
Interprocedural Shape Analysis

Research Thesis

Submitted in partial ful�llment of the requirements

for the degree of

Master of Science in Computer Science

Noam Rinetzky

Submitted to the Senate of

the Technion { Israel Institute of Technology

Kislev 5761 Haifa December 2000

.

Interprocedural Shape Analysis

Noam Rinetzky

.

The research was done under the supervision of Dr. Shmuel Sagiv and Prof. Orna

Grumberg in the department of Computer Science.

I would like to thank all those who helped me along the way.

I especially want to thank:

Dr. Mooly Sagiv for his guidance, support and endless optimism.

Prof. Orna Grumberg for her time and advice.

Prof. Thomas Reps and Prof. Reinhard Wilhelm for their useful comments.

Nurit Dor for the valuable discussions and suggestions.

Arie Freund, Tal Lev-Ami, Ran Shaham, Alex Warshavsky, and Eran Ya-

hav for their reviews.

My family.

The generous �nancial help of the Technion and the Israeli Academy of Sci-

ence is gratefully acknowledged.

.

Contents

Abstract 1

1 Introduction 2

1.1 Main Results . 3

1.1.1 A novel algorithm for interprocedural shape analysis of

programs manipulating linked lists 3

1.1.2 Scaling the algorithm 7

1.1.3 Abstract data types . 7

1.2 Outline . 10

2 Calling Conventions 11

3 The use of 3-valued logic for program analysis 13

3.1 Representing memory states via 2-valued logical structures . . 13

3.2 Consistent 2-valued structures 16

3.3 The meaning of programs statements 17

3.4 Kleene's 3-valued logic . 17

3.5 Conservative representation of sets of memory states via 3-

valued structures . 17

3.6 Expressing properties via formulae 19

4 Analyzing Recursive Procedures 21

4.1 Observing selected properties in order to improve the analysis 21

4.2 The best abstract transformer 25

4.2.1 The abstraction principle 25

4.2.2 Analyzing return statements 26

4.3 Our iterative algorithm . 28

5 Towards a Scalable Shape Analysis Algorithm 30

5.1 Overview . 30

5.1.1 Outline . 31

5.1.2 A motivating example 31

5.2 Limitations and simplifying assumptions 32

5.3 The algorithm . 34

5.3.1 Call statements . 34

5.3.2 Intraprocedural statements 35

5.3.3 Return statements . 35

5.4 Discussion . 37

6 Analysis of Programs Manipulating Abstract Data Types 39

6.1 Overview . 39

6.2 Analyzing a queue . 39

6.2.1 A cheaper representation of the memory state 40

6.2.2 Representing the e�ect of a procedure by a �nite state

machine . 44

6.2.3 The analysis . 46

6.3 Experience with LEDA . 46

6.4 Discussion . 47

7 Prototype Implementation 49

7.1 Empirical results . 50

8 Conclusions and Future Work 52

8.1 Current limitations and future work 54

Bibliography 55

A Appendix 59

A.1 Syntax of formulae . 59

A.2 Kleene's 3-valued semantics 60

A.3 The meaning of programs statements 63

A.3.1 Intraprocedural statements 63

A.3.2 Interprocedural statements 66

A.4 Test cases. 69

List of Tables

3.1 The core predicates used in the analysis of linked list manip-

ulating programs. 15

3.2 Kleene's 3-valued interpretation of the propositional operators. 17

4.1 The instrumentation predicates used in the interprocedural

analysis of linked list manipulating programs. 22

6.1 The predicates used in the analysis of queue manipulating pro-

grams. 43

7.1 The total number of 3-valued structures that arise during anal-

ysis and running times for the recursive procedures analyzed. . 51

A.1 The predicate-update formulae de�ning the operational se-

mantics of the intraprocedural statements. 65

A.2 The predicate-update formulae de�ning the operational se-

mantics of the call and return statements. 67

A.3 3-valued formulae for conditions involving pointer variables. . 69

List of Figures

1.1 A type declaration for singly linked lists. 4

1.2 A recursive procedure which reverses a list. 4

1.3 The main procedure creates a list and then reverses it. 5

1.4 A program which creates two sets implemented as linked lists. 8

1.5 A procedure which inserts an element into a set implemented

as a linked list . 9

3.1 The 2-valued structure S3:1 which corresponds to the program

state at l2 in the rev procedure upon exit of the fourth recur-

sive invocation of the rev procedure. 16

3.2 The 3-valued structure S3:2 which represents the 2-valued struc-

ture shown in Figure 3.1. 19

4.1 The 3-valued structure S4:1 with instrumentation predicates

which represents the 2-valued structure shown in Figure 3.1. . 24

4.2 The best abstract semantics of a statement st with respect to

3-valued structures. 25

5.1 Representative structures that occur in the analysis of proce-

dure set insert . 33

5.2 An example for the project operator. 36

5.3 An example for the combine operator. 37

6.1 A declaration for the Queue type and the interface procedures

that manipulate it. 41

6.2 An implementation of a Queue. 42

6.3 Representation of memory states by a 2-valued logical strucutre

as suggested at Chapter 4, compared to the representation

suggested in this chapter. 43

6.4 A queue-manipulating program. 44

6.5 A non-deterministic FSM which represents the possible changes

of the queue properties by invoking an interface procedure. . 45

6.6 The representation of the memory state at each point of the

queue-manipulating program shown in Figure 6.4. 47

A.1 A recursive procedure which creates a list. 69

A.2 A non recursive procedure which adds one list to the end of

another . 70

A.3 A recursive procedure which frees all the elements of a list. . . 71

A.4 A recursive procedure which inserts an element into a sorted

linked list. 72

A.5 A recursive procedure which deletes an element from a linked

list. 73

A.6 A recursive procedure which searches for an element in a list. . 74

A.7 A recursive procedure which adds one list to the end of another. 75

A.8 A recursive procedure which reverses a list destructively. . . . 76

Abstract

A shape-analysis algorithm statically analyzes a program to determine infor-

mation about the heap-allocated data structures that the program manipu-

lates. The analysis algorithm is conservative, i.e., the discovered information

is true for every input. The information can be used to understand, verify,

optimize, or parallelize programs. For example, it can be utilized to check

at compile-time for the absence of certain types of memory management er-

rors, such as memory leakage or dereference of null pointers. Current shape

analysis algorithms encounter severe diÆculties when faced with programs

composed of procedures, in particular recursive ones. Also, these algorithms

are hard to scale.

We present a novel algorithm for interprocedural shape analysis of pro-

grams manipulating linked lists. Our algorithm analyzes programs invoking

recursive procedures more precisely than any existing algorithm we know of.

For example, it can verify the absence of memory leaks in many recursive

programs, which is beyond the scope of existing algorithms. A prototype of

the algorithm was implemented. It handles programs manipulating linked

lists written in a subset of C.

Our algorithm handles arbitrary list-manipulating programs. However

in practice, the analyzer might run out of space. We suggest a technique

that improves the space (and time) requirements of our algorithm for non-

recursive programs that manipulate several disjoint data structures. We

look at this technique as a �rst step in an e�ort to scale shape analysis.

In addition, we propose an even more eÆcient solution for programs that

modify their heap allocated data structures only using a �xed set of interface

procedures.

1

Chapter 1

Introduction

A shape-analysis algorithm statically analyzes a program to determine infor-

mation about the heap-allocated data structures that the program manipu-

lates. The analysis algorithm is conservative, i.e., the discovered information

is true for every input. The information can be used to understand, ver-

ify, optimize [GH98], or parallelize [LH88, Hen90, AW93, PCK93, Zap99]

programs. For example, it can be utilized to check at compile-time for the

absence of certain types of memory management errors, such as memory

leakage or dereference of null pointers [DRS98, DRS00].

In the past two decades, many \shape-analysis" algorithms have been de-

veloped [JM81, JM82, LH88, HPR89, CWZ90, Str92, AW93, PCK93, Wan94,

SRW98]. The \quality", and thus the usability, of the information these algo-

rithms can determine relies on the assumption that the number of variables

is �xed. When this assumption is violated, as is the case when recursive

procedures are used, the \quality" of the results, as well as the cost, of these

algorithms deteriorates. This is a problem since recursion provides a natural

way to manipulate linked data structures.

The analysis of large programs presents another problem. It is diÆcult

to perform a \local" analysis at the procedure level since in general, any

heap allocated memory cell can be destructively updated (modi�ed) by any

procedure. Thus, scaling the algorithm to analyze full programs and not just

single procedures is diÆcult.

2

1.1 Main Results

We present a novel algorithm for interprocedural shape analysis of programs

manipulating linked lists written in a subset of C. Our algorithm analyzes

programs invoking recursive procedures more precisely than any existing al-

gorithm we know of. For example, it can verify the absence of memory leaks

in many recursive programs which is beyond the scope of existing algorithms.

We also suggest a technique which can improve in practice the costs (space

and time) of our algorithm for non-recursive programs that manipulate sev-

eral data structures.

1.1.1 A novel algorithm for interprocedural shape anal-

ysis of programs manipulating linked lists

We present a novel interprocedural shape analysis algorithm for programs

manipulating linked lists. Our algorithm analyzes recursive procedures more

precisely than existing algorithms. For example, it is able to verify that all

the recursive list-manipulating procedures of a small library we experimented

with always return a list and never create memory leaks (see Chapter 7). In

fact, not only can our algorithm verify that correct programs do not produce

errors, it can also �nd interesting bugs in incorrect programs. For instance,

it �nds that the recursive procedure rev shown in Figure 1.2, which reverses

a list (declared in Figure 1.1) returns an acyclic linked list and does not

create memory leaks. Furthermore, if an error is introduced by removing the

statement x->n = NULL, the resultant program creates a cyclic list, which

leads to an in�nite loop on some inputs. Interestingly, our analysis indicates

this error. Such a precise analysis of the procedure rev is quite a diÆcult

task since (i) rev is recursive, and thus there is no bound on the number of

activation records that can be created when it executes; (ii) the global store

is updated destructively in each invocation; and (iii) the procedure is not tail

recursive: It sets the value of the local variable x before the recursive call and

uses it as an argument to app after the call ends. No other shape-analysis

algorithm we know of is capable of producing results with such a high level

of precision for programs that invoke this, or similar, procedures.

A shape-analysis algorithm, like any other static program-analysis algo-

rithm, is forced to represent execution states of potentially unbounded size

in a bounded way. This process, often called summarization, naturally en-

tails a loss of information. In the case of interprocedural analyses, it is also

3

/* list.h */

typedef struct node f
int d;

struct node *n;

g *L;

Figure 1.1: A type declaration for singly linked lists.

/* rev.c */

#include "list.h"

L rev(L x)

f
l0 :

L xn, t;

if (x == NULL) return NULL;

xn = x->n;

x->n = NULL;

l1 : t = rev(xn);

return app(t, x);

l2 :

g

Figure 1.2: A recursive procedure which reverses a list in two stages: reverse

the tail of the original list and store the result in t; then append the original

�rst element at the end of the list pointed to by t. The code for procedure

app is given in Section A.4. We also analyzed this procedure with a recursive

version of append (see Chapter 7.)

4

/* main.c */

#include "list.h"

void main()

f
L hd, z ;

hd = create(8);

l3 : z = rev(hd);

g

Figure 1.3: The main procedure creates a list and then reverses it. The code

for procedure create is given in Section A.4.

necessary to summarize all incarnations of recursive procedures in a bounded

way.

Shape-analysis algorithms can analyze linked lists in a fairly precise way,

e.g., see [SRW99]. For an interprocedural analysis, we therefore follow the

approach suggested in [JM82, Deu90] by summarizing activation records in

essentially the same way linked list elements are summarized. By itself,

this technique does not retain the precision we would like. The problem

is with the (abstract) values obtained for local variables after a call. The

abstract execution of a procedure call forces the analysis to summarize, and

the execution of the corresponding return has the problem of recovering the

information lost at the call. Due to the lack of enough information about

the potential values of the local variables, the analysis must make overly

conservative assumptions. For example, in the rev procedure, if the analysis

is not aware of the fact that each list element is pointed to by no more than

one instance of the variable x, it may fail to verify that rev returns an acyclic

list (see Example 4.2.2).

An important concept in our algorithm is the identi�cation of certain

global properties of the heap elements pointed to by a local (stack-allocated)

pointer variable. These properties describe potential and de�nite aliases

between pointer access paths. This allows the analysis to handle return

statements rather precisely. For example, in the rev procedure shown in

Figure 1.2, the analysis determines that the list element pointed to by x

5

is di�erent from all the list elements reachable from t just before the app

procedure is invoked, which can be used to conclude that app must return

an acyclic linked list. Proving that no memory leaks occur is achieved by

determining that if an element of the list being reversed is not reachable from

t at l1, then it is pointed to by at least one instance of x.

A question that comes to mind is how our analysis determines such global

properties in the absence of a speci�cation. Fortunately, we found that a

small set of \local" properties of the stack variables in the analyzed program

can be used to determine many global properties. Furthermore, our analysis

does not assume that a local property holds for the analyzed program. In-

stead, the analysis determines the stack variables that have a given property.

Of course, it can bene�t from the presence of a speci�cation, e.g., [HHN92],

which would allow us to look for the special global properties of the speci�ed

program.

For example, the property sh
bx
(v) holds for a list element v that is pointed

to by two or more invisible instances (see Chapter 2) of the parameter x

from previous activation records. When sh
bx
(v) does not hold for any list

element, we have a guarantee that no list element is pointed to by more

than one instance of the variable x. This simple local property plays a

vital rule in verifying that the procedure rev returns an acyclic list (see

Example 4.2.2). Interestingly, this property also sheds some light on the

importance of tracking the sharing properties of stack variables. Existing

intraprocedural shape-analysis algorithms [JM81, CWZ90, SRW98, SRW99]

only record sharing properties of the heap since the number of variables is

�xed in the intraprocedural setting. However, in the presence of recursive

calls, di�erent incarnations of a local variable may point to the same heap

cell.

The ability to have distinctions between invisible instances of variables

based on their local properties is the reason for the di�erence in precision

between our method and the methods described in [LH88, Hen90, LH88,

CWZ90, AW93, GH96, SRW98]. In Chapter 4, we also exploit properties

that capture relationships between the stack and the heap. In many cases,

the ability to have these distinctions also leads to a more eÆcient analysis.

Our algorithm was developed within the parametric framework described

in [SRW99, LAS00]. That framework allows the generation of intraprocedural

shape-analysis algorithms based on an appropriate speci�cation. In our work

we show that their framework can generate quite precise interprocedural

algorithms too. This solves an open problem mentioned there. Interestingly

6

our proposed solution is more precise and more eÆcient than the original

interprocedural shape analysis algorithm [SRW98].

1.1.2 Scaling the algorithm

Our algorithm can handle any list-manipulating program. However, In prac-

tice the analyzer might run out of space. We address this problem and sug-

gest a technique that can reduce the costs (space and time) of the analysis,

for non-recursive programs that manipulates several disjoint data structures.

For example, the program whose main procedure is shown in Figure 1.4 con-

structs two sets of integers. The sets are implemented as linked lists. Odd

numbers are inserted into the list pointed to by o and even numbers are

inserted into the list pointed to by e. The program manipulates the list by

invoking the procedure set insert shown in Figure 1.5. set insert tra-

verses the list pointed to by x searching for a list element with an integer

value equal to v. If such an element is not found, a new list element is allo-

cated and prepended to the list x points to. The procedure sets rt to point

to the head (�rst element) of the list.

Although the program uses two sets, we observe that when set insert

is invoked, it manipulates only one of them. Since the lists are always dis-

joint, in any particular invocation of set insert the lists not manipulated

are \irrelevant"; they cannot a�ect the execution of the procedure and in

particular cannot be modi�ed.

We utilize this sort of observations, and analyze the behaviour of set insert

on a single linked list and adapt the result for the invocation in main, by in-

ferring that the other list has not changed.

1.1.3 Abstract data types

We have also investigated a more eÆcient solution for programs which ma-

nipulate the heap in a \more controled way". The idea is that the application

program uses abstract data types, ADTs, that are only modi�ed using a �xed

set of interface procedures. In particular, the application program does not

directly access the content of the heap. Because of time constraints we only

briey studied this direction.

7

/* main.c */

#include "list.h"

L x = NULL, rt = NULL;

L g = NULL, o = NULL, e = NULL;

int v;

void main()

f
...

/* g points to the head of a list */

...

while (scanf("%d",&v) == 1)

f
if (v % 2 == 0) f

x = e;

l1 : set insert(); lr1 :

e = rt;

rt = NULL;

g
else f

x = o;

l2 : set insert(); lr2 :

o = rt;

rt = NULL;

g
g

g

Figure 1.4: A program which crates two sets o even, and odd integers. The

sets are implemented as linked lists.

8

/* set insert.c */

#include "list.h"

L t;

void set insert()

f
ln : t = x;

while (t!=NULL) f
if (t->d == v) f

rt = x ;

t = NULL;

return;

g
x = x->n;

g
t = malloc (sizeof(*L));

t->d = v;

t->n = x;

rt = t;

t = NULL;

return;

lx :

g

Figure 1.5: A procedure which inserts v into a set implemented as a linked

list. The procedure prepends new elements at the beginning of the list.

9

1.2 Outline

Our algorithm has been developed using the 3-valued logic framework pre-

sented in [SRW99, LAS00]. This framework provides a sound theoretical

foundation for our ideas and immediately leads to the prototype implemen-

tation Therefore, chapter 3 recalls some basic introduction to 3-valued logic.

Chapter 4 presents our algorithm, in chapter 7 we describe its prototype

implementation. Chapter 5 describes our technique to reduce the space our

algorithm requires and Chapter 6 describes our solution for programs ma-

nipulating ADTs. In Chapter 8 we conclude and review related works. In

Chapter 2 we de�ne our calling conventions.

10

Chapter 2

Calling Conventions

In this chapter, we de�ne our assumption about the programming language

calling conventions. These conventions are somewhat arbitrary; in princi-

ple, di�erent ones could be used with little e�ect on the capabilities of the

program analyzer. Our analysis is not e�ected by the value of non-pointer

variables. Thus, we do not represent scalars (conservatively assuming that

any value is possible, if necessary), and in the sequel, restrict our attention

to pointer variables.

Without loss of generality, we assume that all variables have unique

names. Every invoked procedure has an activation record in which its lo-

cal variables and parameters are stored. An invocation of procedure f at a

call-site label is performed in several steps: (i) store the values of actual pa-

rameters and label in some designated global variables; (ii) at the entry-point

of f , create a new activation record at the top of the stack and copy values

of parameters and label into that record; (iii) execute the statements in f

until a return statement occurs or f 's exit-point is reached (we assume that

a return statement stores the return value in a designated global variable

and transfers the control to f 's exit-point); (iv) at f 's exit-point, pop the

stack and transfer control back to the matching return-site of label; (v) at

the return-site, copy the return value if needed and resume execution in the

caller.

The activation record at the top of the stack is referred to as the cur-

rent activation record. Local variables and parameters stored in the current

activation record and global variables are called visible; local variables and

parameters stored in other activation records are invisible.

11

Example 2.0.1 The C program whose main procedure shown in Figure 1.3

invokes rev shown in Figure 1.2 on a list with eight elements. In procedure

rev, label l1 plays the role of the recursive call site, l0 that of rev's entry

point, and l2 of rev's exit point. This program is used throughout most of

the thesis as a running example.

12

Chapter 3

The use of 3-valued logic for

program analysis

The algorithm is explained (and implemented) using the 3-valued logic frame-

work developed in [LAS00, SRW99]. In this section, we summarize that

framework, which shows how 3-valued logic can serve as the basis for pro-

gram analysis.

3.1 Representing memory states via 2-valued

logical structures

A 2-valued logical structure S is comprised of a set of individuals (nodes)

called a universe, denoted by US , and an interpretation over that universe

for a set of predicate symbols called the core predicates. The interpretation

of a predicate symbol p in S is denoted by pS. For every predicate p of arity

k, pS is a function pS : (US)k ! f0; 1g.
In this thesis, 2-valued logical structures represent memory states. An in-

dividual corresponds to a memory element: either a heap cell (a list element)

or an activation record. The core predicates describe atomic properties of the

programmemory state. The properties of each memory element are described

by unary core predicates. The relations that hold between two memory ele-

ments are described by binary core predicates. The core predicates' intended

meaning is given in Table 3.1. This representation intentionally ignores the

speci�c values of pointer variables (i.e., the speci�c memory addresses that

they contain), and record only certain relationships that hold among the

13

variables and memory elements:

� Every individual v represents either a heap cell in which case heapS(v) =

1, or an activation record, in which case stackS(v) = 1.

� The unary predicate cs
label

indicates the call-site at which a procedure

is invoked. Its similarities with the call-strings of [SP81] are discussed

in Chapter 8.

� The unary predicate top is true for the current activation record.

� The binary relation n captures the n-successor relation between list

elements.

� The binary relation pr connects an activation record to the activation

record of the caller.

� For a local variable or parameter named x, the binary relation x cap-

tures its value in a speci�c activation record.

2-valued logical structures are depicted as directed graphs. A directed

edge between nodes u1 and u2 that is labeled with binary predicate symbol p

indicates that pS(u1; u2) = 1. Also, for a unary predicate symbol p, we draw

p inside a node u when pS(u) = 1; conversely, when pS(u) = 0 we do not

draw p in u. For clarity, we treat the unary predicates heap and stack in a

special way; we draw nodes u having heapS(u) = 1 as circles to indicate heap

elements; and we draw nodes having stackS(u) = 1 as rectangles to indicate

stack elements.1

Example 3.1.1 The 2-valued structure S3:1 shown in Figure 3.1 corresponds

to the memory state at program point l2 in the rev procedure upon exit from

the fourth invocation of the rev function in the running example. The �ve

rectangular nodes correspond to the activation records of the �ve procedure

invocations. Note that our convention is that a stack grows downwards. The

current activation record (of rev) is drawn at the bottom with top written

inside. The three activation records (of rev) drawn above it correspond to

pending invocations of rev. The activation record of the main procedure is

labeled with cs
exit

, indicating it is the �rst procedure invoked.

1This can be formalized alternatively using many sorted logics. We avoided that for

the sake of simplicity, and for similarity with [SRW99].

14

Predicate Intended Meaning

heap(v) v is a heap element

stack(v) v is an activation record

cs
label

(v) label is the call-site of the

procedure whose activation record is v

g(v) The heap element v is pointed to by a

global variable g

n(v1; v2) The n-component of list element v1
points to the list element v2

top(v) v is the current activation record

pr(v1; v2) The activation record v2 is the immediate

previous activation record of v1 in the

stack

x(v1; v2) The local (parameter) variable x,

which is stored in activation record

v1, points to the list element v2

Table 3.1: The core predicates used in the analysis of linked list manipulating

programs. There is a separate predicate g for every global program variable

g, x for every local variable or parameter x, and cs
label

for every label label

immediately preceding a procedure call.

15

cs
exit

hd ���������� �������� �������� �������� ��������n�� ��������n�� ��������n�� ��������n��

cs
l3

pr

��
x

�����������
xn

�����������������

cs
l1

pr

��
x

��������������������

xn

��������������������������

cs
l1

pr

��

x

�����������������������������

xn

�����������������������������������

cs
l1
; top

pr

��

x

��������������������������������������

xn

		���

t

��

Figure 3.1: The 2-valued structure S3:1 which corresponds to the program

state at l2 in the rev procedure upon exit of the fourth recursive invocation

of the rev procedure.

The three isolated heap nodes on the left side of the �gure correspond to

the list elements pointed to by x in pending invocations of rev. The chain of

�ve heap nodes to the right correspond to the (reversed) part of the original

list. The last element in the list corresponds to the list element appended by

app invoked just before l2 in the current invocation of rev.

Notice that the n predicate is the only one that is speci�c to the linked

list structure declared in Figure 1.1. The remaining predicates would play a

rule in the analysis of any data structure.

3.2 Consistent 2-valued structures

Some 2-valued structures cannot represent memory states, e.g., when a unary

predicate g holds at two di�erent nodes for a global variable g. A 2-valued

structure is consistent if it can represent a memory state. It turns out that the

analysis can be more precise by eliminating inconsistent 2-valued structures.

Therefore, in Section 4.3 we sketch a constructive method to check if a 2-

valued structure is inconsistent and thus can be discarded by the analysis.

16

^ 0 1 1=2

0 0 0 0

1 0 1 1=2

1=2 0 1=2 1=2

_ 0 1 1=2

0 0 1 1=2

1 1 1 1

1=2 1=2 1 1=2

:
0 1

1 0

1=2 1=2

Table 3.2: Kleene's 3-valued interpretation of the propositional operators.

3.3 The meaning of programs statements

The meaning functions for program statements are de�ned as transformers

from 2-valued structures to 2-valued structures. Properties of memory states

can be obtained by evaluating �rst order logical formula against the rep-

resenting structure (see Section 3.6), thus, these transformers are de�ned

by collection of �rst order formulae evaluated against the original structure.

The value of every predicate is determined by a corresponding formula. The

main idea is that if a structure S represents a set of memory states that arise

before statement st, than a structure S 0 that represents the corresponding

set of stores that arise after st can be obtained by evaluating a suitable col-

lection of formulae that capture the semantics of st. Section A.3 de�nes the

operational semantics of the subset of the C programming language analyzed.

3.4 Kleene's 3-valued logic

Kleene's 3-valued logic is an extension of ordinary 2-valued logic with the

special value of 1=2 (unknown) for cases in which predicates could have either

value, i.e., 1 (true) or 0 (false). Kleene's interpretation of the propositional

operators is given in Table 3.2. We say that the values 0 and 1 are de�nite

values and that 1=2 is an inde�nite value.

3.5 Conservative representation of sets of mem-

ory states via 3-valued structures

Like 2-valued structures, a 3-valued logical structure S is also comprised of

a universe US and an interpretation of the predicate symbols. However, for

17

every predicate p of arity k, pS is a function pS : (US)k ! f0; 1; 1=2g, where
1=2 explicitly captures unknown predicate values.

3-valued logical structures are also drawn as directed graphs. De�nite

values are drawn as in 2-valued structures. Binary inde�nite (1=2) predicate

values are drawn as dotted directed edges. Also, we draw p = 1=2 inside a

node u when pS(u) = 1=2.

Let S\ be a 2-valued structure, S be a 3-valued structure, and f : US
\
!

US be a surjective function. We say that f embeds S\

into S if for every

predicate p of arity k and u1; u2; : : : ; uk 2 US
\

, either pS
\

(u1; u2; : : : ; uk) =

pS(f(u1); f(u2); : : : ; f(uk)) or p
S(f(u1); f(u2); : : : ; f(uk)) = 1=2. We say that

S conservatively represents all the 2-valued structures that can be embedded

into it by some function f . Thus, S can compactly represent many structures.

Nodes in a 3-valued structure that may represent more than one indi-

vidual from a given 2-valued structure are called summary nodes. We use a

designated unary predicate sm to maintain summary-node information. A

summary node w has smS(w) = 1=2, indicating that it may represent more

than one node from 2-valued structures. These nodes are depicted graphi-

cally as dotted circles or rectangles. In contrast, if smS(w) = 0, then w is

known to represent a unique node. We impose an additional restriction on

embedding functions: only nodes with smS(w) = 1=2 can have more than

one node mapped to them by an embedding function.

Example 3.5.1 The 3-valued structure S3:2 shown in Figure 3.2 represents

the 2-valued structure S3:1 shown in Figure 3.1. The dotted circle summary

node represents all the eight list elements. The inde�niteness of the self n-

edge results from the fact that there is an n-component pointer between each

two successors and no n-component pointer between non-successors.

The dotted rectangle summary node represents the activation records

from the second and third invocation of rev. The unary predicate cs
l1
drawn

inside it indicates that it (only) represents activation records of rev that

invoked at l1 (i.e., recursive calls). The dotted x-edge from this summary

node indicates that an invisible instance of x from the second or the third

call may or may not point to one of the list elements. The rectangle at the

top of Figure 3.2 represents the activation record at the top of Figure 3.1,

which is the invocation of main. The second rectangle from the top in S3:2

represents the second rectangle from the top in S3:1 which is an invocation

of rev from main (indicated by the occurrence of cs
l3
inside this node). The

bottom rectangle in S3:2 represents the bottom rectangle in S3:1, which is

18

cs
exit

hd ��

n

��

cs
l3

pr

��
x;xn

��

cs
l1

pr

pr

��
x;xn

��

cs
l1
; top

pr

��
x;xn;t

��

Figure 3.2: The 3-valued structure S3:2 which represents the 2-valued struc-

ture shown in Figure 3.1.

the current activation record (indicated by the occurrence of top inside this

node. All other activation records are known not to be the current activation

record (i.e., the top predicate does not hold for these nodes) since top does

not occur in either of them.

3.6 Expressing properties via formulae

Properties of structures can be extracted by evaluating formulae. We use

�rst-order logic with transitive closure and equality, but without function

symbols and constant symbols.2 The formal de�nition for the syntax of

formulae is in A.1 and the de�nition for kleene's 3-valued semantics is in A.2.

For example, the formula

9v1; v2 : :top(v1) ^ :top(v2) ^ v1 6= v2^
x(v1; v) ^ x(v2; v)

(3.1)

expresses the fact that there are two di�erent invisible instances of the pa-

rameter variable x pointing to the same list element v.

The Embedding Theorem (see [SRW99, Theorem 3.7]) states that any

formula that evaluates to a de�nite value in a 3-valued structure evaluates to

the same value in all of the 2-valued structures embedded into that structure.

2There is one non-standard aspect in our logic; v1 = v2 and v1 6= v2 are inde�nite in

case v1 and v2 are the same summary node. The reason for this is seen shortly.

19

The Embedding Theorem is the foundation for the use of 3-valued logic in

static-analysis: It ensures that it is sensible to take a formula that|when

interpreted in 2-valued logic|de�nes a property, and reinterpret it on a 3-

valued structure S: The Embedding Theorem ensures that one must obtain a

value that is conservative with regard to the value of the formula any 2-valued

structure represented by S.

Example 3.6.1 Consider the 2-valued structure S3:1 shown in Figure 3.1.

The formula (3.1) evaluates to 0 at all of the list nodes.

In contrast, consider the 3-valued structure S3:2 shown in Figure 3.2. This

formula (3.1) evaluates to 1=2 at the dotted circle summary heap node. This

is in line with the Embedding Theorem since 1=2 is not a de�nite value.

However, it is not very precise since the fact that di�erent invisible instances

of x are never aliased is lost.

20

Chapter 4

Analyzing Recursive

Procedures

In this chapter, we describe our shape-analysis algorithm for recursive pro-

grams manipulating linked lists. The algorithm iteratively annotates each

program point with a set of 3-valued logical structures in a conservative

manner, i.e., when it terminates, every 2-valued structure that can arise at a

program point is represented by one of the 3-valued structures computed at

this point. However, it may also conservatively include superuous 3-valued

structures.

Section 4.1 describes the properties of heap elements and local variables

which are tracked by the algorithm. For ease of understanding, in Section 4.2,

we give a high-level description of the iterative analysis algorithm. The

actual algorithm is presented in Section 4.3.

4.1 Observing selected properties in order to

improve the analysis

To overcome the kind of imprecision described in Example 3.6.1, we introduce

instrumentation predicates. These predicates are stored in each structure,

just like the core predicates. The values of these predicates are derived from

the core predicates, that is, every instrumentation predicate has a formula

over the set of core predicates that de�nes its meaning. The instrumenta-

tion predicates that our interprocedural algorithm utilizes are described in

Table 4.1, together with their informal meaning and their de�ning formula

21

Predicate Intended Meaning De�ning Formula

x(v) The list element v is pointed to 9v1 : top(v1) ^ x(v1; v)

by the visible instance of x.

r
n;x
(v) The list element v is reachable 9v1; v2 : top(v1)

by following n-components from ^ x(v1; v2) ^ n�(v2; v)

the visible instance of x.

bx(v) The list element v is pointed to 9v1 : :top(v1) ^ x(v1; v)

by an invisible instance of x.

r
n;bx
(v) The list element v is reachable 9v1; v2 : :top(v1)

by following n-component from ^ x(v1; v2) ^ n�(v2; v)

an invisible instance of x.

sh
bx
(v) The list element v is pointed 9v1; v2 : v1 6= v2

to by more than one invisible ^ :top(v1) ^ x(v1; v)

instance of x. ^ :top(v2) ^ x(v2; v)

nn
bx
(v) The invisible instance of x 9v1 : :top(v) ^ x(v; v1)

stored in the activation record v

points to some list element.

al
x;y
(v) The invisible instances of x 9v1 : :top(v)

and y stored in the activation ^ x(v; v1) ^ y(v; v1)

record v are aliased.

al
x;pr[y](v) The instance of x stored in the 9v1; v2 : pr(v; v1)

activation record v is aliased ^ x(v; v2) ^ y(v1; v2)

with the instance of y stored in

v's previous activation record.

al
x;pr[y]!n

(v) The instance of x stored in the 9v1; v2; v3 : pr(v; v2)
activation record v is aliased with ^ y(v2; v3) ^ n(v3; v1)

y->n for the instance of y stored ^ x(v; v1)

in v's previous activation record

al
x!n;pr[y](v) x->n for the instance of x stored 9v1; v2; v3 : pr(v; v3)

in the activation record v is ali- ^ y(v3; v1)

-ased with the instance of y stored ^ x(v; v2) ^ n(v2; v1)

in v's previous activation record.

Table 4.1: The instrumentation predicates used for the interprocedural anal-

ysis. Here x and y are generic names for local variables and parameters x

and y of an analyzed function. The n� notation used in the de�ning formula

for r
n;x
(v) denotes the reexive transitive closure of n.

22

(other intraprocedural instrumentation predicates are de�ned in [SRW99]).

The instrumentation predicates are divided into four classes, separated

by double horizontal lines in Table 4.1: (i) Properties of heap elements with

respect to visible variables, i.e., x and r
n;x
. These are the ones originally

used in [SRW99]. (ii) Properties of heap elements with respect to invisible

variables. These are bx and r
n;bx
, which are variants of x and r

n;x
from the �rst

class, but involve the invisible variables. The sh
bx
(v) predicate is motivated

by Example 3.6.1. It is similar to the heap-sharing predicate used in [JM81,

CWZ90, SRW98, SRW99]. (iii) Generic properties of an individual activation

record. For example, nnS
bx
(u) = 1 (nn for not NULL) in a 2-valued structure

S indicates that the invisible instance of x that is stored in activation record

u points to some list element. (iv) Properties across successive recursive calls.

For example, the predicate al
x;pr[y] captures aliasing between x at the callee

and y at the caller. The other properties are similar but also involve the n

component.

Example 4.1.1 The 3-valued structure S4:1 shown in Figure 4.1 also repre-

sents the 2-valued structure S3:1 shown in Figure 3.1. In contrast with S3:2

shown in Figure 3.2, in which all eight list elements are represented by one

heap node, in S4:1, they are represented by six heap nodes. The leftmost

heap node in S4:1 represents the leftmost list element in S3:1 (which was

originally the �rst list element). The fact that chd is drawn inside this node

indicates that it represents a list element pointed to by an invisible instance

of hd. This fact can also be extracted from S4:1 by evaluating the chd de�ning
formula at this node, but this is not always the case, as we will now see:

The second leftmost heap node is a summary node that represents both the

second and third list elements from the left in S3:1. There is an inde�nite

x-edge into this summary node. Still, since bx is drawn inside it, every list

element it represents must be pointed to by at least one invisible instance of

x. Therefore, the analysis can determine that this node does not represent

storage locations that have been leaked by the program.

The other summary heap node (the second heap node from the right)

represents the second and third (from the right) list elements of S3:1. Its

incoming n edge is inde�nite. Still, since r
n;t

occurs inside this node, we

know that all the list elements it represents are reachable from t.

Note that the predicate sh
bx
does not hold for any heap node in S4:1.

Therefore, no list element in any 2-valued structure that S4:1 represents is

pointed to by more than one invisible instance of the variable x. Note that

23

cs
exit

nn
c

hd

hd ��	
�����chdbx cxnbx ��������x; r
n;tbx; r
n;xn

	
�����xn
r
n;t

n�� r
n;t

n��

n

�� ������� t
n��

cs
l3

nn
bx
; nn

cxn

pr

�� x

�����������
xn

��

cs
l1
; al

x;pr[xn]

nn
bx
; nn

cxn

pr

��

x;xn

��

xn

		

pr

��

cs
l1
; top

al
x;pr[xn]

pr

��

x

��																																										

xn

��

t

���

Figure 4.1: The 3-valued structure S4:1 with instrumentation predicates

which represents the 2-valued structure shown in Figure 3.1. For brevity,

we do not show r
n;x

for nodes having the property x.

the combination of sh
bx
(u) = 0 (pointed to by � 1 invisible instance of x)

and bx() = 1 (pointed to by � 1 invisible instance of x) allows determining

that each node represented by a summary node u is pointed to by exactly

one invisible instance of x (cf. the second leftmost heap node in S4:1).

The stack elements are depicted in the same way as they are depict by

S3:2 (see Example 3.5.1). Since al
x;pr[xn] occurs inside the two stack nodes at

the bottom, for every activation record v they represent, the instance of x

stored in v is aliased with the instance of xn stored in the activation record

preceding v.

Notice that the r
n;x
, r

n;bx
, al

x;pr[y]!n
; al

x!n;pr[y] predicates are the only in-

strumentation predicates speci�c to the linked list structure declared in Fig-

ure 1.1. The remaining predicates would play a role in any analysis that

would attempt to analyze the runtime stack.

24

set of consistent
2-valued structures

[[st]] �� set of consistent
2-valued structures

abstraction

��

3-valued structure

concretization

��

set of 3-valued structures

Figure 4.2: The best abstract semantics of a statement st with respect to

3-valued structures. [[st]] is the operational semantics of st applied pointwise

to every consistent 2-valued structure.

4.2 The best abstract transformer

This section provides a high level description of the algorithm in terms of the

general abstract interpretation framework [CC79]. Conceptually, the most

precise (also called best) conservative e�ect of a program statement on a

3-valued logical structure S is de�ned in three stages shown in Figure 4.2:

(i) �nd each consistent 2-valued structure S\ represented by S (concretiza-

tion); (ii) apply the C operational semantics to every such structure S\ result-

ing in a 2-valued structure S\
0
and (iii) �nally abstract each of the 2-valued

structures S\
0
by a 3-valued structure of bounded size (abstraction). Thus,

the result of the statement is a set of 3-valued structures of bounded size.

4.2.1 The abstraction principle

The abstraction function is de�ned by a subset of the unary predicates, that

are called abstraction properties in [SRW99]. The abstraction of a 2-valued

structure is de�ned by mapping all the nodes which have the same values for

the abstraction properties into the same abstract node. Thus, the values of

abstraction predicates remain the same in the abstracted 3-valued structures.

The values of every other predicate p in the abstracted 3-valued structure are

determined conservatively to yield an inde�nite value whenever correspond-

ing values of p in the represented concrete 2-valued structure disagree.

Example 4.2.1 The structure S3:2 shown in Figure 3.2 is an abstraction of

S3:1 shown in Figure 3.1 when all of the unary core predicates are used as

abstraction properties. For example, the activation records of the 2nd and

25

3rd recursive call to rev are both mapped into the summary stack node since

they are both invisible activation records of invocations of rev from the same

call-site (i.e., top does not hold for these activation records, but cs
l1
does).

Also, all of the eight heap nodes are mapped to the same summary-node for

which only the heap core predicate holds. The pr-edge into the stack node

at the top of the �gure is de�nite since there is only one node mapped to

each of the edge's endpoints. In contrast, the hd-edge emanating from the

uppermost stack node must be inde�nite in order for S3:2 to conservatively

represent S3:1: In S3:1 the hd predicate holds for the uppermost stack node

and the leftmost heap node, but it does not hold for any other heap node,

and all heap nodes of S3:1 are summarized into one summary heap node.

The structure S4:1 shown in Figure 4.1 is an abstraction of S3:1 shown in

Figure 3.1 when the abstraction properties all of the unary core and instru-

mentation predicates. Notice that nodes with di�erent observed properties

lead to di�erent instrumentation predicate values and thus are never repre-

sented by the same abstract node.

Because the set of unary predicates is �xed, there can only be a constant

number of nodes in an abstracted structure which guarantees that the anal-

ysis always terminates.

4.2.2 Analyzing return statements

How to retain precision when the analysis performs its abstract execution

across a return statement is the key problem that we face. By exploiting

the instrumentation predicates, our technique is capable of handling return

statements quite precisely. This is demonstrated in the following example.

For expository purposes we will explain the abstract execution of return

statement in term of the best abstract transformer, described in Section 4.2.

The actual method our analysis uses is discussed in Section 4.3.

Example 4.2.2 Let us exemplify the application of the return statement to

the 3-valued structure S4:1 shown in Figure 4.1 following the stages of the

best iterative algorithm described above.

Stage I{Concretization

Let S\ be one of the consistent 2-valued structures represented by S4:1. Let

k � 1 be the number of activation records represented by the summary stack

26

node in S4:1. Since S\ is a consistent 2-valued structure, the x parameter

variable in each of these k activation records must point to one of the isolated

list elements represented by the left summary heap node. This can be inferred

by the following series of observations: the fact that the x variable in each of

these activation records points to a list element is indicated by the presence

of nn
bx
inside the stack summary node. The list elements pointed to by these

variables must be represented by the left summary heap node since only one

x-edge emanates from the summary stack node, and this edge enters the left

summary heap node.

Letm � 1 be the number of list elements represented by the left summary

heap node. Since bx occurs inside this node, each of the m list elements it

represents must be pointed to by at least one invisible instance of x. Thus,

m � k. However since sh
bx
does not occur inside this summary node, none

of the m list elements it represents is pointed to by more than one invisible

instance of x. Thus, we conclude that m = k.

Using the fact that al
x;pr[xn] is drawn inside the two stack nodes at the

bottom of Figure 4.1, we conclude that the instance of x in each recursive

invocation of rev is aliased with the instance of xn of rev's previous invo-

cation. Thus, each acceptable S\ looks essentially like the structure shown

in Figure 3.1, but with k isolated list elements not pointed to by hd, rather

than two, and with some number of elements in the list pointed to by x.

Stage II{Applying the operational semantics

Applying the operational semantics of return to S\ (see Chapter 2 and

Section A.3) results in a (consistent) 2-valued structure S\
0
. Note that the

list element pointed to by the visible instance of x in S\
0
is not pointed to

by any other instance of x, and it is not part of the reversed suÆx. Thus S\
0

di�ers from S\ by having the top activation record of S\ removed from the

stack and by having the activation record preceding it be the new current

activation record.

Stage III{abstraction

Abstracting S\
0
into a 3-valued structure may result, depending on k, in one of

three possible structures. If k > 2 then the resulting structure is very similar

to S4:1, since the information regarding the number of remaining isolated list

elements and invisible activation record is lost in the summarization. For

27

k = 1 and k = 2 we have a consistent 2-valued structures with four and

three activation records, respectively. Abstracting these structures results in

no summary stack nodes, since the call-site of each non-current activation

record is di�erent. For k = 1 only one isolated list elements remains, thus it

is not summarized. For k = 2 the two remaining isolated heap nodes are not

merged since they are pointed to by di�erent (invisible) local variables. For

example, one of them is pointed to by hd and the other one is not.

Notice that if no instrumentation predicates correlating invisible variables

and heap nodes are maintained, a conservative analysis cannot deduce that

the list element pointed to by the visible instance of x in S\
0
is not pointed

to by another instance of this variable. Thus, the analysis must conser-

vatively assume that future calls to app may create cycles. However, even

when al
x;pr[xn] is not maintained, the analysis can still produce fairly accurate

results using only the sh
bx
and bx instrumentation predicates.

4.3 Our iterative algorithm

Unlike a hypothetical algorithm based on the best abstract transformer which

explicitly applies the operational semantics to each of the (potentially in�-

nite) structures represented by a three-valued structure S, our algorithm

explicitly operates on S, yielding a set of 3-valued structures S 0. By employ-

ing a set of judgements, similar in spirit to the ones described Example 4.2.2

our algorithm produces a set which conservatively represents all the struc-

tures that could arise after applying the return statement to each consistent

2-valued structure S represents. However, in general, the transformers used

are conservative approximations of the best abstract transformer; the set of

structures obtained may represent more 2-valued structures than those rep-

resented by applying the best abstract transformer. Our experience to date,

reported in Section 7, indicates that it usually gives good results.

Technically, the algorithm computes the resulting set of 3-valued struc-

tures S 0 by evaluating formulae in 3-valued logic. When interpreted in 2-

valued logic these formulae de�ne the operational semantics. Thus, the Em-

bedding Theorem (see [SRW99, Theorem 3.7]) guarantees that the results

are conservative w.r.t a hypothetical algorithm based on the best abstract

transformer. The update formulae for the core-predicates describing the op-

erational semantics is given in Section A.3.

We glossed over some several important details needed for boosting the

28

precision of our algorithm that can be found in Chapter 7.

29

Chapter 5

Towards a Scalable Shape

Analysis Algorithm

5.1 Overview

In this chapter, we describe an attempt to improve the eÆciency of the

interprocedural shape analysis algorithm described in Chapter 4. The main

idea is to decrease the space (and the time) of the algorithm by reducing the

size of the structures used. Our chief insight is that parts of structures that

represent pieces of information that cannot be a�ected by a procedure can be

represented more conservatively during the analysis of the procedure body.

The structures at a procedure return-site can be constructed by combining

the structures at the exit-site with the unchanged parts of the structures at

the call-site.

In order to �nd the \irrelevant" parts of the memory-state at the call-site,

we treat the heap as an undirected graph; the nodes in this graph are the

heap elements, and the graph edges are pointer components of heap elements.

Any connected component that the procedure cannot refer to any of its nodes

is irrelevant to the analysis of the procedure behaviour. Irrelevant parts can

be conservatively found by analyzing the 3-valued logical strucutres that arise

in the analysis.

The new algorithm may be less precise than the one described in Chap-

ter 4, although we do not expect this to happen. For details, see Section 5.4.

30

5.1.1 Outline

In Section 5.1.2 we give an informal description of the algorithm by means of

an example. In Section 5.2 we restrict the set of programs that the algorithm

can handle. Section 5.3 gives a formal description of the algorithm, and

Section 5.4 concludes.

5.1.2 A motivating example

We use the program that creates two sets of integers described in Section 1.1.2

as a running example in this chapter. The algorithm presented in Chapter 4

analyzes set insert with all the relevant structures, i.e., any combination

of the three disjoint lists that arises at any call-site (notice that at l1 and

l2, g points to a list). However, we observe that any particular invocation

of set insert may only refer to list elements reachable from the global

variable x. Instead of analyzing set insert in all combinations, we analyze

the behaviour of set insert on a single linked list and adapt the result for

the invocation in main, by combining the unchanged linked lists.

Figure 5.1 compares the approach suggested in Chapter 4 with the one

presented in this chapter. The second column indicates representative struc-

tures that occur when set insert is invoked on a new set element. The

third column shows the corresponding structures that arise in the analysis

proposed in this chapter which uses a compact representation of \irrelevant"

portions of the heap. When the same structures occur in both algorithms

they are shown only once. To make the diagrams more intuitive, the value of

the x-predicate which captures the \pointed-to by global variable x" prop-

erty is depicted via an edge from a label x to the node x points to (and via

the absence of edges from that label to the nodes x does not point to). Also,

to avoid clutter, the activation record nodes are not shown.

When set insert is entered at ln, the algorithm described in the pre-

vious chapter, simply adds a new activation record, which is not shown. In

particular, there is no change between the representation of the heap in S1

and in S2. In contrast, our new algorithm also compacts the representation

of all the \irrelevant" calling context to one summary node. The new algo-

rithm discovers that the four upper nodes in S1 are irrelevant for the analysis

of set insert; they are not on any undirected path of edges from any node

that is pointed-to by one of the variables that set insert refers to: x, t,

or rt. Thus, these nodes are represented by the same summary node in S3.

31

On the other hand, the two lower nodes in S1 that represent the head and

the tail of the list pointed to by x are not compacted. The main idea is that

properties of irrelevant nodes cannot be altered by any procedure invocation.

The new auxiliary property ic distinguishes nodes that represent \irrel-

evant context" from the rest of the nodes. In S3, only the upper summary

node has this property.

Intraprocedural statements are handled in the same way in both algo-

rithms, resulting in S4 and S5 at the exit-site.

The structure S4 arises at the exit-site of set insert. The algorithm

described in the previous chapter, creates the structure S6 by popping the

top activation record in S4. Since the diagrams only show the heap , no

di�erence is shown between S4 and S6. In contrast, our new algorithm

constructs S6 by combining S1 and S5. It takes the four upper nodes in

S1 and the three lower nodes in S5 and produces S6. In fact, the algorithm

replaces the compact representation of the irrelevant context in S5, by the

more detailed one found in S1. Notice that the structure S6 is more precise

than S5 (ignoring the activation records that are not shown, and the auxiliary

predicate ic).

The crucial di�erences between the two approaches are the fact that the

new algorithm uses both S1 and S5 to produce S6, and that the new algorithm,

utilizes the fact that irrelevant information can be copied from S1 into S6.

5.2 Limitations and simplifying assumptions

The main limitation of our algorithm is that it cannot handle recursive proce-

dures. For simplicity, in the rest of this chapter we assume that the analyzed

programs adhere to the following restrictions: (a) procedures have no pa-

rameters, and (b) all variables are global. Even for restricted programs such

as our running example, the algorithm presents space improvement over the

algorithm presented in Chapter 4. When applied to our running example,

the algorithm presented in this chapter uses only one node to represent the

irrelevant context, while the algorithm of the previous chapter, uses two to

four nodes for this task.

32

Loc Without Compaction With Compaction

l2 : (S1) e �� ������� r
n;e

n �� r
n;e

n��
g �� ������� r

n;g

n �� r
n;g

n��

x; o �� ������� r
n;x

r
n;o

n �� rn;x
r
n;o

n��

ln : (S2)

e �� ������� r
n;e

n �� r
n;e

n��

g �� ������� r
n;g

n �� r
n;g

n��

x; o �� ������� r
n;x

r
n;o

n �� rn;x
r
n;o

n��

(S3) n

��

g; e ��
ic

rn;g=1=2

rn;e=1=2

x; o �� ������� r
n;x

r
n;o

n �� rn;x
r
n;o

n��

. . . continue the same analysis algorithm

lx : (S4)

e �� ������� r
n;e

n �� r
n;e

n��

g �� ������� r
n;g

n �� r
n;g

n��

rt �� ������� r
n;rt

n ��	
�����rn;x
rn;rt
rn;o

n �� rn;x
rn;rt
rn;o

n��

x; o

���������

(S5) n

��

g; e ��
ic

rn;g=1=2

rn;e=1=2

rt �� ������� r
n;rt

n ��	
�����rn;x
rn;rt
rn;o

n �� rn;x
rn;rt
rn;o

n��

x; o

��

lr2 (S6) e �� ������� r
n;e

n �� r
n;e

n��
g �� ������� r

n;g

n �� r
n;g

n��

rt �� ������� r
n;rt

n ��	
�����rn;x
rn;rt
rn;o

n �� rn;x
rn;rt
rn;o

n��

x; o

��

Figure 5.1: Representative structures that occur in the analysis of

set insert in the algorithm presented in Chapter 4 (without compaction)

and the corresponding structures in the algorithm presented in this Chapter

(with compaction.) 33

5.3 The algorithm

In this section, we describe our new algorithm. It is similar to the algorithm

given in Chapter 4, but the analysis of call and return statements is changed.

5.3.1 Call statements

Given a structure Sc at a call-site of a procedure pr, the algorithm generates

a structure Sn at the entry-site of procedure pr by adding a new activation

record to Sc at the top of activation record stack (as described in Chapter 4),

and compacting \irrelevant calling context". Compacting \irrelevant calling

context" is done by (a) �nding \irrelevant" nodes in US
c
and (b) summarizing

these nodes by one \irrelevant context" node.

A node u in US
c

is relevant for the analysis of procedure pr if u represents

a list element that appears on a (possibly empty) undirected path of n-

selectors from some variable that pr refers to. The property \being relevant

for procedure pr" is expressed by the formula:

r
pr
(v) = 9v1 : usesZpr(v1) ^ un�(v1; v)

The formula uses
Z
(v) is de�ned for every subset of the program variables

Z � PV ar as uses
Z
(v) =

W
x2Z

x(v); Z
pr

denotes the subset of the global

program variables that pr refers to. Thus, uses
Zpr(v) holds only at nodes

that represent list elements pointed-to by a variable which is referred by pr.

For example, since Z
set insert

= fx; t; rtg, the formula uses
Zset insert

(v) holds

only at the leftmost node at the bottom in S1 shown in Figure 5.1.

The formula un�(v1; v2) is a shorthand for reexive transitive closure

of the formula un(v1; v2) = n(v1; v2) _ n(v2; v1). The formula un(v1; v2) ex-

presses the property that v1 is the n-successor of v2 or vice-versa. The for-

mula un�(v1; v2) captures the property that v1 and v2 are connected via an

undirected path of n-selectors. For example, in S1 the formula un�(v1; v2)

evaluates to 1=2 for the two nodes at the bottom, indicating that they might

be connected.

The algorithm chooses as the irrelevant nodes for procedure pr the nodes

at which the formula r
pr
(v) evaluates to 0. For example, in S1, shown in

Figure 5.1, the formula r
set insert

evaluates to 0 at all the four upper nodes

since there is no path of n-edges between the leftmost node at the bottom,

which has the uses
Zset insert

property, and any of these nodes. Thus, these

34

nodes are irrelevant. Notice that even if r
pr

evaluates to 1=2 at a node u,

this node is not irrelevant and thus will be explicitly represented.

The algorithm summarizes the irrelevant nodes by one summary node

by loosing information when necessary. This node has a de�nite value for

a property p only if all the irrelevant nodes has that same value for p, and

an inde�nite value otherwise. For example, in Figure 5.1, S3 results by

compacting the irrelevant context of procedure set insert in S1. The four

upper nodes in S1, are summarized by the top summary node in S3 which

has 0 for property o and an inde�nite value for property e. This is because

the four upper nodes in S1 have 0 for property o and di�erent values for

property e.

After compacting the irrelevant context by one node, it is given the prop-

erty ic.

5.3.2 Intraprocedural statements

Intraprocedural statements are handled as in the algorithm in Chapter 4.

The property ic is not a�ected by intraprocedural statements. It acts as a

permanent mark distinguishing the node that represents the irrelevant calling

context from other nodes.

5.3.3 Return statements

Given a structure Sx at the exit-site of procedure pr and a structure Sc

at a call-site to procedure pr, the algorithm generates a structure Sr at

the return-site by (a) \replacing" the representation of the irrelevant calling

context, in Sx by the more detailed representation of Sc, and (b) popping

the top activation record (This is done like in the algorithm presented in

Chapter 4.)

Formally, replacing the representation of the irrelevant calling context, is

done by applying two new operations project and combine de�ned below.

De�nition 5.1 (Projection of a strucutre) For a structure S = hU; �i
and a set of nodes W � U , the projection of S on W , denoted by Sj

W
is the

structure S 0 where US
0

= W and pS
0

(u1; : : : ; uk) = pS(u1; : : : ; uk).

Projecting a 3-valued logical strucutre S on a set W � US , results in a struc-

ture Sj
W

which is \smaller" than S, it contains a subset of the nodes in US

35

(S7) e �� ������� r
n;e

n �� r
n;e

n��

g �� ������� r
n;g

n �� r
n;g

n��

Figure 5.2: An Example for the project operator. S7 is the projection of S1

on the four nodes at the top of the diagram.

(assuming W 6= US), but the properties of the nodes in its universe matches

their properties in S. For example, projecting S1 shown in Figure 5.1 on the

four upper nodes results in the structure S7 shown in Figure 5.2. Notice that

the universe of S7 contains only the four nodes shown, in particular it does

not contain activation records.

De�nition 5.2 (Structure combination) For two logical structures S1
and

S2
over the same vocabulary P. The combination of S1

and S2
, denoted

combine(S1; S2) is the structure S where

US = fu:1 : u 2 U1g
S
fu:2 : u 2 U2g

pS(u1; : : : ; uk) =8<
:

[[p(v1; : : : ; vk)]]
S
1

(v1 7! w1; : : : ; vk 7! w
k
) u1 = w1:1; : : : ; uk = w

k
:1

[[p(v1; : : : ; vk)]]
S
2

(v1 7! w1; : : : ; vk 7! w
k
) u1 = w1:2; : : : ; uk = w

k
:2

0 otherwise

The combine operation takes two structures S1 and S2, and generates one.

Each node in the resulting structure \stands" for exactly one node from either

US
1

or US
2

, and has the same properties as this node. Figure 5.3 gives an

example for combination of structures. The names of the nodes are written

in subscripts to demonstrate the renaming of elements.

The algorithm replaces the representation of the irrelevant calling context

in a structure Sx at the exit-site, with the irrelevant context representation

in a structure at a call-site of pr, Sc by: (i) projecting Sx on the set of all

nodes that do not have the ic property, e�ectively removing the irrelevant

context node from the structure, (ii) projecting Sc on the set of irrelevant

nodes for procedure pr, and (iii) �nally, combining the resulting structures,

thereby, obtaining the representation of the irrelevant nodes at the call-site.

36

(S8) e �� 	
�����u1

r
n;e

n �� u2

r
n;e

n��

(S9) o �� 	
�����u1

r
n;o

n �� u3

r
n;o

n��

(S10) e �� 	
�����u1:1

r
n;e

n �� u2:1r
n;e

n��

o �� 	
�����u1:2

r
n;o

n �� u3:2r
n;o

n��

Figure 5.3: An example for the combine operator S10 = combine(S8; S9).

This is captured formally by,

S = combine(Sxjfu:u2USx
;[[ic(u)]]S

x
=0g; S

cjfu:u2USc
;[[rpr(u)]]S

c
=0g)

For example, S6 shown in Figure 5.1, is the result of combining S7 shown

in Figure 5.2 which is the projection of S1 on the set of irrelevant nods for

set insert with S5 shown in Figure 5.1 projected on all the nodes except

the node with the ic property.

5.4 Discussion

The analysis presented in this chapter improves the one presented in Chap-

ter 4 by using a less informative representation of irrelevant calling contexts.

The loss of information enables the algorithm to save space in the analysis

of a procedure body, but might lead to a loss of precision: combining every

structure at the exit-site with every structure at the entry-site might create

superuous structures at the return-site. It is possible to reduce this problem

by combining only \compatible" structures: a structure Sc at the call-site is

compatible with a structure Sx at the exit-site if compacting the irrelevant

context of Sc results in a node with the same properties as the irrelevant

context node in Sx.

The analysis can even adopt a more \aggressive" compaction scheme.

Instead of minimizing the information loss (by keeping de�nite values of

predicates for the irrelevant context node), the analysis can set the values

of all predicates to be unknown at this node. This way requires less struc-

tures in the analysis of a procedure body, but prohibits combining of only

\compatible" structures.

The most interesting aspect of the analysis is that it varies the abstrac-

tions at di�erent program points. The reason that the analysis can replace

37

the less informative representation of the irrelevant context at the exit site

with the more detailed one at the call-site, is that that a procedure cannot

modify irrelevant portions of the memory, and that the values of the instru-

mentation predicates of a node u do not change, even if properties of nodes

which are not connected to it change.

A more ambitious approach would be to treat the heap as a directed

graph, and to choose as the irrelevant context all the elements that are not

reachable from the variables the procedure refers to. This approach requires

a more sophisticated combine operator, which we do not have.

For non recursive procedures, local variables and parameters can be han-

dled by rewriting the program. Recursive calls can be handled by considering

heap nodes reachable from invisible variables in the relevant context. We do

not know if this will save a lot of space.

38

Chapter 6

Analysis of Programs

Manipulating Abstract Data

Types

6.1 Overview

We have also investigated a more eÆcient solution for programs which manip-

ulate the heap in a \more controled way". The idea is that the application

program uses abstract data types, ADTs, that are only modi�ed using a

�xed set of interface procedures. In particular, it does not directly access

the content of the heap. We also make certain assumptions on the ADT

implementation explained in the sequel.

Because of time constraints and because we wanted to handle existing

software, in this thesis, we only briey studied this direction. In the rest

of this Chapter we demonstrate the application of this idea to a queue data

structure and then describe our initial experience of applying the same ideas

to the LEDA [N�ah95, MN99] linked list data structure implementation.

6.2 Analyzing a queue

We demonstrate the application of our idea for the analysis of queue manip-

ulating programs. A queue data structure is composed of an object of type

Queue declared in Figure 6.1 and a related list. A Queue is comprised of

two pointer components: hd, the queue head, and tl, the queue tail. The

39

two components point to the list which contains the queue elements. The

hd-component points to the head of the list, and the tl-component points to

its last element. The procedures declared in Figure 6.1 comprise the queue

interface: a queue is created by invoking the procedure createQ. The pro-

cedure dynamically allocates a new Queue object and sets its two pointer

components to NULL, indicating that the queue is empty. The queue can be

modi�ed by invoking enqQ which inserts an element at the end of the queue,

or by invoking deqQ which removes the element at the head of the queue.

Information regarding the state of the queue can be obtained by invoking

the procedure emptyQ which checks if the queue is empty or not, or by in-

voking the procedure headQ which returns the element stored at the head

of the queue. The procedures emptyQ and headQ do not modify the queue.

When the queue is no longer needed, it is �nalized by invoking destroyQ.

The implementation of these interface procedures is shown in Figure 6.2.

Except for procedure createQ, which has no parameters, all other in-

terface procedures receive a pointer to a Queue as a parameter. They all

require that this pointer would not be NULL. In addition, the procedures

headQ and deqQ require that the queue would not be empty, whereas pro-

cedure destroyQ requires that the queue would be empty. Our purpose is

to verify that a program (which manipulates queues only using the interface

procedures) does not violate these preconditions, at a moderate cost.

6.2.1 A cheaper representation of the memory state

The main idea is to use a cheaper representation, in terms of space, of the

program memory state: Instead of representing every Queue object and every

list element by an individual as we did in the previous chapters, we represent

an entire queue data structure by one individual. The predicates that we use

to record properties of an entire queue data structure are given in Table 6.1.

The predicate x(v) captures the property that the queue v can be manip-

ulated by invoking an interface procedure on the variable x. The predicate

E(v) records the state of the queue: it holds when v is an empty queue.

Example 6.2.1 Consider the program shown in Figure 6.4, at l3 the queue

pointed to by x contains two elements: 4 and 2. Figure 6.3(a) graphically

depicts the memory state at this label. The leftmost rectangle is a Queue

object. Its hd-component points to the list element with the data value

4, and its tl-component points to the list element with the data value 2.

40

/* Queue.h */

#include "List.h"

typedef struct f
L hd;

L tl;

g Queue;

typedef Queue *Q; /* Q is a pointer to a Queue */

typedef enum f FALSE,TRUE g bool;

/* Returns a pointer to a new empty Queue. */

Q createQ();

/* Inserts v at the tail of q. */

void enqQ(Q q, int v);

/* Deletes the element at the head of q. */

void deqQ(Q q);

/* Returns the element at the head of q. */

int headQ(Q q);

/* Returns TRUE if q is empty, FALSE otherwise. */

bool emptyQ(Q q);

/* Destroys q. */

void destroyQ(Q q);

Figure 6.1: A declaration for the Queue type and the interface procedures

that manipulate it.

41

Q createQ() f
Q q;

q = (Q) malloc(sizeof(*q));

q->hd = NULL;

q->tl = NULL;

return q;

g

void destroyQ(Q q) f
L h;

if (q == NULL) error();

h = q->hd;

if (h != NULL) error();

free (q);

g

void enqQ(Q q, int v) f
L t,e;

if (q == NULL) error();

e = (L) malloc(sizeof(*t));

e->n = NULL; e->d = v;

t = q->tl;

if (t == NULL)

q->hd = e ;

else

t->n = e ;

q->tl = e ;

g

void deqQ(Q q) f
L h,e;

if (q == NULL) error();

h = q->hd;

if (p == NULL) error();

e = p->n;

q->hd = e;

if (e == NULL)

q->tl = NULL;

free(h);

g

bool emptyQ(Q q) f
L h;

if (q == NULL) error();

h = q->hd;

if (h == NULL)

return T;

return F;

g

int headQ(Q q) f
L h;

int v;

if (q == NULL) error();

h = q->hd;

if (h == NULL) error();

v = h->d;

return v;

g

Figure 6.2: An implementation of a Queue. Whenever a precondition is

violated procedure error is called.

42

Predicate Intended Meaning

x(v) The Queue object of queue v is pointed to by a global variable x.

E(v) The list of queue v is empty.

Table 6.1: The predicates used in the analysis of queue manipulating pro-

grams. There is a separate predicate x for every variable x which points to

a Queue.

(a) x �� hd ��

tl

��

4
n �� 2

(b) x ��!"#$%&'(hd ��

tl

��!"#$%&'(n ��!"#$%&'((c) x �� ������� :E

Figure 6.3: Representation of memory states by a 2-valued logical strucutre

as suggested at Chapter 4, compared to the representation suggested in this

chapter.

The n-component of the list element with data value 4, points to the list

element with the data value 2. The edge from the label x to the rectangle

representing the Queue object indicates that the Queue element is pointed

to by the variable x. (b) and (c) show two graphical representations of this

memory state. (b) is the representation similar to the one given in previous

chapters and (c) is new here, it is a more abstract memory representation.

(b) represents every memory cell by a node. The leftmost node represents

the Queue object, and the other two nodes represent the list elements. The

edges labeled hd, tl and n, represent the value of the hd, tl and n components

respectively. In contrast, (c) represents the entire queue by one node with

extra \state" information. The edge from the label x to the node indicates

that the Queue element of the queue is pointed to by variable x. The fact

that the queue is not empty is indicated by :E inside that node. This means

that this node does not have the property E.

43

Q x;

void main() f
l0 : x = createQ();

l1 : enqQ(x,4);

l2 : enqQ(x,2);

l3 :

g

Figure 6.4: A queue-manipulating program.

6.2.2 Representing the e�ect of a procedure by a �nite

state machine

The e�ect of invoking an interface procedure on a queue is reected by a

(possible) change of the queue properties. Inserting an element into an empty

queue results in a non-empty queue. Deleting an element from a non empty

queue, may yield an empty queue, when the queue contains one element, or

leave the queue non-empty otherwise. In all other cases the queue properties

do not change. Note that the only property that changes is the \emptiness"

property. The \pointed-to by variable x" property does not change by an

invocation of an interface procedure. The di�erence between these properties

is that the \emptiness" captures an \internal state" of the data structure,

while the \pointed-to by a variable" property captures the calling context,

which neither e�ects any interface procedure behaviour, nor it is e�ected by

it.

The e�ects of an invocation of an interface procedure is represented com-

pactly by a non-deterministic Finite State Machine (FSM). The FSM states

represent di�erent values of the \internal state" properties , and the FSM

transitions represent the changes of these values due to an interface procedure

invocation. The FSM for the queue data structure is shown in Figure 6.5.

It has four states: E, :E, er, and na depicted as ellipses. The FSM states

represents the possible \internal states" of a queue: the state E is for an

empty queue, and the state :E is for a non-empty queue. The error state

er and the not-allocated state na are explained later. The transitions of the

44

)*+,-./0er

)*+,-./0na createQ

��

enqQ;deqQ;emptyQ;headQ;destroyQ

��

)*+,-./0E

enqQ

��

headQ;deqQ

��

destroyQ

��

������� :E

deqQ

��
deqQ��

destroyQ

Figure 6.5: A non-deterministic FSM which represents the possible changes

of the queue properties by invoking an interface procedure.

FSM are depicted as edges labeled with procedure names. They represent

a change in the queue \internal state" due to a procedure invocation, e.g.,

the edge from state E to state :E represents the change of the queue from

being empty to being not empty due to an insertion of an element. The lack

of an edge labeled with a procedure name emanating from a state, implicitly

represents that the queue properties do not change due to the procedure in-

vocation. For example, the lack of an edge labeled with procedure enqQ name

emanating from state :E, indicates that a non-empty queue stays non-empty

in case an element is inserted into it. The error state er is a special state

which represents a queue in an \unknown" state. It is reached when a pro-

cedure is invoked without a necessary precondition. For instance, the edge

labeled headQ,deqQ from state E to the error state, indicates that removing

an element from an empty queue is an error. The \not-allocated" state na

represents a queue that does not exist; since a queue is comprised of dy-

namically allocated objects, it exists only after it is allocated (by procedure

createQ) and before it is destroyed (by procedure destroyQ). Invoking any

interface procedure on a queue that does not exist (either on a null pointer

or on a queue which was destroyed) yields an error. This is represented by

the edge from state na to state er. The edge labeled createQ emanating

from state na indicates that when a queue is created, it is empty.

45

6.2.3 The analysis

The analysis algorithm annotates a program point l
i
with a set of structures

that represent all the possible memory states that may arise before the exe-

cution of the statement at l
i
. The algorithm utilizes the queue FSM to �nd

the e�ect of a procedure invocation on the memory state as demonstrated in

the following example.

Example 6.2.2 Figure 6.6 contains the result of the analysis applied to the

program shown in Figure 6.4.

� Before l0, no statement is executed, and in particular no memory ele-

ment is allocated. Thus, the (one) structure that represents the mem-

ory state at this point has an empty universe.

� The statement x = createQ() at l0, allocates a queue and sets x to

point to it. Thus, the structure at l1 results by adding a node to the

structure at l0. This node gets the property E, since the FSM edge

emanating from the not-allocated state points to the empty state. In

addition this node has the property x since the return value of the

procedure, which points to the new queue, is assigned to x.

� The statement enqQ(x,4) at l1 inserts 4 into the queue pointed to by

x. Thus, the structure at l2 results from the structure at l1 by removing

the E property from the node which has the x property. The algorithm

performs this action since the queue x points to at l1 is empty, and the

FSM edge labeled enqQ emanating from the empty state leads to the

non-empty state.

� The statement enqQ(x,2) at l2 inserts 2 into the queue pointed to by

x. At l2, x points to a non-empty queue. Thus, the structure at l3 is

identical to the structure at l2, since invoking enqQ on a non-empty

queue results in a non-empty queue.

6.3 Experience with LEDA

We applied FSMs to analyze singly linked lists data structure implementa-

tion in LEDA [MN99]. LEDA is a library of generic data structures written

46

l0 l1 l2 l3

x ��)*+,-./0E x �� ������� :E x �� ������� :E

Figure 6.6: The representation of the memory state at each point of the

queue-manipulating program shown in Figure 6.4.

in C++. LEDA implementation of singly linked lists is similar to the imple-

mentation of the queue presented in the previous section: A list is comprised

of a SLIST object, which like Queue object contains pointers to the head

and the tail of a list of nodes. However, LEDA list supports more interface

procedures then queue, e.g., an element can be inserted at the head of the

list too (pushed).

We wanted to compare the results of the FSM based analysis with the

analysis presented in Chapter 4. In order to do this, we rewrote in C a speci�c

instance of the list which manipulates integers. We analyzed a program which

uses a queue implemented by two list that function as stacks (([MN99, p.60]

shows such a data structure). The analysis of this program by a suitable

variant of the algorithm presented in Chapter 4, requires 5777 structures

and takes 392.4 seconds, whereas an analysis similar to the one presented in

this chapter (which distinguishes between four \internal states": an empty

list, a list containing one element, a list containing two elements and a list of

three or more elements), requires 442 structures and takes only 4.5 seconds.

The two analyses veri�ed that the program does not violate the interface

procedures preconditions. The experiment was carried on a Pentium II 233

Mhz machine running Windows 2000 with JDK 1.2.2.

6.4 Discussion

The analysis of LEDA list is a bit more complicated than the analysis of

the queue. Unlike the queue interface procedures, some of the LEDA list

interface procedures gets two list parameters. We modeled them too using

FSMs. We found that using one FSM for each procedure is not good enough.

Instead, we used two FSMs: one for the case the two arguments are aliased

47

and one for the case they are not. Otherwise the results are too conservative.

While modeling the procedures, we found that the LEDA procedure which

concatenates two linked list is awed: when a list is concatenated to itself, a

cycle is created which leads to an error later. This bug was reported to the

LEDA development team.

The LEDA experiment highlights some of our limitations: LEDA is generic,

it allows for a data structure to contain elements which are data structures

themselves, we do not support this. Another limitation is the fact that we

do not support iterators. Iterators enable the program to access parts of the

information stored in a data structure not through an interface procedure.

This allows for the program to modify this information in an \uncontrolled

way" which is not supported. Currently we can analyze only programs which

manipulate a bounded number of data structures using \shallow pointers":

pointers that never point to an heap object which is pointed to by another

heap element. In particular, the data structures cannot share elements, other-

wise manipulating one data structure might a�ect another. Finally, perhaps

the main limitation of this approach, is that it requires an a priori creation

of the FSMs for the ADT implementation which may be hard, if not impos-

sible for a practical ADT implementation. We made a little progress in the

creation of the FSM in our example by using the analysis given in Chapter 4.

The advantage of this analysis is its simplicity and the ability to analyze

programs that manipulate data structures for which we do not have a more

general \expensive" analysis. Furthermore, the ADT implementation code

is not analyzed.

In our queue example, we use the state na to represent a queue which

does not exist. This state represents a queue which is either not created

yet or destroyed. Thus, we assume that a pointer is nulled when the queue

it points to is destroyed. This is not faithful to C semantics which leaves

dangling pointers. It can be easily �xed by adding a state freed to distinguish

between the not-created case and the freed case.

48

Chapter 7

Prototype Implementation

A prototype of the iterative algorithm sketched in Section 4.3 was imple-

mented for a small subset of C. The main goal has been to determine if the

results of the analysis are useful before trying to scale the algorithm to handle

arbitrary C programs. In theory, the algorithm might be overly conservative

and yield many inde�nite values. This may lead to many \false alarms".

For example, the algorithm might have reported that every program point

possibly leaked memory, performed a NULL-pointer dereference, etc. Fortu-

nately, in Section 7.1 we show that this is not the case for the C procedures

analyzed.

As explained in Section 4.3, the algorithm does not explicitly apply the

operational semantics to each of the (potentially in�nite) structures repre-

sented by a three-valued structure S. Also, it does not explicitly apply it to

S either, for this might not be precise enough. For example, evaluating the

update formula for top on the structure S4:1 shown in Figure 4.1 would give

top0 an inde�nite value at the stack summary node. This is because the node

representing the activation record of the caller is summarized with other ac-

tivation record nodes in S4:1. To overcome this problem, before applying the

operational semantics, the algorithm replaces S by a set of 3-valued logical

strucutre bS that (i) any structure in bS can be embedded in S and (ii) any

2-valued logical strucutre that is embedded in S can be embedded in one of

the structures in bS. Thus, together, all the structures in bS represent all the

memory states that S represents. Unlike S, in any of the structures in bS the

update formulae of the core predicate evaluates to a de�nite value. FindingbS in the framework of [SRW99] is achieved via an operation called Focus.

The Focus operation might generate inconsistent structures. For exam-

49

ple, applying focus to S4:1 adds into dS4:1 a structure in which the current

activation record has no previous (i.e. the update formula for the predicate

top evaluates to 0), which is impossible. Such structures are excluded by ap-

plying Coerce, an operation that performs a series of similar \sanity checks"

guaranteeing that exclusion of impossible structures. Coerce can also increase

the precision by lowering inde�nite into de�nite values. More about Focus

and Coerce can be found in [SRW99].

Instead of calculating the instrumentation predicate values at the result-

ing structure by their de�ning formulae, which may be overly conservative,

predicate-update formulae for instrumentation predicates are used. Our im-

plementation uses a variant of the predicates that appear in Table 4.1: The

visible local variables are represented as global variables.

In addition we found that the analysis yield quite imprecise value for

the r
n;bx
(v) predicate. Instead, for every procedure pr we keep a predicate

r
n;dx;pr

(v) which records the reachable elements from the most recent invisible

copy of x (the copy of pr last invocation). Because of this, our prototype

implementation handles only programs with linear recursion.

The algorithm has been implemented using a 3-valued logic analysis sys-

tem called TVLA [LAS00] (for Three-Valued-Logic Analyzer). The inputs

to the system are the procedure's control ow graph, and logical formulae

describing the operational semantics of each statement and condition. The

system iteratively computes a set of 3-valued structures at every program

point. It is quite powerful but slow, and only supports analysis speci�ed

using low level logical formulae. Therefore, we implemented a frontend that

generates TVLA input from a program in a subset of C. Although, TVLA

supports only intraprocedural analysis our explicit manipulation of the acti-

vation record stack allows our frontend to treat call and return statements

in the same way that intraprocedural statements are handled. The instru-

mentation predicates that relate heap without sacri�cing precision in many

recursive procedures.

Our front end also performs certain minimal optimizations not described

here.

7.1 Empirical results

The analyzed C programs together with the space used and the running time

are listed in Table 7.1. All our experiments were carried on a Pentium II 233 Mhz

50

Proc. Description # of Time

Structs (secs)

create creates a list. 219 5.91

delall frees the entire list 139 13.10

insert creates and inserts an 344 38.33

element into a sorted list

delete deletes an element 423 31.69

from a sorted list

search searches an element in 303 8.44

a sorted list

app r adds one list to the 326 42.81

end of another

rev the running example 829 105.78

(non recursive append)

rev r the running example 2285 1208.80

(with recursive append)

rev d reverses a list with 429 45.99

destructive updates

Table 7.1: The total number of 3-valued structures that arise during analysis

and running times for the recursive procedures analyzed. The procedures are

given in Section A.4.

machine running Windows 2000 with JDK 1.2.2. The analysis veri�ed that

indeed these procedures always return a linked list and contain no memory

leaks and NULL-pointer dereferences. Verifying the absence of memory leaks

is quite challenging for these procedures since it requires information about

invisible variables as described in Section 4.1.

51

Chapter 8

Conclusions and Future Work

We present a novel interprocedural shape analysis algorithm for programs

that manipulate linked lists. The algorithm is more precise than existing

shape analysis algorithms described in [JM81, CWZ90, SRW98] for recursive

programs that destructively update the program store. The precision of

our algorithm can be attributed to the properties of invisible instances of

local variables that it tracks. Previous algorithms [JM81, CWZ90] either

did not handle the case where multiple instances of the same local variable

exist simultaneously, or only represented their potential values [SRW98]. As

we have demonstrated, in the absence enough information about the values

of local variables, an analysis must make overly conservative assumptions.

These assumptions lead to imprecise results and performance deteriorates as

well, since every potential value of a local variable must be considered.

We have identi�ed several properties of local variables that help to over-

come the unavoidable imprecision involved in the summarization of local

variable's values. Tracking these properties enables the analysis to recover

the values of the invisible variables at a return statement quite precisely in

many cases. Particularly important seems to be the sharing properties of

stack variables. Existing shape-analysis algorithms [JM81, CWZ90, SRW98]

rely on the representation of the program store to infer such properties, but

only record sharing properties of the heap. This approach may suÆce in

cases when the number of local variables is �xed, however in the presence of

recursive procedure calls, di�erent incarnations of local variables may point

to the same heap cell. Keeping track of both the sharing properties of local

variables and sharing properties of heap elements turned out to be key for

the precision of our algorithm.

52

A prototype of the algorithm has been implemented.

Our algorithm was developed within the parametric framework descried

in [SRW99, LAS00]. That framework allows the generation of intraprocedural

shape-analysis algorithms based on an appropriate speci�cation. We show

that their framework can generate quite precise interprocedural algorithms

too.

We follow the approach suggested in [JM82, Deu90] and summarize ac-

tivation records in essentially the same way that linked list elements are

summarized. By representing the call site in each activation record the anal-

ysis algorithm is capable of encoding the calling context, too. This approach

bears some similarity to the call-string approach of [SP81], since it avoids

propagating information to return sites that do not match the call site of

the current activation record. In our case there is no need to put an arbi-

trary bound on the \length" of the call-string, the bounded representation is

achieved indirectly by the summarization of activation records.

In our bounded representation, heap elements that are pointed to by

invisible variables may eventually be summarized. However, if after a return

statement, a summary node represents heap cells that are pointed to by

visible local variables, imprecision is likely to arise. Thus, the ability to

materialize a non{summary node out of a summary node is necessary for the

precision of our algorithm [SRW98].

Our compaction approach for scaling the algorithm reminds the use of

frame axioms in program correctness proofs [GL80]. A frame axiom de�nes

an invariance of the procedure. We rely on the fact that a portion of the

memory that the procedure cannot refer to, cannot be modi�ed by it. Thus,

our solution can be viewed as a special case of an automatically determined

frame axiom. An even more ambitious approach, is to summarize the ef-

fect of each procedure by a \summary function". Such an approach is taken

in [CRL99, WL95] for a points-to analysis. A Points-to analysis �nds alias-

ing between pointer variables. However the relation between heap allocated

objects is not tracked.

Besides shape analysis there are other methods to handle programs with

pointer including [HN90, GH96, Deu94, CBC93]. These methods are incom-

parable to our method. The power of shape analysis stems from the ability to

handle arbitrary programs and to conduct strong updates, even for example,

when the program manipulates a cyclic list. The power Deutsch's method is

the ability to precisely handle recursive traversal of linked data structures.

Our approach for analyzing program manipulating ADTs is similar to the

53

typestate approach introduced in [Str83, SY86]. A typestate represents the

set of runtime states of a variable at each program point, and �nite state

machines to represent the e�ect of procedure calls (and operations) on the

variable state. However, they do not handle aliasing between variables and

require runtime checks at program points where a data structure is updated

and alias might occur. Their work sheds interesting light on the extension

possibilities of our work: They allow for a data structure to contain another

data structure (i.e., a table of records), however before an \internal" data

structure is updated it must be either detached from the container data struc-

ture, or a runtime check must verify that the internal data structure cannot

be accessed by any other program variable. We conjecture that that our

method can be extended to handle nested ADTs by using a similar detach-

ment operation. Such a scheme may allow us to analyze typestates without

runtime checks.

8.1 Current limitations and future work

So far, our technique (and our implementation) analyzes small programs in

a \friendly" subset of C. We plan to extend it to a larger subset of C, and

to experiment with scaling it up to programs of realistic size. One possible

way involves �rst running a cheap and imprecise pointer-analysis algorithm,

such as the ow-insensitive points-to analysis described in [Ste96], before

proceeding to our quite precise but expensive analysis. An implementation

of our compaction algorithm would allow us to test the actual bene�ts of this

technique.

We focused this research on linked lists, but, plan to also investigate

tree-manipulation programs.

Finally, our analysis is limited by its �xed set of prede�ned \library"

properties. This makes our tool easy to use since it is fully automatic and

does not require any user intervention, e.g., a speci�cation of the program.

However, this is a limitation because the analyzer produce poor results for

program in which other properties are the important distinctions to track.

54

Bibliography

[AW93] U. Assmann and M. Weinhardt. Interprocedural heap analysis for

parallelizing imperative programs. In W. K. Giloi, S. J�ahnichen,

and B. D. Shriver, editors, Programming Models For Massively

Parallel Computers, pages 74{82, Washington, DC, September

1993. IEEE Press.

[CBC93] J.-D. Choi, M. Burke, and P. Carini. EÆcient ow-sensitive inter-

procedural computation of pointer-induced aliases and side-e�ects.

In Symp. on Princ. of Prog. Lang., pages 232{245, New York, NY,

1993. ACM Press.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis

frameworks. In Symp. on Princ. of Prog. Lang., pages 269{282,

New York, NY, 1979. ACM Press.

[CRL99] Ramkrishna Chatterjee, Barbara G. Ryder, and William A. Landi.

Relevant context inference. In ACM, editor, POPL '99. Proceed-

ings of the 26th ACM SIGPLAN-SIGACT on Principles of pro-

gramming languages, January 20{22, 1999, San Antonio, TX,

ACM SIGPLAN Notices, pages 133{146, New York, NY, USA,

1999. ACM Press.

[CWZ90] D.R. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and

structures. In SIGPLAN Conf. on Prog. Lang. Design and Impl.,

pages 296{310, New York, NY, 1990. ACM Press.

[Deu90] A. Deutsch. On determining lifetime and aliasing of dynamically

allocated data in higher-order functional speci�cations. In Symp.

on Princ. of Prog. Lang., pages 157{168, 1990.

55

[Deu94] A. Deutsch. Interprocedural may-alias analysis for pointers: Be-

yond k-limiting. In SIGPLAN Conf. on Prog. Lang. Design and

Impl., pages 230{241, New York, NY, 1994. ACM Press.

[DRS98] N. Dor, M. Rodeh, and M. Sagiv. Detecting memory errors via

static pointer analysis. In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and

Engineering (PASTE'98), pages 27{34, June 1998. Available at

\http://www.math.tau.ac.il/� nurr/paste98.ps.gz".

[DRS00] N. Dor, M. Rodeh, and M. Sagiv. Checking cleanness in linked lists.

In SAS'00, Static Analysis Symposium. Springer, 2000. Available

at \http://www.math.tau.ac.il/� nurr".

[GH96] R. Ghiya and L.J. Hendren. Is it a tree, a dag, or a

cyclic graph? In Symp. on Princ. of Prog. Lang., New

York, NY, January 1996. ACM Press. Available at \ftp://ftp-

acaps.cs.mcgill.ca/pub/doc/papers/POPL96.ps.gz".

[GH98] R. Ghiya and L. Hendren. Putting pointer analysis to work. In

Symp. on Princ. of Prog. Lang., New York, NY, 1998. ACM Press.

[GL80] D. Gries and G. Levin. Assignment and procedure call proof rules,

1980.

[Hen90] L. Hendren. Parallelizing Programs with Recursive Data Struc-

tures. PhD thesis, Cornell Univ., Ithaca, NY, Jan 1990.

[HHN92] L. Hendren, J. Hummel, and A. Nicolau. Abstractions for recursive

pointer data structures: Improving the analysis and the transfor-

mation of imperative programs. In SIGPLAN Conf. on Prog. Lang.

Design and Impl., pages 249{260, New York, NY, June 1992. ACM

Press.

[HN90] L. Hendren and A. Nicolau. Parallelizing programs with recursive

data structures. IEEE Trans. on Par. and Dist. Syst., 1(1):35{47,

January 1990.

[HPR89] S. Horwitz, P. Pfei�er, and T. Reps. Dependence analysis for

pointer variables. In SIGPLAN Conf. on Prog. Lang. Design and

Impl., pages 28{40, New York, NY, 1989. ACM Press.

56

[JM81] N.D. Jones and S.S. Muchnick. Flow analysis and optimization

of Lisp-like structures. In S.S. Muchnick and N.D. Jones, editors,

Program Flow Analysis: Theory and Applications, chapter 4, pages

102{131. Prentice-Hall, Englewood Cli�s, NJ, 1981.

[JM82] N.D. Jones and S.S. Muchnick. A exible approach to interproce-

dural data ow analysis and programs with recursive data struc-

tures. In Symp. on Princ. of Prog. Lang., pages 66{74, New York,

NY, 1982. ACM Press.

[LAS00] T. Lev-Ami and M. Sagiv. TVLA: A framework for Kleene based

static analysis. In SAS'00, Static Analysis Symposium. Springer,

2000. Available at http://www.math.tau.ac.il/�tla.

[LH88] J.R. Larus and P.N. Hil�nger. Detecting conicts between struc-

ture accesses. In SIGPLAN Conf. on Prog. Lang. Design and Impl.,

pages 21{34, New York, NY, 1988. ACM Press.

[MN99] K. Mehlhorn and S. Naher. LEDA, A Platform for Combinatorical

and Generic Computing. Cambridge University Press, �rst edition,

1999.

[N�ah95] S. N�ahr. The LDEA User Manual, 1995. Available via anonymous

ftp from ftp.mpi-sb.mpg.de.

[PCK93] J. Plevyak, A.A. Chien, and V. Karamcheti. Analysis of dynamic

structures for eÆcient parallel execution. In U. Banerjee, D. Gel-

ernter, A. Nicolau, and D. Padua, editors, Languages and Com-

pilers for Parallel Computing, volume 768 of Lec. Notes in Comp.

Sci., pages 37{57, Portland, OR, August 1993. Springer-Verlag.

[SP81] M. Sharir and A. Pnueli. Two approaches to interprocedural data

ow analysis. In S.S. Muchnick and N.D. Jones, editors, Program

Flow Analysis: Theory and Applications, chapter 7, pages 189{234.

Prentice-Hall, Englewood Cli�s, NJ, 1981.

[SRW98] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis prob-

lems in languages with destructive updating. Trans. on Prog. Lang.

and Syst., 20(1):1{50, January 1998.

57

[SRW99] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via

3-valued logic. In Symp. on Princ. of Prog. Lang., 1999. Available

at \http://www.cs.wisc.edu/wpis/papers/popl99.ps".

[Ste96] B. Steensgaard. Points-to analysis in almost-linear time. In Symp.

on Princ. of Prog. Lang., pages 32{41, 1996.

[Str83] R. Strom. Mechanism for compile-time enforcement of security,

1983.

[Str92] J. Stransky. A lattice for abstract interpretation of dynamic (Lisp-

like) structures. Inf. and Comp., 101(1):70{102, Nov. 1992.

[SY86] R.E. Strom and S.A. Yemini. Typestate: A programming language

concept for enhancing software reliability. IEEE Transactions on

Software Engineering, SE-12(1):157{171, 1986.

[Wan94] E. Y.-B. Wang. Analysis of Recursive Types in an Imperative Lan-

guage. PhD thesis, Univ. of Calif., Berkeley, CA, 1994.

[WL95] R. Wilson and M. Lam. EÆcient context-sensitive pointer analysis

for c programs, 1995.

[Zap99] Emilio Zapata. Automatic parallelization of irregular applications.

In SPA99, 1999.

58

Appendix A

Appendix

A.1 Syntax of formulae

In this section , we de�ne the syntax of �rst-order formulae with equality

and transitive closure we use.

De�nition A.1.1 A formula over the vocabulary P = fp1; : : : ; png is

de�ned inductively, as follows:

Atomic Formulae The logical literals 0, 1, and 1=2 are atomic formulae

with no free variables.

For every predicate symbol p 2 P of arity k, p(v1; : : : ; vk) is an atomic

formula with free variables fv1; : : : ; vkg.

The formula (v1 = v2), where v1 and v2 are distinct variables, is an

atomic formula with free variables fv1; v2g.

Logical Connectives If '1, '2 and '3 are formulae whose sets of free vari-

ables are V1, V2, and V3 , respectively, then ('1^'2), ('1_'2), (:'1),

and ('1?'2 : '3) are formulae with free variables V1 [V2, V1 [V2, V1,

and V1 [V2 [V3 respectively.

Quanti�ers If ' is a formula with free variables fv1; v2; : : : ; vkg, then (9v1 :
') and (8v1 : ') are both formulae with free variables fv2; v3; : : : ; vkg.

Transitive Closure If ' is a formula with free variables V such that v3; v4 62
V , then (TC v1; v2 : ')(v3; v4) is a formula with free variables (V �
fv1; v2g) [fv3; v4g.

59

A formula is closed when it has no free variables.

A.2 Kleene's 3-valued semantics

In this section we de�ne Kleene's 3-valued semantics for �rst-order formulae

with transitive closure.

De�nition A.2.1 A 3-valued interpretation of the language of formulae

over P is a 3-valued logical structure S, comprised of US

, a set of in-

dividuals and interpretation pS for every predicate symbol p of arity k to a

truth-valued function:

pS : (US)k ! f0; 1; 1=2g:

An assignment Z is a function that maps free variables to individuals

(i.e., an assignment has the functionality Z : fv1; v2; : : :g ! US

). An assign-

ment that is de�ned on all free variables of a formula ' is called complete

for '. In the sequel, we assume that every assignment Z that arises in con-

nection with the discussion of some formula ' is complete for '.

The meaning of a formula ', denoted by [[']]S3 (Z), yields a truth value

in f0; 1; 1=2g. The meaning of ' is de�ned inductively as follows:

Atomic For a logical literal l 2 f0; 1; 1=2g, [[l]]S3 (Z) = l (where l 2 f0; 1; 1=2g).

For an atomic formula p(v1; : : : ; vk),

[[p(v1; : : : ; vk)]]
S

3 (Z) = pS(Z(v1); : : : ; Z(vk))

For an atomic formula (v1 = v2),

[[v1 = v2]]
S

3 (Z) =

8<
:

0 Z(v1) 6= Z(v2)

1 Z(v1) = Z(v2) and smS(Z(v1)) = 0

1=2 otherwise

60

Logical Connectives For logical formulae '1, '2, and '3

[['1 ^ '2]]
S

3 (Z) = min([['1]]
S

3 (Z); [['2]]
S

3 (Z))

[['1 _ '2]]
S

3 (Z) = max([['1]]
S

3 (Z); [['2]]
S

3 (Z))

[[:'1]]
S

3 (Z) = 1� [['1]]
S

3 (Z)

[['1?'2 : '3]]
S

3 (Z) =

8>>>><
>>>>:

[['2]]
S

3 (Z) [['1]]
S

3 (Z) = 0

[['3]]
S

3 (Z) [['1]]
S

3 (Z) = 1

[['2]]
S

3 (Z)
[['1]]

S

3 (Z) = 1=2

[['2]]
S

3 (Z) = [['3]]
S

3 (Z)

1=2 otherwise

Quanti�ers If ' is a logical formula,

[[8v1 : ']]
S

3 (Z) = min
u2US

[['1]]
S

3 (Z[v1 7! u])

[[9v1 : ']]
S

3 (Z) = max
u2US

[['1]]
S

3 (Z[v1 7! u])

Transitive Closure For (TC v1; v2 : ')(v3; v4),

[[(TC v1; v2 : ')(v3; v4)]]
S

3 (Z) =

max
n � 1; u1; : : : ; un+1 2 U;

Z(v3) = u1; Z(v4) = un+1

n

min
i=1

[[']]S3 (Z[v1 7! u
i
; v2 7! u

i+1])

We say that S and Z potentially satisfy ' (denoted by S; Z j= ') if

[[']]S3 (Z) = 1=2 or [[']]S3 (Z) = 1. Finally, we write S j= ' if for every Z:

S; Z j= '.

The only nonstandard part of De�nition A.2.1 is the meaning of equality

(denoted by the symbol `='). The predicate = is de�ned in terms of the sm

predicate and the \identically-equal" relation on individuals (denoted by the

symbol `='):1

� Non-identical individuals u1 and u2 are unequal (i.e., if u1 6= u2 then

u1 6= u2).

1Note that there is only a small typographical distinction between the syntactic symbol

for equality, namely `=', and the symbol for the \identically-equal" relation on individuals,

namely `='. Throughout the thesis, it should always be clear from the context which

symbol is intended.

61

� A non-summary individual must be equal to itself (i.e., if sm(u) = 0,

then u = u).

� In all other cases, we throw up our hands and return 1=2.

Notice that De�nition A.2.1 could be generalized to allow many-sorted

sets of individuals. This would be useful for modeling heap cells of di�erent

types; however, to simplify the presentation, we have chosen not to introduce

this mechanism.

62

A.3 The meaning of programs statements

The meaning functions for program statements are de�ned as transform-

ers from 2-valued structures to 2-valued structures. These transformers are

de�ned by collection of �rst order formulae evaluated against the original

structure. The value of every predicate is determined by a corresponding

formula. The main idea is that if a structure S represents a set of memory

states that arise before statement st, than a structure S 0 that represents the

corresponding set of stores that arise after st can be obtained by evaluating

a suitable collection of formulae that capture the semantics of st.

Formally, for every statement st, the new values of every predicate p are

de�ned via a predicate-update formula 'st

p

De�nition A.3.1 Let st be a program statement, and for every arity-k pred-

icate p in vocabulary P, let 'st

p
be the formula over free variables v1; : : : ; vk

that de�nes the new value of p after st. Then, applying the operational se-

mantics of st to a structure S yields a structure S 0 where US
0

= US

and

pS
0

(u1; : : : ; uk) = [['st

p
]]S3 ([v1 7! u1; : : : ; vk 7! u

k
])

Note that although the new values of the predicates is de�ned in 3-value

logic, when applied to 2-valued logical strucutre the resulting structure is a

2-valued logical structure. In particular, the semantics can be applied to

3-valued logical structures too.

A.3.1 Intraprocedural statements

Table A.1 lists the predicate-update formulae that de�ne the semantics of the

six kinds of intraprocedural statements that manipulate data structures de-

�ned by the List data type given in Figure 1.1. They are a variant of the ones

in [SRW99]. Table A.1 lists a predicate-update formula 'st

p
only if predicate p

is a�ected by the execution of the statement. For any unchanged predicate q,

the predicate-update formula is \'st

q
(v1; v2; : : :) = q(v1; v2; : : :)". To simplify

the presentation, in Table A.1 (and elsewhere) we break each occurrence of

y->n = t into two statements: y->n = NULL, followed by y->n = t, so that

in the predicate-update formulae for y->n = t we can assume that y->n ==

NULL. Also, for simplicity, we de�ne the semantics of statements involving a

63

dereference of a variable or a dynamic memory allocation or disposal only for

global variables. We assume that such statements involving local variables

were replaced by a series of statements involving temporary global variables.

The third column in Table A.1 indicates the condition under which the for-

mula is de�ned.

De�nition A.3.1 does not handle statements that dynamically allocate or

dispose memory (x = malloc() and free(x)) because the universe of the

structure produced by [[st]](S) is the same as the universe of S. Instead, for

these statements we use modi�ed de�nitions of [[st]](S) given below.

For allocation statements we use the modi�ed de�nition of [[st]](S) given

in De�nition A.3.2, which �rst allocates a new individual u
new

(representing

the allocated list element), and then invokes predicate-update formulae in a

manner similar to De�nition A.3.1.

De�nition A.3.2 Let st � x = malloc() and let new 62 P be a unary pred-

icate. For every p 2 P, let 'st

p
be a predicate-update formula over vocabulary

P [fnewg. Then, applying the operational semantics of st � x = malloc()

to a structure S , yields a structure S 00 de�ned as follows: First let S 0 be a

structure with a new individual, u
new

not in US

, i.e. US
0

= US [fu
new

g and

a new unary predicate new(v), which holds only for u
new

, i.e.,

pS
0

(u1; : : : ; uk) =

8>>>><
>>>>:

1 p = new and u1 = u
new

0 p = new and u1 6= u
new

0
p 6= new and there exists i;

1 � i � k; such that u
i
= u

new

pS(u1; : : : ; uk) otherwise

Now de�ne [[x = malloc()]](S) = S 00 where US
00

= US
0

and

pS
00

(u1; : : : ; uk) = [['st

p
]]S

0

3 ([v1 7! u1; : : : ; vk 7! u
k
])

In De�nition A.3.2, S 0 is created from S as follows: (i) new(u
new

) is

set to 1, (ii) new(u1) is set to 0 for all other individuals u1 6= u
new

, and

(iii) all predicates are set to 0 when one or more arguments is u
new

. The

predicate-update operation in De�nition A.3.2 is very similar to the one in

De�nition A.3.1 after S 0 has been set.

When a procedure executes a st � free(x) statement it removes a list

element from the program store. The operational semantics of st is de�ned

64

st 'st

p
Condition

x = NULL 'st

x
(v)

def

= 0 global x

'st

x
(v1; v2)

def

= x(v1; v2) ^ :top(v1) local x

x = t 'st

x
(v)

def

= t(v) global x

global t

'st

x
(v)

def

= 9v1 : top(v1) ^ t(v1; v) global x

local t

'st

x
(v1; v2)

def

= (:top(v1) ^ x(v1; v2))_ local x

(top(v1) ^ t(v2)) global t

'st

x
(v1; v2)

def

= (:top(v1) ^ x(v1; v2))_ local x

(top(v1) ^ t(v1; v2)) local t

x = t->n 'st

x
(v)

def

= 9v1 : t(v1) ^ n(v1; v) global x

global t

x->n = NULL 'st

n
(v1; v2)

def

= n(v1; v2) ^ :x(v1) global x

global t

x->n = t 'st

n
(v1; v2)

def

= n(v1; v2) _ (x(v1) ^ t(v2)) global x

(assuming: global t

x->n == NULL)

x = malloc() 'st

x
(v)

def

= new(v) global x

'st

heap
(v)

def

= heap(v) _ new(v)

free(x) 'st

x
(v)

def

= 0 global x

Table A.1: The predicate-update formulae de�ning the operational semantics

of the call and return statements for the core predicates for List. x and t

are variables in PVar.

65

by �rst applying the predicate update formulae, and then extracting the in-

dividual representing the released list element from the universe. Extracting

the individual is done by the projection operation de�ned in De�nition 5.1.

De�nition A.3.3 Let st � free(x) For every p 2 P, let 'st

p
be a predicate-

update formula over vocabulary P. Then, applying the operational semantics

of st � free(x) to a structure S , yields a structure S 0 = S 00jfu2US:xS(u)=0g

where US
00

= US

and

pS
00

(u1; : : : ; uk) = [['st

p
]]S3 ([v1 7! u1; : : : ; vk 7! u

k
])

Thus, free is obtained by �rst evaluating the update formulae and then main-

taining elements which are not originally pointed-to by x. Notice that this

semantics is unfaithful to the C semantics which leaves dangling pointers.

For simplicity we choose not to model such a behaviour, and require that no

pointer other than x points to the freed cell.

A.3.2 Interprocedural statements

The meaning of interprocedural statements is de�ned by predicate update

formulae too. Table A.2 lists the predicate update formulae for the interpro-

cedural statements. Similarly to the intraprocedural statements that allocate

or dispose dynamic memory, interprocedural statements modify the universe.

De�nition A.3.4 is very similar to De�nition A.3.2 but handle a procedure

invocation statement. As in De�nition A.3.2, De�nition A.3.4 �rst allocates a

new individual (representing the activation record of the invoked procedure),

and then invokes predicate-update formulae. To simplify the presentation

we assume that parameter passing is handled explicitly (i.e. procedures are

parameterless)

De�nition A.3.4 Let st � label : call f() and let new 62 P be a unary

predicate. For every p 2 P, let 'st

p
be a predicate-update formula over vo-

cabulary P [fnewg. Then, applying the operational semantics of st �
label : call f() to a structure S , yields a structure S 00 de�ned as fol-

lows: First let S 0 be a structure with a new individual, u
new

not in US

, i.e.

66

st 'st

p
(v)

label : call f() 'st

stack
(v)

def

= stack(v) _ new(v)

'st

cslabel
(v)

def

= cs
label

(v) _ new(v)

'st

top
(v)

def

= new(v)

'st

pr
(v1; v2)

def

= pr(v1; v2) _ (new(v1) ^ top(v2))

return 'st

stack
(v)

def

= stack(v) ^ :top(v)

'st

cslabel
(v)

def

= cs
label

(v) ^ :top(v)

'st

top
(v)

def

= 9v1 : top(v1) ^ pr(v1; v)

'st

pr
(v1; v2)

def

= pr(v1; v2) ^ :top(v1)

'st

x
(v1; v2)

def

= x(v1; v2) ^ :top(v1)

Table A.2: The predicate-update formulae de�ning the operational semantics

of the call and return statements for the core predicates. x is any local

variable.

US
0

= US [fu
new

g and a new unary predicate new(v), which holds only for

u
new

, i.e.,

pS
0

(u1; : : : ; uk) =

8>>>><
>>>>:

1 p = new and u1 = u
new

0 p = new and u1 6= u
new

0
p 6= new and there exists i;

1 � i � k; such that u
i
= u

new

pS(u1; : : : ; uk) otherwise

Now de�ne [[label : call f()]] = S 00 where US
00

= US
0

and

pS
00

(u1; : : : ; uk) = [['st

p
]]S

0

3 ([v1 7! u1; : : : ; vk 7! u
k
])

When a procedure returns, its activation record (which is the current

activation record) is removed from the universe. The operational semantics of

return is de�ned in a similar manner to the way a memory disposal statement

is de�ned.

67

De�nition A.3.5 Let st � return For every p 2 P, let 'st

p
be a predicate-

update formula over vocabulary P. Then, applying the operational semantics

of st � return to a structure S , yields a structure S 0 = S 00jfu2US:topS(u)=0g

where US
00

= US

and

pS
00

(u1; : : : ; uk) = [['st

p
]]S3 ([v1 7! u1; : : : ; vk 7! u

k
])

3-valued formulae also provide a natural way to de�ne (conservatively)

the meaning of program conditions. In particular, we de�ne the meaning of

a condition st to be

[[st]](S)
def

= [['st]]S3 ([]):

(To keep things simple, we assume that conditions do not have side-e�ects. It

is possible to support side-e�ects in conditions in the same way that is done

for statements, namely, by providing appropriate predicate-update formulae.)

� If [['st]]S3 ([]) yields 1, the condition holds in every store represented by

S.

� If [['st]]S3 ([]) yields 0, the condition does not hold in any store repre-

sented by S.

� If [['st]]S3 ([]) yields 1=2, then we do not know if the condition always

holds, never holds, or sometimes holds and sometimes does not hold in

the stores represented by S.

3-valued formulae for four types of conditions involving pointer variables

are shown in Table A.3. Other kinds of conditions involving pointer variables

would either have other formulae, or would be handled via the formula for

UninterpretedCondition.

The Embedding Theorem immediately implies that the 3-valued inter-

pretation is conservative with respect to every store that can possibly occur

at run-time.

68

st 'st

x == y 8v : x(v), y(v)

x != y 9v : :(x(v), y(v))

x == NULL 8v : :x(v)
x != NULL 9v : x(v)
UninterpretedCondition 1=2

Table A.3: 3-valued formulae for conditions involving pointer variables.

A.4 Test cases.

/* create.c */

#include "list.h"

L create(int s)

f
L tmp, tl;

if (s <= 0)

return NULL;

tl = create(s-1);

tmp = (L) malloc(*L);

tmp->n = tl;

tmp->d = s;

return tmp;

g

Figure A.1: A recursive procedure which creates a list.

69

/* app.c */

#include "list.h"

L app(L p, L q)

f
L r;

if (p == NULL)

return q;

r = p;

while (r->n != NULL)

r = r->n;

r->n = q;

return p;

g

Figure A.2: A non recursive function which appends the list pointed to by q

at the end of the list pointed to by p.

70

/* delall.c */

#include "list.h"

L delall(L h)

f
L t;

if (h == NULL)

return;

t = h->n;

delall(t);

free(h);

g

Figure A.3: A recursive procedure which frees all the elements of a list.

71

/* insert.c */

#include "list.h"

L insert(L h, int k)

f
L t;

if (h == NULL&& h->d < k) f
t = h->n;

t = insert(t,k);

h->n = NULL;

h->n = t ;

return h;

g
t = malloc(*L);

t->n = h ;

t->d = k;

return t ;

g

Figure A.4: A recursive procedure which inserts an element into a sorted

linked list.

72

/* delete.c */

#include "list.h"

L delete(L h, int k)

f
L t;

if (h == NULL)

return NULL;

t = h->n ;

if (h->d == k) f
h->n = NULL ;

free (h) ;

return t ;

g

t = delete (t ,k) ;

h->n = NULL;

h->n = t ;

return h ;

g

Figure A.5: A recursive procedure which deletes an element from a linked

list.

73

/* search.c */

#include "list.h"

L search(L h, int k)

f
if (h == NULL)

return NULL ;

if (h->d == k)

return h ;

h = h->n ;

h = search(h ,k);

return h;

g

Figure A.6: A recursive procedure which searches for an element in a list.

74

/* app r.c */

#include "list.h"

L app r(L p, L q)

f
L t ;

if (p == NULL) f
return q ;

g

t = p->n ;

t = app r(t,q);

p->n = NULL ;

p->n = t;

return p ;

g

Figure A.7: A recursive procedure which adds one list to the end of another.

75

/* rev d.c */

#include "list.h"

L rev d(L r)

f
L y,t ;

if (r != NULL) f
t = r->n;

t = rev d(t);

y = r->n;

r->n = NULL;

if (y != NULL) f
y->n = NULL;

y->n = r;

g
else

t = r ;

return t ;

g

Figure A.8: A recursive procedure which reverses a list destructively.

76

