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Abstract

This thesis presents a new analysis for proving properties of fine-grained concurrent pro-

grams with a shared, mutable, heap in the presence of an unbounded number of ob-

jects and threads. Properties addressed include memory safety, data structure invariants,

partial correctness, and linearizability. The new techniques presented enable successful

verification of programs that were not handled by previous concurrent shape analysis algo-

rithms. The techniques are presented in an abstract framework we call thread-correlation

analysis. Thread-correlation analysis infers invariants that capture the correlations be-

tween the local states of different threads and the global state (content of the heap).

Inferring such invariants is non-trivial, even for systems with a bounded number of

threads. The main reason is the need to reason about a quadratic number of interactions

between threads when analyzing a single (atomic) statement, which is a significant per-

formance overhead in practice. This work provides two novel techniques for reducing the

cost of applying the abstract transformers.

The empirical results show the value of the increased precision obtained by these new

techniques for tracking correlations as well as the value of the increased efficiency achieved

by our optimization techniques.
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Chapter 1

Introduction

1.1 Motivation

This thesis is concerned with analysis and verification (of basic safety and other func-

tional correctness properties) of fine-grained concurrent programs, especially those with

dynamically-allocated concurrent data structures. Such data-structures are important

building blocks of concurrent systems and are becoming part of standard libraries (e.g.,

JDK 1.6).

We would like to automatically verify properties such as memory safety, preservation of

data structure invariants, and linearizability [14] for such algorithms. Automatic verifica-

tion of these algorithms is challenging because they often contain fine-grained concurrency

with benign data races, low-level synchronization operations such as CAS, and destruc-

tive pointer-updates which require accurate alias analysis. Furthermore, in the general

case, the data-structure can grow in an unbounded fashion and the number of threads

concurrently updating the data-structure can also grow in an unbounded fashion.

The essential contributions of this work, however, are independent of shape analysis

and can be used for other analyses of concurrent programs as well. For this reason,

the techniques are described in a simple setting, independent of shape analysis. (The

implementation realizes these ideas in a shape analysis and our empirical results concern

this concurrent shape analysis.)

The approach follows a line of work for verifying concurrent programs in a thread-

modular way [2,5,6,8,12], in which concrete states are abstracted from the point of view

of a given thread.

Thread Correlation Abstraction. Programs with fine-grained concurrency compli-

cate reasoning about program statements. This is because an action taken by one thread

can interfere with the view of a state from the perspective of another thread. Reasoning
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about this kind of interference can be made more precise when the abstraction created

for a given thread maintains coarse information about the environment, e.g., a summary

of the local states of other threads [6]. The abstraction records correlations between pairs

of (abstract) thread states where one thread state is the primary thread and the other,

usually abstracted more coarsely, is part of the environment.

1.2 Main Contributions

Efficiently Reasoning about Interference. Our previous experience with analyzing

programs using the thread correlation abstraction has shown that it is rather precise in

verifying the programs and properties of interest albeit very costly. However, reasoning

about thread interference in the computation of the abstract post operator, requires taking

into account pairs of thread views, which incurs a quadratic factor. In practice, this

creates a major bottleneck, which prevents successful verification of even some simple

programs (within the time bounds used). One of the key contributions of this thesis is a

set of techniques for computing the abstract post operator more efficiently. The results

presented in this paper enable successful verification of programs that were not handled

by previous concurrent static analysis algorithms.

Main Contributions.

The main contributions of this thesis are:

Abstract Domain Present a new abstract domain for reasoning about concurrent pro-

grams with fine-grained concurrency. The new domain makes the idea of process-

centric abstraction (also referred to as “environment abstraction” [5, 6]) explicit in

terms of thread correlations expressed directly over the concrete domain, as op-

posed to specific abstractions [5] or parametric abstract domains [2,12]. We believe

the ideas are applicable to concurrent program analysis problems other than shape

analysis and are more accessible.

Sound Transformer Define a sound abstract post operator (transformer) for the new

abstraction from the concrete sequential semantics. The transformer reasons rather

precisely about interference between threads.

Transformer Optimizations Two refinements to the computation of the above trans-

formers that lead to significant speedups.

Implementation An implementation of an analysis based on the new abstract domain

which was used to automatically verify properties of several concurrent data struc-

ture implementations.
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Evaluation Empirical evaluation of the techniques show the advantages of the opti-

mizations to the abstract transformer computation. For example, for a lock-free

implementation of a concurrent set using linked lists [21], our optimizations reduce

the analysis time from 56, 347 CPU seconds to 1, 596 — a 35 fold speed-up. The im-

plementation was also used to analyze erroneous mutations of concurrent algorithms

and as expected, it quickly found errors in any of the incorrect variations.

1.3 Thesis Outline

Chapter 2 presents an overview of our analysis in a semi-formal way. Chapter 3 formalizes

our analysis using the theory of abstract interpretation [7]. Chapter 4 defines optimiza-

tions to the transformers. Chapter 5 evaluates the effectiveness of our optimizations on

realistic benchmarks. Chapter 6 concludes with discussion of related works.
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Chapter 2

Overview

2.1 A Motivating Example

This chapter explains the approach informally, using a very simple adapted example,

originally constructed to show the limitations of concurrent separation logic [22].

This example motivates the need for tracking thread correlations and shows the diffi-

culties in computing postconditions efficiently. Fig. 2.1 shows a concurrent program with

producer threads and consumer threads communicating via a single-object buffer, b, and

a global flag empty. For simplicity, instead of locks or semaphores, the await construct

is used, which atomically executes the then-clause when the await-condition holds.

In this example, the system consists of an unbounded number of producer and consumer

threads. Each producer allocates a new object, transfers it to a single consumer via the

buffer, and the consumer uses the object and then deallocates the object. The verification

goal is to verify that use(c) and dispose(c) operate on objects that have not been

deallocated. (This also verifies that an object is not deallocated more than once.)

Boolean empty = true;

Object b = null;

produce() {
[1] Object p = new();

[2] await (empty) then {
b = p; empty = false;

}
[3] }

consume() {
Object c;

[4] await (!empty) then {
c = b; empty = true;

}
[5] use(c);

[6] dispose(c);

[7] }

Figure 2.1: A concurrent program implementing a simple protocol between a producer
thread and a consumer thread transferring objects in a single-element buffer.
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2.1.1 The Need for Thread Correlations

One way to verify properties of concurrent systems is by establishing a global invariant

on the reachable configurations and show that the invariant entails the required proper-

ties (e.g., see [1]). In this program, the global invariant needs to show that the following

property holds:

∀t . pc[t] ∈ {5, 6} ⇒ a(c[t]) , (2.1)

where t ranges over threads, c[t] denotes the value of the variable c of thread t, and a(c[t])

is true iff c[t] points to an object that has not yet been disposed.

In other words, the global invariant is that ny consumer in program locations 5 or 6,

which is about to dispose c always disposes an allocated obejct. This verification requires

the computation of an inductive invariant that implies (2.1). In particular, the invariant

should guarantee that the dispose command executed by one consumer thread does not

dispose an object used by another consumer thread and that an object that a producer

places in the buffer is not a disposed object.

A natural inductive invariant that generalizes (2.1) is:

∀t, e .

pc[t] ∈ {5, 6} ⇒ a(c[t]) ∧ (i)

¬empty ⇒ a(b) ∧ (ii)

pc[t] = 2 ⇒ a(p[t]) ∧ (iii)

t 6= e ∧ pc[t] = 2 ⇒ p[t] 6= c[e] ∧ (iv)

t 6= e ∧ pc[t] ∈ {5, 6} ⇒ c[t] 6= c[e] (v)

(2.2)

This invariant ensures that dispose operations executed by threads cannot affect locations

pointed-to by producer threads that are waiting to transfer their value to the buffer

and also cannot affect the values of other consumer threads that have not yet disposed

their values. Here e is a thread that represents the environment in which t is executed.

Specifically: (i) describes the desired verification property; (ii) is the buffer invariant,

which is required in order to prove that (i) holds when a consumer copies the value

from the buffer into its local pointer c; (iii) establishes the producer properties needed

to establish the buffer invariant. The most interesting parts of this invariant are the

correlation invariants (iv) and (v), describing the potential correlations between local

states of two arbitrary threads and the content of the (global) heap. These ensure that

the invariant is inductive, for example (v) ensures that (i) is stable, i.e., deallocations

by different threads cannot affect it, if it already holds. Also, notice that the correlation

invariants cannot be inferred by pure thread-modular approaches. This work goes beyond

pure thread-modular analysis [9] by explicitly tracking these correlations.
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2.2 Automatically Inferring Correlation Invariants

This work defines an abstract interpretation algorithm that automatically infers inductive

correlation invariants. The main idea is to infer normalized invariants of the form:

∀t, e .

n
∨

i=1

ϕi[t, e] (2.3)

where t and e are universally quantified thread variables and ϕi[t, e] are formulas taken

from a finite, but usually large, set of candidates. We will refer to each ϕi[t, e] as a ci-

disjunct (Correlation-Invariant Disjunct). As in predicate abstraction and other powerset

abstractions, the set of ci-disjuncts is computed by successively adding more ci-disjuncts,

starting from the singleton set containing a ci-disjunct describing t and e in their initial

states. For efficiency, ϕi[t, e] are usually asymmetric in the sense that they record rather

precise information on the current thread t and a rather coarse view of other threads,

represented by e.

For this program, one can use conjunctions of atomic formulas describing: (i) that t

and e are different, (ii) the program counter of t; (iii) (in)equalities between local pointers

of t and e, and between local pointers of t and global pointers; (iv) allocations of local

pointers of t and global pointers; and (v) the value of the Boolean empty.

Thus, the invariant (2.2) can be written as:

















t 6= e (i)∧

pc[t] = 5 (ii)∧

c[t] 6= c[e] ∧ c[t] 6= b ∧ c[e] 6= b (iii)∧

a(c[t]) ∧ a(c[e]) ∧ a(b) (iv)∧

¬empty (v)

















∨

















t 6= e (i)∧

pc[t] = 6 (ii)∧

c[t] 6= c[e] ∧ c[t] 6= b ∧ c[e] 6= b (iii)∧

a(c[t]) ∧ a(c[e]) ∧ a(b) (iv)∧

¬empty (v)

















∨

· · ·

(2.4)

where the ci-disjuncts describe cases of a consumer thread t that copied the value from

the buffer, (which has since been refilled), and has either used the value locally or not.

The other disjuncts are not shown.

2.2.1 Computing Postconditions Efficiently

The iterative procedure successively adds ci-disjuncts describing the reachable states after

applying an atomic action to the formula representing the current set of reachable states,

until a fixed point is reached. The abstract transformer is computed for an atomic action

by identifying its effect on every ci-disjunct ϕi[t, e]. This is non-trivial since a transition

by one thread can affect the global state (and the view of the environment of another

thread) and, hence, a ci-disjunct involving other threads.
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To compute the effect of a transition on a ci-disjunct ϕi[t, e], the following three pos-

sibilities need to be taken into account: (i) The executing thread is t; (ii) The executing

thread is e; or (iii) The executing thread is some other thread ex. The most challenging

case is (iii). In this case, the ci-disjunct does not contain information about the local state

of the executing thread ex. Applying an abstract transformer without any information

about ex’s local state can lead to imprecise results. Instead, we exploit the information

available in the current set of ci-disjuncts. Specifically, the executing thread ex must itself

satisfy some ci-disjunct ϕj[ex, t
′]. The situation with case (ii) is similar since only limited

information is available about the environment thread in the ci-disjunct and it is handled

similarly.

The transformer works as follows: every pair of ci-disjuncts ϕi and ϕj is considered by

applying a “mini-transformer” to it. The mini-transformer first checks to see if the two

ci-disjuncts are consistent with each other. (E.g., if they imply conflicting values for the

global variable empty, they cannot correspond to ci-disjuncts from the same concrete state.

Other consistency checks need to make sure the the environment seen by ϕi includes the

state ϕj is in and vise-versa.) If so, it uses the information available about the executing

thread from ϕi to determine how the global state will change as a result of the transition,

and identifies how that alters ci-disjunct ϕj.

In the experiments run, the above abstraction was precise enough to verify the programs

analyzed, yet quite slow. One of the key factors for the inefficiency is the quadratic

explosion in the transformer, as the transformer has to consider all pairs of ci-disjuncts

and the number of ci-disjuncts can become very large.

Key contributions include effective techniques for making the transformer more efficient

by reducing this quadratic factor in common cases, usually without affecting precision.

These techniques are analogous to techniques used in interprocedural analysis.

In the rest of this chapter, let us consider the application of the mini-transformer

described above to ci-disjuncts ϕj (corresponding to an executing thread ex) and ϕi (cor-

responding to two other threads t and e).

2.3 Optimizatoin Techniques

The first optimization technique, called summarizing effects, is based on the following

observation. Typically, ϕi can be expressed in the form ϕ
p
i ∧ ϕr

i , where ϕr
i (the frame)

cannot be affected by the execution of ex. ϕ
p
i marks the footprint of ϕi. E.g., purely local

properties of t or e will usually be in the frame. If the transition by ex transforms ϕ
p
i

into ϕ
p′

i , then the transformation of the complete ci-disjunct is given by ϕ
p′

i ∧ ϕr
i . Note

that distinct disjuncts ϕi and ϕk may have the same footprint. In this case, it suffices to

compute the transformation of the footprint only once.
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E.g., consider the first two ci-disjuncts of (2.4). These ci-disjuncts have the same

footprint since they differ only in the program counter value of t which cannot be altered

by the execution of ex. Typically, the number of distinct footprints created by a set of

ci-disjuncts is much smaller than the number of ci-disjuncts, which leads to significant

efficiency gains. This optimization is similar to the interprocedural analysis technique

where information at the calling context not modified by the call can be transmitted

across the procedure call. This work shows the conditions under which this technique can

be used to make the transformer more efficient without affecting precision.

The second optimization applies to ci-disjunct ϕj and exploits the locality of the trans-

former by abstracting away information not used by the transition from ϕj (corresponding

to the executing thread), constructing its footprint ϕ
f
j and use it for the mini-transformer.

As distinct ci-disjuncts can have the same footprint, this decreases the number of ci-

disjuncts passed to the mini-transformer.

One point to note here is that information not used or modified by an atomic action

may still be used by the mini-transformer to check for consistency between the two ci-

disjuncts. Such information must be included in the footprint to avoid a loss of precision.

This optimization is an abstraction as it does not guarantee no loss of precision. However,

experiments found that this heuristic significantly improves the computation time while

maintaining a precise-enough abstraction.
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Chapter 3

An Abstract Interpretation for

Correlation Invariants

This section formalizes the analysis, which tracks correlations between pairs of threads,

in the framework of abstract interpretation [7].

First, it introduces a concrete semantics (C,TR) for concurrent programs and a corre-

sponding abstract semantics (CI,TR#).

3.1 The Concrete Semantics (C,TR)

A multithreaded program is a parallel composition of concurrently executing threads,

where each thread is associated with an identifier from an unbounded set Tid.

The threads communicate through a global store Glob, which is shared by all threads.

In addition, each thread has its own local store, Loc, which includes the thread’s program

counter.

A concrete state of the program, σ = (l, g), consists of a global store and an assignment

of a local store to each thread identifier. This thesis denotes the set of all concrete states

by Σ = (Tid → Loc) × Glob and the concrete domain by C = 2Σ.

Given a state σ, let σG represent the global store of σ and let σL[t] represent the local

store of thread t in σ.

The relation tr ⊆ (Loc×Glob)× (Loc×Glob) describes a step that a thread can take,

given its local store and a global store. x y is used as a shorthand for (x, y) ∈ tr. Let

σL[t := l] denote a state that is identical to σL, except that the local store of thread t is

l. The concrete transition relation is defined as

TR = {(σ, σ′) | ∃t ∈ Tid . (σL[t], σG) (l′, g′),

σ′L = σL[t := l′], σ′G = g′} .
(3.1)

13



3.2 The Abstract Semantics (CI,TR
#)

This section presents an abstraction to deal with an unbounded number of threads. As

explained in Chapter 1 and Chapter 2, the starting point for our work is the idea of a

process-centric abstraction. A process-centric abstraction computes an abstraction of a

program state σ from the perspective of a thread t. As seen in Chapter 2, tracking

information about a single thread in the style of thread-modular analysis [8] can be

imprecise, and it is useful in many cases for the process-centric abstraction to capture

some information about (other threads in) the environment. This motivates the following

abstract domain.

Define an abstraction that records correlations between the local stores of two different

threads and a global store. Let CID ≡ Loc×Glob×Loc denote the set of such correlations.

An element of CID will be refered to as a ci-disjunct. Define the abstract domain CI to

be the powerset 2CID.

The abstraction of a single concrete state is given by

βstm(σ) = {(σL[t], σG, σL[e]) | t, e ∈ Tid, t 6= e} . (3.2)

Note that a ci-disjunct (σL[t], σG, σL[e]) represents the state from the perspective of two

threads: t, the primary thread, and e, the secondary thread. We say that (σL[t], σG, σL[e])

is a ci-disjunct generated by threads t and e.

The abstraction of a set of states α: C → CI and the concretization γ:CI → C are:

α(X) ≡
⋃

σ∈X

βstm(σ) ,

γ(R) ≡ {σ | βstm(σ) ⊆ R} .

3.2.1 Composing With Other Abstractions.

Note that when Loc and Glob are finite sets, CI gives us a finite abstraction. In general,

it will be useful to compose the above abstraction with a subsequent abstraction to create

a finite, tractable, abstract domain. E.g., given any suitable abstraction CID♯ of CID, a

corresponding abstract domain 2CID♯

can be defined. Typically, the subsequent abstrac-

tion will retain more information about the first local store than about the second local

store. As will later be shown (when the transformers are described), information about

the first local store is used to approximate the sequential semantics of program statements

whereas the information on the second store is used to express correlation invariants.
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Let CIMap denote Loc × Glob → 2Loc. Define the function map : CI → CIMap by

map(R) ≡ λ(ℓ, g).{ℓe | (ℓ, g, ℓe) ∈ R}. The function map is bijective and CI and CIMap

are isomorphic domains. However, the form of CIMap is more suggestive of a process-

centric abstraction and also suggests other subsequent abstractions. E.g., if ATS is an

abstraction of Loc × Glob and Env is an abstraction of 2Loc, then we can utilize the

composed abstraction domain ATS → Env.

The rest of this thesis restricts the attention to the domain CI.

3.2.2 An Abstract Transformer

Given R ∈ CI, let R(ℓ, g) ≡ map(R)(ℓ, g) and par(R) ≡ {(ℓ, g, R(ℓ, g)) | ∃ℓe.(ℓ, g, ℓe) ∈ R}

the following abstract transformer TR# : CI → CI is defined as follows:

TR#(R) ≡
⋃

t∈R

trdirect(t) ∪
⋃

te,tt∈par(R)

trindirect(te, tt) . (3.3)

The function trdirect : CID → 2CID captures the effect of a transition by a thread t on

a ci-disjunct whose primary thread is t. Abusing terminology, if threads tp and ts satisfy

φ(tp, ts), where φ ∈ CID, then after a transition by thread tp, the threads will satisfy

trdirect(φ)(tp, ts).

trdirect(ℓp, g, ℓs) ≡ {(ℓ′p, g
′, ℓs) | (ℓp, g) (ℓ′p, g

′)}. (3.4)

The function trindirect serves to capture the effect of a transition by a thread t on a

set of ci-disjuncts whose primary thread is not t. The transformer uses par(R) to collect

together the different environments for each pair of local and global stores. The first

parameter of trindirect is the executing thread, and the second is the thread on which the

interference is computed. This thread is called tracked thread.

trindirect((ℓ1, g1, e1), (ℓ2, g2, e2)) ≡

if (g1 = g2 ∧ ℓ1 ∈ e2 ∧ ℓ2 ∈ e1 ∧ e1 ∩ e2 6= ∅)

then {(ℓ2, g
′

1, ℓ3) | (ℓ1, g1) (ℓ′1, g
′

1), ℓ3 ∈ (e1 ∩ e2) ∪ {ℓ′1}}

else {} .

(3.5)

Theorem 3.2.1 (Soundness). The abstract transformer TR# is sound, i.e., for all R ∈ CI

TR(γ(R)) ⊆ γ(TR#(R)) . (3.6)
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Proof. Let σ′ ∈ TR(γ(R)), i.e., there is σ ∈ γ(R) and tex ∈ Tid s.t.,

(σL[tex], σ
G) (l′, σ′G)whereσ′L = σL[tex := l′] (3.7)

Let tp 6= ts ∈ Tid, since σ ∈ γ(R), we have

(σL[tp], σ
G, σL[ts]), (σ

L[ts], σ
G, σL[tp]) ∈ R (3.8)

There are three cases:

• tp = tex - thus (σL[tp], σ
G)  (l′, σ′G) where l′ = σ′L[tp]. By definition of trdirect

from (3.8) we have (σ′L[tp], σ
′G, σ′L[ts]) ∈ TR#(R)

• ts = tex - thus (σL[ts], σ
G)  (l′, σ′G) where l′ = σ′L[ts]. From (3.8) there are

ep, es s.t., (σL[tp], σ
G, ep), (σ

L[ts], σ
G, es) ∈ par(R) and σL[ts] ∈ ep, σ

L[tp] ∈ es. Let

t ∈ Tid \ {tp, ts}, then by definition of γ and par(R) we have σL[t] ∈ ep ∩ es. Thus,

by definition of trindirect we have (σ′L[tp], σ
′G, σ′L[ts]) ∈ TR#(R).

• tp 6= tex and ts 6= tex - By definition of γ, we have

(σL[tex], σ
G, σL[tp]), (σ

L[tex], σ
G, σL[ts]), (σ

L[tp], σ
G, σL[tex]) ∈ R. Thus, from (3.8)

there are ep, eex s.t., (σL[tp], σ
G, ep), (σ

L[tex], σ
G, eex) ∈ par(R) and σL[tex] ∈ ep, σ

L[tp] ∈

eex. Furthermore, σL[ts] ∈ ep ∩ eex. Thus, from (3.7) by definition of trindirect we

have (σ′L[tp], σ
′G, σ′L[ts]) ∈ TR#(R).

Thus, for any tp 6= ts we have (σ′L[tp], σ
′G, σ′L[ts]) ∈ TR#(R), i.e., σ′ ∈ γ(TR#(R)).

Note that the transformer is not guaranteed to be the most-precise transformer [7]. In

terms of efficiency, the expensive part of the transformer is the application of trindirect,

which operates over pairs of elements in par(R), requiring a quadratic number of queries

to tr.

The next chapter describes two techniques for reducing this quadratic factor.
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Chapter 4

Efficiently Computing Interference

The techniques used to accelerate the computation of interference are inspired by well-

known techniques for inter-procedural analysis. The main observation behind these tech-

niques is that the role of computing interference is to update the global store for the

tracked thread. Any information that is not pertinent to this task can be disregarded.

For the tracked thread, this means that any information in the local store that is not ob-

servable by the executing thread can be removed before the call to trindirect and restored

after the operation is complete. We call this Summarizing Effects. For the executing

thread, any information that does not affect the way that the global store is changed

can be abstracted away. We call this Summary Abstraction. Summarizing effects is im-

pelemented as an optimization (i.e., the result is an equivalent abstract transformer).

Summary abstraction is impelemented as an abstraction (i.e., some precision is lost, but

given the presented heuristics the analysis is still able to prove the property at hand).

Both techniques retain trdirect as is, and improve the bottleneck of the computation, i.e.,

trindirect. Summarizing effects operates on the tracked thread while summary abstraction

operates on the executing thread.

4.1 Summarizing Effects

The notion of summarizing effects is similar to a well-known technique in inter-procedural

analysis of maintaining summary edges that represent the effect of procedures. Any

information about the caller that is not visible to the callee can be abstracted at the call

site and restored at the return site (see e.g., [17]). This work only abstracts the local store

of the tracked thread in this way. However, for heap-manipulating programs, any regions

of the heap that are private to the tracked thread can be handled in a similar way. This

is similar to the notion of procedure local heaps [25]. Another way to understand this

optimization is by realizing that the abstraction of the secondary thread is coarser than

the abstraction of the local store of the primary thread. The optimization takes advantage
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Figure 4.1: Abstract states for summarizing effects

of this asymmetry by abstracting away any information on the tracked thread that is not

observable in the environment of the executing thread. This information is restored after

the quadratic part of the transformer has completed. In the examples, every box is a

ci-disjunct where the thread on the left is the primary thread and the thread on the right

is the secondary thread. Red nodes are deallocated.

Example. This example demonstrates the summarizing effects technique on the buffer

algorithm in Fig. 2.1. C1 is executing dispose(c); C2 is the tracked thread. The ab-

straction used is similar to that of Chapter 2, except it is depicted graphically and for

simplicity considers a bounded number of threads. The pre- and post-conditions are de-

picted in Fig. 4.1(a) and Fig. 4.1(b). Note that the ci-disjuncts in the third column differ

only by C2’s program counter. This is also true for the ci-disjuncts in the fourth column.

Fig. 4.1(c) shows the ci-disjuncts that constitute the footprint of the the tracked thread’s

state. The program counter is left only in the frame. Fig. 4.1(d) shows the applica-

tion of the transformer on the information gathered from all the ci-disjuncts considered.

Fig. 4.1(e) depicts the states after they are projected back to the CID domain and before

the frame is restored. Note that the program location on the bottom left is the executing

thread’s. The tracked thread’s program location is still missing. Finally, the frame from

Fig. 4.1(a) is used on Fig. 4.1(e) which renders the abstract state in Fig. 4.1(b).

The optimization amounts to determining for each the ci-disjunct of the tracked thread

the footprint, which is needed for the computation of the transformer and the frame which

is not. Intuitively, all the ci-disjuncts are split to equivalence classes according to their

footprints. Representatives of these equivalence classes (computed by fp) are used for

the second argument of trindirect. Later, the result is reconstructed by combining the

original frame with the updated representatives. Formally, the right argument to the
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union in (3.3) is replaced with:

⋃

tf



{frame(tt) | tt ∈ par(R) ∧ fp(tt) = tf} ⊗
⋃

te∈par(R)

trindirect(te, tf )



 (4.1)

For simplicity of presentation, fp is formulated as choosing the representative ci-disjunct

for all the ci-disjuncts that have the same footprint and frame as the identity function.

Thus, the combination operation ⊗ is simply defined as:

Rfrm ⊗ Rfp = {(ℓ, g, ℓe) | (ℓ, , ) ∈ Rfrm, ( , g, ℓe) ∈ Rfp} . (4.2)

Equations (4.3-4.6) give sufficient requirements for the transformer in (4.1) to be equiv-

alent to the trindirect part of (3.3).

∀ℓ1, ℓ2, o1, o2, g . fp(ℓ1, g, o1) = fp(ℓ2, g, o2) ∧ (4.3)

R(ℓ1, g) 6= ∅ ∧ R(ℓ2, g) 6= ∅ ⇒ R(ℓ1, g) = R(ℓ2, g)

∀ℓ1, ℓ2, ℓ, o, g . fp(ℓ1, g, o) = fp(ℓ2, g, o) ⇒ ℓ1 ∈ R(ℓ, g) ⇔ ℓ2 ∈ R(ℓ, g) (4.4)

∀t . fp(fp(t)) = fp(t) (4.5)

fp(ℓ, g, e) = ( , g, ) (4.6)

The first two requirements specify that the abstraction cannot distinguish between local

stores that have the same footprint. The third requirement states that footprint is idem-

potent. These requirements ensure that te is consistent with fp(tt) if and only if te and tt

are consistent (as checked in the second line of (3.5)). The last requirement assures that

the footprint does not change the global information.

Theorem 4.1.1. If equations (4.3-4.6) hold, then (4.1) is equivalent to
⋃

te,tt∈par(R) tr
indirect(te, tt) .

Proof. Soundness

Let (ℓp, g
′, ℓ′s) ∈

⋃

te,tt∈par(R) tr
indirect(te, tt)

⇒ ∃(ℓe, ge, R(ℓe, ge)), (ℓt, gt, R(ℓt, gt)) ∈ par(R) s.t.

(ℓp, g
′, ℓ′s) ∈ trindirect(ℓe, ge, R(ℓe, ge)), (ℓt, gt, R(ℓt, gt))

(by (3.5)) ⇒

ge = gt, ℓe ∈ R(ℓt, gt), ℓt ∈ R(ℓe, ge), R(ℓt, gt) ∩ R(ℓe, gt) 6= ∅, (ℓe, ge)  (ℓ′e, g
′), ℓp = ℓt

and ℓ′s ∈ R(ℓe, ge) ∩ R(ℓt, gt) ∪ {ℓ′e}

Let (ℓf , gt, ef ) = fp(tt) (By 4.6 gt does not change)

(By (4.5)) ⇒ fp(ℓf , gt, ef ) = fp(tt)

(By (4.3)) ⇒ ef = R(ℓt, gt)

To show that (ℓf , g
′, ℓ′s) ∈ trindirect(te, (ℓf , gt, ef )) all we need to show is that ℓf ∈
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R(ℓe, ge).

However, fp(ℓf , gt, R(ℓt, gt)) = fp(ℓt, gt, R(ℓt, gt)), thus from ℓt ∈ R(ℓe, ge) by (4.4) we have

ℓf ∈ R(ℓe, ge).

Finally, from definition of ⊗ and frame, from (ℓf , g
′, ℓ′s) ∈ trindirect(te, (ℓf , gt, ef )) and

tt ∈ par(R) we have (ℓt, g
′, ℓ′s) ∈ (4.1).

Completeness

Let (ℓt, g
′, ℓ′s) ∈ (4.1).

From definition of ⊗ and frame, there are (ℓt, gt, et), (ℓe, ge, ee) ∈ par(R) and (ℓf , gt, ef )

s.t., (ℓf , gt, ef ) = fp(ℓt, gt, et) and (ℓt, g
′, ℓ′s) ∈ trindirect((ℓe, ge, ee), (ℓf , gt, ef )).

Thus, by (3.5) we have ge = gt, ℓe ∈ ef , ℓf ∈ ee, ef ∩ ee 6= ∅, (ℓe, ge)  (ℓ′e, g
′), and

ℓ′s ∈ ee ∩ ef ∪ {ℓ′e}.

By (4.5) we have fp((ℓf , gt, ef )) = fp((ℓt, gt, et)), thus by (4.3) we have ef = et.

Thus, to show that (ℓt, g
′, ℓ′s) ∈ trindirect((ℓe, ge, ee), (ℓt, gt, et)), all we need to show is

that ℓt ∈ ee. However, fp(ℓf , gt, ef ) = fp(ℓt, gt, et),

thus from ℓf ∈ ee by (4.4) we have ℓt ∈ R(ℓe, ge).

4.2 Summary Abstraction

The summary abstraction technique abstracts t1 into t′1 in (4.1) or (3.3) such that

trindirect(t1, t2) ⊆ trindirect(t′1, t2) .

Specifically, we let t′1 be the part of t1 that is read or written by the executed statement

(transition). However, this may still lead to a loss of precision, since some correlations

may be lost in the consistency check (the second line of (3.5)). This is in contrast to

summarizing effects where the specified requirements ensure that the consistency check

would yield the same results.

Example. The example demonstrates the summary abstraction for single buffer algo-

rithm in Fig. 4.2. It is a slight modification of Fig. 2.1, whose goal is to demostrace the

summary abstraction technique on a simple example. A local boolean x was added to

the consumer code. x’s value is determined according to the value of c. This addition

potentially doubles the state space of the consumer threads.

Fig. 4.3 depicts a state where C1 is executing dispose(c). The tracked thread is C2.

Fig. 4.3(a) depicts the input ci-disjuncts. The ci-disjuncts in the leftmost column differ

by the values of x1 (which is not visible by C2). Fig. 4.3(b) represents the ci-disjuncts

from Fig. 4.3(a) after the application of summary abstraction, which abstracts away x1.

Fig. 4.3(c) depicts the application of the transformer when considering all the relevant
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Boolean empty = true;

Object b = null;

produce() {
[1] Object p = new();

[2] await (empty) then {
b = p; empty = false;

}
[3] }

consume() {
Object c;

Boolean x;

[4] await (!empty) then {
c = b; empty = true;

}
[5] use(c);

[6] x = f(c);

[7] dispose(c);

[8] use(x);

[9] }

Figure 4.2: A slight modification of the producer-consumer code. (Lines [6] and [8] were
added).
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Figure 4.3: Abstract states for summary abstraction
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ci-disjuncts. Note that the left program counter is that of C1, and the right one is that

of C2. Finally, Fig. 4.3(d) depicts the resulting ci-disjuncts.

This example also demonstrates the possible loss of precision due to this technique.

Fig. 4.3(c) cannot be constructed from the ci-disjuncts in Fig. 4.3(a) due to conflicting

values of x1. However, after the application of summary abstraction, the values of x1 are

not considered and Fig. 4.3(c) can be constructed.
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Chapter 5

Evaluation

The analysis has been evaluated on a number of highly concurrent state-of-the-art prac-

tical algorithms. Most of these algorithms have not been automatically verified before.

The evaluation indeed confirms the need for extra precision in tracking thread corre-

lations, without which the analysis loses crucial precision and fails to verify the specified

properties.

the tool is based on TVLA [19] and its extension HeDec [20]. It is generic in the sense

that it supports diverse shape analyses. The input is a description of the algorithm and

the shape analysis to be performed. It uses a flow-sensitive and context-sensitive shape

analysis. Context sensitivity is maintained by using call-strings. The summarization

consists of program locations, call-strings, and non-pointer local variables.

Tab. 5.1 summarizes the verified data structures and the speedups gained from the sum-

marizing effects and summarizing abstraction techniques. All benchmarks are concurrent

sets implemented by sorted linked lists.

[21] is a CAS-based lock-free list-based concurrent set. It is a part of the JDK 1.6 Skip-

List implementation. This algorithm (as well as [11] and [21]) uses two CAS operations

Time (seconds) Speedup
Algorithm Standard Summar. Abs. Both Summar. Abs. Both

Concurrent Set [21] 56,347 19,233 2,402 1,596 2.93 23.46 35.30
Optimized Concurrent Set 46,499 18,981 2,061 1,478 2.45 22.57 31.45
Lazy List Set [11] 963 679 460 390 1.42 2.09 2.47
CAS-based set [26] 13,182 8,710 4,223 2,975 1.51 3.12 4.43
DCAS-based set [26] 861 477 446 287 1.80 1.93 3.00
Hand over Hand Set [13] 686 577 444 398 1.19 1.54 1.73

Table 5.1: Experiments performed on a machine with a 2.4Ghz Intel Q6600 32 bit pro-
cessor and 4Gb memory running Linux with JDK 1.6
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in the delete method. The first operation logically marks the node as deleted and the

second operation does the actual removal (moving the pointers).

The Lazy List [11] is a lock-based set with a wait-free locate operation.

Another algorithm verified is an optimized wait-free version of [21] which substi-

tutes [21] in the Skip-List implementation of JDK 1.7. This algorithm is a combination

of the previous two. The find operation is taken from [11] while insert and remove are

from [21] .

The DCAS-based set and the CAS-based sets, [26], are variants of the same algorithm.

The first uses a CAS in insert and a DCAS in remove. The second substitutes the DCAS

with two CAS operations and a mark bit.

Finally, a concurrent hand-over-hand set [13] was analyzed. It uses fine-grained locking

(each node has its own lock). Locks are acquired and released in a “hand-over-hand” order;

the next lock in the sequence is acquired before the previous lock is released.

The tool was used to analyze variants of these programs with intentionally added bugs

(e.g., missing synchronization, changing the synchronization order). The analysis found

all these bugs and reported a problem (as expected, since the analysis is sound).

An interesting example of a mutation tested is swapping the physical and logical re-

movals in [21]. i.e., first remove the deleted node from the list by having its predecessor

point to its successor and only then mark it as deleted. The analysis discovered that in

such a case multiple nodes can be deleted by the CAS and not just the intended node.

A very significant speedup was gained in analyzing [21] and its optimized variant. We

believe this is due to the following: (i) This work optimize a quadratic algorithm, thus

bigger exmaples are expected to have more gain. (ii) The complexity of the state that

comes from the larger number of pointer variables and from the existence of Boolean

fields makes the savings from ignoring the unchanged parts of the heaps as done in the

summary abstraction much more significant. (iii) this algorithms is more complicated

than the other examples and uses internal method calls. Summarizing effects significantly

reduces the blow-up due to context sensitivity and summarizing abstraction is able to

reduce blow-ups due to local Boolean fields.
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Chapter 6

Related Work

Process-Centric Abstraction. The thread correlation analysis presented in this work falls

within the general approach of reasoning about concurrent programs in terms of an ab-

straction of the program state relative to a thread, which is classic in work on program

logic: assertions within the code of a thread refer to the state from that thread’s per-

spective, and the thread’s concurrent environment is over-approximated by, for instance,

invariants [15, 23] or relations [16] on the shared state. This idea has also been used

early on for automatic compositional verification [4]. More recently, this approach has

led to the notion of thread-modular verification for model checking systems with finitely-

many threads [8], and has also been applied more closely to our present domain of heap-

manipulating programs with coarse-grained concurrency [9], and less automatically to

fine-grained concurrency [3].

Abstract Interpretation with Quantified Invariants. The abstract states in the analysis

are special case of quantified invariants. This approach has been previously formalized in

the work on Indexed Predicate Abstraction [18] and also appears in the work on Envi-

ronment Abstraction [5,6]. Indices, or free variables, in the indexed predicate abstraction

work can range over anything, depending on the application. A similar quantified invari-

ants approach has also been used in the analysis of heap properties [24] and properties of

collections [10] in sequential programs.
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