HUP: A Heap Usage Profiling Tool for

Java Programs

Michael Pan*
Supervisors Dr. Elliot Kolodner and Dr. Mooly Sagiv
School of Computer Science, Tel-Aviv University, Israel

September 1, 2001

Abstract

This thesis presents a Heap Usage Profiling tool (HUP) for explor-
ing and reducing heap space consumption in Java applications. The
space saving is based on the fact that some of the allocated objects
are not immediately used (or not used at all) in the application code.
Also, there are objects, which though no longer in use, remain reach-
able and in memory. The HUP tool allows a programmer to locate
and remove memory bottlenecks, which are caused by unused objects.
The usefulness of the HUP tool is demonstrated by applying it to
several complex applications that use heap space heavily.

*pan@post.tau.ac.il

Acknowledgments

I would like to thank Dr. Mooly Sagiv for his guidance, help
and support throughout this work. I would like to thank Dr. Elliot
Kolodner for his advice, ideas and help throughout this work.

This work was done in collaboration with Ran Shaham and I would
like to thank him for his advice, ideas and help. Thanks to Roman
Manevich for reading drafts and for his helpful comments. Thanks
also to Leonid Bobovich, Michael Rozhavsky and Gleb Natapov.

I would like to thank the Academy of Science, Israel and IBM
(through a Faculty Partnership Award) for their financial support.

I would like to thank my wife Diana for her great patience.

Contents

1

Introduction 4
1.1 Mainresults 5)
1.2 Designgoals 6
1.3 Outline of the rest of this thesis. 7
System Description 8
2.1 Architecture 8
2.2 Analysis 8
Applications 11
3.1 SPECjvm98 benchmarks 11

3.1.1 Program transformations 12

3.1.2 Raytraceo 14
3.2 Soot ... 16
3.3 TVLA . . . 19
HUP Rationale 23
4.1 Object usage definition 23
4.2 The usage of JVMPI oL 29
Instrumentation 31
5.1 GUE technique 31
5.2 Object uses inside native methods 33
5.3 Static and dynamic instrumentation L. 36
The Profiling Agent 39
Related Work 42
Conclusions and Future Work 43
8.1 Limitations 43
8.2 Suggestions for future researcho 44
User’s Manual 47
A1 Installation 47
A.2 Running the profiler 48
A3 Result analysis 49
A.4 GNU Generic Public License 54

Allocated Objects

Reachable Objects

In-Use Objects

Figure 1: Reachable vs. in-use heap objects.

1 Introduction

Memory is one of the most critical resources in many applications. The pro-
gram heap, in turn, is the space that is aggressively used during program
execution, especially in object-oriented languages. Unwise heap usage may
make the program infeasible or degrade performance. Furthermore, programs
that employ garbage collection require larger heaps. Motivated by this our
research is focused on reducing the heap space in the presence of a Garbage
Collector (GC), particularly in a Java environment. Generally, a Java pro-
gram allocates objects and the GC algorithm is responsible for collecting the
objects, which are no longer in use and reclaiming their space. However,
commonly used GC algorithms do not collect all potential garbage but only
those objects that are no longer reachable from the root set, where the root
set is the set of references, which are stored in global variables or on the
stack. Yet, there are objects that are reachable from the root set at a given
point in the program and will not be used in the future. This is illustrated
pictorially in Figure 1.

Some of the unused but reachable objects may be reclaimed in order to
save space. Moreover, on some occasions, we can delay the allocation of used
objects, and thereby reduce the heap consumption. These ideas motivate the
classification of the lifecycle of an object as shown in Figure 2. We refer to
the time interval from the allocation time of an object until it is first used
as lag time and to the object itself as a lagged object. The time interval
from the last use of an object until it becomes unreachable is called drag
time and object itself is said to be a dragged object. In a special case, when
the object has no uses at all, we refer to the interval between its allocation
and the point it becomes unreachable as void time and the object itself as
a void object (Figure 3). These definitions of lag, drag and void were first
introduced by Rdjemo and Runciman [RR96].

Previous work by Shaham, Kolodner and Sagiv [SKS00] showed a poten-
tial space saving for SPECjvm98 benchmarks ranging from 23% to 74% in
dragged and void objects. Moreover, in [SKSO01], they applied simple code

| lag-time | use-time Idrag—time |

allocation first-use last-use unreachable

Figure 2: The lifetime of used objects.

| void-time |

allocation unreachable

Figure 3: The lifetime of void objects.

transformations to these benchmarks and saved on average 18% of the space.
These results were obtained by a simple profiling tool prototype, which in-
strumented Sun’s Java Virtual Machine (JVM) [SUNO1]. In this research we
concentrate on the profiling approach. We propose a flexible and powerful
tool for profiling heap usage measurements and examine its usefulness for
complex Java applications.

1.1 Main results

The contributions of this thesis can be summarized as follows:

e We developed a new tool for the runtime profiling of Java programs
called Heap Usage Profiler (HUP), which is a non-trivial task, and
involves several state of the art techniques.

e The tool offers many features for profiling heap usage beyond the pro-
totype reported in [SKSO01], including measuring and analyzing lagged
objects, which allows more space savings.

e The tool is built on top of JVMPI [VL00], which is a generic JVM
[LY96] profiling interface. The tool works on any JVM implementation,
which supports JVMPI. In particular, for a specific application the tool
can be applied on several different Java Virtual Machine implementa-
tions, in order to better tune the performance of a given application.

e In order to demonstrate the usefulness of HUP, we applied it to several
complex applications written in Java that use heap space heavily. The

results are reported in Section 3. We are encouraged by the fact that in
the Soot application [VRHS™99] we were able to save on average 17% of
the maximum heap size using HUP, even though we were not familiar
with this code at all. These improvents have already been integrated
into Soot by the code owners. We also used HUP to locate a space
bottleneck in TVLA [LAS00], leading to an average improvement of
15% in the maximum size of the heap. Since TVLA is heap intensive,
this allows it to be applied to larger problems than previously feasible.

1.2 Design goals

During design of the HUP tool we tried to achieve the following goals:

e Functionality. The purpose is the collection of object usage information
during the execution of a Java application and analysis of the collected
data. We would like the HUP tool to be conservative and record all
object uses wherever they come from, Java or native methods code.
The HUP profiling mechanism is required to maintain the behavior of
a profiled application. The profiled information should be presented in
such a way, that the user would be able to understand and analyze the
profiling results.

e Usability. The HUP tool is required to be easy to use. We would
like the HUP tool to require minimum interaction with the user for
application profiling and provide a user-friendly interface for exploring
profiling results.

e Portability. We would like HUP to be platform and JVM independent,
i.e., to work for all JVM implementations and on all platforms.

e Frtendability. The HUP design should allow adding of new features
into its code.

e Performance. The runtime overhead of the HUP tool during appli-
cation profiling should be as small as possible. Feasibility for large
applications is an additional related requirement.

The profiling data collection functionality and the portability require-
ments are achieved by using of the JVMPI interface and bytecode instru-
mentation. The JVMPI interface allows collection of different runtime in-
formation directly from a JVM implementation. Unfortunately, the JVMPI
does not provide all the information we require. To overcome this problem,

we use bytecode instrumentation, which changes the application source code
in such a way that the required information will be accessable through the
JVMPI. The bytecode instrumentation that we propose does not change the
application results. We discuss the combination of the JVMPI interface and
the bytecode instrumentation in Section 4.2 and the complete description of
the bytecode instrumentation is given in Section 5.

The profiling data analysis functionality is achieved by the HUP-analysis
tool that provides a user-friendly interface in order to explore the profiling
results. HUP-analysis allows a user to make various queries on profiled data
and locate memory bottlenecks in a profiled application. The HUP-analysis
facilities are discussed in Section 2.2.

The HUP tool is usable since an application profiling procedure is sim-
ple and requires almost no interaction with the user. This result is mainly
achieved by an “online” instrumentation of an application class files, which
we discuss in depth in Section 5.3.

The design and development of the HUP tool were made with extendabil-
ity requirement in mind. The combination of the JVMPI and the bytecode
instrumentation can be extended in order to collect more profiling informa-
tion in the future. The HUP-analysis code allows adding new queries on
profiled data, we discuss some of them in Section 8.2.

The current version of the HUP tool is not tuned for high performance
and creates significant runtime overhead during application profiling. We
discuss the HUP performance problems and propose solutions for them in
Section 8.1.

1.3 Outline of the rest of this thesis

The rest of this thesis is as follow. Section 2 presents an overview of the
HUP tool architecture and the HUP-analysis facilities. Section 3 presents
the results of applying the HUP tool to complex Java application. Section 4
discusses important design decisions, the definition of object usage and the
integration of the JVMPI interface into the HUP architecture. Section 5
gives a detailed description of the instrumentation techniques we used. Sec-
tion 6 describes the profiling agent, which is HUP’s core engine for profiling
data collection. Section 7 presentes related work. Section 8 concludes the
thesis and describes the current limitations of HUP and proposals for further
research.

2 System Description

2.1 Architecture

The HUP tool was designed to work independently with any JVM imple-
mentation, which support the JVMPI interface. Currently, we have tested
it on IBM JDK 1.3 [IBMO1] and on Sun JDK 1.3 [SUNO1] classic. During
execution, it uses the BCEL [Dah99] bytecode instrumentation framework,
written in Java and freely available on ‘ “http://bcel.sourceforge.net’’.
The tool was developed and used on the Windows 2000 operating system.
Most of the code is platform independent. The platform dependent code
includes some C-code that deals with sockets and memory management, and
batch files for running HUP. The tool is distributed under GNU General
Public License (see Section A.4).

The HUP architecture is shown in Figure 4. An application written in
the Java language is compiled by a Java compiler into corresponding class
files. Each class file contains a binary representation of one application class
or interface; in particular, the class file contains the bytecode of the class.
The class files are read and executed by a JVM.

The execution of any application by a JVM requires the JDK runtime
classes that comprise the Java platform’s core API. InstrumentJDK is a pro-
gram that receives as input all the JDK classes and outputs the corresponding
instrumented JDK classes together with some additional information. This
program is invoked once for any given JDK and then the results are utilized
when an application program is profiled. The instrumented JDK classes are
passed to the JVM and replace the standard bootstrap and other JDK classes
during the execution of an application. The JDK class information contains a
list of the JDK classes and a description of native methods that are found in
these classes. This information is passed to the profiling agent. The profiling
agent communicates with the JVM implementation and collects data from
the execution of a given application. Then, the collected data is processed
by the HUP-analysis. The HUP-analysis, in turn, provides a user interface
for querying information about the profiled data such as information about
lag, drag and void objects.

2.2 Analysis

First, we introduce some definitions, which are used in the following discus-
sion. We measure the time as bytes allocated since the beginning of program
execution. This provides a less-machine dependent measure of time. Ob-
serving the size of reachable objects as function of time, we calculate the

JDK Classes

|

InstrumentJDK

Instrumented
" JDK Classes

JDK Clagses
Information

Application
(*.java)

|

JAVA
Compiler

l

Application
(*.class)

JVM

A
Y

—>

Profiling
Agent

Profiling data

l
|

Analysis

Application
Input

Application
Output

Figure 4: A scheme of the HUP architecture.

integral of this function. We refer to this space-time integral value as the
total space of a given application. Similarly, we refer to the values of the
integral of the lag, drag and void size functions as total lag, drag and void
space respectively. The HUP-analysis calculates an approximation for these
integrals as follows. The product of object lifetime and object size defines
the object lifetime space for a single object and the sum of the lifetime space
of all objects gives the application’s total space. Similarly, the product of an
object’s lag, drag or void time and its size defines the object’s lag, drag and
void space respectively. The sum of lag, drag or void space of all objects pro-
duce total lag, drag and void space of the application respectively. The total
lag, drag and void space definitions are particularly useful for understanding
the impact of the lagged, dragged and void objects on the heap consumption
of a given application.

The HUP-analysis is based on the classification of lagged, dragged and
void objects. Specifically, the analysis classifies the objects by class, alloca-
tion site and nested allocation site. The nested allocation-site of an object is
the call chain of methods leading to the object’s allocation. In other words
it is the thread stack trace at the point the object is allocated. Calling a
method from a different lines of code of the same method generate different
nested allocation-sites. The allocation site of an object is its nested allocation
site of depth one, or simply the method, where the object is allocated. As
opposed to the nested allocation site definition, the allocation site definition
does not distinguish between different lines within the same method. The
analysis calculates lag, drag and void space for a given class, by summing
the lag, drag and void space of all instances of this class, respectively. In the
same way, the analysis calculates lag, drag and void space for allocation sites
and nested allocation sites. The HUP-analysis displays items in each of the
above classifications sorted by lag, drag or void space, thereby bringing user
attention to the items with the most significant lag, drag and void space.

In general, the analysis process is as follows. First, the user selects a
class which appears to have a significant lag, drag or void space. Then, the
user queries for the allocation sites of the selected class. In case further
investigations are required, the user may query for nested allocation sites of
all or some allocation sites that were previously obtained. The stack traces
in the HUP-analysis usually contain the Java source file name and the line
number in the file, so the user can easily locate an allocation site and a nested
allocation site in source code.

Another classification of objects that is provided by HUP-analysis is based
on the differentiation of objects by their lifetime patterns. The lifetime pat-
tern is defined by the stack traces of the first and the last object use. For
example, when the user examines the lagged objects of a given nested alloca-

10

tion site, objects with different stack traces of first uses could be identified.
This difference may point to different roles of objects in a given program run,
even though they are allocated at the same point. In the same way, the user
may explore the lifetime patterns of dragged objects.

A complete description of the HUP-analysis user interface is found in the
User’s Manual (appendix A).

3 Applications

In this section, we report the results obtained by applying the HUP tool to
the SPECjvm98 benchmarks, Soot and TVLA applications. For each of these
applications we provide a brief description and the lag, drag and void space
statistics that were collected for it. Then, we present the improvements we
made in the application, based on the analysis using HUP, and discuss the
impact of these improvements.

In order to reduce heap consumption of a given application, we manually
rewrote the application code. Our code rewriting reduced the application
lag, drag and void space by using the following approaches:

e Decreasing of lag, drag and void time of lagged, dragged and void
objects.

e Reducing the number of lagged, dragged and void objects.
e Reducing the size of lagged, dragged and void objects.

In following discussion, we propose several techniques for code rewriting and
show examples of applying these techniques to the applications.

Changing the program code, we preserved the correctness of the program.
We applied source transformations only after a thorough inspection of the
source code and validation that the original and revised programs produce
identical results on several inputs. Moreover, the proposed changes in Soot
and TVLA code were verified and accepted by developers of these applica-
tions.

3.1 SPECjvm98 benchmarks

SPECjvm98 [SPE9S8] is a standard benchmark suite for the performance
comparison of JVM implementations. We employed six benchmarks from
SPECjvm98, which use significant amounts of heap memory. The profiling
results for these benchmarks are shown in Figure 5. The graphs in Figure 5

11

shows the applications’ lag, drag, void and in-use space, where the X axis is
time in bytes and the Y axis is the heap size.

We choose one representative of the benchmarks, raytrace, for analysis.
The raytrace benchmark has significant lag, drag and void space. Specifi-
cally, 27.57% of the total space is drag, 7.76% is lag and 31.52% is void.

3.1.1 Program transformations

In order to reduce the heap consumption of raytrace we applied the follow-
ing techniques.

e Dead code removal. Dead code does not affect the result of the program.
There may be local variables, instance variables and array elements
that reference objects, which are never used. The dead code removal
technique eliminates the allocations of these objects, thereby reducing
the number of void objects. In order to apply this technique, we must
ensure that the constructor and the finalizer of a given object have no
influence on the rest of the program, e.g., they do not update other
objects or static variables. An additional check for the constructor is
that it does not throw an exception for which there may be a handler
in the surrounding code.

Another application of the dead code removal technique is the removal
of the unused object’s fields from an appropriate class declaration. The
removal of the unused fields reduces the class instance size, thereby
reducing the space consumption of a given application. In some cases,
there are assignments to the object’s fields, but the assigned values are
never obtained from the fields. These object’s fields can be removed
after the removal of the assignments to these fields.

e Lazy allocation. This technique changes the code to allocate objects
lazily. In particular, it eliminates the original allocation of the object
and the variable that would have referred to the object remains null
or is assigned null. The object’s allocation is moved to its first use by
inserting code before each possible first use to check that the reference
variable is still null and if so, to allocate the object. We refer to this
technique as lazy allocation and it is particularly useful for lagged and
void objects, because it decreases lag time of lagged objects and elimi-
nates allocations of void objects. In order to apply this technique, we
must ensure that the code in the object constructor does not depend
on program state, e.g., the values of its parameters are independent of
the execution path leading to the constructor. Also, we must ensure

12

S 8 =] Rl S kel
£58% c58Q 58
ooma0o ooma0o OomO
| | |
Gol Lo Ll
‘9§
896 69 €0l
. G'1S
L'€8 8¢
. 8'Sy
» LS. vv8
8 829 i LaL
5 o vog S .
8'LS o . © 9'69
m g'6¢ gL - 98
© . k4 soh
18z 7z oo
18l S |
rAW) el z'ee
| 1 610 leg 8'8l
o < o ~ [T 6E'6
e
. JJ)/-{ S1°0
— 11 G0 DONOOTON— O
OMNNOWOUTONTO [eololololeoloNoeNe]
)))
5D o 5 g 5% S
£58%¢ 58 58
OomO OomO OomO
39/ 861
€0L z8l
6'€9 g9l
v .G
3 i 8yl
[&]
o . S @ zel
<, S 3, o GLl
o 1'8¢ 6'86
9l v'z8
z'se 659
8'8l v6b
€l 6'C¢
98'G v'9l
T T mFO T T T T T mFO
0 0 0 o N ~ © © ¥ N O
~ - o -~ o o o o

13

Figure 5: SPECjvm98 benchmarks profiling results. X-axis denotes alloca-

tion time in MB. Y-axis denotes heap size in MB.

that the code in the constructor and finalizer does not influence the
rest of the program. Lazy allocation adds runtime overhead for the
checks at every possible first use and requires extra synchronization in
multithreaded applications, which may slow the execution.

e Assigning null. There are objects that remain reachable after their last
use. In case there are no possible uses of an object after some point in
program, the reference that keeps the object reachable is called a dead
reference. Assigning a null to a variable with dead reference allows the
GC implementation to free the object space. This technigue reduces
heap consumption by decreasing the drag time of objects.

e Array length reduction. If the object is an array and there are array
items that are never used, we can allocate an array of a smaller size. In
this case we must change indexes for all array accesses in the application
code in such a way that it would not affect the result of the program.
This technique reduces the size of lagged, dragged and void objects.

3.1.2 Raytrace

The HUP tool was applied to raytrace. We analyzed the results with HUP-
analysis and then improved the raytrace code by applying aforementioned
techniques.

We applied the dead code removal technique to the objects, which we
found to be allocated and assigned to array elements, but never used. Specif-
ically, the HUP analysis indicated that the objects of class Point produce the
most significant void space. The investigation of the allocation sites of this
class, using HUP analysis, indicated that almost all of void objects of class
Point are allocated in method CreateFaces of class OctNode. Examination
of the code of this method showed that it allocates objects and assigns them
to array elements. Nested allocation sites that correspond to the method,
indicated lines in which there are allocations of objects that are never used.
Further examination of the code led to the conclusion that these unused ob-
jects are assigned to array elements, which are never accessed in the rest of
the program code. We verified in the code that the Point object constructor
does not affect the rest of the program, and then applied dead code removal
by removing the allocations of these objects. This transformation reduced
close to 75% of the total void space in raytrace.

The lazy allocation technique was applied to objects, which were not
found to be used immediately after their allocation. For example, observing
allocation sites of lagged objects, in HUP analysis, we found that the method

14

Initialize in class OctNode contributes 20% to the total lag space. Corre-
sponding nested allocation sites indicated that this method allocates arrays
of objects, which are not immediately used. We observed the code of the
method and found that it is called from the OctNode constructors and the
allocated arrays are assigned to the private variables of the class instance.
Array objects have no constructor in Java, so we could safely apply the lazy
allocation technique. The HUP analysis indicated that the same allocation
sites that produce the lagged array objects in the Initialize method, also
contribute around 2% to the total void space. Thus, in addition to the lag
space that the lazy allocation reduced, it also reduced the raytrace void
space.

In the same way, we applied the lazy allocation technique to the CacheIntersectPt
objects allocated in the class CacheIntersectPt, to the Point objects allo-
cated in the class IntersectPt and to array of integers allocated in the class
Canvas. These allocation sites were found by examination of the classes of
lagged objects in the HUP-analysis and saved an additional 12% of the total
raytrace lag space.

The array length reduction technique was applied to dragged arrays with
unused items. We were not able to reduce the drag time of these arrays
directly, but we noticed that we could reduce their size. Specifically, the
HUP analysis indicated that arrays of objects contribute the most to the drag
space. We examined the allocation sites of this class, using HUP analysis,
and found that 16% of the total drag space consist of arrays of objects that
are allocated in the constructor of class Face. Investigation of the code
showed that class Face allocates an array of Point objects of length 4 in
its constructor. This array is referenced by a private variable and the class
provides two public methods for obtaining items from the array and for the
updating of its elements. These methods receive as input the index of the
array item. We looked for the uses of these methods in the raytrace code
and found that the method that obtained the array elements is called only for
the first and last indexes of the array. We reduced the array length to 2 and
added code to the array access methods, which changes the input indexes
in such a way that the array length change is transparent to the rest of the
program.

We applied the assigning null technique to dragged arrays. These arrays
were allocated and used in PolyTypeObj constructors and then remained
referenced by the private variables in the constructed objects. Using HUP
analysis we found the nested allocation site of these arrays of objects, which
contribute more than 4% of the total drag space. Observing the lifetime
patterns corresponding to this allocation site we found that 99% of the drag
space at that allocation site was produced in patterns corresponding to a

15

last use in the methods of the TriangleObj class. The remaining 1% of the
drag space at that allocation site was produced in patterns corresponding to
a last use in the methods of the Polygon0bj class. We observed the code of
these classes and found the following. Classes Triangle0Obj and Polygon0bj
extend the abstract class PolyTypeObj, which receives in its constructor
an array of Point objects. This array is used in PolyTypeObj constructor
for calculations and then its reference is stored in a PolyTypeObj private
variable. The PolyTypeObj constructor is explicitly invoked in TriangleQbj
and Polygon0Obj constructors. The PolygonObj uses this array during the
run, while TriangleObj does not. In order to reduce the drag space, we
decided not to store this array for objects of TriangleObj class and used
assigning null technique to free this array. In particular, we change the
variable that references the array to be protected and in the constructor of
TriangleObj, after the invocation of PolyTypeObj constructor, the variable
is set to null, thereby allowing GC to free the array. This transformation
reduced almost 4% of drag space.

After applying of above transformations we ran HUP on the modified
raytrace benchmark and obtained the following results. Space saving in
total lag is 39%, in total drag is 22% and in total void is 77%. Space sav-
ing in total space is 38% and total allocations are reduced by 6%. There
is a 32% reduction in maximum heap size and no change in execution time.
The execution time measurements were made on the Sun JVM implementa-
tion [SUNO1] with the default runtime settings. Figure 6 shows the reduction
results.

3.2 Soot

Soot is a Java optimization framework. It can be used as a stand-alone tool to
optimize or inspect class files, as well as a framework to develop optimizations
or transformations on Java bytecode. Soot aggressively uses the heap during
its run. For example, using Soot to optimize the SPECjvm98 benchmark
suite, which involves analysis and optimization of 32 class files, requires at
least 43Mb heap size. Figure 7 shows the profiling results for Soot optimizing
SPECjvm98 benchmark suite.

In order to reduce heap consumption in Soot we applied the abstract data
type (ADT) changing approach. The ADT changing approach proposes to
change the program internal data structures and algorithms in such a way,
that the new program implementation will use less space. The implementa-
tion of this approach varies from program to program and usually requires
deep knowledge of the program’s algorithms, data structures and features
of its input. ADT changing must be done very carefully; it can affect per-

16

raytrace

3 _
2.5
2
15 _L
1 | N
0.5 —t

0 T T T T T T
0O 10 20 30 40 50 60 70 80

— original
reduced

Figure 6: Raytrace space reduction results. X-axis denotes allocation time
in MB. Y-axis denotes heap size in MB.

Soot
50 -
40 W _
Oin-use
30 Cdrag
20 - W lag
Ovoid
10 Ad
0
O M O OAN O OON O OM O oM
o O ~ v « (N N N O 0O M <

Figure 7: Soot profiling results on SPECjvm98 benchmark suite. X-axis
denotes allocation time in MB. Y-axis denotes heap size in MB.

17

formance and involve complex changes, which themselves can influence heap
consumption.

Soot loads all classes of the program being optimized into memory and
then performs optimization. We found that Soot creates an inefficient in-
memory representation of the classes. During the loading of the classes, it
repeatedly creates objects, which represent the same data and stores them in
memory. We applied ADT changing by collecting these objects in a global
hash table and allowing them to be shared, thereby avoiding the creation and
storing of similar objects. Notice that this transformation reduces the total
drag by reducing the number of dragged objects. A detailed description of
this transformation follows.

Observing nested allocation sites of lagged and dragged objects in HUP-
analysis we found, that arrays of characters, which are allocated in the
readConstantPool method of the class ClassFile contribute more than 6%
to drag space and 12% to void space. Examination of the Soot code showed
that this array is filled with data from the constant pool of the class file
that Soot receives as input. The constant pool is the section of the class file,
which holds all of the symbolic data needed by the class. This data includes
symbolic references to fields, classes, interfaces, and methods used internally
by this class, as well as important symbols such as the name of the class
and the names of its fields and methods. The array of characters, which was
found to be problematic, is used by Soot in the CONSTANT_Utf8_info class,
which represents the CONSTANT_Utf8 records in the class file constant pool.
CONSTANT_Utf8 records frequently appear in the constant pool and contain
information such as class, method and field names, method signatures and
constant strings. We queried the HUP-analysis and found that there are a lot
of dragged instances of CONSTANT _Utf8_info class. Therefore, we concluded
that there are CONSTANT_Utf8 records in class files, which are not used by
Soot for its optimizations.

As noted earlier, CONSTANT_Ut£8 fields of a given class file are represented
in CONSTANT_Utf8_info objects. These objects are stored in a list, which is
referenced by the object that represents the class file. We assumed that
the class files being analyzed could contain a lot of similar CONSTANT _Ut£f8
records, for example, methods names and their signatures, which comprise
the symbolic references of methods being invoked in the code of the classes.
We stored the CONSTANT_Utf8_info objects in a global hash table, thereby
avoiding the creation of CONSTANT_Utf8_info objects with the same content.
It leads to a savings between 5% to 10% of the maximum heap size on various
inputs.

The ADT changing approach was also used in the code of the SootField
and SootMethod classes and reduced on average 5% of the maximum heap.

18

HelloWorld | SPECjvm98 TVLA
Number of input files 1 32 160
Maximum heap saving 20% 17% 18%
Total space saving 12% 20% not available
Execution time unchanged unchanged unchanged

Table 1: Soot space reduction results

An additional 5% of the maximum heap was saved by applying the lazy
allocation technique in the SootMethod class code. All of these changes were
accepted by Soot developers and integrated into the Soot code.

Soot was tested on three different inputs. The first input was a sim-
ple HelloWorld program with only one class file, the second input was the
SPECjvm98 benchmark suite, which involved the analysis of 32 class files,
and the third input was the TVLA program, which involved the analysis of
160 class files. The tests were run with the HUP tool, except for the TVLA
input, which is too large to be run with HUP. Results for the TVLA input,
were obtained by running the JVM with the -verbose:gc option. Tests
results are shown in Table 1 and Figure 8 shows reduction results for the
SPECjvm98 input. The execution time measurements were made on the
Sun JVM implementation [SUNO1] with the default runtime settings.

3.3 TVLA

TVLA (Three-Valued-Logic Analysis engine) is a framework for automati-
cally constructing static-analysis algorithms from an operational semantics,
where the operational semantics is specified using logical formulae. Space
saving for the TVLA application is especially important because the TVLA
program usually requires huge amounts of space for its run. For example,
in one of the tests the maximum heap of size exceeded 300MB. Figure 9
shows the profiling results for TVLA execution, which performs correctness
checking of the bubble sort algorithm.

The work on reduction of memory usage of the TVLA program was done
in cooperation with one of the TVLA developers, who verified the usefulness
and usability of the HUP tool.

TVLA uses an iterative algorithm and during each of the iterations creates
massive number of objects, which remain in memory after the end of the
iteration. These objects are not used any longer and are usually replaced
by new objects in the following iterations. Some of these objects are not
replaced and remain in memory till the end of the TVLA execution. We

19

Soot
50 -
40
—reduced

20 /, a original
10 // |

0 | T T T T o

0 100 200 300 400

Figure 8: Soot reduction results on SPECjvm98 benchmark suite. X-axis

denotes allocation time in MB. Y-axis denotes heap size in MB.

TVLA

Oin-use
Cdrag
Hl lag
Ovoid

50.2
101
151
201
251
302
352
402
453
503
554
604

Figure 9: TVLA profiling results (correctness checking of the bubble sorting
algorithm). X-axis denotes allocation time in MB. Y-axis denotes heap size

in MB.

20

applied the assigning null technique to these objects, thereby allowing the
GC implementation to free these objects at the end of the algorithm iteration.
A detailed description of this transformation follows.

During exploration of the TVLA profiling results, the HUP-analysis indi-
cated that allocations in the constructor, put and rehash methods of class
HashMap contribute more than 25% to drag space. Observing the nested al-
location sites that correspond to these HashMap methods in HUP-analysis,
showed that most of the calls to these methods are made in the blur method
of class NaiveBlur. Examination of the TVLA code showed that there are
objects of class HashMap, which are created and updated in the blur method.
Then references to these HashMap objects are stored in NaiveStructure ob-
jects. We queried the HUP-analysis and found that the HashMap objects
allocated in the blur method create significant drag space. Finally, we ob-
served the code of constructor, put and rehash methods of class HashMap and
concluded that the objects allocated in these methods are dragged because
their references are stored in the dragged HashMap objects.

In order to apply the specified static analysis algorithm, TVLA builds a
control flow graph (CFG) of a given input program and applies an iterative
data-flow algorithm by updating the information stored in nodes of the CFG.
The part of the runtime information that is stored in the CFG nodes are the
NaiveStructure objects, which in turn contain the dragged HashMap objects.
Each time the algorithm starts updating the information stored in a CFG
node, it usually creates new versions of HashMap objects for this node. After
a CFG node is processed, the node’s HashMap objects remain reachable from
it and are not freed. Next time (if ever) the algorithm updates this CFG
node, the HashMap objects are replaced with new ones, and can be freed by
GC implementation. In order to reduce heap consumption in TVLA, we
applied the assigning null technique at the end of each iteration of a data-
flow algorithm and explicitly assigned null to the NaiveStructure object
fields, which hold references to the dragged HashMap objects.

After applying the above transformation we ran TVLA (correctness check-
ing of the bubble sorting algorithm) with HUP and found a 9% savings in
total space. Figure 10 shows the results for this run. We performed tests of
TVLA with another static-analysis algorithm that performs pointer analysis
for the merging of two sorted lists. In these tests we verified that the space re-
duction holds for multiple static-analysis algorithms, which are implemented
in the TVLA framework. Tests results are shown in Table 2. The execution
time measurements were made on the Sun JVM implementation [SUNO1]
with maximum heap size of 400 megabytes.

21

correctness | pointer
checking analysis
Maximum heap saving 10% 21%
Total space saving 9% not available
Execution time improvement 2.5% 1.5%

Table 2: TVLA space reduction results

TVLA

3.5

2.5 b
2 4 — original
1.5 —reduced

0.5
0 I I I I I I
0 100 200 300 400 500 600

Figure 10: TVLA space reduction results (correctness checking of the bubble
sorting algorithm). X-axis denotes allocation time in MB. Y-axis denotes
heap size in MB.

22

4 HUP Rationale

4.1 Object usage definition

In order to precisely define lagged, dragged and void objects, we need to
clarify what does it mean for an object to “be used”. Choosing the right
definition of object usage is extremely important because it directly affects
the definition of lag, drag and void. For example, previous work [RR96,
SKS01] conservatively assume that whenever an object is accessed, by means
of either assigning a new value or retrieving the object’s value (e.g., used as
an actual parameter), it is potentially used. As we shall see, this definition
leads to empty lag space in Java programs, even though, the allocation of
some objects can be delayed. Motivated by this, we decided to look for a
new object usage definition.
We consider several approaches for the definition of object usage.

1. An object is used if its content is accessed in expression e in the pro-
gram.

2. An object is used if its content is accessed in expression e in the pro-
gram, excluding the code of the constructor.

3. An object is used if its content is accessed in the R-value of an expres-
sion e in the program, excluding the constructor invocation.

In the above definitions we refer to data that is stored in an object as
object content. Object content may contain the object’s fields, monitor and
class information. Read or write operations on an object’s content are con-
sidered as accessing of object content.

Figure 11 contains code fragments to demonstrate the differences between
the above definitions. The first defintion counts object usage in the assign-
ment int j = a.i in Figure 11(a). Indeed, the expression a.i accesses
content of the object. As we shall see, the first definition also counts object
usage for the new operation A a = new A(). The second definition differs
from the first one in fact, that it does not count the accessing of object’s
content inside the object constructor. In Figure 11(b), second definition de-
termines the first object usage in the assignment int j = a.i, although,
the constructor is not empty and contains code, which is counted as object
usage by the first definition. The third definition counts the first object usage
in Figure 11(c) in the assigment int j = a.i. In order to understand the
difference between this definition and the previous ones, consider the assign-
ment a.i = 0. The object’s content is accessed in a.1i, but it is found in the

23

class A {
public int 1i;
public AQ) {}
public A(int j) { this.i = j; }

(a)

A a = new AQ);
int j = a.i;

(b)

A a
int j = a.i;

I
=}
(]
=

S
N
'_\
N

(c)
A a = new A(1);
a.i = 0;
int j = a.i;

Figure 11: An example of code fragments demonstrating different object
usage definitions.

24

(a)
Object obj;
obj = new Object();

(b)

NEW (Class java.lang.0Object)

DUP
INVOKESPECIAL (Method java.lang.Object())
ASTORE (local variable index)

Figure 12: Java object allocation example.

L-value of the expression, thus the third defnition does not count object us-
age for it, whereas the two others do. In the following discussion we describe
how each of the above definitions affect the definitions of lag, drag and void
objects and choose the most appropriate definition for object usage.

The first definition leads to an almost empty lag space. The reason is that
object usage immediately follows object creation. Figure 12(a) shows typi-
cal Java code that creates a new object and Figure 12(b) shows appropriate
bytecode that is produced for it by the Java compiler. The INVOKESPECIAL
operation invokes the object constructor and retrieves object content to re-
solve the constructor method. Thus, the definition will count non-empty lag
space only for array objects, which have no constructors in Java.

The next two definitions are more interesting. The second definition
proposes to exclude object content accesses that occur during execution of
the constructor. Thus, the first object usage is the first access to object
content after the constructor completes. This is illustrated in Figure 13. In
the rest of this thesis we refer to this definition as the constructor excluding
approach.

The constructor excluding approach is simple and comprehensible, but
assumes that the program is written in a good programming style, where
constructors do only simple initialization operations. Unfortunately, object
initialization code can be extremely complex. Moreover constructors may
contain code that is part of the program algorithm and not part of object
initialization.

The third approach defines object usage by the accessing of object content

25

| (% X X *) | |
I \] I I

allocation first use unreachable

* _access to object value in constructor

Figure 13: Object usage in constructor excluding approach.

in the R-value of an expression. Such an access of an object in an R-value of
an expression involves read operations on object content. We refer to such
operations as get operations. Similary, accessing object’s content in an L-
value of a given expression involves write operations on object content and
we refer to such operations as put operations. Table 3 and Table 4 divide
the Java bytecodes into put and get operation groups. In order to count
object uses, according to the third definition, we simply need to count the
get group operations on the object during application execution. In the rest
of this thesis we refer to this definition as the put/get approach.

Method invocation opcodes are placed into the get operation group, be-
cause they read data from object space during method resolution. As we men-
tioned above, the object constructor invocation is done by an INVOKESPECIAL
operation and leads to an almost empty lag space. To overcome the problem
we exclude the invocation of the object constructor from object usage.

The put/get approach is conservative for the definition of drag. Indeed,
put operations, which are not followed by any get operation can be conser-
vatively discarded.

There are two problems with the put/get approach. First, it may falsely
assume an object usage, even that it can be easily delayed. For example, code
in Figure 14(a) contains a get operation, but its execution can be delayed.
Second, the execution of a put operation may depend on the application
state or on the state of the application environment. Thus, put operations
may define an object usage, which the put/get approach would not discover.
For example, the statement in Figure 14(b) performs a put operation on
object_1 assigning the value of object_2.field to the object_1.field.
This put operation can not be moved into a later place in the code because
the value of object_2.field will no longer be the same.

The put/get approach seems to have several advantages over the con-
structor excluding approach. It defines object usage without any relation to
where it is placed in code, inside or outside the constructor. This is par-
ticularly important in the Java language, where array objects do not have

26

Opcode

Description

CHECKCAST Check whether object is of given type.
INSTANCEOF Determine if object is of given type.
ATHROW Throw exception or error.
MONITORENTER Enter monitor for object.
MONITOREXIT Exit monitor for object.
GETFIELD Fetch field from object.
AALOAD Load reference from array.
BALOAD Load byte or boolean from array.
CALOAD Load char from array.
DALOAD Load double from array.
FALOAD Load float from array.
IALOAD Load int from array.
LALOAD Load long from array.
SALOAD Load short from array.
ARRAYLENGTH Get length of array.
INVOKEINTERFACE | Invoke interface method.
INVOKESPECIAL Invoke instance method; special handling for
superclass, private, and constructor methods.
INVOKEVIRTUAL Invoke instance method.
Table 3: Java get operations.
‘ Opcode ‘ Description

PUTFIELD | Set field in object.

AASTORE | Store into reference array.

BASTORE | Store into byte or boolean array.

CASTORE | Store into char array.

DASTORE | Store into double array.

FASTORE | Store into float array.

[ASTORE | Store into int array.

LASTORE | Store into long array.

SASTORE | Store into short array.

Table 4: Java put operations.

27

(a)
object.field-1
object.field.2

0;
object.field_1

(b)
object_1.field
object_2.field++;

object_2.field;

Figure 14: Examples for put/get approach problems.

constructors. Finally, it simplifies the analysis of lagged objects, because it
bounds the operations that need to be examined as candidates to be delayed
(only put operations need to be considered).

In order to understand the difference between the put/get approach and
the constructor excluding approach, we conducted runtime experiments. For
this purpose, we implemented them in HUP and measured them on the
SPECjvm98 benchmarks. We report the results in Table 5. The second
column presents the difference between the lag space that was counted by
the put/get definition and lag space that was counted by the constructor
excluding definition. The third and fourth columns present comparison of
lag space that was counted by put/get and constructor excluding definitions
with the total application space. In five out of the six tested benchmarks, the
HUP tool found significant lag space. The benchmark with no significant lag
- Jess is less important for comparison, because it does not produce enough
lagged objects of any definition to understand the relationship between the
definitions. On the other hand, we can see that both of the definitions
counted similarly small lag in this benchmark.

Between the benchmarks with significant lag, there is only one benchmark
- Javac, which showed a significant difference between the definitions of lag
(20%). The rest of the benchmarks showed almost no difference, less than
1%. Due to the small differences between the lag measured according to the
definitions and the reasons we mentioned above, we decided to adapt the
put/get approach for the object usage definition.

28

Difference in Constructor
Put/Get and Put/Get Excluding
Constructor Lag Space Lag Space
Benchmark Excluding vs. Total Space | vs. Total Space
Compress 0.00% 24.79% 24.79%
Db 0.17% 29.76% 29.81%
Jack 0.08% 5.01% 5.00%
Javac 20.02% 13.77% 17.21%
Raytrace 0.67% 7.76% 7.63%
Jess 19.82% 0.12% 0.15%

Table 5: Lag measurements results for put/get approach.

4.2 The usage of JVMPI

There are two main approaches to allow Java profiling of programs in a JVM
implementation independent way. In the first approach, the information is
collected directly from the JVM, requiring a standard profiling interface to be
supported in the JVM. JVMPI [VL0O0] is such an interface, which is intended
to become a standard and to be supported by all JVM implementations. The
general structure of JVMPI is shown in Figure 15. The JVMPI is a two-way
function call interface between the Java virtual machine and an in-process
profiler agent. The virtual machine notifies the profiler agent of various
events, for example, those corresponding to heap allocation, thread start,
etc. The profiler agent issues controls and requests for more information
through the JVMPI. For example, the profiler agent can control which event
notifications are reported to it.

Using JVMPI has several advantages. JVMPI provides easy access to
runtime information, which is difficult to obtain in other ways. For exam-
ple, it allows dumping heap topology and threads stack traces. The JVMPI
is gaining acceptance by the developer community as a basis for construct-
ing Java applications profilers [BG01]. Establishing JVMPT as a standard
ensure that HUP would work with any JVM implementation supporting it.
Furthermore, little or no change will be needed in HUP, when a new version
of a JVM appears. Finally, the JVMPI performance may be improved in fu-
ture JVMs, thereby improving the performance of the HUP. Unfortunately,
JVMPI does not provide, all the information we require.

The second approach, source to source, is based on changing the origi-
nal program source code. By definition, the changed code will be portable
across JVM implementations. But this approach is problematic. First, pro-

29

Profiling
Agent

>
I

Java Virtual Machine Process

Figure 15: JVMPI.

30

filing code that is injected into the program may significantly slow down the
program execution. Second, changing the program source code may influ-
ence the program behavior. In particular, the creation of objects for profiling
may change heap consumption. For example, the simple string printing op-
eration, System.out.print(new String("HUP")) generates a new String
object. In this case, the profiler must provide a mechanism that excludes
such objects from the output data.

HUP uses a combination of the JVM profiling interface and source to
source approaches to collect profiling information. Our profiling agent runs
in the scope of the JVM and obtains relevant information from JVMPI events.
In order to obtain the information, which is not available through JVMPI,
we use the source to source approach, but make sure that it does not change
heap consumption. For example, for the object uses, like getfield, which
are not reported by the JVMPI, we apply the following technique.

e A new public method is added to java.lang.0bject class. All Java
classes inherit from java.lang.0bject and thus inherit this new method.

e A call to this new method is injected in places the getfield or another
unreported operation appears.

Every method invocation triggers the JVMPI_EVENT _METHOD_ENTRY2 event,
which reports to the profiling agent the object that was accessed. Certainly,
the method invocation does not affect heap consumption. We refer to this
technique as the generating usage event (GUE) technique and it is discussed
in depth in Section 5.

5 Instrumentation

5.1 GUE technique

As we mentioned in Section 4, HUP uses JVMPI to collect profiling informa-
tion. JVMPI does not provide events for every object usage. Actually, the
only object usage operation that JVMPI reports is the method invocation
event JVMPI_EVENT_METHOD_ENTRY2. This event reports the method name
and the object on which it is invoked. The list of unreported bytecode op-
erations is shown in Table 6. The put operations are not counted as object
uses, but can help in object usage analysis. Particulary, the HUP tool col-
lects information about the first and the last put operations on object, which
are useful for object lifetime pattern analysis.

31

‘ Get operations ‘ Put operations ‘

AALOAD AASTORE
BALOAD BASTORE
CALOAD CASTORE
DALOAD DASTORE
FALOAD FASTORE
TALOAD IASTORE
LALOAD LASTORE
SALOAD SASTORE
GETFIELD PUTFIELD
MONITORENTER
MONITOREXIT
CHECKCAST
INSTANCEOF
ATHROW

Table 6: Unreported operations.

public void __hup_GetOperation() {}
public void __hup__PutOperation() {}

Figure 16: New methods in java.lang.0bject

In order to generate JVMPI events for unreported operations we apply
bytecode instrumentation. To instrument the bytecode we use the BCEL
bytecode instrumentation framework. In the first phase of the instrumenta-
tion we add to the java.lang.0bject class two new methods to enable us
to report put and get operations separately, shown in Figure 16.

All the Java classes inherit from java.lang.0bject class, thus all Java
classes inherit these new methods. In order to generate JVMPI events for un-
reported operations, we add calls to the __hup__GetOperation or __hup__PutOperation
method, dependent on the operation type. The call is inserted before or after
the operation; the order is not important due to the insignificant execution
time of the operation. Injected-calls trigger JVMPI_EVENT_METHOD_ENTRY2
events and report object usage to the profiling agent. Recalling from Sec-
tion 4, we refer to this technique as the generating usage event (GUE) tech-
nique.

32

The methods we add to java.lang.0Object in the GUE technique are
empty. In general, the JVM can automatically remove calls to the empty
methods in order to speed up the execution. We assume, that the JVM im-
plementation is obliged to report through JVMPI the method calls, which
are present in application code, even if these calls are not performed by the
JVM due to its optimizations. This assumption holds for the JVM imple-
mentations, which are currently supported by the HUP tool.

5.2 Object uses inside native methods

Counting accesses to objects from native methods is a non-trivial task. We
distinguish between JDK and application native methods. Java applications
use the Java Native Interface (JNI) [AP00] to access Java objects from inside
the native methods. The JNI interface is a set of C-functions. Pointers to
these functions are stored in the JNIEnv structure, which is passed as an
argument to native methods. Object usage operations through the JNI are
reported by the JVMPI. However, some operations are not reported by the
JVMPI. A list of unreported JNI operations is shown in Table 7.

Get Functions Put Functions

GetObjectField SetObjectField
GetBooleanField SetBooleanField
GetByteField SetByteField
GetCharField SetCharField
GetShortField SetShortField
GetIntField SetIntField
GetLongField SetLongField
GetFloatField SetFloatField
GetDoubleField SetDoubleField
GetBooleanArrayRegion SetBooleanArrayRegion
GetByteArrayRegion SetByteArrayRegion
GetCharArrayRegion SetCharArrayRegion
GetShort ArrayRegion SetShortArrayRegion
GetIntArrayRegion SetIntArrayRegion
GetLongArrayRegion SetLongArrayRegion
GetFloatArrayRegion SetFloatArrayRegion
GetDoubleArrayRegion SetDoubleArrayRegion

GetObjectArrayElement
GetBooleanArrayElements

GetByteArrayElements

SetObject ArrayElement

Table 7: JNI unreported functions.

Get Functions

Put Functions

GetCharArrayElements
GetShortArrayElements
GetIntArrayElements
GetLongArrayElements
GetFloatArrayElements
GetDoubleArrayElements
GetArrayLength

ReleaseBoolean ArrayElements
ReleaseByteArrayElements
ReleaseCharArrayElements
ReleaseShortArrayElements

ReleaselntArrayElements
ReleaseLongArrayElements
ReleaseFloat ArrayElements

ReleaseDoubleArrayElements

MonitorEnter
MonitorExit

[sInstanceOf
GetObjectClass

Throw

GetStringLength
GetStringChars
ReleaseStringChars
GetStringRegion

GetStringUTF Length
GetStringUTFChars
ReleaseStringUTFChars
GetStringUTFRegion

GetPrimitiveArrayCritical
ReleasePrimitive ArrayCritical
GetStringCritical
ReleaseStringCritical

Table 7: JNI unreported functions.

34

For the operations, which are not reported by the JVMPI, we apply
JNT instrumentation. Specifically, the profiling agent changes the content of
the JNIEnv structure and replaces pointers to unreported functions by the
agent’s wrapper functions. The wrapper functions use the GUE technique

to report object usage and then call the original JNI function. The profiling
agent has an initialization handler, JVUM_0OnLoad, which is called during JVM
initialization. The initialization handler gets as input a pointer to the JNTEnv
structure. We assume that there is only one copy of JNIEnv structure in
the JVM and the profiling agent gets a pointer to this copy. The profiling
agent changes the content of JNIEnv, replacing references to the original JNI
functions with the instrumented wrapper functions.

A special case is JDK native methods. JDK native methods may use the
knowledge of internal JVM structures and make non-conventional access to
objects (not through the JNI). An example of a non-conventional access is
the System.arraycopy method, which uses memcpy to speed the execution of
copying an array. There is a possibility that the JVMPI events would not be
fired on such operations. We assume that a JDK native method accesses only
its arguments in a non-conventional way and does not "travel” through the
heap to access other objects. Further, we conservatively assume that JDK
native methods access all its arguments in a non-conventional way. In order to
report the usage of the JDK native method arguments to the profiling agent,
we use the GUE technique. Usage of arguments can be reported before or
after the call to native method. The order is not important because JDK
native methods make few allocations.

Usage of arguments is reported by a wrapper method. We create a wrap-
per method for each JDK native method and insert the wrapper method into
the class file, which contains the original native method. A wrapper method
has the same signature as the original native method, but a different name,
_‘hup__<original-name>. A wrapper method generates usage events for its
arguments of reference type and, thus, reports usage of the arguments. Then
it calls the original JDK native method.

Once the wrapper methods are added to the JDK classes, we need to
replace all the calls to the JDK native methods by calls to the wrapper
methods. However, this is not sufficient. The reason is that there can be
a method in the JDK or in application classes, which has the same name
and signature as one of JDK natives. At the time we replace the call to the
JDK native method by the call to our wrapper, we do not know which class’s
method will be called during the execution. For example, Figure 17(a) shows
abstract class A, which has two subclasses B and C. For simplicity, suppose
that all of them are JDK classes. Class B implements method METHOD as
native and class C implements the same method in Java. Figure 17(b) shows
the situation after the wrapper method was added to class C. In this situation
replacing the call of METHOD on an object of type A by a call to __hup_ METHOD
is not safe. At runtime the object could be of type C, the call would not be
resolved and Java would throw NoSuchMethodException. To overcome this

35

problem, we rename all methods and interfaces, whose name and signature
is identical with some JDK native method, with the corresponding wrapper
method name. The result of this transformation is shown in Figure 17(c).
Now it is safe to replace calls to the JDK native methods by calls to the
wrapper methods.

In addition to calls to JDK native methods from bytecode, there are calls
to these methods from native code. The HUP agent replaces the pointer to
GetMethodID function in JNIEnv by a pointer to agent’s wrapper function.
Each time GetMethodID is called for a method, which has the name and
signature of one of the JDK native methods, the agent replaces the method
name by the appropriate wrapper name, thereby redirecting the call to its
wrapper.

In addition to non-conventional accesses to objects from the JDK native
methods, there could be such accesses inside the JVM implementation itself.
For example, the JVM could store some internal information in an object and
access it whenever it needs to. There is no interface in JVM, which allows
collection of information about these accesses. Moreover, this information is
useless for application code rewriting, because the application has no control
over these accesses. We assume that the accesses to objects inside the JVM
are rare and can be neglected.

5.3 Static and dynamic instrumentation

In order to replace the JDK native methods calls in a specific class file, we
need to know the names and signatures of all JDK native methods. The
profiling agent also requires this information to redirect JDK natives calls,
performed through the JNI interface, to their wrappers. Motivated by this,
we divide instrumentation into two phases: static and dynamic. The flow of
instrumentation data is shown in Figure 18.

The static instrumentation (InstrumentJDK) runs offline. It collects in-
formation about native methods in JDK classes and then instruments the
JDK classes. The static instrumentation outputs instrumented JDK classes,
a list of JDK classes and JDK native method information (names and signa-
tures). The instrumentation of JDK classes is done at this stage for perfor-
mance reasons; it reduces the instrumentation overhead at runtime.

Dynamic instrumentation occurs at runtime; it instruments classes of
the application being executed. In order to allow dynamic instrumentation,
we provide an instrumentation server, which is written in Java and uses the
BCEL bytecode instrumentation framework. The instrumentation server gets
Java classes through a TCP socket, instruments them and sends them back
to the recipient. The profiling agent, in turn, gets classes from the JVM

36

(a)
class A
abstract METHOD

class B extends A
native METHOD

class C extends A
METHOD

(b)
class A
abstract METHOD

class B extends A
native __hup__METHOD

class C extends A
METHOD

(c)

class A
abstract __hup__METHOD

class B extends A
native __hup__METHOD

class C extends A
__hup__METHOD

Figure 17: JDK natives instrumentation

37

JDK classes

|

InstrumentJDK
Instrumented J?nlgtﬂsg:e list of JDK
JDK classes information clastes
~ .| Instrumentation
JVM Agent < - Server

Figure 18: Instrumentation data flow.

38

JVMPI_EVENT_CLASS_LOAD_HOOK

|

JVM Agent

./ Instrumentation
Server

A

Figure 19: Dynamic instrumentation data flow.

through the JVMPI_EVENT_CLASS_LOAD_HOOK event, which is sent when the
JVM obtains class file data, but before it constructs the in-memory repre-
sentation for that class. The class is sent to the instrumentation server, which
instruments it, and sends it back to the agent. Finally, the instrumented file
is passed back to the JVM. This mechanism is illustrated in Figure 19. Infor-
mation on JDK native methods and the list of JDK classes are passed to the
instrumentation server, to allow the server to instrument application classes
and to avoid instrumenting JDK classes.

The dynamic instrumentation causes overhead during the execution of the
application, but for several reasons is still preferable over static instrumen-
tation. First, some classes can be loaded from network; thus, they are not
available before the application executes. There could also be a class loader
in the application, which dynamically creates classes. Finally, as opposed to
static instrumentation, the dynamic instrumentation does not require inter-
action with the user in order to find application classes.

6 The Profiling Agent

The profiling agent runs in the scope of the JVM and uses JVMPI events to
collect profiling information. Table 8 presents the JVMPI events, which are
used by the profiling agent.

Events are sent in the same thread where they are generated. For ex-
ample, a class loading event is sent in the same thread in which the class is
loaded. Multiple events may arrive concurrently in different threads. The
agent program must therefore provide the synchronization necessary to pre-
vent data corruption caused by multiple threads updating the same data
structure at the same time.

39

Event

Description

JVMPI_EVENT_OBJECT_ALLOC
JVMPI_EVENT_OBJECT_FREE
JVMPI_EVENT_OBJECT_MOVE

JVMPI_EVENT_GC_START
JVMPI_EVENT_GC_FINISH
JVMPI_EVENT_CLASS_LOAD_HOOK

JVMPI_EVENT_CLASS_LOAD
JVMPI_EVENT_CLASS_UNLOAD
JVMPI_EVENT_METHOD_ENTRY2
JVMPI_EVENT_JVM_INIT_DONE

JVMPI_EVENT_JVM_SHUT_DOWN

Sent when an object is allocated.

Sent when an object is freed.

Sent when an object is moved in

the heap.

Sent when GC is about to start.

Sent when GC finishes.

Sent when the JVM obtains class file
data, but before it constructs the
in-memory representation for that class.
The profiler agent can instrument the
existing class file data sent by the JVM
to include profiling hooks.

Sent when a class is loaded in the JVM.
Sent when a class is unloaded.

Sent when a method is entered.

Sent by the VM when its initialization
is done.

Sent by the VM when it is shutting
down.

Table 8: The JVMPI events which are used by the profiling agent.

40

A class load event contains the class name, source file name, method infor-
mation and instance field information. JVMPI defines a unique ID for every
class, method and field. When the load of java.lang.0Object is reported, the
agent stores the IDs of the __hup__GetOperation and __hup__PutOperation
methods. These IDs are used to identify the put and get types of object
usage. In addition, the agent stores the IDs of constructors for all classes in
order to exclude calls to these methods from object uses.

Object information is stored in a global in-memory database, where each
database record represents one object. The database is currently imple-
mented as an AVL tree (e.g., [Wei97]). In the future, we plan to change
database implementation to hash table (e.g., [CLR90]). When a thread
queries or updates the database, it locks the database to avoid data corrup-
tion. We are aware that this locking of the database can change application
behavior. We discuss this issue in Section 8.1.

Object creation is reported by the JVMPI_EVENT_OBJECT_ALLOC event.
The information in this event contains the object size, the class ID and the
object ID, where the size includes the object header and alignment [VLO0O].
At this point, the agent creates a record in the database and stores the
reported object information and the allocation time in it. Records in the
database are marked with unique IDs, which are defined by JVMPI.

All object uses are reported by JVMPI_EVENT METHOD_ENTRY2 events. The
JVMPI_EVENT _METHOD_ENTRY2 event contains an object ID and a method ID.
The first object usage is counted, when the first method invocation is reported
and the method is not the object constructor and not the __hup__PutOperation.
In order to count the last object usage, the agent updates the object record
each time the JVMPI_EVENT_METHOD_ENTRY2 event is fired for a given object
and the reported method is not __hup__PutOperation. Object first and last
usage information includes the time of usage and may also contain its stack
trace at the time of use. In order to retrieve the stack trace, the agent calls
the GetCallTrace JVMPI function. The agent can optionally save the stack
traces for the first and last put operations on object.

There is no event in JVMPI interface that tells when an object becomes
unreachable. To overcome this problem, the agent uses the JYMPI_EVENT_OBJECT_FREE
event, which is fired each time the GC frees an object. It is not guaranteed
that GC runs exactly at the point the object becomes unreachable. In order
to increase the precision of this measurement, the agent triggers GC every
100KDb of allocation. Thus, the deviation from the point an object becomes
unreachable does not exceed 100Kb. For simplicity, the agent reports object
allocation, first and last usage times as the number of GC'’s since the start
of the run.

During the run, the profiling agent logs the profiled data to file on disk.

41

An object’s data is written into the file when the object is freed by the GC
or when the JVMPI_EVENT_JVM_SHUT _DOWN event is received.

7 Related Work

This thesis continues the work of Shaham, Kolodner and Sagiv [SKSO01],
which instrumented the Sun reference JVM to record dragged objects and
introduced analysis techniques and program transformations to reduce drag
for Java programs. The additional contributions of this thesis can be sum-
marized as follows:

1. The HUP tool is JVM independent and largely platform independent.

2. The HUP tool supports many additional features such as measuring
lagged objects and new sophisticated analyses.

3. The tool is publicly available.

4. We designed an additional heap-reducing program transformation, which
reduces array length (see Section 3.1).

5. We applied the tool to application programs that use the heap exten-
sively and show that it can significantly improve heap consumption and
reduce the maximum heap size (See Section 3).

6. We studied several definitions of dragged and lagged objects and their
effects on the usability of the tool.

R6jemo and Runciman performed similar measurements of lagged, dragged
and void heap space for Haskell language [RR96]. However, due to the fact
that Haskell is functional and lazy, some of the techniques they used to reduce
the heap consumption can not be used in Java and vice versa.

There are several tools for profiling Java programs. A survey of these tool
is presented in [BGO1]. None of these tools provide facilities for tracking of
lagged, dragged and void objects.

In this thesis we used the manual rewriting of source code in order to
reduce heap consumption. Alternatively, compilation techniques may be used
to automate this task. For example, liveness analysis can be integrated with
GC, so that reference variables with no future use (i.e., dead references) are
not regarded as part of the root set [ADMO98|.

42

8 Conclusions and Future Work

In this thesis, we presented a useful profiling tool for investigating heap
memory behavior and saving space. Our experiments indicate that it is quite
easy to use the HUP tool in order to reduce the space of a given application.
We believe that further investigation of lagged, dragged and void objects
with the HUP tool in additional applications could inspire the development
of new automatic space saving techniques for compilers and GC algorithms.

8.1 Limitations

One of the most serious drawbacks of the HUP tool is its runtime overhead.
A profiled application may run fifty times slower with HUP, than it runs
without it. The code that is injected by the instrumentation and JVMPI
slow down the execution 8 times on average. Improvement of JVMPI in the
future JVM implementations could solve these problems by decreasing the
runtime overhead of JVMPI and providing more profiling information, which
will allow us to avoid instrumentation of class files.

Another reason for slow application execution with the HUP tool, is the
inefficient design of the profiling agent. The profiling agent stores object
information in the global database, which is locked at each access to its
records. The search in the database and its locking mechanism slow down
the execution close to 6 times. Moreover the database locking mechanism
adds locks, which are not present in the original program code. These locks
can change the behavior of the profiled application or even create deadlocks.
Independent logging of profiling information in each of the JVM threads could
solve some of these problems. For example, Reiss and Renieries propose to
generate multiple data streams from the JVMPI calls, one per thread, and
then merge these data streams into a single stream in an independent process
[RRO0]. This approach does not introduce synchronization points and moves
the processing of profiling data out of the JVM process.

The specification of the JVMPI does not explicitly define its behavior in
the presence of incremental or generational garbage collectors [Wil92]. For
the current HUP implementation we assume that when we trigger GC, all
unreachable objects are freed. This assumption holds for the JVM imple-
mentations, which are currently supported by the HUP tool, but it may not
hold in future JVM implementations. In order to overcome this problem,
we could implement the deep GC algorithm in HUP and run it on a heap
image, which could be obtained by requesting the JVMPI_EVENT_HEAP_DUMP
event from the JVMPT interface.

There are bugs in the JVMPI implementation in some JVM-s. For

43

example, the Sun HotSpot JVM [Gri98] loads some classes before load-
ing the profiling agent. This bug prevents the profiling agent from receiv-
ing JVMPI_EVENT_CLASS_LOAD_HOOK and JVMPI_EVENT_CLASS_LOAD events for
classes that are loaded before its initialization. We believe that fixing of this
bug will allow the HUP tool to run with the Sun HotSpot JVM.

8.2 Suggestions for future research

In the future, HUP-analysis could provide additional techniques for explo-
ration of the profiling data. For example, HUP-analysis could filter some
objects in order to simplify analysis. In this way, the objects of the class
java.lang.Class can be discarded from the analysis, due to the fact that
these objects have special rules for their collection. Another approach is
observing the heap topology. For example, we could classify objects by the
objects that reference them. Similarly, objects could be classified by the ref-
erences they hold. These and other analysis techniques are the subject for
future research and experimentation.

HUP currently causes a large slowdown to the profiled program, thus,
limiting the program size that can be analyzed. This limitation could be
partially overcome if we could develop techniques to predict memory con-
sumption for a bigger input or larger run, based on the analysis of the same
program with smaller inputs. For example, if dragged objects are allocated in
some nested allocation site throughout the application execution and never
freed, we could suspect that the number of these objects and, thereby, the
drag space would increase on a longer run. This problem could be deter-
mined by observing the allocation and the drag time of the dragged objects
of a given nested allocation site. Unfortunately, in some situations the nested
allocation site might be not brought to the programmer attention due to the
relatively small drag space it produces on a short run. In order to overcome
this problem, more sophisticated techniques would need to be developed.

Another topic for the future research is the object usage definition. As
we mentioned in Section 4.1, we use the put/get approach to define object
usage. Additional alternatives could be proposed. For example, first object
use could be defined by observing dependencies between object accesses in
the put/get approach. Similar to the truly-live variable definition [GMW81],
we can say that an object is not used if it is accessed by a put operation or
it is accessed by a get operation and the value that is retrieved by the get is
used further only in put operations. Figure 20 illustrates this approach. The
assignment object.field 2 = object.field 1 is not counted as an object
usage, because the value of field_1 is used only in put operations.

44

object.field 1
object.field 2

0;
object.field 1;

Figure 20: Example for extended put/get approach.

References

[ADMOS]

[APOO]

[BGO1]

[CLRYO]

[Dah99]

[GMWS1]

(Gri98]

[IBMO1]

[LASO0]

[LY96]

O. Agesen, D. Detlefs, and E. Moss. Garbage collection and local
variable type-precision and liveness in Java virtual machines. In
SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 269—
279, June 1998.

C. Austin and M. Pawlan. Advanced programming for the

JavaTM platform. Addison-Wesely, 2000.

J. Bartolomé and J. Guitart. A survey on Java profiling tools.
Research report UPC-CEPBA-2001-10, 2001.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to
Algorithms. M.IT. Press, 1990.

M. Dahm. Byte code engineering. In Java-Informations-Tage,
pages 267277, 1999.

R. Giegerich, U. Moncke, and R. Wilhelm. Invariance of approx-
imative semantics with respect to program transformations. In
GI 11. Jahrestagung, volume 50, pages 1-10, 1981.

D. Griswold. The Java HotSpot virtual machine architecture.
Sun Microsystems whitepaper, 1998.

IBM. IBM JDK 1.3, 2001. Available at
http://www.ibm.com/java.

T. Lev-Ami and S. Sagiv. TVLA: A framework for
kleene based static analysis. In SAS’00, Static Analysis
Symposium, pages 280-301. Springer, 2000. Available at
"http://www.math.tau.ac.il/~ rumster”.

T. Lindholm and F. Yellin. The chaTM virtual machine speci-
fication. The Java Series. Addison-Wesely, 1996.

45

'RR96]

'RRO0]

[SKS00]

[SKS01]

[SPE9S]

[SUNO]
[VLOO]

[VRHS+99]

[Wei97]

[Wil92]

N. Rojemo and C. Runciman. Lag, drag, void and use — heap
profiling and space-efficient compilation revisited. ACM SIG-
PLAN Notices, 31(6):34-41, 1996.

S. Reiss and M. Renieris. Generating java trace data. In ACM
2000 conference on Java Grande, pages T1-77, 2000.

R. Shaham, E. Kolodner, and M. Sagiv. On the effectiveness
of GC in java. In Int. Symp. on Memory Management, pages
12-17. ACM, October 2000.

R. Shaham, E. Kolodner, and M. Sagiv. Heap profiling for space-
efficient java. In SIGPLAN Conf. on Prog. Lang. Design and
Impl., pages 104-113. ACM, June 2001.

SPECjvm98. Standard Performance Evaluation Cor-
poration (SPEC), Fairfax, VA, 1998. Available at
http://www.spec.org/osg/jvm98/.

SUN. Sun JDK 1.3, 2001. Available at http://java.sun.com/j2se.

D. Viswanathan and S. Liang. Java virtual machine profiler
interface. IBM Systems Journal, 2000.

R. Vallee-Rai, .. Hendren, V. Sundaresan, P. Lam, E. Gagnon,
and P. Co. Soot — a java optimization framework. In Proceedings
of CASCON 1999, pages 125-135, 1999.

M. A. Weiss. Data Structures and Algorithm Analysis in C.
Addison-Wesely, 1997.

P. R. Wilson. Uniprocessor garbage collection techniques.
In Memory Management, International Workshop IWMM,
September 1992.

46

A User’s Manual

HUP is a heap-profiling tool that allows the exploration and reduction of
heap space consumption in Java applications. The space saving is based on
the fact that some of the allocated objects not immediately used (or not used
at all) in the application code. Also, there are objects, which are no longer
in use, but remain in memory. The HUP tool allows a programmer to locate
and remove memory bottlenecks, which are caused by unused objects.

Currently, HUP has been tested on the Windows 2000 operating system
with the IBM JDK 1.3 and the Sun JDK 1.3 (classic JVM implementations).
It does not currently work with HotSpot due to bugs in HotSpot’s imple-
mentation of JVMPI. HUP is distributed under the GNU General Public
License.

A.1 Installation

The HUP tool is distributed in a zip file (HUP-version.zip). In order to
install the HUP tool, unzip it into directory into which you want to install
HUP.
In order to run the HUP tool you must install the BCEL package on your
computer. The BCEL package can be downloaded from http://bcel.sourceforge.net
(choose the latest version to download). We have tested with version 4.4.1.
The HUP tool requires several environment variables to be set.

e Set the JDK_HOME to point at your JDK installation.

e Set the BCEL_HOME to point at your BCEL installation.
e Set the HUP_HOME to point at your HUP installation.

e Add to the PATH variable the %HUP_HOME)\bin directory.

Before any further step, run the instrumentJDK batch file from the
JHUP_HOMEY%\bin directory. The instrumentJDK instruments the Java run-
time class files from the %JDK_HOME%\1lib\rt.jar. The instrumentation does
not change the original JDK class files, but creates a copy of them, thus,
the instrumentation does not affect the execution of Java applications with
the original JDK. The instrumentJDK is a time-consuming process and may
take several minutes, but you need to run it only once.

47

A.2 Running the profiler

Now you are ready to run the HUP profiler. In order to run an application
under the HUP profiler, start the application with the hup instead of the
java executable. For example, in order to profile the application test, type
““%hup defaults test’’ instead of ¢ ‘Yjava test’’. If you need to pass
parameters to the profiled application, write them after the name of the pro-
filed application. For example, ¢ ‘4hup defaults test paraml param2

If you would like to pass parameters to the java executable, you need to
write them right before the name of the profiled application. For example,
¢ “%hup defaults -Xnoclassgc test’’.

The HUP tool uses -classic, -Xbootclasspath and -Xrun parameters
for the java executable. Changing these parameters could be unsafe. There
could be other runtime settings for a JVM implementation that could influ-
ence the running of the HUP tool.

HUP can be invoked with its either default configuration or its configura-
tion can be changed by setting option. In order to run HUP with the default
configuration, you must write the defaults keyword right after the hup, for
example: ¢ ‘%hup defaults test’’. Alternatively, instead of the defaults
keyword, configuration options can be specified. The options must be spec-
ified in the following format: optioni=valuel,option2=value2,... For
example, ¢ ‘%hup od=c:\test results,sd=10 test’’. Currently available
options are:

e so=1 - suppress HUP output during profiling.
e od=path - output directory for profiling results (default is hup_results).

e sd=depth - depth of stack trace dumps (default is 5, minimum is 0 and
maximum is 10).

During profiling, HUP triggers garbage collection every 100Kb of alloca-
tion. In order to notify the user of progress, the HUP prints the [GC...]
message at each garbage collection invocation. The so option allows you to
suppress this notification.

The default output directory is created under the current directory. The
od option allows you to specify another output directory instead of the default
one. For example, ¢ ‘%hup od=c:\test_results test’’.

During profiling, HUP collects information about object allocation and
usage. Part of this information is the stack trace of the thread at which object
allocation or usage occurs. A bigger value of stack trace depth option yields
more precise information, but may significantly slow down the execution.
Under regular conditions we recommend using the default stack trace depth.

48

| lag-time | use-time Idrag—time |

allocation first-use last-use unreachable

Figure 21: The lifetime of used objects.

| void-time |

allocation unreachable

Figure 22: The lifetime of void objects.

A.3 Result analysis

First, we introduce some definitions, which are used in the following dis-
cussion. Generally, a Java program allocates objects and GC is responsible
for collecting the objects, which are no longer in use and reclaiming their
space. However, commonly used GC algorithms do not collect all potential
garbage, rather just those objects that are no longer reachable from the root
set. For example, there are objects that are reachable from the root set at
a given point in the program and will not be used in the future. Some of
these unused, but reachable objects could be reclaimed in order to save space.
Moreover, on some occasions, we could delay the allocation of used objects,
and thereby reduce heap consumption.

The lifecycle of an object is classified as shown in Figure 21. We refer to
the time interval from the allocation time of an object until it is first used as
lag time and to the object itself as a lagged object. The time interval from
the last use of an object till it becomes unreachable is called drag time and
object itself is said to be a dragged object.

In a special case, when the object has no uses at all, we refer to the
interval between its allocation and the point it becomes unreachable as void
time and the object itself as a void object, see Figure 22.

HUP measures the time in bytes allocated since the beginning of program
execution. This provides a machine independent measure of time. Observing
the size of reachable objects as function of time, we calculate the integral of
the function. We refer to this space-time integral value as the total space of
a given application. Similary, we refer to the values of the integral of lag,
drag and void size functions as total lag, drag and void space respectively.

49

These definitions are particularly useful for understanding the impact of the
lagged, dragged and void objects on an application heap consumption.

HUP-analysis is based on the classifications of lagged, dragged and void
objects. Specifically, the analysis classifies the objects by class, allocation
site and nested allocation site. The nested allocation-site of an object is the
call chain of methods leading to the object allocation. In other words it is
the thread stack trace at the point the object is allocated. Calling a method
from different lines of code of the same method generate different nested
allocation-sites. The allocation site of object is its nested allocation site of
depth one, or simply the method, where the object is allocated. In contrast
to the nested allocation site definition, the allocation site definition does not
distinguish between the lines of the method. The analysis calculates lag,
drag and void space for a given class, by summing the lag, drag and void
space of all instances of this class, respectively. In the same way, the analysis
calculates lag, drag and void space for allocation sites and nested allocation
sites.

Another classification of objects that is provided by HUP-analysis is based
on the differentiation of objects by their lifetime patterns. The lifetime pat-
tern is defined by the first and the last object usage stack traces. For ex-
ample, when you examine the lagged objects at a given nested allocation
site, objects with different stack traces of first uses could be identified. This
difference may point to different roles of the objects in a given program run,
even though they are allocated at the same point. In the same way, you may
explore the lifetime patterns of dragged objects.

One of the important issues is the definition of object usage. In the HUP
tool, only read operations on objects are considered object usage. We refer
to the read operations on an object as get operations and to the write oper-
ations on an object as put operations. Table 9 divides Java bytecodes into
put and get operation groups. In this way, the first usage that is counted by
the HUP tool can be preceded by put operations and the last usage that is
counted by the HUP tool can be followed by put operations. In order to allow
you to observe the object usage and decide for the right code transformation
for space saving, the HUP provides stack traces for both first(last) put and
get operations in lifetime patterns.

In order to begin the analysis process, invoke the analysis executable.
The directory with the profiled results should be specified in the command
line. Fot example: "%analysis c:\test_results". The HUP-analysis
loads and processes profiling results and then enters an interactive mode
in which it receives and performs user commands. In following, we describe
the currently available commands in HUP-analysis.

50

get operations

put operations ‘

GETFIELD PUTFIELD
AALOAD AASTORE
BALOAD BASTORE
CALOAD CASTORE
DALOAD DASTORE
FALOAD FASTORE
[TALOAD IASTORE
LALOAD LASTORE
SALOAD SASTORE
ARRAYLENGTH
INVOKEINTERFACE
INVOKESPECIAL
INVOKEVIRTUAL

CHECKCAST

INSTANCEOF

MONITORENTER
MONITOREXIT

ATHROW

Table 9: put and get operation groups.

51

help
The help command types the list of available commands.

write file

The write command tells the analysis to write the output of the next
command into the specified file. For example, the command "%write
c:\help.txt" followed by "%help" command will write list of the avail-
able commands into the c:\help.txt file.

stat [long]

The stat command prints the common statistics, such as the number of
classes, the number of nested allocation sites and the number of lagged,
dragged and void objects, which were determined in profiling results. It
also prints the calculated total space of a given application and its total
lag, drag and void space. The long parameter lists statistics for the
garbage collector invocations. In particular, it prints the heap space
size and the lag, drag and void space sizes for each invocation of the
garbage collector.

obj %d [long]

The obj command prints information for the object with identifier id:
its class, its nested allocation site id and its lifetime pattern. The long
parameter prints the stack trace at the point of object’s allocation and
stack traces for its first and last usage.

class ¢d|name [long]

The class command prints class information; the class id, the cor-
responding class file name, the number of lagged, dragged and void
objects of this class and the lag, drag and void spaces, which are gen-
erated by the objects of this class. The long parameter prints the id-s
of the lagged, dragged and void objects of this class.

method <d [long]

The method command prints method information: the method id, the
method name, the corresponding class name, the number of lagged,
dragged and void objects allocated by this method and the lag, drag
and void spaces, which are generated by the objects allocated by this
method. The long parameter prints the id-s of the lagged, dragged
and void objects, which are allocated by this method.

nested <d [long]
The nested command prints nested allocation site information: the

52

nested allocation site id, the number of lagged, dragged and void ob-
jects allocated at this site and the lag, drag and void spaces, which
are generated by the objects allocated at this site. The long parame-
ter prints the id-s of the lagged, dragged and void objects, which are
allocated at this nested allocation site.

lag class [4d] [Q@num]

drag class [Zd] [@num]

void class [%2d] [@num]

These commands print classes sorted by lag, drag and void respectively.
If the class id is specified, the commands print list of the nested allo-
cation sites in which objects of the specified class are allocated. The
printed list is sorted by lag, drag or void. The number of nested allo-
cated sites output can be limited by specifying the @num parameter.

lag method [4d] [@num]

drag method [%d] [Q@num]

void method [id] [@num]

These commands print methods sorted by lag, drag and void respec-
tively. If the method #d is specified, the commands print list of the
nested allocation sites in which the specified method appears at the
end of the call chain of methods leading to the object allocation. The
printed list is sorted by lag, drag or void. The number of nested allo-
cated sites output can be limited by specifying the @num parameter.

lag nested [id] [@num]

drag nested [id] [Qnum]

void nested [id] [@num]

These commands print nested allocation sites sorted by lag, drag and
void respectively. If the nested allocation site id is specified, the com-
mands print list of the lifetime patterns, which are found at the spec-
ified site. The printed list is sorted by lag, drag or void. Each life-
time pattern is printed with a representative object id. This id allows
you to observe the lifetime pattern’s stack traces by ¢ “obj ¢d long’’
command. The number of lifetime patterns output can be limited by
specifying the @num parameter.

exit
The exit command closes the HUP-analysis.

53

A.4 GNU Generic Public License

Version 2, June 1991

Copyright (c) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is in-
tended to guarantee your freedom to share and change free software—to
make sure the software is free for all its users. This General Public Li-
cense applies to most of the Free Software Foundation’s software and to any
other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price.
Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for this service if
you wish), that you receive source code or can get it if you want it, that you
can change the software or use pieces of it in new free programs; and that
you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis
or for a fee, you must give the recipients all the rights that you have. You
must make sure that they, too, receive or can get the source code. And you
must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy, distribute
and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients to

54

know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents.
We wish to avoid the danger that redistributors of a free program will in-
dividually obtain patent licenses, in effect making the program proprietary.
To prevent this, we have made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modifica-
tion follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

1. This License applies to any program or other work which contains a
notice placed by the copyright holder saying it may be distributed un-
der the terms of this General Public License. The “Program”, below,
refers to any such program or work, and a “work based on the Pro-
gram” means either the Program or any derivative work under copy-
right law: that is to say, a work containing the Program or a portion
of it, either verbatim or with modifications and/or translated into an-
other language. (Hereinafter, translation is included without limitation
in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of running
the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether
that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to
this License and to the absence of any warranty; and give any other
recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of
it, thus forming a work based on the Program, and copy and distribute

%)

such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stat-
ing that you changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

(c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such in-
teractive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If iden-
tifiable sections of that work are not derived from the Program, and
can be reasonably considered independent and separate works in them-
selves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute
the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this Li-
cense, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Pro-
gram with the Program (or with a work based on the Program) on a
volume of a storage or distribution medium does not bring the other
work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections
1 and 2 above provided that you also do one of the following:

56

(a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sec-
tions 1 and 2 above on a medium customarily used for software
interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physi-
cally performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the
terms of Sections 1 and 2 above on a medium customarily used
for software interchange; or,

(c) Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed
only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in
accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control
compilation and installation of the executable. However, as a special
exception, the source code distributed need not include anything that
is normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access
to copy from a designated place, then offering equivalent access to copy
the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source
along with the object code.

. You may not copy, modify, sublicense, or distribute the Program ex-
cept as expressly provided under this License. Any attempt otherwise
to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, par-
ties who have received copies, or rights, from you under this License
will not have their licenses terminated so long as such parties remain
in full compliance.

57

6. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing
the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the origi-
nal licensor to copy, distribute or modify the Program subject to these
terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not
responsible for enforcing compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions
are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not dis-
tribute the Program at all. For example, if a patent license would not
permit royalty-free redistribution of the Program by all those who re-
ceive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from
distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consis-
tent application of that system; it is up to the author/donor to decide
if he or she is willing to distribute software through any other system
and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

28

9.

10.

11.

12.

If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number
of this License, you may choose any version ever published by the Free
Software Foundation.

If you wish to incorporate parts of the Program into other free pro-
grams whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we some-
times make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EX-
TENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-

ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR

OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

29

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
TRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPE-
CIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (IN-
CLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POS-
SIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

60

