimed. However, such

techniques are not applicable in general to arrays of objects. Treating an array as a single reference variable

would result in an overly conservative result: an array represents a set of references, where every array
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element is a potential reference, while a reference variable represents only one potential reference. For ex-

ample, the field stack in the Stack class is live after s, but the location denoted by stack[top] is dead

after s. Moreover, this set of references is usually not known at compile-time; thus, the solution proposed

in [KS98, SK98] which amounts to converting object arrays into multiple reference variables is not usually

applicable.

Identifying liveness requires flow-sensitive analysis that may take superlinear time and could fail to scale

for large programs. Moreover, due to the capability of Java to load classes in run-time, not all the code is

necessarily available even when a program starts running. Therefore, our algorithm, which operates on Java

bytecode, can analyze one class at the time by conservatively approximating potential method invocations.

We show that despite these conservative assumptions, such an algorithm is capable of finding memory leaks

in many interesting cases, including the implementations of various array-based ADTs, e.g., dynamic arrays,

stacks and cyclic queues. Indeed, we believe that this will allow our algorithm to scale for large programs,

while locating most of the leaks in well written programs that make use of private or protected fields for

encapsulation. In Section 3 we define the approximated supergraph to allow a simple class level analysis

of Java. In Section 4, we give an algorithm for identifying live regions of arrays. No similar algorithm

exists. The compile-time cost of identifying dead regions of arrays is bigger than the cost of identifying

dead reference variables but the potential run-time benefits seem larger, since a dead region of an array is

equivalent to several dead reference variables. Comparing our empirical results to the results of [ADM98]

show that this is the case for some array-based examples.

Technically, identifying live array regions is more complex than the problem of identifying live scalars since

in many cases it is necessary to identify relationships between index variables. In the print method of the

running example, knowing that i is less than top before s′′ is important in order to determine that elements

of stack beyond top cannot possibly be used in the println invocation. Relationships between variables have

also been used to analyze array accesses for parallelizing compilers and in the context of other array reference

analyses (e.g., [Pug92, Wol95]). These techniques can also be extended to detect the minimal and maximal

values used as array indices; this allows the removal of checks for array bounds violations [Gup93, SPMS98,

KW95]. One of the most precise methods was proposed by Cousot and Halbwachs [CH78]; it automatically

identifies affine relationships between variables by scanning the control flow graph in a forward direction.

We show that this general technique can be also used to analyze live array regions. Our chief observation is

that live array regions can be also represented using affine relationships between variables.

In this paper we show how the result of a forward direction dataflow analysis, which identifies relationships

between variables, is integrated into a backward analysis of the control flow, which determines the live regions

of the array. The main idea is to determine the references and assignments to array elements, while exploiting
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the forward information. Note that the algorithm is not bi-directional [Muc97]. There is a clear separation

between the forward and backward phases. The latter uses the results of the forward phase, and has no

effect on the forward phase results.

We present a variant of a forward direction algorithm, identifying relationships between variables, since it

serves as an introduction to the backward phase. Both phases use the constraint graph described in [CLR94,

Chapter 25.5, pp.539–543] as a simple representation of program variables relationships. The constraint

graph allows us to efficiently represent a special case affine relationships of the form

x ≤ y + c

where x and y are program variables or fields and c is an integer constant. Section 6 explains how to handle

more general sets of constraints and more interesting classes of programs.

In Section 5, we explain how a GC algorithm can exploit the results of our analysis algorithm. Our

algorithm can also be applied to a Java program with potential leaks in order to determine the necessary

null assignments. A null assignment is added in program points where the live region of the analyzed

array decreases. In the running example, our algorithm detects that before program point s, array elements

stack[0], stack[1] ...stack[top] are live, while after s, array elements stack[0], stack[1] ..., stack[top-1]

are live. Thus stack[top] can be assigned to null as shown in Figure 1(b).

A prototype of the algorithm was implemented in Java, and used to find dead array regions for the

running example in 0.21 CPU seconds. The prototype includes the full implementation of both phases of

the algorithm, the forward phase and the backward phase. The prototype has no front-end, so the input to

the prototype is the approximated supergraph of a class. The prototype hase a nice feature of producing

LATEX output. Tables 2, 3, 4 are automatically produced by the implementation.

Additionally, the extended version of the algorithm as described in Section 6.1 was implemented, and

used to find dead array regions for java.util.Vector class.

Some programming languages, such as CLU [L+81, Lis93], provide built-in dynamic arrays that can be

used to implement stacks and vectors. This would partially eliminate the need for our algorithm. However,

our algorithm can handle cases beyond dynamic arrays such as cyclic queues where the regions of live array

elements are not necessarily continuous. Furthermore, our algorithm does not require extensions to the Java

language.

Static analysis was also used for other kinds of allocation optimization. The following techniques are

used in order to avoid GC, and inserting deallocation statements by the compiler.

Compile-Time garbage collection is an allocation optimization that statically determines and recycles

garbage heap cells. Recycling is done through a special inserted code for handing the release of garbage heap
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cells in two possible ways :

1. if the heap management has a free list then a released cell can simply be added to the free list.

2. if the release can be paired with a new allocation that will be executed in the subsequent code, then

the cell need not be added to the free list: it can simply be reused directly.

Using compile-time garbage collection techniques in a run-time garbage collected environment aims to reduce

the cost of the run-time GC, by recycling cells using cheaper specialized code instead of a general purpose

GC code. Much work have been done on compile-time garbage collection for functional languages [Jon99,

JM90, Moh90, Ham95]. Little work on compile-time garbage was done for object-oriented languages [Sei98].

Experimental results [Jon94] for functional languages point out a reduction in GC time, but not in total

execution time.

Our technique and compile-time garbage collection techniques have a different nature. While our algo-

rithm detects possible garbage memory (“may garbage”), compile-time garbage collection techniques detect

memory which is definitely not used subsequently in the program (“must garbage”). To detect “must

garbage” our algorithm is combined either with run-time GC, or alternatively with aliasing algorithm. The

latter combination can be used as a compile-time garbage collection technique. However, aliasing algorithms

are either time-consuming or imprecise. We choose to concentrate on the combination of our algorithm with

run-time GC.

Escape analysis is a static analysis that determines whether the lifetime of data exceeds its static scope.

Escape analysis was introduced for functional languages [PG92, Bla98a] and recently was also used to object-

oriented languages [Bla98b, WR98]. For object-oriented languages, such as Java, escape analysis is used to

determine whether an object o does not escape from method m; thus o may be stack allocated in m, instead of

being heap allocated, and as a result the object is deallocated without GC. Experimental results in [Bla98b]

show an average speedup of 21% using escape analysis to stack allocate objects. In some sense, escape

analysis is a special case of compile-time garbage collection, since a stack-allocated object is detected as

garbage and deallocated when the respective stack frame is popped. Escape analysis may be applicable in

some cases to stack allocate an array of objects, however, current escape analysis techniques do not generally

handle stack allocation of objects referenced by instance fields.

Region analysis is another allocation optimization where all objects are allocated in a stack of regions,

where the size of a region is not necessarily known at compile-time. The allocation and deallocation of

regions is determined statically, so GC is not needed in a regions based memory management model. Region

analysis was introduced for functional languages [BTV96, TT94] and recently was also used to object-oriented

languages [CV98]. Experiments in [CV98] compare C++ programs running times and memory reuse for C++

8



with GC (either mark and sweep or generational) and for C++ with regions (either bounded sized regions

or unbounded sized regions). While the running times seem to be about the same in both cases, memory

reuse results differ greatly in their example programs.

A region-based memory management model, replaces the garbage collection memory management model.

So, as discussed above, our algorithm is not applicable by itself to a region-based memory management model.

However, the combination of the algorithm and alias analysis can be used for region analysis.

Final note is that the aforementioned allocation optimization techniques do not, currently, handle arrays

precisely.

2 Motivating Experiments

We conducted some simple experiments in order to determine the frequency of the array leak problem and

in order to measure the potential benefits of its elimination.

2.1 Frequency of the Problem

The experiment to determine the frequency of occurrence was conducted before having an implementation

of the algorithm. Instead, we used lexical scanning of Java source files. We searched for classes having an

array of objects field, and integer field(s), preferably containing the string “count” in their names. Also,

we looked for methods containing the string “remove”. The motivation for such searches, was to find re-

implementations of the java.util.Vector class, keeping in mind that the methods like removeAllElements

and removeElementAt use explicit assignments to null to prevent memory leaks. We plan to use the

implementation of our algorithm to do a more exact search that detects additional occurrences of array

memory leaks.

About 5600 Java source files were scanned, including the Java Development Kit version 1.1.6 source

files. In 1600 files an array of objects is defined. In 20 files the problem was detected in 25 statements, i.e.,

several files contained more than one instance. Out of the 25 statements, 13 did not have the desired null

assignment, i.e., they contained a potential memory leak.

2.2 Potential Benefits

Another consideration is the potential benefit of detecting and eliminating array memory leaks. Notice that

an object can be collected only after it is no longer reachable. Thus, detecting a dead array element reference,

when another aliased live reference exists, may eliminate a future memory leak, but is not guaranteed to

save space.

9



Benchmark Spec JVM98 Input Other Input

Program Time × Space Time × Space Ratio Time × Space Time × Space Ratio

w/out leak with leak w/out leak with leak

(M Byte2) (M Byte2) (M Byte2) (M Byte2)

javac 1073.98 1085.13 0.9897 784.31 797.61 0.9833

db 465.67 465.67 1 740.07 1008.92 0.7335

GCTest 1.06 8.79 0.1206

Table 1: Heap Size results

We conducted an experiment similar to the one conducted in [ADM98] using a modified JVM5. After every

100KB of allocation, we invoke the GC, perform all possible finalizations, and perform GC again. We verify

that GC is activated only upon the above request, by starting with a large initial heap size, and also by using

a special flag. We calculate the heap size as a function of bytes allocated, sampled every 100KB. To simulate

a potential memory leak, two versions of java.util.Vector class are used, the original one, and a version

with leaks, i.e., without the explicit assignments to null in the removeElementAt (shown in Figure 4) and

removeAllElements (shown in Figure 2) methods. Then we compared the allocation integral, calculated as

the area under the heap size curve. The programs are taken from SPEC JVM98 [SPE98], a suite to measure

the performance of Java platforms. Only the benchmark programs making use of java.util.Vector were

considered. We measured these programs both with the original Spec JVM98 input and with other inputs

that we constructed for testing purposes.

We also constructed an example program, GCTest to demonstrate the benefit of eliminating array memory

leaks, shown in Figure 3. Our program creates a vector consisting of vector elements. Every element of

the inner vector is initialized with a reference to a large newly allocated object; then this reference is

immediately removed. Thus, running this example with the version of vector with leaks may lead to an

OutOfMemoryError exception. We also include experimental results for the GCTest example.

Table 1 presents our experimental data obtained on a 400 MHz Intel Pentium-II CPU with 128MB of

memory, running Windows NT 4.0. Results vary, from no change to dramatic change in heap size.
5We used Sun’s JDK 1.2, Classic VM as the basis.
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import java.util.Vector;

void GCTest() {

Vector v = new Vector();

for (int i=0; i<100; i++) {

Vector tmpVec = new Vector(1);

Object[] tmpObjVec = new Object[1000000];

tmpVec.addElement(tmpObjVec);

tmpVec.removeAllElements();

v.addElement(tmpVec);

}

}

Figure 3: GCTest example.

3 Settings

3.1 Doing it in Java Bytecode

In general, our algorithm is applicable to a garbage collected programming environment, e.g., C with

GC [BW88]. However, practical considerations, such as algorithm scalability and preciseness, suggest that

the Java programming language is a natural choice.

Main reasons are:

• Java lacks of pointer arithmetic. This enables, in general, more accurate aliasing information, which

is a prerequisite to a practical implementation of the algorithm.

• Data encapsulation is supported naturally in Java through the object-oriented model. In particular,

data encapsulation enables the analysis of a single class file at a time.

• Java lacks explicit memory deallocation operation, as oppose to C/C++, and thus making GC a

natural implementation choice6 includes built-in automatic storage management system (typically a
6Formally, GC is not mandatory in Java Virtual Machine, although it is supported in all the Java Virtual Machines we

know.
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void removeElementAt(int index {

if (index >= elementCount) {

throw new ArrayIndexOutOfBoundsException (index + " >= " + elementCount);

}

else if (index < 0) {

throw new ArrayIndexOutOfBoundsException(index);

}

int j=elementCount-index-1;

if (j > 0) {

// Copy elements one place to the ‘‘left’’

System.arraycopy(elementData, index + 1, elementData, index, j);

}

elementCount--;

elementData[elementCount]=null;

}

Figure 4: removeElementAt removes an element at a given index.

garbage collector), as oppose to C/C++.

In addition, applying the algorithm to Java bytecode is preferable than applying it to Java source code

since:

• From the perspective of the compiler, a class file contains almost the same information as Java source.

• Java bytecode has already been used as a target language for various languages other than Java e.g.

Ada95 [CDG97], Eiffel [C+99], Scheme [Bot99].

• Many commercial libraries are distributed only as class file. By using class files we have access to the

whole class files of a program even if the source is not available.

• Java is dynamic and not all information is available until runtime. Thus, the most natural place to

implement is as part of a dynamic compiler for Java at the bytecode level, e.g., JIT .
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22 : EnterStack

!!

21 : DispatchConstructor

!!

20 : EnterStack1

!!

19 : stack=new Object[len]

!!

1 : ExitStack

12 : EnterPop

!!

18 : top=0

!!

8 : EnterPrint

!!
11 : top--

!!

17 : ExitStack1

!!

7 : i=0

!!

10 : return stack[top]

!!

2 : DispatchMethod

""!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!

##""""""""""""""""""""""""""""""""

$$#######################################

4 : i<top

!!

%%

9 : ExitPop

&&$$$$$$$$$$$$$$$$$$$

16 : EnterPush

!!

6 : System.out.println(stack[i])

!!
15 : stack[top]=o

!!

5 : i++

''

14 : top++

!!

3 : ExitPrint

((%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13 : ExitPush

))

Figure 5: The approximated supergraph of the running example. Supergraph nodes are numbered according

to post depth first search order. This order improves the efficiency of the iterative algorithm (see Section 4).

3.2 Class Level Analysis of Java Programs

In this section, we lay the groundwork for our simple class level analysis of Java (extensions are discussed in

Section 6). Despite the fact that the algorithm is intended to analyze Java bytecode, we choose to explain

the algorithm using the original Java statements from our running example.

The program supergraph(see [Mye81, SP81, RHS95]) integrates the program call graph and the individual

13



control flow graphs of each of the procedures in the program. To allow interprocedural class level analysis,

we define the approximated supergraph. The approximated supergraph of the running example is shown in

Figure 5.

The approximated supergraph of the class C is an approximation of supergraphs occurring at any instance

of C in the following sense:

• The EnterClass node corresponds to program points where an instance C is allocated. Essentially, it

is similar to the entry of a program.

• Following Enter<Class> there is a special supergraph node, DispatchConstructor, corresponding to

program points where a constructor is invoked. There are arcs from this node to any constructor in

C. Thus, in the approximated supergraph there is no information regarding the constructor that was

applied. Furthermore, we assume that the values of actual parameters used in the constructors are not

known.

In the running example, there is one constructor with statements shown in supergraph nodes 19 and

18. The value of len is assumed to be unknown. Thus, the analysis in Section 4 cannot make any

assumption on the size of the array stack.

• After applying the constructor we allow an arbitrary number of invocations of methods belonging to

the class using the node DispatchMethod. The values of the parameters to the methods are assumed

to be unknown. A finalize method can be treated similarly, except that it can only be executed once.

In the running example, supergraph nodes 7, 4, 6 and 5 include the statements for print, supergraph

nodes 11 and 10 include the statements for push, and supergraph nodes 15 and 14 include the statements

for pop. At node 15, the value of the parameter o, pushed into the stack, is not known.

• When a class method invokes another method (possibly itself), we conservatively add an arc connecting

the call node to the DispatchMethod node, and add arcs connecting DispatchMethod node and the

successor nodes of the call node. This approximates a possible callee, which in turn invokes a method

belonging to the class. Finer-grained approaches can be taken into consideration, e.g., considering

non-virtual invocation. For example, for invocation of a private method M ′ belonging to the class, an

arc can be added from the call node to beginM’ node, and arcs can be added from endM’ to the the

successor nodes of the call node.

• There is no interleaving between execution paths on a single class instance, occuring in different program

threads, due to the fact that all class methods are synchronized. Finer-grained approaches can be taken

into consideration, e.g., when class instances are not shared among program threads, class methods

14



may be non-synchronized. The program call graph is considered in order to verify that class instances

are not shared among program threads.

• We ignore invocations of subclass methods (until Section 6) since they cannot affect encapsulated

information. Since we are interested in safety properties, i.e., properties that hold (or do not hold)

every time the control reaches supergraph node, execution paths that do not use the encapsulated data

are immaterial.

• The Exit<Class> supergraph node represents the program points where an instance of C is not sub-

sequently used in the program.

Encapsulation at the class level is ensured by using private fields and local variables, and by not allowing

objects referenced by these variables to “escape” outside the class level scope7. In the running example, top

is a private field. i is local variable. stack is a private field, and in addition is not passed as a parameter

or returned as a result, thus its referenced array can not escape outside the class level scope. Therefore,

they are all encapsulated in Stack, and the analysis of Stack class using the approximated supergraph is

conservative.

Extensions to the above framework to deal with class variables, static methods, and static initializers are

straightforward. More advanced analysis that relaxes some of the constraints on encapsulation, e.g., to allow

protected instance variables, has also been considered; it requires analyzing subclasses as well, or a relaxed

compilation model [BK97]. The extension to protected instance variables is discussed in Section 6.

Exception handling constructs are handled conservatively by converting try-catch to if statement. Other

precise methods, using a compact representation of the control flow graph, for modeling the effect of exception

handling constructs can be considered, e.g., [CGHS99].

4 The Algorithm

In this section, we give an efficient algorithm for computing liveness information for arrays. This section is

organized as follows: In Section 4.1, we define the problem by extending the classical definition of liveness

of scalar variables. In Section 4.2 we recall the definition of constraint graph from [CLR94, Chapter 25.5,

pp.539–543]. The constraint graph provides an efficient representation for special form of inequalities between

index variables. Then, in Section 4.3, we use the constraint graph to give an iterative forward algorithm,

which computes inequalities between index variables at every supergraph node. These inequalities play an
7We make exceptions to the escape rule for frequently used methods whose effect we know, e.g., System.out.println and

System.arraycopy.

15



important role in identifying live regions for arrays. Finally, in Section 4.4, we present the algorithm for

identifying live regions for arrays, at every supergraph node. This algorithm also uses the constraint graph

and the forward information, computed by the algorithm in Section 4.3, to obtain quite precise liveness

information for arrays at every supergraph node.

4.1 The Liveness Problem for Arrays

Recall that a scalar variable var is live before a program point p, if there exists an execution sequence in

the program including p and a use of var such that p occurs before the use of var and var is not assigned

between p and the use.

We now generalize this definition for arbitrary program expressions that evaluate to a location or reference

(or equally have a defined L-value).

Definition 4.1 An expression e is live before a program point p, if there exists an execution sequence,

π1.π2 such that

• The path π1 ends at program point p.

• e denotes a location (or reference) l at the end of π1.

• l is used at the end of π2 without prior assignment along π2

In the running example Figure 1, the location denoted by stack[top] in s is live before s, but not

before any other point in the class. For example, it is not live before the end of the method pop since on

any sequence from that point to a usage of a location denoted by stack[top] in s, this location must be

assigned a new value at s’. Indeed, the main idea in this definition is to allow the expression e to denote

more than one location for different execution paths. In the running example, stack[i] is live before s” for

all 0 ≤ i < top.This is the kind of the information that is important for GC (see Section 5).

Notice that Definition 4.1 coincides with the classic liveness definition for scalar variable and in this case

l is the (activation record) location of the scalar.

4.2 The Constraint Graph

We now define the constraint graph, which represents inequalities between program variables. The constraint

graph is a practical implementation of a set of constraints of a special form. Operations on the set are

equivalent to solving path problems on directed graphs.
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Constraint Graph Inequalities Information!"#$%&'(0
−1 **!"#$%&'(i

0 ** )*+,-./0top 0 < i ≤ top

Figure 6: The constraint graph that represents the inequalities between integer variables after supergraph

node 5.

Definition 4.2 The constraint graph is a finite labeled directed graph G = (V, E, w), with a vertex in

v ∈ V for every encapsulated integer variable or field and a special 0 ∈ V vertex. Every directed e ∈ E is

labeled by a weight w(e) ∈ Z. Such a directed graph represents the inequalities:

∧

〈x,y〉∈E

x ≤ y + w(〈x, y〉) (1)

The constraint graph, which represents the inequalities after supergraph node 5 (i = i + 1) of the

running example, is shown in Figure 6. The −1 edge from 0 to i represents the inequality 0 ≤ i + (−1), or

0 < i.

The reader is referred to [CLR94, Chapter 25.5, pp.539–543] for explanations on the properties of con-

straint graphs. Every directed path in the graph induces an implied constraint between the source and the

target of the path with a weight, which is the sum of the weights of the edges on that path. The shortest

path between any two vertices corresponds to the strongest implied constraint between the source and target

variables. Finally, the constraint graph represents a contradiction if there exists a negative directed cycle in

the graph.

For a constraint graph G(V, E, w) we denote by TC(G) the constraint graph, whose edges are labeled

with the strongest implied constraints. This means that for every pair of vertices x and y, an edge from

x to y is set to the strongest implied constraint between x and y. We implemented TC(G) using Floyd’s

all-pairs-shortest-path algorithm.

4.3 Forward Computation of Inequalities between Variables

The forward phase is an iterative algorithm for computing inequalities between integer variables and fields.

The algorithm operates on the approximated supergraph. Inequalities are represented using constraint

graphs. The algorithm is conservative, i.e., every detected inequality at a supergraph node must hold on

every execution through a program point represented by that node.

Supergraph nodes are visited in reverse post depth first order (e.g., see [Muc97] for such an algorithm). At

every supergraph node the algorithm maintains a constraint graph. We have implemented such an algorithm
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in Java and its output is displayed in Table 2. The iterations of the iterative backward algorithm on the

running example are shown in Table 4. The final results of the iterative algorithm on the running example

are shown in Table 3. A nice feature is that Tables 2, 3, 4 are automatically produced by the implementation.

The algorithm starts by assuming that all information is available and then propagates inequalities along

supergraph paths. When several paths into a supergraph nodes exist, the algorithm conservatively assumes

that only inequalities that hold on all these paths remain true8.

As usual, our algorithm may be overly conservative, i.e., it may miss inequalities that always hold.

In particular, there are four types of inaccuracies:

• We do not yet take into account the fact that Java requires that array references be safe. For example,

i must be non-negative after a use of a[i]. This extension is rather easy.

• We only interpret assignment statements of the form i = j +c or i = c where i, j are program variables

and c is a constant; thus other assignment statements are interpreted conservatively by eliminating the

inequalities regarding the assigned variable in the resulting set of constraints. Also, we only interpret

conditions of the form i ≤ j + c, i ≤ c or c ≤ i, where i, j are program variables and c is a constant;

other conditions are not interpreted.

• We use a single supergraph node to represent many program points and use extra supergraph arcs,

leading to infeasible paths.

• The supergraph may contain “invalid” interprocedural paths that do not respect the call-return mech-

anism. There are two classical solutions to this problem due to Sharir and Pnueli [SP81]. We have not

yet implemented either of these solutions.

Table 2: The iterations of our worklist algorithm for identifying

inequalities information in the running example. We show the

supergraph node, the statement, and constraint graph after this

statement and the inequalities represented. Tagged nodes repre-

sent information before a widening is performed.

Id Node Statement Constraint Graph Inequalities Information

1 22 EnterStack ⊥ ⊥

2 21 DispatchConstructor ⊥ ⊥

8One exception are program conditions which are partially interpreted, thus, eliminating some infeasible path.
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Table 2: The iterations of our worklist algorithm for identifying

inequalities information in the running example. We show the

supergraph node, the statement, and constraint graph after this

statement and the inequalities represented. Tagged nodes repre-

sent information before a widening is performed.

Id Node Statement Constraint Graph Inequalities Information

3 20 EnterStack1 ⊥ ⊥

4 19 stack= new[...] ⊥ ⊥

5 18 top = 0 !"#$%&'(0

0
++!"#$%&'(i )*+,-./0top

0

,, {0 ≤ top, top ≤ 0}

6 17 ExitStack1 !"#$%&'(0

0
++!"#$%&'(i )*+,-./0top

0

,, {0 ≤ top, top ≤ 0}

7 2 DispatchMethod !"#$%&'(0

0
++!"#$%&'(i )*+,-./0top

0

,, {0 ≤ top, top ≤ 0}

8 16 EnterPush !"#$%&'(0

0
++!"#$%&'(i )*+,-./0top

0

,, {0 ≤ top, top ≤ 0}

9 15 def stack[top] !"#$%&'(0

0
++!"#$%&'(i )*+,-./0top

0

,, {0 ≤ top, top ≤ 0}

10 14 top = top + 1 !"#$%&'(0

−1
++!"#$%&'(i )*+,-./0top

1

,, {0 < top, top ≤ 1}

11 13 ExitPush !"#$%&'(0

−1
++!"#$%&'(i )*+,-./0top

1

,, {0 < top, top ≤ 1}

12 12 EnterPop !"#$%&'(0

0
++!"#$%&'(i )*+,-./0top

0

,, {0 ≤ top, top ≤ 0}

13 11 top = top - 1 !"#$%&'(0

1
++!"#$%&'(i )*+,-./0top

−1

,, {−1 ≤ top, top < 0}

14 10 use stack[top] !"#$%&'(0

1
++!"#$%&'(i )*+,-./0top

−1

,, {−1 ≤ top, top < 0}
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Table 2: The iterations of our worklist algorithm for identifying

inequalities information in the running example. We show the

supergraph node, the statement, and constraint graph after this

statement and the inequalities represented. Tagged nodes repre-

sent information before a widening is performed.

Id Node Statement Constraint Graph Inequalities Information

15 9 ExitPop !"#$%&'(0

1
++!"#$%&'(i )*+,-./0top

−1

,, {−1 ≤ top, top < 0}

16 8 EnterPrint !"#$%&'(0

0
++!"#$%&'(i )*+,-./0top

0

,, {0 ≤ top, top ≤ 0}

17 7 i = 0 !"#$%&'(0 0 **

0
++!"#$%&'(i 0 **

0
-- )*+,-./0top

0

,, 0
-- {0 ≤ i, 0 ≤ top, i ≤ 0, i ≤

top, top ≤ 0, top ≤ i}

18 4 i < top !"#$%&'(0 0 **

0
++!"#$%&'(i 0 **

0
-- )*+,-./0top

0

,, 0
-- {0 ≤ i, 0 ≤ top, i ≤ 0, i ≤

top, top ≤ 0, top ≤ i}

19 6 use stack[i] ⊥ ⊥

20 5 i = i + 1 ⊥ ⊥

21 3 ExitPrint !"#$%&'(0 0 **

0
++!"#$%&'(i 0 **

0
-- )*+,-./0top

0

,, 0
-- {0 ≤ i, 0 ≤ top, i ≤ 0, i ≤

top, top ≤ 0, top ≤ i}

22 2 DispatchMethod !"#$%&'(0

1
++!"#$%&'(i )*+,-./0top

1

,, {−1 ≤ top, top ≤ 1}

23 16 EnterPush !"#$%&'(0

1
++!"#$%&'(i )*+,-./0top

1

,, {−1 ≤ top, top ≤ 1}

24 15 def stack[top] !"#$%&'(0

1
++!"#$%&'(i )*+,-./0top

1

,, {−1 ≤ top, top ≤ 1}

25 14 top = top + 1 !"#$%&'(0

0
++!"#$%&'(i )*+,-./0top

2

,, {0 ≤ top, top ≤ 2}

26 13 ExitPush !"#$%&'(0

0
++!"#$%&'(i )*+,-./0top

2

,, {0 ≤ top, top ≤ 2}
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Table 2: The iterations of our worklist algorithm for identifying

inequalities information in the running example. We show the

supergraph node, the statement, and constraint graph after this

statement and the inequalities represented. Tagged nodes repre-

sent information before a widening is performed.

Id Node Statement Constraint Graph Inequalities Information

27 12 EnterPop !"#$%&'(0

1
++!"#$%&'(i )*+,-./0top

1

,, {−1 ≤ top, top ≤ 1}

28 11 top = top - 1 !"#$%&'(0

2
++!"#$%&'(i )*+,-./0top

0

,, {−2 ≤ top, top ≤ 0}

29 10 use stack[top] !"#$%&'(0

2
++!"#$%&'(i )*+,-./0top

0

,, {−2 ≤ top, top ≤ 0}

30 9 ExitPop !"#$%&'(0

2
++!"#$%&'(i )*+,-./0top

0

,, {−2 ≤ top, top ≤ 0}

31 8 EnterPrint !"#$%&'(0

1
++!"#$%&'(i )*+,-./0top

1

,, {−1 ≤ top, top ≤ 1}

32 7 i = 0 !"#$%&'(0 0 **

1
++!"#$%&'(i 1 **

0
-- )*+,-./0top

1

,, 1
-- {0 ≤ i,−1 ≤ top, i ≤ 0, i ≤ top +

1, top ≤ 1, top ≤ i + 1}

33 4 i < top !"#$%&'(0 0 **

1
++!"#$%&'(i 1 **

0
-- )*+,-./0top

1

,, 1
-- {0 ≤ i,−1 ≤ top, i ≤ 0, i ≤ top +

1, top ≤ 1, top ≤ i + 1}

34 6 use stack[i] !"#$%&'(0 0 **

−1
++!"#$%&'(i

−1 **
0

-- )*+,-./0top

1

,, 1
-- {0 ≤ i, 0 < top, i ≤ 0, i <

top, top ≤ 1, top ≤ i + 1}

35 5 i = i + 1 !"#$%&'(0
−1 **

−1
++!"#$%&'(i 0 **

1
-- )*+,-./0top

1

,, 0
-- {0 < i, 0 < top, i ≤ 1, i ≤

top, top ≤ 1, top ≤ i}

36 4’ i < top !"#$%&'(0 0 **

1
++!"#$%&'(i 1 **

1
-- )*+,-./0top

1

,, 1
-- {0 ≤ i,−1 ≤ top, i ≤ 1, i ≤ top +

1, top ≤ 1, top ≤ i + 1}
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Table 2: The iterations of our worklist algorithm for identifying

inequalities information in the running example. We show the

supergraph node, the statement, and constraint graph after this

statement and the inequalities represented. Tagged nodes repre-

sent information before a widening is performed.

Id Node Statement Constraint Graph Inequalities Information

37 4 i < top !"#$%&'(0 0 **

1
++!"#$%&'(i 1 **

2
-- )*+,-./0top

1

,, 1
-- {0 ≤ i,−1 ≤ top, i ≤ 2, i ≤ top +

1, top ≤ 1, top ≤ i + 1}

38 3 ExitPrint !"#$%&'(0 0 **

1
++!"#$%&'(i 1 **

2
-- )*+,-./0top

1

,, 0
-- {0 ≤ i,−1 ≤ top, i ≤ 2, i ≤ top +

1, top ≤ 1, top ≤ i}

39 2’ DispatchMethod !"#$%&'(0

2
++!"#$%&'(i )*+,-./0top

2

,, {−2 ≤ top, top ≤ 2}

40 2 DispatchMethod !"#$%&'(0 !"#$%&'(i )*+,-./0top (

41 16 EnterPush !"#$%&'(0 !"#$%&'(i )*+,-./0top (

42 15 def stack[top] !"#$%&'(0 !"#$%&'(i )*+,-./0top (

43 14 top = top + 1 !"#$%&'(0 !"#$%&'(i )*+,-./0top (

44 13 ExitPush !"#$%&'(0 !"#$%&'(i )*+,-./0top (

45 12 EnterPop !"#$%&'(0 !"#$%&'(i )*+,-./0top (

46 11 top = top - 1 !"#$%&'(0 !"#$%&'(i )*+,-./0top (

47 10 use stack[top] !"#$%&'(0 !"#$%&'(i )*+,-./0top (

48 9 ExitPop !"#$%&'(0 !"#$%&'(i )*+,-./0top (

49 8 EnterPrint !"#$%&'(0 !"#$%&'(i )*+,-./0top (

50 7 i = 0 !"#$%&'(0 0 **!"#$%&'(i0
-- )*+,-./0top {0 ≤ i, i ≤ 0}

51 4’ i < top !"#$%&'(0 0 **!"#$%&'(i1
-- )*+,-./0top {0 ≤ i, i ≤ 1}

52 4 i < top !"#$%&'(0 0 **!"#$%&'(i2
-- )*+,-./0top {0 ≤ i, i ≤ 2}

53 6 use stack[i] !"#$%&'(0 0 **

−1
++!"#$%&'(i

−1 **
2

-- )*+,-./0top {0 ≤ i, 0 < top, i ≤ 2, i < top}
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Table 2: The iterations of our worklist algorithm for identifying

inequalities information in the running example. We show the

supergraph node, the statement, and constraint graph after this

statement and the inequalities represented. Tagged nodes repre-

sent information before a widening is performed.

Id Node Statement Constraint Graph Inequalities Information

54 5 i = i + 1 !"#$%&'(0
−1 **

−1
++!"#$%&'(i 0 **

3
-- )*+,-./0top {0 < i, 0 < top, i ≤ 3, i ≤ top}

55 4’ i < top !"#$%&'(0 0 **!"#$%&'(i3
-- )*+,-./0top {0 ≤ i, i ≤ 3}

56 4 i < top !"#$%&'(0 0 **!"#$%&'(i )*+,-./0top {0 ≤ i}

57 6 use stack[i] !"#$%&'(0 0 **

−1
++!"#$%&'(i

−1 ** )*+,-./0top {0 ≤ i, 0 < top, i < top}

58 5 i = i + 1 !"#$%&'(0
−1 **

−1
++!"#$%&'(i 0 ** )*+,-./0top {0 < i, 0 < top, i ≤ top}

59 4’ i < top !"#$%&'(0 0 **!"#$%&'(i )*+,-./0top {0 ≤ i}

60 4 i < top !"#$%&'(0 0 **!"#$%&'(i )*+,-./0top {0 ≤ i}

61 3 ExitPrint !"#$%&'(0 0 **!"#$%&'(i )*+,-./0top
0

-- {0 ≤ i, top ≤ i}

62 2’ DispatchMethod !"#$%&'(0 !"#$%&'(i )*+,-./0top (

63 2 DispatchMethod !"#$%&'(0 !"#$%&'(i )*+,-./0top (

64 16 EnterPush !"#$%&'(0 !"#$%&'(i )*+,-./0top (

65 15 def stack[top] !"#$%&'(0 !"#$%&'(i )*+,-./0top (

66 14 top = top + 1 !"#$%&'(0 !"#$%&'(i )*+,-./0top (

67 13 ExitPush !"#$%&'(0 !"#$%&'(i )*+,-./0top (

68 12 EnterPop !"#$%&'(0 !"#$%&'(i )*+,-./0top (

69 11 top = top - 1 !"#$%&'(0 !"#$%&'(i )*+,-./0top (

70 10 use stack[top] !"#$%&'(0 !"#$%&'(i )*+,-./0top (

71 9 ExitPop !"#$%&'(0 !"#$%&'(i )*+,-./0top (

72 8 EnterPrint !"#$%&'(0 !"#$%&'(i )*+,-./0top (
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Table 2: The iterations of our worklist algorithm for identifying

inequalities information in the running example. We show the

supergraph node, the statement, and constraint graph after this

statement and the inequalities represented. Tagged nodes repre-

sent information before a widening is performed.

Id Node Statement Constraint Graph Inequalities Information

73 7 i = 0 !"#$%&'(0 0 **!"#$%&'(i0
-- )*+,-./0top {0 ≤ i, i ≤ 0}

74 1 ExitClass !"#$%&'(0 !"#$%&'(i )*+,-./0top (

Table 3: The final output of the worklist algorithm on the running

example. We show the supergraph node, the statement, and con-

straint before this statement and the inequalities represented. ⊥ is

an artificial constraint graph and inequalities where all the encapsu-

lated variables are not initialized ( represent an empty constraint

graph, i.e., unknown constraints on encapsulated varaibles.

Id Node Statement Constraint Graph Inequalities Information

1 22 EnterStack ⊥ ⊥

2 21 DispatchConstructor ⊥ ⊥

3 20 EnterStack1 ⊥ ⊥

4 19 stack= new[...] ⊥ ⊥

5 18 top = 0 ⊥ ⊥

6 17 ExitStack1 !"#$%&'(0

0
++!"#$%&'(i )*+,-./0top

0

,, {0 ≤ top, top ≤ 0}

7 2 DispatchMethod !"#$%&'(0 !"#$%&'(i )*+,-./0top (

8 12 EnterPop !"#$%&'(0 !"#$%&'(i )*+,-./0top (

9 11 top = top - 1 !"#$%&'(0 !"#$%&'(i )*+,-./0top (

10 10 use stack[top] !"#$%&'(0 !"#$%&'(i )*+,-./0top (

11 9 ExitPop !"#$%&'(0 !"#$%&'(i )*+,-./0top (
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Table 3: The final output of the worklist algorithm on the running

example. We show the supergraph node, the statement, and con-

straint before this statement and the inequalities represented. ⊥ is

an artificial constraint graph and inequalities where all the encapsu-

lated variables are not initialized ( represent an empty constraint

graph, i.e., unknown constraints on encapsulated varaibles.

Id Node Statement Constraint Graph Inequalities Information

12 16 EnterPush !"#$%&'(0 !"#$%&'(i )*+,-./0top (

13 15 def stack[top] !"#$%&'(0 !"#$%&'(i )*+,-./0top (

14 14 top = top + 1 !"#$%&'(0 !"#$%&'(i )*+,-./0top (

15 13 ExitPush !"#$%&'(0 !"#$%&'(i )*+,-./0top (

16 8 EnterPrint !"#$%&'(0 !"#$%&'(i )*+,-./0top (

17 7 i = 0 !"#$%&'(0 !"#$%&'(i )*+,-./0top (

18 4 i < top !"#$%&'(0 0 **!"#$%&'(i )*+,-./0top {0 ≤ i}

19 6 use stack[i] !"#$%&'(0 0 **

−1
++!"#$%&'(i

−1 ** )*+,-./0top {0 ≤ i, 0 < top, i < top}

20 5 i = i + 1 !"#$%&'(0 0 **

−1
++!"#$%&'(i

−1 ** )*+,-./0top {0 ≤ i, 0 < top, i < top}

21 3 ExitPrint !"#$%&'(0 0 **!"#$%&'(i )*+,-./0top
0

-- {0 ≤ i, top ≤ i}

22 1 ExitClass !"#$%&'(0 !"#$%&'(i )*+,-./0top (

In the following subsections, we briefly explain the iterations of our worklist algorithm:

4.3.1 Iterations

The algorithm starts with the EnterClass supergraph node; we conservatively assume that no information

is available on non-encapsulated variables and optimistically assume that all information is available on

encapsulated variables. This special constraint graph is denoted by ⊥.

The algorithm continues to visit supergraph nodes until no more changes occur. When a supergraph

node changes, its successors are visited. When a node is processed before all its predecessors are known, the

constraint graphs at the unknown predecessors are ignored.
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Constraint Graph Inequalities Information
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Figure 7: The constraint graph representing the inequalities information before supergraph node 5.

After the effect of a supergraph node is taken into account by the algorithm, we add the strongest

implied constraints as defined in Section 4.2. In Figure 7, the dotted edge between vertex 0 and vertex top

corresponds to the strongest implied constraint between 0 and top. One can “lazily” add strongest implied

constraints, as supergraph nodes are being processed.

4.3.2 Skip Supergraph Nodes

The algorithm skips nodes, which do not effect inequalities information. For these skipped nodes, it simply

copies the constraint graph before the node to the constraint graph after the node. These skipped nodes

include:

• Nodes for statements, which do not assign to encapsulated variables.

• Special supergraph nodes, e.g., EnterClass and DispatchMethod.

In Table 2, the constraint graph after supergraph node 22 EnterStack at row 1 is obtained by copying ⊥.

4.3.3 Join

In this section we define the join operation. Join is used when the supergraph flow merges. Join is the

intersection of the (strongest implied) constraints occurring on all merging supergraph paths. This guarantees

that every inequality that the algorithm obtains indeed holds every time the control reaches this point.

In the constraint graph representation, for a pair of vertices x, y the new constraint is the weakest

constraint of the strongest implied constraints between x and y in the constraint graphs being joined, (i.e.,

the maximum of the shortest-path from x to y in the constraint graphs being joined).

In Table 2, the constraint graph before supergraph node 4, i < top at row 36, , is obtained by joining

the constraint graphs after node i = 0 at row 32, the constraint graph after i = i + 1 at row 35. The edge

connecting vertex 0 to vertex i is labeled by 0 as in the constraint graph after node i = 0. However, the

edge connecting vertex 0 to vertex i is labeled by 1 as in the constraint graph after node i = i + 1. (Note

that node 4 is a skip node, so although the constraint graph after node 4 is presented at row 36, it is equal

to the constraint graph before node 4)
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4.3.4 Assignment Statements

We consider three kinds of assignment statements:

• Statement of the form i = c where i is an encapsulated variable. This statement adds the constraints

i ≤ 0 + c and 0 ≤ i + (−c). Therefore, the constraint graph after this statement is obtained from the

constraint graph before the statement by removing all edges leading to vertex i and emanating from

vertex i, and then adding a −c edge from vertex 0 to vertex i, and a c edge from vertex i to vertex 0 .

In Table 2, the constraint graph after statement top = 0 at row 5 is obtained from the constraint

graph at row 4, ⊥, by adding the two extra edges, 0 and −0.

• Statement of the form i = i + c where i is an encapsulated variable. This statement adds a constraint

i ≤ j + (c′ + c) for every constraint i ≤ j + c′, in the constraint graph before the statement, and a

constraint j ≤ i + (c′ − c) for every constraint j ≤ i + c′, in the constraint graph before the statement.

Therefore, the constraint graph after this statement is obtained from the constraint graph before the

statement by incrementing the c′ edges from vertex i to a vertex j by c, and decrementing the c′ edges

from a vertex j to vertex i by c.

In Table 2, the constraint graph after statement top = top + 1 at row 10 is obtained from the con-

straint graph at row 9, and then incrementing the 0 edge from vertex top to vertex 0 by 1, and

decrementing the −0 edge from vertex 0 to vertex top by 1.

• Statement of the form i = e where i is encapsulated variable and e is an expression other than c or

j + c for an encapsulated variable j. Such a statement is interpreted conservatively by eliminating

edges leading to/emanating from vertex i.

4.3.5 Widening

Widening [CC79] accelerates the termination of the algorithm, by deliberately losing some information. In

our case widening takes the strongest implied constraints from the former visit of a supergraph node (which

is the target of a backedge) that remain true in the current visit of the supergraph node.

In Table 2, the constraint graph after supergraph node 2 statement DispatchMethod at row 40 is obtained

by taking only strongest implied constraint from the constraint graph at row 22 (the former visit of node 2)

that remain true in the constraint graph at row 39 (the current visit of node 2). The result it (, since the

constraints at row 22 are all weakened at row 39, thus all constraints are removed.
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4.3.6 Conditions

Interestingly, the inequality information allows us to partially interpret program conditions in many inter-

esting cases9.

Conditions of the form i ≤ j + c are handled by propagating the constraint graph before the condition

node strengthened with a c edge from vertex i to vertex j along the true edge, and by propagating the

constraint graph before the condition node strengthened with a −(c+1) edge from vertex j to vertex i along

the false edge.

The condition i ≤ c is handled similarly where vertex 0 plays the role of vertex j. The condition c ≤

i is handled similarly where vertex 0 plays the role of vertex i, vertex i plays the role of vertex j, and −c

plays the role of c (since c ≤ i can be written as 0 ≤ i + (−c)).

In Table 2, the constraint graph along the true edge of node 4, which is supergraph node 6 statement

return stack[top] at row 19 is obtained by strengthening the 0 edge from vertex i to vertex top at row 18

to be −1 (representing the fact the it is known that along the true edge the constraint i < top holds). The

constraints at row 18 are top = i = 0, so the path along the true edge is leading to node 6 is infeasible, since

i < top does not hold when top = i = 0, so ⊥ result is expected at row 19. Indeed, the above strengthening

leads to a negative cycle (consider the −1 cycle i
−1−→ top 0−→ i), i.e., contradiction, thus the resulting

constraint graph is ⊥. The constraint graph along the false edge of node 4, which is the constraint graph

after supergraph node 3 at row 21 is obtained by strengthening the 0 edge from vertex top to vertex i to

be 0, i.e., the constraint between top and i was already “strong” and was not strengthened by the fact that

along the false edge top ≤ i holds.

4.4 Backward Computation of Live Regions

In this section, we sketch an iterative algorithm for computing live regions in arrays. For the purpose of the

description, we assume one particular encapsulated array A. The algorithm operates on the approximated

supergraph. Our chief insight is that live regions can also be represented using constraint graphs, with one

additional designated node, denoted by $. This node represents constraints on the live array indices of array

A.

Although integer variables and $ are different semantic objects, the representation of (conditional) pro-

gram variables relations is syntactically the same as the representation of liveness constraints, thus it is

possible to represent both in the same constraint graph, but with different meaning defined below.

For example, the constraint graph in Figure 8 corresponds to the liveness information before supergraph
9It resembles Floyd’s strongest postconditions [Flo67]. This analogy is beyond the scope of this paper
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Constraint Graph Liveness Information
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Figure 8: The constraint graph representing the liveness information before supergraph node 4.

node 4. Since 0 ≤ $ < top, this constraint graph represents the fact that array elements

stack[0], stack[1], . . . , stack[top − 1] are live. In addition, the live region is conditional because of the −1

edge connecting vertex i to vertex top, i.e., the stack elements may be referenced only if the print loop is

entered; thus, i must be less than top. In other words, if i ≥ top then none of the array elements is alive.

Notice that the inequality i < top may be violated at some paths leading to supergraph node 4.

In general a constraint graph G represents the following liveness information:

{A[$]|
∧

〈x,y〉∈E

x ≤ y + w(〈x, y〉)}

where A is the encapsulated array; A[$] denotes the live array elements, and live regions come into play when

either x or y are $. The constraint graph in Figure 8 represents the liveness information:

{stack[$]|0 ≤ $ + 0 ∧ $ ≤ top + (−1) ∧ 0 ≤ i + 0 ∧ i ≤ top + (−1)}

In addition, we also allow a special constraint graph, denoted by dead(A), representing the fact that all array

elements are dead.

The algorithm is conservative, i.e., the identified live regions must include “actual” live regions. When the

iterative algorithm terminates, for every supergraph node n, and for every program point p that corresponds

to n, if A[i] is live before p then i satisfies all the constraints in the constraint graph that the algorithm yields

at n.

Supergraph nodes are visited in post depth first order (e.g., see [Muc97] for such an algorithm). At every

supergraph node the algorithm maintains a constraint graph. We have implemented such an algorithm in

Java.

The iterations of the iterative backward algorithm on the running example are shown in Table 4.

The algorithm starts by assuming that all information is available, and the array is dead. Then it

backward propagates liveness information along supergraph paths. The fact that the algorithm scans the

supergraphs nodes in a backward direction may not come as a surprise, since the algorithm is an extension
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of the scalar variables liveness algorithm. Indeed liveness information captures information about future

usages.

When several paths from a supergraph nodes exist, the algorithm conservatively assumes that liveness

information includes the liveness information along all outgoing paths10.

As usual, our algorithm may be overly conservative, i.e., at program point p it may assume some array

elements as live, although there is no execution path from p to a use of these array elements prior to

redefinition.

In particular, there are five types of inaccuracies, four of them are the aforementioned inaccuracies of the

forward phase. In addition:

• We only interpret assignment to array elements and uses of array elements of the form A[i + c], where

A is the analyzed array, i is a program variable and c is a constant; thus other assignments to array

elements are interpreted conservatively by not shrinking the liveness information. Other uses of array

elements are interpreted conservatively by assuming that all array elements are live.

Despite of these inaccuracies, our analysis is capable of computing quite precise results for the Stack class.

Moreover, modifying Stack code in push, pop methods to check overflow, yields even more precise results.

Table 4: The iterations of our worklist algorithm for identifying

liveness regions on the running example. Tagged nodes represent

information before a widening is performed.

Id Node Statement Constraint Graph Liveness Information

1 1 ExitClass dead(stack) dead(stack)

2 2 DispatchMethod dead(stack) dead(stack)

3 3 ExitPrint dead(stack) dead(stack)

4 4 i < top dead(stack) dead(stack)

5 5 i = i + 1 dead(stack) dead(stack)

6 6 use stack[i] !"#$%&'(0 0 **

0
11

−1

22!"#$%&'($
0 **

−1
++!"#$%&'(i

−1 **
0

-- )*+,-./0top {stack[$]|0 ≤ $, 0 ≤ i, 0 <

top, $ ≤ i, $ < top, i ≤ $, i < top}

7 4 i < top !"#$%&'(0 0 **

0
11

−1

22!"#$%&'($
0 **

−1
++!"#$%&'(i

−1 **
0

-- )*+,-./0top {stack[$]|0 ≤ $, 0 ≤ i, 0 <

top, $ ≤ i, $ < top, i ≤ $, i < top}
10One exception are program conditions which are partially interpreted, thus, eliminating some infeasible paths.
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Table 4: The iterations of our worklist algorithm for identifying

liveness regions on the running example. Tagged nodes represent

information before a widening is performed.

Id Node Statement Constraint Graph Liveness Information

8 5 i = i + 1 !"#$%&'(0
−1 **

0
11

−2

22!"#$%&'($
1 **

−1
++!"#$%&'(i

−2 **
−1

-- )*+,-./0top {stack[$]|0 < $, 0 ≤ i, 2 ≤

top, $ ≤ i + 1, $ < top, i < $, i ≤

top − 2}

9 6 use stack[i] !"#$%&'(0 0 **

0
11

−1

22!"#$%&'($
1 **

−1
++!"#$%&'(i

−1 **
0

-- )*+,-./0top {stack[$]|0 ≤ $, 0 ≤ i, 0 <

top, $ ≤ i + 1, $ < top, i ≤ $, i <

top}

10 4’ i < top !"#$%&'(0 0 **

0
11

−1

22!"#$%&'($
1 **

−1
++!"#$%&'(i

−1 **
0

-- )*+,-./0top {stack[$]|0 ≤ $, 0 ≤ i, 0 <

top, $ ≤ i + 1, $ < top, i ≤ $, i <

top}

11 4 i < top !"#$%&'(0 0 **

0
11

−1

22!"#$%&'($

−1
++!"#$%&'(i

−1 **
0

-- )*+,-./0top {stack[$]|0 ≤ $, 0 ≤ i, 0 <

top, $ < top, i ≤ $, i < top}

12 5 i = i + 1 !"#$%&'(0
−1 **

0
11

−2

22!"#$%&'($

−1
++!"#$%&'(i

−2 **
−1

-- )*+,-./0top {stack[$]|0 < $, 0 ≤ i, 2 ≤

top, $ < top, i < $, i ≤ top − 2}

13 6 use stack[i] !"#$%&'(0 0 **

0
11

−1

22!"#$%&'($

−1
++!"#$%&'(i

−1 **
0

-- )*+,-./0top {stack[$]|0 ≤ $, 0 ≤ i, 0 <

top, $ < top, i ≤ $, i < top}

14 7 i = 0 !"#$%&'(0 0 **

−1

22!"#$%&'($

−1
++!"#$%&'(i )*+,-./0top {stack[$]|0 ≤ $, 0 < top, $ < top}

15 8 EnterPrint !"#$%&'(0 0 **

−1

22!"#$%&'($

−1
++!"#$%&'(i )*+,-./0top {stack[$]|0 ≤ $, 0 < top, $ < top}
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Table 4: The iterations of our worklist algorithm for identifying

liveness regions on the running example. Tagged nodes represent

information before a widening is performed.

Id Node Statement Constraint Graph Liveness Information

16 2 DispatchMethod !"#$%&'(0 0 **

−1

22!"#$%&'($

−1
++!"#$%&'(i )*+,-./0top {stack[$]|0 ≤ $, 0 < top, $ < top}

17 3 ExitPrint !"#$%&'(0 0 **

−1

11

−1

22!"#$%&'($
−1 **

−1
++!"#$%&'(i )*+,-./0top

0
-- {stack[$]|0 ≤ $, 0 < i, 0 <

top, $ < i, $ < top, top ≤ i}

18 4’ i < top !"#$%&'(0 0 **

0
11

−1

22!"#$%&'($

−1
++!"#$%&'(i )*+,-./0top {stack[$]|0 ≤ $, 0 ≤ i, 0 <

top, $ < top}

19 4 i < top !"#$%&'(0 0 **

0
11

−1

22!"#$%&'($

−1
++!"#$%&'(i )*+,-./0top {stack[$]|0 ≤ $, 0 ≤ i, 0 <

top, $ < top}

20 5 i = i + 1 !"#$%&'(0 0 **

0
11

−1

22!"#$%&'($

−1
++!"#$%&'(i

−1 ** )*+,-./0top {stack[$]|0 ≤ $, 0 ≤ i, 0 <

top, $ < top, i < top}

21 6 use stack[i] !"#$%&'(0 0 **

0
11

−1

22!"#$%&'($

−1
++!"#$%&'(i

−1 ** )*+,-./0top {stack[$]|0 ≤ $, 0 ≤ i, 0 <

top, $ < top, i < top}

22 7 i = 0 !"#$%&'(0 0 **

−1

22!"#$%&'($

−1
++!"#$%&'(i )*+,-./0top {stack[$]|0 ≤ $, 0 < top, $ < top}

23 9 ExitPop !"#$%&'(0 0 **

−1

22!"#$%&'($

−1
++!"#$%&'(i )*+,-./0top {stack[$]|0 ≤ $, 0 < top, $ < top}

24 10 use stack[top] !"#$%&'(0 !"#$%&'($

0
++!"#$%&'(i )*+,-./0top {stack[$]|$ ≤ top}

25 11 top = top - 1 !"#$%&'(0 !"#$%&'($

−1
++!"#$%&'(i )*+,-./0top {stack[$]|$ < top}

26 12 EnterPop !"#$%&'(0 !"#$%&'($

−1
++!"#$%&'(i )*+,-./0top {stack[$]|$ < top}
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Table 4: The iterations of our worklist algorithm for identifying

liveness regions on the running example. Tagged nodes represent

information before a widening is performed.

Id Node Statement Constraint Graph Liveness Information

27 2’ DispatchMethod !"#$%&'(0 !"#$%&'($

−1
++!"#$%&'(i )*+,-./0top {stack[$]|$ < top}

28 2 DispatchMethod !"#$%&'(0 !"#$%&'($

−1
++!"#$%&'(i )*+,-./0top {stack[$]|$ < top}

29 3 ExitPrint !"#$%&'(0

0
11!"#$%&'($

−1 **

−1
++!"#$%&'(i )*+,-./0top

0
-- {stack[$]|0 ≤ i, $ < i, $ <

top, top ≤ i}

30 4’ i < top !"#$%&'(0

0
11!"#$%&'($

−1
++!"#$%&'(i )*+,-./0top {stack[$]|0 ≤ i, $ < top}

31 4 i < top !"#$%&'(0

0
11!"#$%&'($

−1
++!"#$%&'(i )*+,-./0top {stack[$]|0 ≤ i, $ < top}

32 5 i = i + 1 !"#$%&'(0

0
11

−1

22!"#$%&'($

−1
++!"#$%&'(i

−1 ** )*+,-./0top {stack[$]|0 ≤ i, 0 < top, $ <

top, i < top}

33 6 use stack[i] !"#$%&'(0

0
11

−1

22!"#$%&'($

−1
++!"#$%&'(i

−1 ** )*+,-./0top {stack[$]|0 ≤ i, 0 < top, $ <

top, i < top}

34 7 i = 0 !"#$%&'(0 !"#$%&'($

−1
++!"#$%&'(i )*+,-./0top {stack[$]|$ < top}

35 8 EnterPrint !"#$%&'(0 !"#$%&'($

−1
++!"#$%&'(i )*+,-./0top {stack[$]|$ < top}

36 9 ExitPop !"#$%&'(0 !"#$%&'($

−1
++!"#$%&'(i )*+,-./0top {stack[$]|$ < top}

37 10 use stack[top] !"#$%&'(0 !"#$%&'($

0
++!"#$%&'(i )*+,-./0top {stack[$]|$ ≤ top}

38 13 ExitPush !"#$%&'(0 !"#$%&'($

−1
++!"#$%&'(i )*+,-./0top {stack[$]|$ < top}

39 14 top = top + 1 !"#$%&'(0 !"#$%&'($

0
++!"#$%&'(i )*+,-./0top {stack[$]|$ ≤ top}

40 15 def stack[top] !"#$%&'(0 !"#$%&'($

−1
++!"#$%&'(i )*+,-./0top {stack[$]|$ < top}
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Table 4: The iterations of our worklist algorithm for identifying

liveness regions on the running example. Tagged nodes represent

information before a widening is performed.

Id Node Statement Constraint Graph Liveness Information

41 16 EnterPush !"#$%&'(0 !"#$%&'($

−1
++!"#$%&'(i )*+,-./0top {stack[$]|$ < top}

42 17 ExitStack1 !"#$%&'(0

0

22!"#$%&'($

−1
++

−1
-- !"#$%&'(i )*+,-./0top

0

33
{stack[$]|0 ≤ top, $ < 0, $ <

top, top ≤ 0}

43 18 top = 0 !"#$%&'(0 !"#$%&'($−1
-- !"#$%&'(i )*+,-./0top {stack[$]|$ < 0}

44 19 stack= new[...] dead(stack) dead(stack)

45 20 EnterStack1 dead(stack) dead(stack)

46 21 DispatchConstructor dead(stack) dead(stack)

47 22 EnterStack dead(stack) dead(stack)

In the following subsections, we briefly explain the iterations of our worklist algorithm. Some of the

algorithm steps resemble the respective steps of the forward phase.

4.4.1 Iterations

The algorithm starts with the Exit<Class> supergraph node; here we know that none of the array elements

are live. It continues to visit supergraph nodes until no more changes occur. When a supergraph node

changes its predecessors are visited. When a node is processed before all its successors are known, the

constraint graphs at the unknown successors are ignored.

After the effect of a supergraph node is taken into account by the algorithm, we add the strongest

implied constraints as defined in Section 4.2. In Figure 8, the dotted edge between vertex 0 and vertex top

corresponds to the strongest implied constraint between 0 and top.

4.4.2 Skip Supergraph Nodes

The algorithm skips nodes, which do not affect liveness information. For these skipped nodes, it simply

copies the constraint graph after the node to the constraint graph before the node. These skipped nodes

include:
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• Nodes for statements, which do not assign to encapsulated variables and do not use or assign the

elements of A.

• Special supergraph nodes, e.g., EnterClass and DispatchMethod.

In Table 4, the constraint graph before supergraph node 1 ExitClass at row 1 is obtained by copying

dead(stack).

4.4.3 Join

The join operation is defined exactly as in Section 4.3.3. However, the inclusion of $ has the effect that the

join may enlarge the live region in the array. Also, in the backward phase the join is used to combine live

regions along several outgoing paths in the approximated supergraph.

In Table 4, the constraint graph after supergraph node 2, DispatchMethod, at row 27 is obtained by

joining the constraint graphs before node EnterPrint at row 15 and node EnterPop at row 26. The edge

connecting vertex 0 to vertex $ and the edge connecting vertex 0 to vertex topare not included, since it

appears only in the constraint graph from EnterPrint and not on the constraint graph from EnterPop.(Note

that node 2 is a skip node, so although the constraint graph before node 2 is presented at row 37, it is equal

to the constraint graph after node 2)

4.4.4 Integrating Forward Information

The liveness of an expression, A[i], before supergraph node n, depends on two things (see Definition 4.1):

1. The value of i on supergraph paths from node EnterClass leading to node n, which determines the

location l denoted by A[i].

2. The usage of location l on supergraph paths emanating from node n.

Therefore, integrating the forward information regarding the value of i and the backward information re-

garding the liveness of A[i] can have a dramatic impact on the precision of the analysis.

Despite the different nature of the forward and backward information, they can be integrated simply

since both are represented by constraint graphs. The forward information is denoted by Gf , the backward

information by Gb. We define their integration, integrate(Gf , Gb), according to the following two rules:

1. Gb = dead(A). In this case the forward information is irrelevant, since it does not provide any constraint

on the usage of the array; thus, integrate(Gf , dead(A)) yields dead(A).

2. Otherwise, for every pair of vertices x, y, integrate(Gf , Gb) includes the strongest constraint of the

strongest implied constraints between x and y in Gb and Gf .
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Forward Constraint Graph Liveness Information Their Integration

!"#$%&'(0 0 **

−1
++!"#$%&'(i

−1 ** )*+,-./0top !"#$%&'(i

0
44!"#$%&'($

0

((
!"#$%&'(0 0 **

−1
++

0

//&
&&

&&
&&

&&
!"#$%&'($

−1 **

0
55

)*+,-./0top

!"#$%&'(i

−1
00'''''''''

0

66

Figure 9: The integrated constraint graph.

In Table 4, the constraint graph before supergraph node 3, ExitPrint, at row 29 is obtained by integrating

the liveness constraint graphs after node 3 (which is obtained by copying the constraint graph before node 2

DispatchMethod at row 28) and the resulting (i.e., after reaching a fixed-point) inequality constraint graph

before node 3 at row 21 in Table 3. Three extra edges are added to the liveness constraint graph after the

integration. Two edges, the 0 edge from vertex 0 to vertex i and the 0 edge from vertex top to vertex i are

simply taken from the inequality constraint graph. The third −1 edge connection vertex $ and vertex i is

interesting, since a new liveness constraint (a constraint on $) was added by integrating forward information.

Figure 9 shows the integration of the forward and backward information before node 6. Using the forward

phase information, 0 ≤ i < top, leads to a precise liveness information, {stack[$]|0 ≤ $ < top, 0 ≤ i < top}.

In the current implementation the forward information (shown in in Table 3 is integrated with the

resulting backward information before every supergraph node.

4.4.5 Use of an Array Element

For a statement using A[i+c], the algorithm enlarges the live region to include the current (forward) value

of i+c. This means that the constraints on $ are relaxed such that $ = i+c is satisfiable. First, we integrate

the forward information and the fact that A[i + c] is live. Then, the resulting constraint graph is joined with

the constraint graph after the statement to obtain the constraint graph before the statement.

Figure 9 corresponds to integration of the forward and backward information before node 6, occurring

in the first visit of that node. Then we join it with the current liveness information after node 6, which is

dead(stack). The resulting constraint graph is shown in In Table 4 at row 6.

4.4.6 Assignment to an Array Element

For a statement assigning to A[i+c], the algorithm can shrink the live region to exclude the current (forward)

value of i + c. This means that the constraints on $ can be made stronger to exclude the liveness of A[i + c].

However, constraint graphs cannot explicitly represent negations of equalities, and therefore we cannot
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always exclude the liveness of A[i + c]. Hence, only constraints of the form $ ≤ i + c or i ≤ $ + (−c) can be

strengthened to $ ≤ i + (c − 1) or i ≤ $ + (−c − 1), respectively.

In the constraint graph this corresponds to decrementing the c edge from vertex 0 to vertex i by 1 and

incrementing the −c edge from vertex i to vertex 0 by 1.

In Table 4, the constraint graph before supergraph node 15 stack[top] = o at row 40 is obtained by

decrementing 1 from the 0 edge connecting $ vertex and top vertex in the constraint graph after node 15

(which is simply a copy of the constraint graph before node 14 at row 39).

A simpler case is the assignment to the whole array, e.g., stack=new Object[len]. In this case the

resulting constraint graph is simply dead(stack).

In Table 4, the constraint graph before supergraph node 19 stack = new Stack[len] at row 44 is set

to dead(stack).

4.4.7 Assignment Statements

For the statements i = j + c or i = c, the liveness information is obtained by substituting occurrences of i

with j + c or c, respectively. If i occurs in the left side of a constraint, then the constraint is normalized. For

example, for the constraint i ≤ j′ +c′, after substituting j+c for i, the normal form becomes j ≤ j′ +(c′ −c).

In the constraint graph, consider the statement i = j + c. First, edges leading to vertex i are incre-

mented by c, and edges emanating from vertex i are decremented by c. Then, the edges leading to vertex

i are removed and set to lead vertex j, unless j ,= i and the edge already exists with a smaller weight.

Similarly, edges emanating from vertex i are removed and set to emanate from vertex j, unless j ,= i and

the edge already exists with a smaller weight.

In Table 4, the constraint graph before supergraph node 14 top = top + 1 at row 39 is obtained by

adding 1 to the −1 edge connecting $ vertex and topvertex in the constraint graph after node 14 (which is

simply a copy of the constraint graph before node 13 at row 38).

The statement i = c is handled similarly where vertex 0 plays the role of vertex j.

4.4.8 Widening

Widening is performed exactly as in the forward phase.

In Table 4, the constraint graph before supergraph node 4, i < top at row 11 is obtained by taking only

strongest implied constraint from the constraint graph at row 7 (the former visit of node 4) that remain true

in the constraint graph at row 10 (the current visit of node 4). The edge connecting vertex $ and vertex

i is removed, since the constraint $ ≤ i occurring at row 7 does not remain true (in the current visit it is

replaced by a weaker constraint $ ≤ i + 1.
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4.4.9 Conditions

Interestingly, the liveness information allows us to partially interpret program conditions in many interesting

cases. This is a bit tricky, since supergraph nodes are visited in a backward direction11.

Conditions of the form i ≤ j + c are handled simply by first creating a graph having one c edge from

vertex i to vertex j, and then integrating it with the liveness information along the true edge. Similarly,

creating a graph having one −(c+1) edge from vertex j to vertex i, and then integrating it with the liveness

information along the false edge. Finally, the two resulting constraint graphs are joined.

The condition i ≤ c is handled similarly where vertex 0 plays the role of vertex j. The condition c ≤

i is handled similarly where vertex 0 plays the role of vertex i, vertex i plays the role of vertex j, and −c

plays the role of c (since c ≤ i can be written as 0 ≤ i + (−c)).

In Table 4, the constraint graph before supergraph node 4, i < top at row 18 is obtained by integrating

the liveness constraint graph along the true edge (node 6) at row 13 with the constraint i ≤ top + (−1), by

integrating liveness constraint graph along the false edge (node 3) at row 17 with the constraint top ≤ i + 0,

and joining the two resulting constraint graphs. Note that the constraint i ≤ top + (−1) is already included

in the constraint graph at row 13, and that the constraint top ≤ i + 0 is already included in the constraint

graph at row 17. Thus the resulting graph at row 18 is simply the join of the constraint graphs at row 13

and row 17.

5 GC Interface to Exploit Algorithmic Results

The analyses for array memory leaks can be exploited in two ways:

1. By instrumenting the program with assignments to null at the appropriate places, as discussed in

section 1.

2. By providing information to GC so that it can determine the parts of an array that are alive.

We describe the second way below. It should provide better performance as no extra code is required during

the execution of the program.

The output of the algorithm is a set of constraints associated with each program point that describe what

sections of an array are alive at that point. A constraint may depend on the instance and local variables

of the class and may include simple functions on those variables, e.g., top - 1 for the Stack class. We

choose to exploit instance variables constraints that hold at all program points at which a thread can be

stopped for garbage collection. The points at which a thread can be stopped are precisely the gc-points
11It resembles Dijkstra’s weakest preconditions [Dij76]. This analogy is beyond the scope of this paper
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of a type-accurate collector [ADM98, DMH92]. We judiciously choose where to put gc-points so that the

“best” constraint holds. For example, the constraint for the Stack class is that the elements of the stack

array from 0 through top - 1 are alive, provided that there is no gc-point between the beginning of pop

and statement s. If we were to allow a gc-point in this interval, then we would have to use 0 through top as

the constraint; this would be less exact.

The chosen constraints are information that is logically associated with a specific class. Thus, it makes

sense to store the constraints in the class data structure (or class object) together with the other information

specific to the class, e.g., method table and description of fields. Notice that if a class has more than one

array as an instance variable, then it may also have constraints for each array. Thus, a set of constraints can

be associated with each array field. A class-wide flag is also set in the class structure to indicate that it has

at least one such array field.

When a tracing GC [Wil92] (either mark-sweep or copying) encounters an object during its trace, it

checks the class-wide flag in the object’s class structure. If the flag is set, the collector traces the arrays

reachable from the object, limiting its trace of the arrays according to their associated constraints.

Notice that there are cases where an array maybe encountered before its encapsulating object, e.g., the

stack array before its encapsulating Stack object. In this case the GC will trace the array without knowledge

of its associated constraints; thus, the benefits of the analysis will be lost. However, given the assumptions

of the analysis (e.g., that the array is encapsulated by the class and cannot be passed as a parameter to a

method of another class), this could occur only if the thread is stopped for garbage collection in the middle

of the execution of a method of the class so that a pointer to the array is on the thread’s stack. Thus, we do

not expect this to happen very often. If this turns out to be a problem in practice, we have an alternative

solution where we annotate an array object with bit flag, indicating that it is to be traced according to a

constraint, and a back-pointer to its encapsulating instance object.

6 Extensions

6.1 Disjunctive Completion

Sometimes, it occurs that joining constraint graphs (equivalently constraints sets), may result in an over

conservative result. To overcome this, an immediate solution is to maintain sets of constraint graphs in

every program point. In other examples that we have tested, it is sometimes necessary to use two sets of

graphs per program points (but not more than two). This is a well-known tradeoff between better time and

better space complexity oppose to getting a more accurate result [CC79].
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void insertElementAt(Object obj, int i) {

int newcount = count + 1;

if (index >= newcount) {

throw new ArrayIndexOutOfBoundsException(index

+ " > " + count);

}

if (newcount > elementData.length) {

ensureCapacityHelper(newcount);

}

System.arraycopy(elementData, i, elementData, i + 1, count - i);

elementData[i] = obj;

count++;

}

Figure 10: insertElementAt method of java.util.Vector class.

For example, consider the method insertElementAt of class java.util.Vector shown in Figure 10.

Figure 11 demonstrates the first visit of statement elementData[i] = obj during the backward phase. While

in Figure 11(a) the constraint graph after the statement is conservatively copied (by ignoring the statement)

to the constraint graph before the statement, using two constraint graphs, as in Figure 11(b) leads to a more

accurate result. In particular, using one constraint graph per supergraph node, for analyzing the Vector class

leads to an overly conservative result where all array elements are considered live before DispachMethod node,

while using at most two sets of constraint graphs per supergraph node leads to an accurate, yet conservative,

result so that the liveness region before DispachMethod node is {elementData[$]|$ < count}.

We have implemented this extension of the algorithm, maintaining sets of constraint in every supergraph

node. The implementation was used to analyze dead array regions for elementData array in java.util.Vector

class. It turned out that maintaining only one set of constraints for every supergraph node for the forward

phase, and maintaining at most two sets of constraints for every supergraph node for the backward phase

suffice to get a precise result.
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Figure 11: (a) The constraint graph before the statement elementData[i]=obj is a copy of the constraint

graph after the statement. (b) Having several constraints graphs at a supergraph node, allows maintaining

preciser liveness information before the statement elementData[i]=obj.

6.2 Reversing Cousot and Halbwachs Forward Analysis

Interestingly, it is shown here that a forward analysis for detecting affine relationships between program

variables can be adopted to the backward phase of the algorithm, i.e. for analyzing the liveness regions

of arrays. We will employ the same idea used in Section 4.4 by considering $ as a new program variable

(a new instance variable, for class-level analysis), and modeling the effect of a use of an array element

and an assignment to an array element in terms of program variables affine relationships. The following

is the extension the algorithm to handle affine functions of program variables. It is based on Cousot and

Halbwachs [CH78] forward algorithm to automatically identify affine relationships between variables.

The extension is applicable, for example, for array-based abstract data types where the relations among

program variables, used as array indices, are affine functions. An example is an array-based binary tree

implementation, where for a node located in array element A[i], its left son and right son are located in array

elements A[2i], A[2i + 1], respectively. The algorithm in Section 4, can not precisely express expressions such
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as 2i; thus a use of array element A[2i] implies an overly conservative approximation of all array elements

are live. Using the extension for affine functions enables handling such cases more precisely.

6.2.1 Brief Description of Cousot and Halbwachs algorithm framework

A system of affine inequalities of the form
n∑

i=1

(ai,jxi) = cj : j = 1 . . . m

where ai,j , cj ∈ Z, and xi are integer program variables, is maintained in every program point.

The set of solutions to a finite system of affine inequalities can be interpreted geometrically as the closed

convex polyhedron of Rn defined by the intersection of the closed halfspaces corresponding to each inequality.

In [CH78] it is described how to convert from the representation of a polyhedron to a system of affine

relationships and vice-verca.

The operations in a fixed point computing algorithm for finding the affine relationships among program

variables are described in the abstract domain, either in terms of system of affine inequalities, or in terms of

operations on polyhedrons, e.g., the convex-hull of two polyhedrons.

The forward phase of our algorithm is now exactly applying the algorithm of Cousot and Halbwachs. The

following subsections describe how to extend the operations in the backward phase of our algorithm in terms

of this framework. Note that an extra program variable, denoted $, is now being considered. This implies

that the system of affine inequalities maintained in every supergraph node in the forward phase, represent a

polyhedron in Rn, where n is the number of integer program variables, and the system of affine inequalities

maintained in every supergraph node in the backward phase, represent a polyhedron in Rn+1.

In addition, we also allow a special element, denoted by dead(A), for an analyzed array A.

Lastly, the extension allows more precise interpretation expressions of the form
∑n

i=1(aixi) + c; thus

statements of the following form are considered :

• Assignment statements of the form xj =
∑n

i=1(aixi) + c

• Conditions of the form 0 ≤
∑n

i=1(aixi) + c

• Use of array elements of the form A[
∑n

i=1(aixi) + c]

• Assignment to an array element of the form A[
∑n

i=1(aixi) + c]

6.2.2 Skip Supergraph Nodes

The algorithm skips nodes, which do not effect liveness information. For these skipped nodes, it simply

copies the system of affine inequalities after the node to the system of affine inequalities before the node.
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6.2.3 Join

In the convex polyhedron representation, the join of convex polyhedrons P1, . . . , Pn is a convex polyhedron

P including P1, . . . , Pn. Join operation is described in [CH78, section 4.4].

6.2.4 Integrating Forward Information

In the system of inequalities representation, denote the forward information by Sf , and the backward infor-

mation by Sb.

We define their integration, integrate(Sf , Sb), according to the following two rules:

1. Sb = dead(A). In this case the forward information is irrelevant, since it does not provide any con-

straints on the usage of the array; thus, integrate(Sf , dead(A)) yields dead(A).

2. Otherwise, it is simply Sf ∧ Sb, i.e. the set of affine inequalities satisfying both systems of affine

inequalities.

6.2.5 Use of an Array Element

For a statement using A[
∑n

i=1(aixi)+c], the algorithm enlarges the live region to include the current (forward)

value of
∑n

i=1(aixi) + c. This means that the constraints on $ are relaxed such that $ =
∑n

i=1(aixi) + c is

satisfiable. First, we integrate the forward information, denoted by Sf , and the fact that A[
∑n

i=1(aixi) + c]

is live. This is done by integrating the system of affine inequalities :

$ −
n∑

i=1

(aixi) ≤ c

−$ +
n∑

i=1

(aixi) ≤ −c

with Sf . Then, the resulting system of affine inequalities, converted to convex polyhedron is joined with

the convex polyhedron after the statement to obtain the convex polyhedron (equivalently system of affine

inequalities) before the statement.

6.2.6 Assignment to an Array Element

For a statement assigning to A[
∑n

i=1(aixi)+c], the algorithm can shrink the live region to exclude the current

(forward) value of
∑n

i=1(aixi) + c. This means that the constraints on $ can be made stronger to exclude

the liveness of A[
∑n

i=1(aixi) + c].

A naive approach is constructing two systems of affine inequalities from S, the system of affine inequalities

after the statement. The first system, S1 is S ∧{$−
∑n

i=1(aixi) ≤ (c−1)}, and S2 is S ∧{−$+
∑n

i=1(aixi) ≤
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−(c + 1)}. Then, S1 and S2 are joined to obtain the resulting system of affine inequalities before the

statement.

6.2.7 Assignment Statements

For the statements i =
∑n

i=1(aixi) + c, the liveness information is obtained by substituting occurrences of i

with
∑n

i=1(aixi)+ c in the system of affine inequalities. The system of affine inequalities is then normalized.

6.2.8 Widening

Widening operation is described in [CH78, section 4.5]. For polyhedrons Pk−1, Pk, P = Pk−1 - Pk is the

convex polyhedron consisting in the affine inequalities of Pk−1 verified by every element of Pk.

6.2.9 Conditions

Conditions of the form 0 ≤
∑n

i=1(aixi)+ c are handled by propagating the system of affine inequalities after

the condition node strengthened with −
∑n

i=1(aixi) ≤ c along the true edge, and by propagating the system

of affine inequalities after the condition node strengthened with
∑n

i=1(aixi) ≤ 1 − c along the false edge.

6.3 Handling Protected Fields

The following more relaxed assumptions will allow our algorithm to analyze one class at a time under a

relaxed compilation model, proposed in [BK97]. Under the relaxed compilation model it is assumed that the

compiler generates two copies of the code, one under the assumption that derived classes will be presented

later, and a second with the assumption that the generated class will not be used for inheritance. In the

latter case our algorithm can be applied conservatively with the following relaxed assumptions :

• A and its class fields aliases are private or protected class fields.

• A and its class aliases (class fields or class method local variables) are not passed as a parameter to a

method, unless the method is a method of the declaring class.

In general, for a well-written class file, the relaxed assumptions should hold.

7 Conclusion

Automatic memory management through a garbage collector makes programming significantly easier. How-

ever, memory leaks still exist in a garbage collected memory model. We have introduced compile time

analysis detecting memory leaks occurring in arrays of objects, and showed how to expose the detected
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memory leaks to the garbage collector, thus making a more exact GC, reducing the number of potential

memory leaks.

Memory leaks in a garbage collected environment tend to have a negative effect on usability of such

a memory management model. Further investigation is needed in order to statically detect more kinds of

memory leaks occurring in practice.
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