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Abstract

Sound abstract interpretation has been successful in proving interesting properties of programs.
Commercially available tools are now able to verify the absence of runtime errors in safety critical
applications. The ability to verify the absence of errors comes from the fact that these tools use
conservative methods, i.e., whenever the algorithm verifies a property, it is guaranteed to hold.
However, the algorithm may produce false alarms, i.e., reports of errors that never occur. False
alarms, which are a result of the abstraction and are unavoidable in general, make sound abstract
interpretation hard to use.

This thesis presents a new algorithm that can be used to increase the usability of abstract
interpretation tools by producing concrete counterexamples for the error messages reported. The
algorithm performs a limited search using a theorem prover. When the algorithm identifies a
concrete input instance, it is guaranteed to be an input for which the program yields the reported
error message. This allows the user to identify some of the reported messages as real errors,
reducing the number of alarms that have to be manually investigated. The material presented here
is an extended version of [EYS04].

In addition, the algorithm can also assist in runtime testing by producing a set of inputs that
covers the program according to a certain criteria. For example, we can use the algorithm to find
an adequate set of inputs, or even a set of inputs that realizes all the results of the analysis.

The algorithm is generic and applicable to many abstract domains, including polyhedra abstrac-
tion, predicate abstraction, and canonical abstraction, which is used in shape analysis. We have
implemented a prototype of our algorithm and used it to find counterexamples (and test cases) for
several small but interesting example programs, including implementations of sorting algorithms.
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Chapter 1

Introduction

1.1 Background

Sound abstract interpretation has been successful in proving interesting properties of programs.
The main idea is to compute an over-approximation of the set of reachable program states [CC79].
This assures that the algorithm can verify the absence of runtime errors by checking the over-
approximations.

Recently, commercial and academic tools using over-approximations have been successfully
applied to verify the absence of runtime errors in safety critical applications (e.g., see [BCC+03b,
DRS03, abs, pol]).

While these tools guarantee that no errors are missed (no “false positives”), they are hard to use
due to false alarms (“false negatives”) which arise from overly conservative over-approximation.
Due to the possibility of false alarms, each reported error has to be manually investigated to
determine whether it is an actual error or a false alarm.

Bounded model checking (BMC) has been successfully used to locate errors in hardware and
software systems [CBRZ01, VJ03]. The basic idea of BMC is to search for a counterexample only
in executions up to a certain bounded length. Conceptually, bounded model checking computes an
under-approximation of reachable program states and uses it to identify bugs. Thus, it may never
produce false negatives but may produce false positives, which are intolerable in certain domains
(e.g., safety critical code). In general, the undecidability of checking interesting program properties
implies that no algorithm can avoid both false positives and false negatives.

In this thesis, we describe a tool which allows the users of sound abstract interpretation to
enjoy the benefits of both worlds by trying to instantiate a concrete input example for each error
message reported by the abstract interpretation. Using this tool combined with a sound abstract
interpretation guarantees the absence of false positives while reducing the number of alarms that
have to be manually investigated.

Our tool can also assist in runtime testing by automatically generating a set of inputs that covers
the program according to a certain criteria. For example, we can use the tool to find an adequate
[Wey86, Cor02] set of inputs or even a set of inputs that realizes all the results of the analysis.

We have implemented a prototype of our tool, and applied it to several small but interest-
ing benchmark programs, including implementations of various sorting algorithms [LARSW00]
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analyzed with the TVLA program analysis framework [LAS00].
For the benchmark programs, our tool was able to identify non-trivial concrete input instances

for error messages reported by the program analysis tool. It also produced a set of inputs that
realizes the results of the program analysis tool.

The algorithm implemented by our tool can be viewed as a new algorithm for bounded model
checking of data-intensive software. Bounded model checking exploits the strength of SAT-solvers
to simultaneously check all program paths up to a certain depth. Our algorithm verifies each
program path separately, enabling the use of large formulae as symbolic state descriptors.

Our approach is generic and is applicable to any abstract domain that satisfies some reasonable
requirements (See Section 3.1). Such domains include polyhedra abstraction, predicate abstraction
and canonical abstraction, as used in shape analysis.

1.2 Main Results

The contributions of this thesis can be summarized as follows:

• A new bounded model checking algorithm for a special class of programs and specifications
is presented. The algorithm is designed to behave well on deterministic programs with
complicated data such as dynamically allocated data-structures.

• We define reasonable requirements on the abstraction that allow bounded model checking to
be used for producing concrete input examples.

• We show how to apply our bounded model checking tool to compute a set of concrete inputs
that is adequate according to certain criteria.

• We have implemented a prototype of our algorithm and applied it to several small but inter-
esting example programs, including implementations of sorting algorithms.

1.3 A Motivating Example

Figure 1.1 shows an erroneous implementation of the bubble-sort sorting algorithm. In this program,
the assignment at label l20 erroneously assigns y to p.n instead of assigning y.n. This erroneous
assignment causes the implementation to lose list items during execution. For example, the input
of Figure 1.2 causes a list item to be lost, violating the assertion at label l31.

This bug is tricky. It only occurs in certain cases when the algorithm is applied to an unsorted
list.

To guarantee the absence of errors in such programs, one may use a sound abstract interpretation
framework such as TVLA [LARSW00]. TVLA is a static analysis engine that allows generation of
sound program analyses from specifications of a concrete operational semantics. Applying TVLA
to the example program, an error is indeed reported at label l31, indicating the possibility that
some of the original nodes in the list do not appear in the sorted list. The problem is to determine
whether this error report is a false negative or an error that could occur in practice. For the bubble-
sort program, our algorithm is able to determine that the error reported by the static analysis is
indeed a real error and produce a concrete input for which the error occurs.
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public static ListItem bugSort(ListItem x) {
l1 recordListNodes(x);
l2 boolean change = true;
l3 ListItem p, yn, t, y, head;
l4 if (x == null)
l5 return null;
l6 while (change) {
l7 p = null;
l8 change = false;
l9 y = x;
l10 yn = y.n;
l11 while (yn != null) {
l12 if (y.data > yn.data) { // swap y and yn
l13 change = true;
l14 t = yn.n;
l15 y.n = t;
l16 yn.n = y;
l17 if (p == null) {
l18 x = yn;
l19 } else {
l20 p.n = y; //BUG: correct code is p.n=y.n
l21 }
l22 p = yn;
l23 yn = t;
l24 } else {
l25 p = y;
l26 y = yn;
l27 yn = y.n;
l28 }
l29 }
l30 }
l31 assert permutation(x);
l32 assert ascendingOrder(x);
l33 return x;

}

Figure 1.1: Erroneous Java implementation of bubble-sort.

x 30 42
n

21
n

Figure 1.2: An input causing a violation of the assertion at l31.
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1.4 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 defines the basic terms used throughout
the thesis. Chapter 3 presents an algorithm Input-Instance for generating input instances for
a program point and a condition. To simplify the presentation, the algorithms are first presented
using the simple domain of constant propagation. Chapter 4 shows how to use the algorithm
Input-Instance for generating counterexamples for errors reported by abstract interpretation.
Chapter 5 shows how to apply the algorithms to the domain of shape analysis and how our tool
produces a concrete counterexample for the bubble-sort implementation. Chapter 6 describes the
prototype implementation and empirical results. Chapter 7 shows extensions to the algorithms pre-
sented and an algorithm for generating a set of test cases realizing analysis results in a program point.
Chapter 9 makes some final remarks. Appendix A presents a User Manual for the counterexample
tool implemented for the TVLA framework. A proof for the correctness of Input-Instance
is shown in Appendix B.

8



Chapter 2

Preliminaries

In this chapter we define the basic terms used throughout the thesis.
A program path is a sequence of program labels starting from an initial (entry) label and

proceeding such that each label is a successor of its preceding label in the program control flow
graph.

Definition 2.1 (Path). A path l0 → l1 . . . → ln is a sequence of program labels starting with an
initial label l0 and proceeding in such a way that for every 0 ≤ i < n, a label li+1 is an immediate
successor of its preceding label li in the program control flow graph.

A labelled program state 〈σ, l〉 consists of a state σ and a program label l. We define an
execution of the program to be a sequence of labelled states starting from an initial labelled state
and proceeding such that each state can be derived by application of a single statement to its
preceding state. We label the transitions between states of the sequence with the corresponding
statement.

If a state 〈σ′, li〉 can be derived from another state 〈σ, li−1〉 by applying a statement st on it,
we say st is enabled on 〈σ, li−1〉.

Definition 2.2 (Execution Path). An execution path 〈σ0, l0〉
st0−−→ 〈σ1, l1〉 . . .

stn−1−−−→ 〈σn, ln〉 is a
sequence of labelled states starting with an initial labelled state 〈σ0, l0〉 and proceeding in such a
manner that for every 0 ≤ i < n, a labelled state 〈σi+1, li+1〉 can be derived from its preceding
labelled state 〈σi, li〉 by application of a single statement labelled by sti. In addition, for every i,
sti is enabled on 〈σi, li〉.

In this thesis, we are interested in finding initial states for which there exists an execution path
reaching a given program point with a state satisfying a certain condition. In the sequel we assume
that the condition is specified as a formula in some underlying logic L, e.g., propositional logic or
first-order logic.

Definition 2.3 (Input Instance). Given a program point l, and a condition formula ϕ, an input
instance is an initial stateσ0 for which there exists an execution path 〈σ0, l0〉

st0−−→ 〈σ1, l1〉 . . .
stn−1−−−→

〈σn, ln〉 such that l0 = entry, ln = l and σn |= ϕ.

9



l1 y = 1;
l2 x = 1;
l3 while (y < z) {
l4 if (x >= y) {
l5 x = y + 2;
l6 } else {
l7 x = 3;
l8 };
l9 y = y + 1;
l10 }
l11 assert x < 4;

Figure 2.1: A simple program demonstrating constant propagation. z is an input parameter.

To demonstrate the basic concepts presented in this chapter, for methodological reasons, we
consider the simple domain of constant propagation [Kil73] for programs with integer variables.

For these programs, a program state σ is defined as a mapping of program variables into integer
values, i.e., σ : V ar → Z.

Example 2.1. Consider the simple example program of Figure 2.1, the state σ = [z &→ 2] is an
input instance for the label l11 and condition x < 4, because there exists an execution path
〈[z &→ 2], l1〉

y=1−−→ 〈[z &→ 2, y &→ 1], l2〉
x=1−−→

〈[z &→ 2, y &→ 1, x &→ 1], l3〉
while(y<z)−−−−−−−→

〈[z &→ 2, y &→ 1, x &→ 1], l4〉
if(x>=y)−−−−−−→

〈[z &→ 2, y &→ 1, x &→ 1], l5〉
x=y+2−−−−→

〈[z &→ 2, y &→ 1, x &→ 3], l9〉
y=y+1−−−−→

〈[z &→ 2, y &→ 2, x &→ 3], l3〉
while(y<z)−−−−−−−→

〈[z &→ 2, y &→ 2, x &→ 3], l11〉
reaching l11 and satisfying x < 4.

Direct computation of input instances requires computing the set of reachable program states,
which is infeasible for many programs.

Abstract interpretation computes a set of abstract states conservatively representing possible
program states at a given program point. Given a domain of abstract states, a concretization mapping
γ is defined such that for each abstract state σ!, γ(σ!) is the (possibly infinite) set of concrete
program states represented by s. An abstract interpretation algorithm is sound if it produces for
every program label l, an abstract state σ! such that γ(σ!) contains all the concrete states reachable
at label l.

Our technique requires a symbolic representation of the concrete states represented by an ab-
stract state. We therefore require our abstract domain to be equipped with a symbolic concretization
function γ̂ mapping an abstract state to a logical formula. This formula should describe exactly all
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the concrete states that are represented by the abstract state, i.e., a stateσ ∈ γ(σ!) ⇐⇒ σ |= γ̂(σ!).
We assume that the symbolic concretization could be expressed in some logic L, usually first-order
logic.

We demonstrate this with constant propagation. The abstract domain used for constant propaga-
tion is an infinite lattice with a finite-height containing all integer values, and the values* and⊥. *
represents any integer value and⊥ represents an infeasible value. An abstract state is a partial map-
ping from variables to values in the constant propagation lattice. That is, σ! : V ar → (Z∪{*,⊥}).

We define the symbolic domain to contain formulae of propositional logic with integer arith-
metic.

A symbolic concretization function γ̂(σ!) transforms an abstract state into its symbolic repre-
sentation as follows:

γ̂vi(σ!) =






true σ!(vi) = *
false σ!(vi) = ⊥
(vi = σ!(vi)) σ!(vi) ∈ Z

γ̂(σ!) =
∧

vi∈V ar γ̂vi(σ!)

Example 2.2. The abstract state σ! = [x &→ *, y &→ 3, z &→ 3] represents an infinite number of
concrete states where x can have an arbitrary integer value, y has the value 3, and z has the value
3. The (finite) symbolic representation of σ! is therefore γ̂(σ!) = (y = 3) ∧ (z = 3).

As another example, consider an abstract domain that is based on predicate abstraction [GS97,
BMMR01]. Predicate abstraction domains are based on a finite vocabulary V = {B1, . . . , Bk} of
predicate symbols, each associated with a defining formula, i.e., Bi ! ϕi for every 1 ≤ i ≤ k. An
abstract state of a predicate abstraction domain is a mapping of the predicates in V to their truth
values, i.e., σ! : V → {0, 1}. The symbolic concretization γ̂ of an abstract state σ! is a conjunction
of predicate defining formulae as follows:

γ̂(σ!) =
∧

σ!(Bi)=1,1≤i≤k

ϕi ∧
∧

σ!(Bj)=0,1≤j≤k

¬ϕj

The symbolic concretization assumption is met by a wide range of existing abstract domains.
Table 2.1 shows a number of widely used abstract domains and their corresponding symbolic
concretization mappings.
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Abstract Domain Symbolic Concretization
Predicate Abstraction [GS97, BMMR01] conjunction of predicate-defining

formulae
Polyhedra Abstraction [CH78] system of linear inequalities
Canonical Abstraction [SRW02] first order formula

with transitive closure (see [Yor03])
Constant Propagation [Kil73] conjunction of variable value

equalities

Table 2.1: Abstract domains and their corresponding symbolic concretization mappings.
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Chapter 3

Generating Input Instances

In this chapter we describe the algorithm Input-Instance for generating an input instance for
a label l and a condition ϕ. The algorithm uses the results of the static analysis as the starting point
for a bounded exploration.

The algorithm could be viewed as a new algorithm for bounded model checking in which
path-enumeration is separated from path-verification. This allows us to use larger formulae as state
descriptors.

The algorithm is bounded by the maximum length of paths to explore p and by the specific
bounds, if any, of the theorem prover used. When no input instance is found, one can increase these
parameters until either an input instance is found, or the problem becomes practically intractable.

3.1 Algorithm Prerequisites

Input-Instance has the following requirements:

• symbolic concretization — the abstraction has to be accompanied by the ability to compute
a symbolic concretization expressed in some logic L.

• weakest precondition computation — L should provide the ability to compute the weakest
precondition (See Section 3.2.2) of every atomic program statement. This requirement holds
for first-order logic with any arbitrary atomic statement.

• finite counterexample generation — a theorem prover that is able to produce a finite coun-
terexample for the validity of formulae in L.

3.2 Algorithm Description

The outline of the algorithm is described in Figure 3.1.
The input toInput-Instance is the conditionϕl, and the label l. The algorithm assumes that

the following values are provided as global variables: the exploration depth (p) and the program’s
transition system (ts).

The output is an input instance for label l and condition ϕl or null, if no such input was found.

13



INPUT-INSTANCE(ϕl, l)
1 path ← GET-NEXT-PATH(l)
2 while |path| ≤ p
3 do
4 ϕ0 ← PATH-WEAKEST-PRECONDITION(ϕl, path)
5 model ← THEOREM-PROVER(¬ϕ0)
6 if model /= null
7 then return model
8 path ← GET-NEXT-PATH(l)
9 return null

Figure 3.1: Input-Instance. The algorithm assumes the following global parameters are set: ex-
ploration depth p and transition system ts.

The algorithm consists of the following stages:

• Path Generation — create paths leading from program entry to the point of interest l. Paths
are generated one by one, starting from the shortest and continuing in an ascending order of
length. The maximum length of paths is bounded by the parameter p to guarantee termination.

• Backward Symbolic Execution (Weakest Precondition) — for each path, compute a formula
ϕ0 describing input states that guarantee that ϕ is satisfied at point l when the program
follows this path. Technically, we use a repeated computation of weakest precondition to
compute the formula ϕ0.

• Model Generation — given the formula ϕ0 describing a (possibly infinite) set of input
instances for ϕl at l, we try to find a concrete state (model) that satisfies the formula. We
assume the availability of a theorem prover that is able to produce a finite counterexample.
In order to obtain a model for ϕ0 we use the theorem prover to find a counterexample for
the validity of ¬ϕ0. If a model is found, it is an input instance for ϕl at l. To guarantee
termination of the theorem prover, we usually have to provide bounds for the theorem prover
(for instance, with first-order logic theorem prover, it is usually the maximum model size).
If a model is found, we return it as an input instance and stop the search. If a model is not
found, we return null.

3.2.1 Path Generation

We use a simple breadth-first search starting from l and going backward on the transition system
until program entry is reached. Obviously, if the transition system has loops in it, there may be an
infinite number of execution paths leading to l, therefore some halting criterion is required. For
usability purposes, we prefer a global bound, the maximum length of the paths generated, rather
than specifying for each loop the number of iterations to unwind.

SinceInput-Instance stops once a path yields a model and given the possibly large number
of paths whose length is less or equal p, it is more efficient to generate paths on-the-fly, meaning,

14



statement WP(st,ϕ)
x = expr ϕ[expr/x]
assume expr ϕ ∧ expr

Table 3.1: Calculating weakest precondition for the statements used in the constant propagation
program of Figure 2.1.

we generate the next path only if no input instance was found for the previous path. Paths are
generated in increasing length, starting with the shortest path.

Example 3.1. In the program of Figure 2.1, there is an infinite number of possible paths for label
l11. For a maximum length of 8 we get the following paths:
l1 → l2 → l3 → l11

l1 → l2 → l3 → l4 → l5 → l9 → l3 → l11

l1 → l2 → l3 → l4 → l7 → l9 → l3 → l11

In the bubble-sort program of Figure 1.1 there are 335 possible paths with a maximum length of
50.

3.2.2 Weakest Precondition

To calculateϕ0 for a given path we use a repeated computation of the weakest precondition [Dij76].
Given a formula ϕ and a statement st, we denote by WP(st,ϕ) the weakest precondition of

ϕ with respect to st. That is, ψ = WP(st,ϕ) is the weakest formula for which any state that
satisfies ψ before execution of st, is guaranteed to satisfy ϕ after application of st. Formally:

Definition 3.1 (Weakest Precondition). Given a statement st and a postcondition Q, P is the
weakest precondition of st andQ iff for all σ, σ |= P ⇐⇒ !st"(σ) |= Q, where !st"(σ) is the
state resulting from applying st on σ.

Given a path l0 → l1 → l2 → . . . → ln, and an initial formula ϕn, we compute a sequence
of formulae ϕn−1, . . . ,ϕ0 by repeated application of WP. That is, for every 0 ≤ i < n, ϕi =
WP(sti,ϕi+1) where sti is the statement reaching from li to li+1.

As mentioned earlier, one of the requirements of our algorithm is that WP could be computed
for every atomic statement used in the program.

Table 3.1 shows how to compute the weakest precondition for the statements of the simple
constant propagation program we introduced before. For convenience, we translate program con-
ditionals to include the appropriate assume statements. That is, given a conditional statement if
(c) st_t else st_f, we augment it with the appropriate assume statements resulting with
if (c) {assume c; st_t } else { assume !c; st_f }.

Section 5.3 shows how to compute the weakest precondition in a shape analysis domain, such
as the one used for analyzing the bubble-sort program.

Example 3.2. Given the path l1 → l2 → l3 → l4 → l5 → l9 → l3 → l11 of length 8, and the
initial formula ϕ7 = x ≥ 4 at label l11, Table 3.2 shows the calculation of ϕ0.

15



i label statement ϕi

6 l3 while (y < z) x ≥ 4 ∧ y ≥ z
5 l9 y = y + 1 x ≥ 4 ∧ (y + 1) ≥ z
4 l5 x = y + 2 (y + 2) ≥ 4 ∧ (y + 1) ≥ z
3 l4 if (x >= y) (y + 2) ≥ 4 ∧ (y + 1) ≥ z

∧x ≥ y
2 l3 while (y < z) (y + 2) ≥ 4 ∧ (y + 1) ≥ z

∧y < z ∧ x ≥ y
1 l2 x = 1 (y + 2) ≥ 4 ∧ (y + 1) ≥ z

∧y < z ∧ 1 ≥ y
0 l1 y = 1 (1 + 2) ≥ 4 ∧ (1 + 1) ≥ z

∧1 < z ∧ 1 ≥ 1

Table 3.2: Results of WP computation along the example path.

3.2.3 Model Generation

Given the formula ϕ0 describing a (possibly infinite) set of input instances for ϕl at l, we try to
find concrete states (models) that satisfy the formula.

The theorem prover should be capable of finding a finite satisfying model for the formula ϕ0.
Any theorem prover that can produce a finite counter example (e.g., [HJJ+95]) could be used to
find satisfying models (counterexamples for ¬ϕ0). Our method could be also used with theorem
provers that produce symbolic counterexamples (e.g., [DNS03]).

Example 3.3. Given ϕ0 = (1+2) ≥ 4∧ (1+1) ≥ z∧1 < z∧1 ≥ 1 from Table 3.2, the theorem
prover Simplify [DNS03] correctly determines that ϕ0 does not have a satisfying model (finds that
¬ϕ0 is valid).
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Chapter 4

Generating Counterexamples

One of the main problems in using sound abstract interpretation is the possibility of (conservative)
error reports that do not correspond to real errors in the program (false alarms). Manual investigation
of each reported error to determine whether it is a real error or a false alarm is a time-consuming
process and may deter users from using abstract interpretation.

Given the results of a sound abstract interpretation, and considering a single abstract state σ!

satisfying an error condition ϕerr at a program point l, it may be the case that there is no program
execution that produces this violation, and the error report is therefore a false alarm. However, if
we can find an input instance σ0 for ϕerr at point l such that it reaches point l with a concrete state
represented by σ!, this would be a concrete example that establishes the error report as a real error.
More formally,

Definition 4.1 (Counterexample). Given an abstract state σ! that satisfies an error condition
ϕerr at label l, we say that a concrete state σ0 is a counterexample when there exists a concrete
execution path 〈σ0, l0〉

st0−−→ 〈σ1, l1〉 . . .
stn−1−−−→ 〈σn, ln〉 such that:

1. ln = l and σn |= ϕerr (i.e., σ0 is an input instance for ϕerr at label l).

2. σn ∈ γ(σ!)

The tool presented in this chapter examines each error reported by the analysis and tries to
produce a concrete counterexample for it. If it succeeds, it is guaranteed that the error is indeed a
true error, and there is no need to manually investigate if it is a false alarm. However, if the tool
fails to find a counterexample, it could still be the case that the error is a real program error and a
counterexample was not found due to the bounded exploration.

Increasing the algorithm bound (exploration depth) or theorem prover bounds (i.e. model size
when applicable) may lead to the discovery of more concrete counterexamples at the expense of
increased runtime and memory requirements. In our experiments, all counterexamples were found
at rather low bounds.

The algorithm for generating counterexamples is shown in Figure 4.1. The algorithm is generic
and can be used with any abstract interpretation tool given an interface that provides access to the
results of the analysis. The algorithm requires access to the errors reported by the analysis where
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GENERATE-COUNTEREXAMPLES()
1 for each (l,σ!,ϕerr) in Analysis-Errors
2 do
3 counter ← INPUT-INSTANCE(γ̂(σ!) ∧ ϕerr, l)
4 if counter /= null
5 then REPORT-TRUE-ALARM((l,σ!,ϕerr), counter)

Figure 4.1: Generate-Counterexamples. The algorithm assumes the following global parameters
are set: exploration depth p and transition system ts.

step path ϕ0 model
1 l1 → l2 → l3 → l11 1 ≥ 4 ∧ 1 ≥ z no model
2 l1 → l2 → l3 → l4 → l5 → l9 → l3 → l11 3 ≥ 4 ∧ 2 ≥ z ∧ 1 ≥ 1 ∧ 1 < z no model
3 l1 → l2 → l3 → l4 → l7 → l9 → l3 → l11 3 ≥ 4 ∧ 2 ≥ z ∧ 1 < 1 ∧ 1 < z no model
4 l1 → l2 → l3 → l4 → l5 → l9 → ... 1 ≥ 1 ∧ 3 ≥ z ∧ 2 ≥ 1 ∧ 2 < z [z &→ 3]

l3 → l4 → l5 → l9 → l3 → l11 ∧1 < z

Table 4.1: Generating a counterexample for the program in Figure 2.1 for the label l11 and ϕerr =
x ≥ 4.

each error consists of: (i) the label l at which the error was reported (ii) the abstract state σ! in
which the error occurred; (iii) the error condition ϕerr.

For every error reported, the algorithm uses Input-Instance to find an input instance
that satisfies ϕ = γ̂(σ!) ∧ ϕerr at label l. An input instance satisfying ϕ is guaranteed to be
a counterexample according Definition 4.1 because it will reach l with a concrete state σn that
(i) satisfies ϕerr and (ii) since it satisfies γ̂(σ!), it implies σn ∈ γ(σ!).

Example 4.1. Consider the program of Figure 2.1 in which z is given as user input. Using
constant propagation in an attempt to verify the assertion at label l11 will produce an error since
the analysis will reach the abstract state [x &→ *, y &→ *, z &→ *] at this program label. This
abstract state represents any concrete state in which the variables x,y, and z have been assigned
a value, including states in which x ≥ 4 that satisfy ϕerr.

Table 4.1 describes the running of the counterexample algorithm with a maximum path length
of 14. The counterexample is found on the 4th path checked.

Generally, some programs require a larger number of paths to be verified, for example, in the
bubble-sort program of Figure 1.1 the counterexample to the error at label l31 is found along the
142th path checked.
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Chapter 5

Applying to Shape Analysis

In this chapter, we demonstrate the application of our techniques to shape analysis [JM81, SRW02].
Shape analysis will allow us to find the bug in the erroneous bubble-sort program of Figure 1.1 and
— usingGenerateCounterexamples algorithm (Figure 4.1)— to produce a counter example
for it.

In Section 5.1 we give some background on the concrete and abstract domains used in the shape
analysis framework of [SRW02]. Then, in Section 5.2, we show how to answer the first requirement
of our algorithm and compute the symbolic concretization for shape analysis. Section 5.3 shows
how to answer the second requirement of the algorithm and provides a way to compute the weakest
precondition for this symbolic domain. Finally, in Section 5.4, we show how to use these ingredients
to successfully produce a concrete counterexample for the bubble-sort program.

5.1 Concrete and Abstract Domains for Shape Analysis

In [SRW02], it is shown how a global state of the program can be naturally expressed as a first-order
logical structure in which each individual corresponds to a heap-allocated object and predicates of
the structure correspond to properties of heap-allocated objects. We use the predicates of Table 5.1
to record information used by the properties discussed in this thesis.

For each reference variable x, we define a unary predicate x(u). The value of x(u) is 1 if the
variable x points to the list element represented by u.

Reference fields are represented using binary predicates. For example, the n field of a
ListElement is represented using a predicate n(u1, u2) that holds when the n field of u1 points

Predicate Description
x(u) Is u pointed-to by x?
n(u1, u2) Does the field n of u1 point to u2?
dle(u1, u2) Is the data of u1 less-than or equal to the data of u2?
r[n, x](u) Is u transitively reachable from x using n field?
inOrder(u) Is u part of a non-decreasing list fragment?

Table 5.1: Predicates used to define states.
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Figure 5.1: A concrete representation of a sorted linked list.

to u2. Similarly, we use the unary predicate dle(u1, u2) to record inequalities between data values
of the list elements. The predicate dle(u1, u2) holds when the value of the data component of u1

is less than or equal to the value of the data of u2.
The unary predicate r[n, x](u) holds for list elements that are (transitively) reachable from

program variable x, possibly using a sequence of n fields. This predicate is an instrumentation
predicate [SRW02] which is used to refine the abstraction.

Finally, to express sortedness of lists we use the (instrumentation) predicate inOrder(u). The
predicate inOrder(u) holds for a node u whose data field is less than or equal to the data field
of its n-successor (if one exists).

We depict program states as directed graphs. Each individual of the universe is displayed as
a node. A unary predicate p(u) which holds for an individual (node) u is drawn inside the node
u. Predicates that can only hold for a single individual (e.g., representing a value of a reference
variable) are shown as an edge from the predicate symbol to the node in which it holds. A binary
predicate p(u1, u2) which evaluates to 1 is drawn as directed edge from u1 to u2 labelled with the
predicate symbol.

Example 5.1. The state shown inFigure 5.1 corresponds to a global state of the program containing
a sorted linked list of length 3, and pointed to by the variable x. Note how the dle(u1, u2) binary
predicate records the ordering relation between individuals, and how inOrder(u) holds for all
nodes as a result of the list being sorted. Also note that for all elements of this list r[n,x](u) holds
since all elements are (transitively) reachable from x using a sequence of n fields.

In order to guarantee a finite representation, we conservatively represent multiple concrete
program states using a single logical structure with an extra truth-value 1/2 which denotes values
which may be 1 or may be 0.

We allow an abstract state to include a summary node, i.e., an individual which corresponds to
one or more individuals in a concrete state represented by that abstract state. Technically, we use
a designated unary predicate sm to maintain summary-node information. A summary node u has
sm(u) = 1/2, indicating that it may represent more than one node.

To abstract a concrete state, we use canonical abstraction. Canonical abstraction maps concrete
individuals to an abstract individual based on the values of the individuals’ unary predicates. All
individuals having the same values for unary predicate symbols are mapped to the same abstract
individual. Only summary nodes (i.e., nodes with sm(u) = 1/2) can have more than one node
mapped to them by the abstraction.
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Figure 5.2: An abstract representation of a sorted linked list.

Abstract program states are depicted by enhancing the representation of concrete states with
a graphical representation for 1/2 values: a binary predicate p(u1, u2) which evaluates to 1/2 is
drawn as dashed directed edge from u1 to u2 labelled with the predicate symbol, and a summary
node is drawn as circle with double-line boundaries.

Example 5.2. The abstract state shown in Figure 5.2 represents the concrete state of Figure 5.1.
Note that this abstract state (finitely) represents infinitely many concrete states. For example, it
represents any state containing a sorted linked-list of length of at least 2, which is pointed to be x.
The fact that r[n, x](u) holds for the summary node means that all list elements represented by the
summary node are reachable from x. Similarly, the fact that inOrder(u) holds for the summary
node means that the list suffix represented by the summary node is sorted. The solid (1-valued)
dle(u1, u2) edge from the first node to the summary node records the fact that the data element
of the first node is less than (or equal to) the data element of the rest of the list items.

5.2 Symbolic Concretization

To compute the symbolic concretization of an abstract state we use the procedure of [Yor03]. The
symbolic concretization of an abstract state is a formula in first-order logic with transitive closure
(FOTC). The procedure of [Yor03] produces a formula which is linear in the size of the 3-valued
structure.
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statement update formulae
x = null x(v) = 0
x = y x(v) = y(v)
x = y.n x(v) = ∃v1 : y(v1) ∧ n(v1, v)
x.n = null n(v1, v2) = n(v1, v2) ∧ ¬x(v1)
x.n = y n(v1, v2) = n(v1, v2) ∨ (x(v1) ∧ y(v2))
(assuming x.n==null)

Table 5.2: Predicate-update formulae for list manipulation statements.

Example 5.3. The formula

∃v1.node1(v1) ∧ ∃v2.node2(v2)
∧∀v.node1(v) ∨ node2(v)
∧∀v.node2(v) ⇐⇒ x(v) ∧ r[n, x](v) ∧ inOrder(v)
∧∀v.node1(v) ⇐⇒ ¬x(v) ∧ r[n, x](v) ∧ inOrder(v)
∧∀v1, v2.node2(v2) ∧ node1(v1) =⇒ dle(v2, v1)
∧∀v1, v2.node1(v2) ∧ node2(v1) =⇒ ¬dle(v2, v1) ∧ ¬n(v2, v1)
∧∀v1, v2.node2(v2) ∧ node2(v1) =⇒ dle(v2, v1) ∧ ¬n(v2, v1)
∧∀v1, v2.node2(v1) ∧ node2(v2) =⇒ v1 = v2

∧ϕhygiene

is the symbolic concretization of the abstract state of Figure 5.2. Intuitively, node1(u) represent
concrete nodes pointed to by x and node2(u) represents concrete nodes not pointed to directly by
x but are reachable from x and are sorted in an ascending order.

ϕhygiene is a conjunction of hygiene conditions which guarantee that the represented first-order
structures correspond to legitimate heap states. These hygiene conditions require for example that
a reference variable points to at most a single object, that a reference field points at most to a
single object, etc. In the formula mentioned above, ϕhygiene will guarantee that at most one node
is pointed-to by x.

5.3 Weakest Precondition

For the domain of shape analysis, we use formulae of first-order logic with transitive logic (FOTC)
to symbolically represent program states.

We assume that a statement is represented using a precondition formula and a set of update
formulae. The weakest precondition of a formula ϕ with respect to a given statement st, denoted
by WP(st,ϕ) can be then defined via backward substitution of the update formulae and conjoining
the action’s precondition.

Table 5.2 lists the predicate update formulae for the list manipulation statements used in this
thesis. Predicates not assigned a predicate-update formulae in a statement are assumed to maintain
their value. Allocation of new nodes can also be modeled, but it is not used here.
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Using this expressive logic allows us to easily compute the weakest precondition even for
statements that perform destructive updates of heap references, as shown in the following example.

Example 5.4. Consider the formula ϕ = ∃v1, v2.x(v1) ∧ n(v1, v2) that requires the existence of
an object reference by x and an object referenced by its n field.

The weakest precondition of ϕ with respect to the assignment statement x=y isWP(x=y,ϕ) =
∃v1, v2.y(v1) ∧ n(v1, v2).

More interestingly, even for a statement performing destructive update such as x.n = y, WP
can be computed using simple backward substitution of the predicate update formulae. For this
statement, WP(x.n=y,ϕ) = ∃v1, v2.x(v1) ∧ (n(v1, v2) ∨ x(v1) ∧ y(v2)) 1.

5.4 Generating Counterexamples

We can now use the algorithm of Chapter 4 to find a concrete counterexample for the bubble-sort
running example.

The bubble-sort procedure has two assertions as postconditions. These assertions require that:
(i) the resulting list is sorted in ascending order (assert ascendingOrder(x)); (ii) the result-
ing list is a permutation of the input list, i.e., no nodes were lost (assert permutation(x)).

These assertions are formulated in TVLA using the following FOTC formulae

Φascending = ∀v.r[n, x](v) =⇒ inOrder(v)

Φpermutation = ∀v.r[n, x](v) ⇐⇒ or[n, x](v)

The specification for Φpermutation uses an auxiliary predicate or[n, x](v) that records the nodes
that were reachable from x on entry to the sorting procedure. The auxiliary predicate or[n, x] is
only updated once by the call to recordListNodes(x) at line l1.

Running TVLA using the negation of these formulae as error conditions, an error is reported at
label l31 with the abstract state shown in Figure 5.3. Note that for the rightmost node in the figure,
r[n, x] is false while or[n, x] is true, indicating that the node was previously reachable from x
and is no longer be reachable, i.e. is lost. Also note that inOrder(u) holds for all list elements,
meaning that the resulting list is sorted (although it loses list elements).

We now invoke the algorithm of Figure 4.1 using a maximal path length of p = 50. We also
limit the first-order theorem prover (See Chapter 6) to a maximal model size of 3.

When reaching line 3 in the algorithm, l has the value l31, σ! corresponds to the structure
of Figure 5.3 and ϕerr = ¬(∀v, r[n, x](v) ⇐⇒ or[n, x](v)). The algorithm now invokes
Input-Instance with the conjunction of γ̂(σ!) and ϕerr and the label l31. For brevity, the
symbolic representation of the abstract state of Figure 5.3 is not shown.

Input-Instance starts exploring the possible paths from entry to l31. The paths are sorted
from the shortest to the longest. For each path, ϕ0 is calculated from γ̂(σ!) ∧ ϕerr by repeated
computation of the weakest precondition.

The theorem prover fails to find a model for all the first 141 paths checked. On the 142th path,
it finds a concrete example as shown in Figure 5.4. The path is l1 → l2 → l3 → l4 → l6 → l7 →

1This assumes that x.n is reset to null before it is given a new value, otherwise, the update formula would have been
((n(v1, v2) ∧ ¬x(v1)) ∨ (x(v1) ∧ y(v2)))].
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Figure 5.3: An abstract state on which the analysis reported the error message of line l31.
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Figure 5.4: A concrete counterexample demonstrating the error in the bubble-sort program as found
by Generating-Counterexamples algorithm.

l8 → l9 → l10 → l11 → l12 → l25 → l26 → l27 → l11 → l12 → l13 → l14 → l15 → l16 →
l17 → l20 → l22 → l23 → l11 → l12 → l25 → l26 → l27 → l11 → l6 → l31.

This path corresponds to an execution in which the outer loop (starting at l6) is visited twice
and the inner loop (starting at l11) is visited 4 times (twice for each outer iteration).

The generated counterexample, shown in Figure 5.4, is a list referenced by x containing 3
elements such that the last element has the smallest data value, and the second element has the
largest data value. Note that as a result, the inOrder(u) predicate does not hold for the second
element. The generated counterexample corresponds to the violating input we initially presented
in Figure 1.2.
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Chapter 6

Prototype Implementation

We have implemented a prototype of our tool and used it to generate counterexamples for a set of
small but interesting example programs.

Our implementation currently interfaces with the TVLA [LAS00] static analysis engine. The
model enumerator we are using is Mace4 [McC94, McC03] which is a model enumerator for
first-order logic.

Table 6.1 shows our benchmark programs.
The first 2 programs involve sorting of singly linked lists. The next 4 programs perform

manipulation and traversing of lists. All of these programs were previously used as benchmarks
for various analyses implemented using TVLA [LARSW00, DRS00]. In some programs, we
manually introduced bugs to force error reports by the analysis.

The last two programs, simple1 and simple2, were added to the benchmark set to test a
case were there is only one possible counterexample and a case where the error is a false alarm.

In every program, one or more of the errors were reported:

PERM The resulting list is not a permutation of the original list.

NULL A possible null dereferencing, i.e. performing x=x.n where x is NULL.

Program Description
bubble-sort Bug The running example
insert-sort bug 1,2 Insert Sort
rotate moves the tail of a list to it’s end
search Searches for an item in a list
merge1, 2 Merges two ordered lists
swap Swaps the first two elements of a list
simple1 Traverses three steps in a list
simple2 Traverses three steps in a list, reset and re-traverse them in a loop.

Causes a false alarm.

Table 6.1: Description of benchmark programs.
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Counterexample ϕ0

Program CFG total max sz Error real fnd sz path paths time
Nds strct len err len ops cls chk (sec)

bubble-sort Bug 1 32 1024 50 3 PERM T T 3 44 1913 196 142 42
insert-sort Bug 1 31 1132 100 3 PERM T T 2 42 1556 153 42 13
insert-sort Bug 2 31 251 100 3 ORDER T T 3 19 851 84 3 1
rotate 15 85 50 4 LEAK T T 4 21 1751 140 10 212
search 7 42 30 3 NULL T T 2 5 829 59 1 1
merge1 34 374 100 5 INIT T T 3 11 1945 96 4 85
merge1 34 374 100 5 LEAK T T 3 6 3793 134 1 11
merge1 34 374 100 5 INIT T T 3 7 3809 138 2 16
merge1 34 374 100 5 LEAK T T 3 15 4255 173 8 244
merge2 35 396 200 3 LEAK T T 3 17 1918 123 9 90
swap 12 36 30 3 NULL T T 2 5 935 66 1 1
Simple1 8 21 10 3 NULL T T 3 7 310 30 1 0
Simple2 12 60 30 3 NULL F F N/A N/A 594 63 524 133

Table 6.2: Results for finding counterexamples for the benchmark programs.

LEAK There is a possibility that a node is not reachable from any of the program variables.

INIT There is a possibility that a variable value is referenced without being initialized first.

ORDER A possible violation of the list order, meaning the list is not sorted.

Our experiments were conducted on a dual 1Ghz Pentium-III with 2GB of memory running
Linux. Table 6.2 shows the results for running the counterexample algorithm on the benchmark
programs. Note that merge program had 12 bugs at different labels. For brevity, the table specifies
the results of only 4 of them.

The column “CFG Nds” shows how many nodes are in the control flow graph of the program,
“total strct“ is the number of abstract structures found by the analysis, “max len” is the maximum
length of the paths, “sz” is the maximum model size used with Mace4, “Error” is the error reported.

The next four columns refer to the counterexample: “fnd” shows whether a counterexample
was found, “real err” indicates whether the error is a true or false alarm. “sz” shows the size
(in nodes) of the counterexample found. “path len” shows the length of the path on which the
counterexample was found.

The next two columns, “ops” and “cls” show the number of operators and number of clauses
in the calculated ϕ0.

The last two columns are “paths chk”, showing how many paths the algorithm checked before
finding a counterexample (or stopping because maximum path length was reached), and “time” —
the elapsed time of the running of the algorithm in seconds.

In all the benchmarks except for the last, a counterexample was found. In the last benchmark,
simple2 a counterexample was not found, and this error is indeed a false alarm.
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For the sorting programs, manual investigation of error messages with so many abstract states
created is very difficult. For the first two bugs, one would have to traverse paths of more than
40 nodes in length. It is interesting to note that even for small programs such as merge, a large
number of abstract states are created, making it hard to reconstruct even short execution paths.
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Chapter 7

Extensions

In this chapter, we describe possible extensions of our algorithms. In Section 7.1 we show
how to use the algorithm Input-Instance to automatically generate a set of test cases that
cover the program according to a certain criterion. In Section 7.2 we discuss some variants of
Input-Instance we have investigated.

7.1 Generating Coverage Test Cases

Code Coverage Analysis [Cor02] tries to find areas of the program not realized by a set of test
cases. In this section we show how to use Input-Instance to automatically generate test cases
that realize all the results of the analysis.

There is a large number of coverage criteria suggested in the literature [GG02], among them:

All-nodes Requires that each node in the control flow graph be executed by some test case.

All-edges Requires each edge in the control flow graph be traversed at least once by some test
case.

All-paths Requires that every complete path (from entry to exit) be traversed.

It is straightforward to useInput-Instance algorithm for producing an adequate All-nodes
test case set. To do so, one appliesInput-Instance at every label on every abstract state created
by the analysis until an input instance is found for every label 1.

Input-Instance allows generating test cases for more general domains. For instance, in
our experiments, we were able to produce an adequate All-nodes test set for the bubble-sort running
example.

To produce an All-paths test case set, Input-Instance should be applied only on the
abstract states at label exit. Path exploration depth is directly controlled via the p parameter.

Producing All-edges test case set is similar to All-paths, however a small change is required to
avoid checking paths not covering new edges.

1In shape analysis, we found it a good heuristic to try the abstract states in ascending order of ”complexity” (the
number of list nodes in each state).
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Leveraging the static analysis results allows considering a new coverage criteria - “All-Abstract-
States” defined as follows.

Definition 7.1 (All-Abstract-States). DenoteΣ! as the set of labelled abstract states representing
all the possible concrete states at all the labels. A test set Σ is All-Abstract-States adequate when
for each labelled abstract state 〈σ!, l〉 ∈ Σ! there exists an input instance in Σ.

The algorithm for generating an All-Abstract-States adequate test set usesInput-Instance
as a procedure. Input-Instance is applied for every abstract state at every label of the program.

An adequate All-Abstract-States would have a concrete test case for every possible abstract
state the program may reach. We believe this criteria might have an advantage over other criteria,
especially in domains involving heap manipulation. Further experiments are needed to compare
this criteria with the others.

7.2 Variants Of Input-Instance

7.2.1 Extended Interface with the Static Analysis

The algorithm Input-Instance of Chapter 3 uses a limited interface with the static analysis
tool. In fact, it only uses information of the reported error — the error label, the error condition,
and the abstract state for which the error was reported.

Given a richer interface to the results of the static analysis tool, the algorithm
Input-Instance could benefit from this interface by restricting the computed weakest precon-
dition only to states that are described by the abstract state descriptors computed by the abstract
interpretation.

Technically, at every step of the weakest precondition computation, the result of the weakest
precondition is conjoined with the symbolic concretization of the corresponding abstract states.

The resulting ϕ0 would therefore be more restricted. This may aid the theorem prover to find
a model faster. In our experiments we did not notice any significant performance difference.

7.2.2 Path Pruning

Another interesting variant is path pruning. Instead of calculating weakest precondition for the
whole path and then run the theorem prover, only to find out the model is inconsistent, one can run
the theorem prover after each step of the weakest precondition calculation and stop traversing that
path if the formula is unsatisfiable.

Our experiments showed that most paths are pruned relatively late during their exploration,
thus the time saved from not exploring path fragments in comparison to the cost of extra calls to
the theorem prover made this approach ineffective.
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Chapter 8

Related Work

Our work is closely related to bounded model checking (BMC) [CBRZ01, BCC+03a], and could
be viewed as a new algorithm for BMC which separates path-enumeration from path-verification.
BMC operates by constructing a single propositional formula for a program and a temporal logic
specification such that the formula is satisfiable if and only if there exists a program path of up to
some bounded length that satisfies the property. An assignment to this formula is both a selection
of a program path and a selection of values for state variables. In contrast, our algorithm iterates
through the possible paths and constructs a separate formula for each path resulting in a smaller
formula. This enables us to use richer (and possibly larger) symbolic state representations.

Jackson and Vaziri [JV00] present a method for verifying structural properties, such as heap
relationships, using a constraint solver. Their method consists of three stages: (i) translation of the
specification code into first-order logic; (ii) translation from first-order logic to propositional logic
using a bound on the number of objects; (iii) running SAT solver to find counterexamples. In the
translation, both the control and data are encoded, thus a counterexample describes both the initial
configuration and a path to the violating label. This analysis produces concrete counterexamples
and no false alarms, but only performs a bounded exploration and therefore may produce false
positives.

In [VJ03], Jackson and Vaziri present various optimization techniques (reducing functional
representation size and applying logical simplifications) to reduce the complexity of the resulting
logical formula and increasing the tool scalability.

Our method differs from [JV00, VJ03] in that it is applied to the results of a sound abstract
interpretation, and therefore can guarantee that there are no false positives. Our method helps
reduce the number of false alarms needed to be manually investigated. In addition, we take a
different approach for reducing formula complexity. Instead of enumerating all possible paths and
data states at once, we verify every path separately thus allowing more complex state description
formulae. This comes at the expense of more calls to the theorem prover. Our experience shows
that this approach works well for the abstract domain tested.

Clarke et al. [CGJ+00] uses counterexamples to automatically refine abstraction in model
checking. This technique identifies the shortest invalid prefix of a spurious counterexample trace
and then refines the abstraction to eliminate invalid transitions out of the last valid abstract state of
the prefix.
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Microsoft’s SLAM [Mic01] implements a process for validating temporal safety properties on
software that uses a well defined interface. The SLAM process includes: (i) generating a boolean
predicate representation of the C program (C2BP); (ii) using a model checker to find if error states
are reachable in the abstract program (BEBOP); (iii) if no reachable error state is found, the property
is verified. If a reachable error state is found, NEWTON path simulator is used on the generated
abstract trace to check if there exists a directly corresponding concrete trace in the original program.
If such a corresponding trace does not exist, a new predicate is added to refine the abstraction.

The SLAM process resembles ours in that it is sound (does not produce false positives), and
can therefore prove the absence of errors. It also has the advantage of refining the abstraction
in case a counterexample is not found. However, while NEWTON path simulator only checks a
single path through the program leading to the error state, our algorithm checks all paths up to a
certain bounded length. Thus, in some cases our algorithm will produce a counterexample when
the iterative refinement will require a refinement step. In addition, SLAM uses only predicate
abstraction, while our algorithm can be applied to many other abstract domains.

Pasareanu et. al. [PDV01] present two techniques for checking the feasibility of a reported
abstract counterexample for multithreaded Java programs. Viewing operations on abstract values
as being deterministic (returning a single abstract value) or non-deterministic (returning a set
of abstract values), the first techniques tries to find program paths in which non-deterministic
operations do not occur (choose-free paths). Since a choose-free path is guaranteed to be a path in
the concrete program, if such path is found, it provides a feasible counterexample. It is interesting
to note that our technique applies in many cases in which the operations over the abstract domain
are not deterministic. Of course, our technique is admittedly costly due to path-enumeration and the
use of a theorem prover. The second technique proposed in [PDV01] performs a counterexample
guided simulation similar to NEWTON, but in a setting that allows non-boolean abstractions and
handles multithreaded programs.
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Chapter 9

Final Remarks

This thesis presents a tool that allows one to enjoy the benefits of sound abstract interpretation (no
error is missed) while reducing the number of false alarms that need to be manually investigated.
The tool can also be used to generate an adequate test case set according several coverage criteria.

The tool is generic and is applicable to any abstract domain having a symbolic concretiza-
tion function, an ability to calculate weakest preconditions, and a finite-model counterexample
generator.

Tofind input instances, a new bounded model checking algorithm that separates path-exploration
from path-verification is used.

A prototype of the tool was implemented for shape analysis and was able to produce coun-
terexamples for several interesting benchmark programs.

In the future it is planned to implement this tool for other domains. It may also be interesting
to investigate further optimizations to Input-Instance and also compare the effectiveness of
the All-Abstract-States criteria relative to other criteria.
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Appendix A

User’s Manual

This appendix is intended as a User Manual to the counterexample generation tool (CETool).
The counterexample tool is implemented in Java as an add-on to the TVLA static analysis

framework [LAS00]. The model enumerator Mace4 [McC03] is used as a theorem prover for
first-order logic.

This manual assumes the reader’s familiarity with the TVLA system. More information on
operating TVLA can be found at [LA00].

A.1 Overview

CETool has two modes of operation: post-analysis mode and stand-alone mode.
In post-analysis mode, static analysis is first executed and produces an abstract state at every

program label. Two options are available in this mode:

counter In this option, the algorithm for producing a counterexample (See Chapter 4) is invoked.

coverage In this option, the algorithm for producing an All-Abstract-State adequate set (See Sec-
tion 7.1) is invoked.

Figure A.1 and Figure A.2 describe the operation of the counter and coverage options, respectively.

Figure A.1: Counterexample generation in post-analysis mode.
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Figure A.2: Coverage generation in post-analysis mode.

Figure A.3: Counterexample generation in stand-alone mode.

In stand-alone mode, the analysis is not executed. Instead, the user supplies a label, an abstract
state, and a message identifier. CETool produces a counterexample that reaches this label with an
abstract state satisfying the message condition. This mode is useful when the analysis is expensive
and the user wants to experiment with different CETool parameters on the resulting messages
without having to rerun the analysis. Figure A.3 describes the operation of stand-alone mode.

By default, CETool operates in post-analysis mode.

A.2 An Example

CETool is demonstrated on the bubble-sort running example from Figure 1.1. The reader is
encouraged to download the sources of the example from [Ere04] and run the example as going
along this manual.

TVLA takes two input files:

TVP file describes the specification of the program and it’s control flow graph.

TVS file describes the input abstract structure(s) for the analysis.

Among thefiles available electronically,BubbleBug.tvp contains the TVP translation of the
bubble-sort program andUnsorted.tvs is used as the TVS file. TVP translation is not discussed
here and it is not critical for the understanding of this manual. It just suffices to note that label i28
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Unable to prove that the list pointed-to by xis a permutation of the original list at i0

x

inOrder[dle,n]
or[n,x,i0]

r[n,x]

inOrder[dle,n]
inROrder[dle,n]

is[n]
or[n,x,i0]

r[n,x]

dle

inOrder[dle,n]
or[n,x,i0]

inROrder[dle,n]=1/2

dle dle n

dle

dle

dle n

dle

Figure A.4: The error message reported by TVLA when running the analysis on the bubble-sort
program.

in the TVP translation corresponds to l31 in the Java program (assert permutation(x)), in
which we expect the error message (See Section 5.4).

Unsorted.tvs represents a general unsorted list of zero or more nodes.
The following command runs TVLA with CETool on the bubble-sort program:

tvla BubbleBug Unsorted -counter 3 50

-counter 3 50 invokes CETool in post-analysis mode with a maximum model size 3 for
the theorem prover and a maximum path length of 50. First, TVLA analysis is run. As expected,
TVLA reports one message at label i28. The message and the structure which triggers the message
are graphically depicted in the resulting postscript file, as shown in Figure A.4.

After the analysis is completed, CETool is invoked on label i28 and the abstract structure of
Figure A.4. The results of the tool are shown in Figure A.5.

As expected, the tool found a counterexample for label i28 and displays the structure in textual
TVS form. The tool also produces .dt files depicting the counterexamples found in a graphic form.
This structure is exactly the structure shown in Figure 5.1, with some additional predicates (such
as inROrder()) that are used in the analysis but were omitted from the drawing for clarity.

Note the summary at the end of Figure A.5. The “lbl” column shows the label at which the
error was reported,“found” column indicates whether a counterexample was found, “ops” and “cls”
columns are the number of operators and clauses in the ϕ0 formula, repectively. The “pth” column
is the number of paths explored during the counterexample generation. “prn” column is the number
of paths pruned (if path pruning is used — See Section A.3). The next two columns, “pot” and
“exp” roughly indicate the depth of pruning performed. The “pot” column is the total length of
all the paths explored; the “exp” column sums up how many nodes of each path were actually
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Counter example found!(Label: i28 Error Condition:!(((Av).(r[n,x](v) <-> or[n,x,i0](v)))))
Path:i0->i000->i00->i1->i2’’->i3’->i4’->i5’->i6’->i7’’’’->i8’’->i21’->i22’->i23’->...

%n = {_39, _40, _41}
%p = {
inac = {_39:1, _40:1, _41:1}
inOrder[dle,n] = {_39:1, _41:1}
inROrder[dle,n] = {_40:1, _41:1}
r[n,x] = {_39:1, _40:1, _41:1}
x = {_39:1}
dle = {_41->_39:1, _39->_40:1, _40->_40:1, _41->_40:1, _41->_41:1, _39->_39:1}
n = {_39->_40:1, _40->_41:1}

}
lbl found ops cls pth prn pot exp sec
=== ===== === === === === === === ===
i28 true 1980 173 142 0 5612 5612 47
Total time:47
Total found:1

Figure A.5: CETool printout of the found counterexample for the bubble-sort program.

explored before the path was pruned. The last column, “sec”, shows the elapsed time in seconds
of the counterexample search.

A.3 Command-line Arguments

Following is a description of the command-line arguments for CETool.

-counter size length [label tvsF ile msgIndex ] activates CETool with a model size size
and a maximum exploration length length. label, tvsF ile and msgIndex are optional
arguments.
If label, tvsF ile and msgIndex are specified, CETool operates in stand-alone mode. In
this mode, the analysis is skipped and the counterexample algorithm is invoked at label label
on the structure described by the TVS file tvsF ile. msgIndex is a number indicating which
message to use as an error condition. For example, a msgIndex of 1 indicates using the first
message in the label.

-coverage [label1[, label2, label3,... tvsF ile ]] activates the coverage option. The second
argument is a comma separated list of labels in the program. A concrete input instance is
generated for every abstract state at every label specified. If no labels were specified, then
an input instance is created for all the labels. The structures found are written to the TVS file
tvsF ile. If no tvsF ile is specified, the value from tvla.counterexample.coverageFileName
is used.
This argument must be accompanied by a -counter option to provide the parameters for
the input instance generation.

-prune causes CETool to perform path pruning (See Section 7.2.2).
After each step in WP calculation, the resulting formula is checked to be satisfiable. If not,
the path is pruned and the next path is checked.
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This argument must be accompanied by a -counter option to activate input instance
generation.

A.4 Java Configuration Properties

It is possible to configureCETool by adding or changing property values in one of TVLA properties
file (tvla.properties, version.properties, user.properties) or by adding a
-Dproperty=option to the java command-line running TVLA.

Table A.1 shows general properties pertinent to CETool. Table A.2 shows properties related
to CETool coverage option. Table A.3 shows properties of the theorem prover used, Mace4.
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Property Description
tvla.counterexample If set to “true”, CETool is activated for

every run of TVLA.
This value is overridden by -counter
command line option, if exists.
The default is “false”.

tvla.counterexample.maxPathLength Maximum path length. Used to bound
the counterexample search. The default is 50.

tvla.counterexample.force If set to “true”, CETool is run in stand-alone mode
trying to find a counterexample for the label specified in
tvla.counterexample.forceLabel, the abstract structure specified in
tvla.counterexample.forceTvsFile and the message indicated by
tvla.counterexample.forceMsgIndex.
These values are overridden by the third till fifth command-line
arguments to -counter, if exists.
The default is “false”.

tvla.counterexample.forceLabel If tvla.counterexample.force is set to “true”,
this property defines the label for which to find a counterexample.

tvla.counterexample.forceTvsFile If tvla.counterexample.force is set to “true”,
this property specifies the TVS file containing
the abstract structure from which to start the search.

tvla.counterexample.forceMsgIndex If tvla.counterexample.force is set to “true”,
this property defines the index of the
message in the label tvla.counterexample.forceLabel
to use as an error condition. For example, a value of
1 indicates using the first message in
the label.

tvla.counterexample.minModelSize Sets the minimum model size the theorem prover
searches for. If supported by the theorem
prover (like in Mace4 case), it can save theorem
prover run-time if the user knows a counterexample
model size cannot be smaller than some value.
The default is 2.

tvla.counterexample.maxModelSize Sets the maximum model size the theorem prover
searches for. This value is overridden by the
first argument of -counter command-line
option, if it exists.
The default is 3.

Table A.1: CETool general counterexample generation properties.
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Property Description
tvla.counterexample.coverage If set to “true”, CETool tries to find a counterexample

for every abstract structure found by the analysis.
Structures found are written in TVS format to the file
mentioned in tvla.counterexample.coverageFilename.
The default is “false”.

tvla.counterexample.coverageFilename The TVS file name for coverage results, if coverage is used.
The default is “coverage.tvs”.

tvla.counterexample.coverageLocations A comma separated list of the labels for
which to perform coverage.
If this value is empty, all labels are examined.
This value is overridden by the second argument to
-coverage command-line option, if exists.
The default is an empty string.

Table A.2: CETool coverage related properties.

Property Description
tvla.tp.mace4.executable The executable name of Mace4.

The default is “mace4.exe“.
tvla.tp.mace4.path The path of Mace4 executable.

The default is an empty string.
tvla.tp.mace4.parameters Additional parameters supplied to Mace4.

Note that CETool must have the following parameters
set “-m 1 -P“ to function properly.
These parameters indicate that Mace4
should produce one model and print it in a
portabale way CETool can parse.
To add a timeout to Mace4, you need to include a “-T sec”
parameters, where sec specifies the number of seconds
that should pass before a timeout occurs.
CETool treats a timeout as if no model was found.
The default is “-m 1 -P”.
See [McC03] for more information on Mace4 parameters.

Table A.3: Mace4 related properties.

44



Appendix B

Proof

This appendix presents a proof to the correctness of Input-Instance algorithm shown in
Figure 3.1.

B.1 Proof

We prove both the completeness and soundness of the algorithm:

1. Completeness — any state found by Input-Instance for label l and condition ϕl is an
input instance for that label and condition.

2. Soundness — if there exists an input instance for label l and condition ϕl, there exists a
maximum length p that allows Input-Instance to find some input instance for it.

B.2 Completeness

Theorem B.1. a concrete state σ0 found by Input-Instance for a label l and a condition ϕl

is an input instance according Definition 2.3.

Proof. Let p = l0 → l1 → ... → ln be the path upon which Input-Instance found a concrete
state σ0, where l0 = entry and ln = l.

Let sti be the statement leading from li to li+1.
Let ϕi = WP(sti,ϕi+1) for 0 ≤ i < n with ϕn = ϕl.
Let σi = !sti−1"(σi−1), meaning σi is the result of applying sti−1 on σi−1 starting from σ0.
We need to prove the following:

i Every statement sti is enabled on σi.

ii σn |= ϕl.

We prove (i) in Lemma B.1. (ii) immediately holds.
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Lemma B.1. For every 0 ≤ i ≤ n, σi |= ϕi and for every 0 ≤ i < n, sti is enabled.

Proof. By induction on i.
Basis. i = 0. σ0 is a model found by Input-Instance for ϕ0 and therefore σ0 |= ϕ0.

ϕ0 = WP(st0,ϕ1) is the weakest precondition of st0 and ϕ1. If st0 is not enabled on σ0 then
violates ϕ0 being a precondition of ϕ1 and st0 because there exists a model σ0 satisfying ϕ0 but
does not guarantee ϕ1 (because st0 cannot be applied on it). st0 is therefor enabled on σ0.

Induction step. Assume that the lemma is correct for 0 ≤ i − 1 < n − 1. We prove that the
lemma holds for i.

Using the same reasoning as in the basis, we get that sti is enabled.
According the assumption, σi−1 |= ϕi−1. It follows from the definition of weakest precondition

(See Definition 3.1) that σi |= ϕi.

B.3 Soundness

Theorem B.2. If there exists an input instance σ0 for label l and condition ϕl, there exists a
maximum path length p for which some input instance σ′ is found by Input-Instance.

Proof. Assume there exists an input instance σ0 whose execution path is ep = 〈σ0, l0〉
st0−−→

〈σ1, l1〉 . . .
stn−1−−−→ 〈σn, ln〉.

Let p = |ep|. Since Input-Instance explores all paths of length up to p, it must also
explore the path l0 → l1 → ... → ln.

Since σ0 is an input instance, σn |= ϕl. Let ϕi−1 = WP(sti−1,ϕi) as calculated by
Input-Instance on the path l0 → l1 → ... → ln with ϕn = ϕl.

Lemma B.2 below shows that for every 0 ≤ i ≤ n, ϕi is satisfiable. It follows that
Input-Instance finds some model σ′ |= ϕ0. According Theorem B.1, every model found by
Input-Instance — in this case σ′ — is an input instance, thus proving the theorem.

Lemma B.2. for every 0 ≤ i ≤ n, ϕi is satisfiable by σi.

Proof. By induction on i.
Basis. i = n. We know that σn |= ϕl and that ϕn = ϕl. Thus σn |= ϕn.
Induction step. Assume that the lemma is correct for 0 < i + 1 ≤ n. We prove that the lemma

also holds for i.
Assume in contradiction that ϕi is not satisfiable. We know that σi+1 = !sti"(σi). According

to the assumption, σi+1 |= ϕi+1. However, σi is not a model of ϕi, in contradiction to ϕi being the
weakest precondition of sti and ϕi+1 (See Definition 3.1). Thus, we conclude that ϕi is satisfiable.
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