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Abstract

Shape analysis concerns the problem of determining �shape invariants� for programs that perform
destructive updating on dynamically allocated storage. In recent work, it has been shown how
shape analysis can be performed, using an abstract interpretation based on 3-valued �rst-order
logic. In that work, concrete stores are �nite 2-valued logical structures, and the sets of stores that
can possibly arise during execution are represented (conservatively) using a certain family of �nite
3-valued logical structures.

This thesis presents results�both negative and positive�about the expressive power of 3-
valued logical structures. It also de�nes a non-standard (�supervaluational�) semantics for 3-valued
�rst-order logic that is more precise than a conventional 3-valued semantics. The material presented
here is an extended version of [YRSW03].

In addition, this thesis address a more practical aspect of program analysis, namely, dealing
with real applications coded in C. It presents C-Simpli�er, a tool that translates a C program into an
equivalent C program with a simple syntax, called CoreC. This tool enables faster development of
source-code analyzers; it was used by CSSV [DRS03] to check real C programs for string errors;
it can also be used to perform shape analysis on real programs.
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Chapter 1

Introduction

1.1 Background
Abstraction and abstract interpretation [CC77] are key tools for verifying properties of systems, both
for hardware systems [CGL94, Dam96] and software systems [NNH99]. In abstract interpretation,
possibly in�nite sets of concrete stores are represented in a conservative manner by a �nite sets of
abstract values. Each transition of the system is given an interpretation over abstract values that is
conservative with respect to its interpretation over corresponding sets of concrete stores; that is, the
result of �executing� a transition must be an abstract value that describes a superset of the concrete
stores that actually arise.

The result of applying an abstract interpretation technique to a program is a set of abstract values
at each program point. This involves �nding the least �xed point of a certain set of equations. When
the �xed point is reached, the abstract values that have been collected at program point P describe
a superset of all the concrete stores that can occur at P . This methodology guarantees that the
results of abstract interpretation overapproximate the sets of concrete stores that actually arise at
each point in the system. To determine whether a property always holds at P , one checks whether
it holds in all of the abstract values that were collected there.

One of the most challenging problems in abstract interpretation is shape analysis. Shape
analysis concerns the problem of �nding �shape descriptors� that characterize the shapes of the
heap-allocated data structures that the program manipulates. Shape analysis generally deals with
programs written in languages like C, C++, and Java, which allow (i) dynamic allocation and
deallocation of cells from the heap, (ii) destructive updating of structure �elds, and, in the case
of Java, (iii) dynamic creation and destruction of threads. This combination of features creates
considerable dif�culties for any abstract-interpretation method; in particular,

� Dynamic storage allocation and dynamic thread creation mean that there is no a priori upper
bound on either the size of a program's data structures or the number of threads that arise in
the system at execution time.

� Destructive updating of structure �elds permits a program to create memory con�gurations
that exhibit complicated aliasing relationships.
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Although the results of shape analysis are important for many purposes�veri�cation, program un-
derstanding, anomaly detection, debugging, compile-time garbage collection, instruction schedul-
ing, code optimization, and parallelization�obtaining useful information about linked data struc-
tures that can be destructively updated is generally very dif�cult [JM81, CWZ90, SRW02].

These dif�culties are addressed in [SRW02] by creating a shape abstraction method, called
canonical abstraction. In this method, concrete stores are represented by �nite 2-valued logical
structures�i.e., a collection of relations. The sets of stores that can possibly arise during execution
are represented (conservatively) using a certain family of �nite 3-valued logical structures. In
fact, this approach can be used not only for shape analysis, but also for any abstract-interpretation
problem in which concrete states can be represented by a logical structure.

The principle behind canonical abstraction is that concrete individuals (e.g., heap cells) that
have the same vector of values for a distinguished collection of unary relations are summarized
to the same abstract individual; other relations are collapsed accordingly. Canonical abstraction
ensures that abstract structures have an a priori bounded size, which guarantees that a �xed-point
is always reached.1

However, the constraint of working with limited-size descriptors implies a loss of information
about the store. Intuitively, some concrete individuals �lose their identity� when they are grouped
together with other individuals in one summary individual. Moreover, a property can be true for
some concrete individuals of the group but false for other individuals. It is for this reason that
3-valued logic is used; uncertainty about a property's value is captured by means of the third truth
value, 1/2.

1.2 Motivation
One issue that arises when abstraction is employed concerns the expressive power of the abstraction
method: �What collections of concrete states are expressible using the given abstraction method?�
A second issue that arises when abstraction is employed is how to extract information from an
abstract value. For instance, this is a fundamental problem for clients of abstract interpretation,
such as veri�cation tools, program optimizers, program-understanding tools, etc., which need to
be able to interpret what an abstract value means. An abstract value a represents a set of concrete
stores X; ideally, a query ϕ should return an answer that summarizes the result of posing ϕ against
each concrete store S ∈ X:

� If ϕ is true for each S, the summary answer should be �true�.

� If ϕ is false for each S, the summary answer should be �false�.

� If ϕ is true for some S ∈ X but false for some S′ ∈ X , the summary answer should be
�unknown�.

For instance, if a program optimizer poses the query �Does program conditionx == NULL evaluate
to true in all stores that arise at program point p?� and the answer is �true�, then it has suf�cient
information to make the simpli�cation

p: if (x == NULL) then S1 else S2 fi ⇒ p: S1.

1An alternative would be to de�ne widening operators that guarantee termination [CC79].
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This thesis presents results on both of these questions, for a class of abstractions de�ned in
[SRW02].

Because the notion of abstraction used in [SRW02] is based on logical structures, our results are
actually much more broadly applicable than shape-analysis problems: they apply to any abstraction
in which concrete states of a system are represented by �nite2-value logical structure and abstraction
is performed via either of the mechanisms described in Chapter 2 and Chapter 7.2

1.3 Main Results
The thesis investigates the expressive power of �nite 3-valued structures by giving a logical char-
acterization of their expressive power; that is, we examine the question

For a given 3-valued structure S, under what circumstances is it possible to create a
formula γ̂(S), such that S\ satis�es γ̂(S), exactly when S\ is a 2-valued structure that
S represents? I.e.,

S\ |= γ̂(S) iff S represents S\.

The thesis presents three results concerning this question:

� It is not possible to give a γ̂(S) in general, if γ̂(S) is to be written in �rst-order logic with
transitive closure.

� However, it is always possible to give a γ̂(S) written in �rst-order logic with transitive closure
for a well-de�ned class of 3-valued structures. (It is exactly the class of 3-valued structures
that has been shown to be useful for shape analysis [SRW02].)

� Moreover, it is always possible to give a γ̂(S) in general, using a more powerful formalism,
namely, monadic second-order formulas, which is a subset of NP formulas [Fag75].

The thesis then uses the results on γ̂(S) to address the problem of reading out information from
a 3-valued structure in the most-precise way possible. That is, we give a nonstandard way to check
if a formula ϕ holds in a 3-valued structure S:

� If γ̂(S) ⇒ ϕ is valid, i.e., holds in all 2-valued structures, we know that ϕ evaluates to 1 in
all of the 2-valued structures represented by S.

� If γ̂(S) ⇒ ¬ϕ is valid, we know that ϕ evaluates to 0 in all of the 2-valued structures
represented by S.

� Otherwise, we know that ϕ evaluates to 1 in some 2-valued structures represented by S, and
evaluates to 0 in other 2-valued structures represented by S.

2Throughout the thesis, however, we do use shape-analysis examples to illustrate the concepts discussed. The
experiments reported on in Chapter 6 used logical structures that arose in actual program-analysis runs of the TVLA
system (Three-Valued-Logic Analyzer) [LAS00], which is an implementation of the program-analysis method described
in [SRW02].
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In particular, whenever the above-mentioned method returns 1/2, any sound method for ex-
tracting information from S must also return 1/2. This is in contrast to the techniques used in
[SRW02] and in TVLA, which can return 1/2 even when all the concrete structures represented by
S have the value 1 (or all have the value 0).

Although the validity question is undecidable both for �rst-order logic with transitive closure,
and for NP formulas, several theorem provers for �rst-order logic have been created. We report
on two experiments in which we used these tools to implement symbolic procedures for extracting
information from a 3-valued structure in the most-precise way possible.

1.4 Outline of the Thesis
The thesis is organized as follows: Chapter 2 de�nes our terminology, and explains the use of
3-valued structures as abstractions of 2-valued structures. Chapter 3 and Chapter 4 present the
results on the expressive power of 3-valued structures. Chapter 5 discusses the problem of reading
out information from a 3-valued structure in the most-precise way possible. Chapter 6 describes
two experiments in which we used the γ̂ operation and an existing theorem prover for �rst-order
logic to read out information from 3-valued structures. Chapter 7 de�nes an alternative abstract
domain for shape analysis, based on canonical abstraction, and the γ̂ operation for that domain.
Chapter 8 discusses related work. Chapter 9 makes some �nal remarks. Omitted proofs appear in
Appendix B. Finally, Appendix C presents the design of CoreC.
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Chapter 2

Preliminaries

Section 2.1 de�nes the syntax and standard Tarskian semantics of �rst-order logic with transitive
closure and equality. Section 2.2 introduces integrity formulas, which exclude structures that do
not represent a potential store and specify which structures are actually of interest. Section 2.3
introduces 3-valued logical structures, which extend ordinary logical structures with an extra value,
1/2, representing �unknown� values that arise when several concrete elements are represented by
a single abstract element. Section 2.4 de�nes an ordering on 3-valued structures.

Fig. 2.1(a) shows the declaration of a linked-list data type in C, and Fig. 2.1(b) shows a C
program that searches a list and splices a new element into the list. This program will be used as a
running example throughout this thesis.

2.1 Syntax and Semantics of First-Order Formulas with Transitive
Closure

We represent concrete stores by ordinary 2-valued logical structures over a �xed �nite set of
predicate symbols P = {eq, p1, . . . , pn}, where eq is a designated binary predicate, denoting
equality of individuals. maxR denotes the maximal arity of the predicates in P . Without loss of
generality we exclude constant and function symbols from the logic.1

Example 2.1.1 Table 2.1 lists the set of predicates used in the running example. The unary pred-
icates x, y, t, and e correspond to the program variables x, y, t, and e, respectively. The binary
predicate n corresponds to the n �elds of List elements. The unary predicate is (�is shared�)
captures �heap sharing�, i.e., List elements pointed to by more than one �eld. (It was introduced
in [CWZ90] and also used in [SRW98] to capture list and tree data structures.) The unary predi-
cates rx, ry, rt, and re hold for heap nodes reachable from the program variables x, y, t, and e,
respectively. A heap node u is said to be reachable from a program variable if the variable points to
a heap node u′, and it is possible to go from u′ to u by following zero or more n-links. In practice,
we de�ne reachability using re�exive transitive closure of the predicate n.

The notion of reachability plays a crucial role in de�ning abstractions that are useful for proving
program properties in practice. For instance, it may have the effect of preventing disjoint lists from

1Constant symbols can be encoded via unary predicates, and n-ary functions via n + 1-ary predicates.
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/* list.h */
typedef struct node {
struct node *n;
int data;

} *List;

/* insert.c */
#include ``list.h''
void insert(List x, int d) {
List y, t, e;
assert(acyclic_list(x) &&
x != NULL);

y = x;
while (y->n != NULL && ...) {
y = y->n;

}
t = malloc();
t->data = d;
e = y->n;
t->n = e;
y->n = t;

}
(a) (b)

Figure 2.1: (a) Declaration of a linked-list data type in C. (b) A C function that searches a list
pointed to by parameter x, and splices in a new element.

being collapsed in the abstract representation. This may signi�cantly improve the precision of the
answers obtained by a program analysis.

We de�ne �rst-order formulas inductively over the vocabulary P using logical connectives ∨,
¬, quanti�er ∃, and `TC ' operator in the standard way:

ϕ ::= 0 | 1 | p(v1, . . . , vk) | (¬ϕ1) | (ϕ1 ∨ ϕ2)
| (∃v1 : ϕ1) | (TC v1, v2 : ϕ1)(v3, v4) (2.1)

where p ∈ P; vi are variables; ϕ,ϕi are formulas

The operator `TC ' denotes transitive closure. If ϕ1 is a formula with free variables V , then
(TC v1, v2 : ϕ1)(v3, v4) is a formula with free variables (V −{v1, v2})∪ {v3, v4}. The set of free
variables of other formulas is de�ned as usual. A formula is closed when it has no free variables.

We use several shorthand notations: ϕ1 ⇒ ϕ2
def= (¬ϕ1 ∨ ϕ2); ϕ1 ∧ ϕ2

def= ¬(¬ϕ1 ∨ ¬ϕ2);
ϕ1 ⇔ ϕ2

def= (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1); and ∀v : ϕ
def= ¬∃v : ¬ϕ. The transitive closure of a

binary predicate p is p+(v3, v4)
def= (TC v1, v2 : p(v1, v2))(v3, v4). The re�exive transitive closure

of a binary predicate p is p∗(v3, v4)
def= ((TC v1, v2 : p(v1, v2))(v3, v4)) ∨ eq(v3, v4). The order of

precedence among the connectives, from highest to lowest, is as follows: ¬, ∧, ∨, `TC ', ∀, and ∃.
We drop parentheses wherever possible, except for emphasis.

De�nition 2.1.2 (2-valued Logical Structures) let Pi denote the set of predicate symbols with
arity i. A logical structure over P is a pair S = 〈U, ι〉 in which

10



Predicate Intended Meaning
eq(v1, v2) Do v1 and v2 denote the same heap node?
q(v) Does pointer variable q point to node v?
n(v1, v2) Does the n �eld of v1 point to v2?
is(v) Is v pointed to by more than one �eld ?
rq(v) Is the node v reachable from q ?

Table 2.1: The set of predicates for representing the stores manipulated by programs that use the
List data-type from Fig. 2.1(a). q denotes an arbitrary predicate in the set PV ar, which contains
a predicate for each program variable of type List. In the case of insert, PVar = {x, y, t, e}.

� U is a set of individuals.

� ι is the interpretation of predicate symbols, i.e., for every predicate symbolp ∈ Pi, ι(p) : U i →
{0, 1} determines the tuples for which p holds. Also, ι(eq) is the interpretation of equality,
i.e., ι(eq)(u1, u2) = 1 iff u1 = u2.

Below we de�ne standard Tarskian semantics for �rst-order logic.

De�nition 2.1.3 (Semantics of First-Order Logical Formulas) Consider a logical structure S =
〈U, ι〉. An assignment Z is a function that maps free variables to individuals (i.e., an assignment
has the functionality Z : {v1, v2, . . .} → U ). An assignment that is de�ned on all free variables
of a formula ϕ is called complete for ϕ. In the sequel, we assume that every assignment Z that
arises in connection with the discussion of some formula ϕ is complete for ϕ. We say that S and
Z satisfy a formula ϕ (denoted by S, Z |= ϕ) when one of the following holds:

� ϕ ≡ 1

� ϕ ≡ p(v1, v2, . . . , vi) and ι(p)(Z(v1), Z(v2), . . . , Z(vi)) = 1.

� ϕ ≡ ¬ϕ0 and S,Z |= ϕ0 does not hold.

� ϕ ≡ ϕ1 ∨ ϕ2, and either S, Z |= ϕ1 or S, Z |= ϕ2.

� ϕ ≡ ∃v1 : ϕ1 and there exists an individual u ∈ U , such that S, Z[v1 7→ u] |= ϕ1.

� ϕ ≡ (TC v1, v2 : ϕ1)(v3, v4) and there exists u1, u2, . . . , um ∈ U such that Z(v3) = u1,
Z(v4) = um and for all 1 ≤ i < m, S,Z[v1 7→ ui, v2 7→ ui+1] |= ϕ1.

For a closed formula ϕ, we will omit the assignment in the satisfaction relation, and merely
write S |= ϕ.
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2.2 Integrity Constraints
Because not all logical structures represent stores, we use a designated closed formula F , called
the integrity formula,2 to exclude impossible stores. This allows us to restrict the set of structures
to the ones satisfying F .

De�nition 2.2.1 A structure S is admissible if S |= F .

In the rest of the thesis, we assume that we work with a �xed integrity formula F . All our
notations are parameterized by P and F .

Example 2.2.2 For the List data type, there are four conditions that de�ne the admissible stores:

(a) Each program variable can point to at most one heap node.

(b) The n �eld of a heap node can point to at most one heap node.

(c) Predicate is (�is shared�) holds for exactly those nodes that have two or more predecessors.

(d) The reachability predicate for each variable q holds for exactly those nodes that are reachable
from program variable q.

Thus, the integrity formula FList for the List data-type is:

∧p∈PV ar∀v1, v2 : p(v1) ∧ p(v2) ⇒ eq(v1, v2) (a)
∧ ∀v, v1, v2 : n(v, v1) ∧ n(v, v2) ⇒ eq(v1, v2) (b)
∧ ∀v : is(v) ⇐⇒ ∃v1, v2 : ¬eq(v1, v2)

∧n(v1, v) ∧ n(v2, v) (c)
∧ ∧q∈PV ar∀v : rq(v) ⇐⇒ ∃v1 : q(v1) ∧ n∗(v1, v) (d)

2.3 3-Valued Logical Structures
In this section, we de�ne 3-valued logical structures, which provide a way to represent a set of
2-valued logical structures in a compact and conservative way.

We say that the values 0 and 1 are de�nite values and that 1/2 is an inde�nite value, and de�ne
a partial orderv on truth values to re�ect information content. l1 v l2 denotes that l1 possibly has
more de�nite information than l2:

De�nition 2.3.1 [Information Order]. For l1, l2 ∈ {0, 1/2, 1}, we de�ne the information order
on truth values as follows: l1 v l2 if l1 = l2 or l2 = 1/2. The symbol t denotes the least-upper-
bound operation with respect to v.

De�nition 2.3.2 A 3-valued logical structure over P is the generalization of 2-valued structures
given in De�nition 2.1.2, in that predicates may have the value 1/2. This means that S = 〈U, ι〉
where for p ∈ Pi,

ι(p) : (US)i → {0, 1, 1/2}.
2In [SRW02] these are called �hygiene conditions�.

12



GFED@ABCu1
n // u2

n
¸¸

x, rx

OO

rx

OO

Figure 2.2: A 3-valued structure that represents possible inputs of the insert program. It
represents all lists that are pointed to by program variable x and that have at least two elements.

In addition, (i) for all u ∈ US , ιS(eq)(u, u) w 1, and (ii) for all u1, u2 ∈ US such that u1 and
u2 are distinct individuals, ιS(eq)(u1, u2) = 0.

An individual u ∈ U having ι(eq)(u, u) = 1/2 is called a summary individual. As we shall
see, such an individual may represent more than one individual from a given 2-valued structure.

We denote the set of 2-valued logical structures by 2-STRUCT[P]. The set of 3-valued logical
structures is denoted by 3-STRUCT[P].

Example 2.3.3 Fig. 2.2 shows a 3-valued structure that represents possible inputs of the insert
program. As we will see, this structure represents all lists that are pointed to by program variable
x and that have at least two elements.

A 3-valued structure can be depicted as a directed graph, with individuals as graph nodes. A
unary predicate p is represented in the graph by having an arrow from the predicate name p to
node u for each individual u for which p holds. An arrow between two nodes indicates whether a
binary predicate holds for the corresponding pair of individuals. An inde�nite value of a predicate
is shown by a dotted arrow; the value 1 is shown by a solid arrow; and the value 0 is shown by the
absence of an arrow.

In this example, the structure has 2 individuals, u1 and u2, where u1 is the head of the list
pointed to by x, and u2 is a summary node (drawn as a dotted circle), which represents the tail of
the list. Predicate rx holds for u1 and u2, indicating that all nodes are reachable from x. Other
unary predicates are not shown, indicating that their values are 0 for all nodes, i.e., the program
variables y, e, and t are NULL, and there is no sharing in the list. The dotted edge from u1 to u2

indicates that there may be n-links from the head of the list to some elements in the tail. In fact,
the (u1, u2)-edge represents exactly one n-link that points to exactly one list element, because of
the integrity rules in Example 2.2.2. In contrast, the dotted self-loop on u2 represents all n-links
that may occur in the tail.

2.4 Embedding Order
We de�ne the embedding ordering on structures as follows:

De�nition 2.4.1 Let S = 〈US , ιS〉 and S′ = 〈US′ , ιS
′〉 be two logical structures, and let f : US →

US′ be a surjective function. We say that f embeds S in S′ (denoted by S vf S′) if for every
predicate symbol p ∈ Pi and all u1, . . . , ui ∈ US ,

ιS(p)(u1, . . . , ui) v ιS
′
(p)(f(u1), . . . , f(ui)) (2.2)
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We say that S can be embedded in S′ (denoted by S v S′) if there exists a function f such
that S vf S′.

Concretization of 3-Valued Structures. Embedding allows us to de�ne the (potentially in�nite)
set of concrete structures that a set of 3-valued structures represents:

De�nition 2.4.2 (Concretization of3-Valued Structures) For a set of structuresX ⊆ 3-STRUCT[P],
we denote by γ(X) the set of 2-valued structures that X represents, i.e.,

γ(X) = {S\ ∈ 2-STRUCT[P] | exists S ∈ Xsuch that S\ v S and S\ |= F} (2.3)

Also, for a singleton set X = {S} we write γ(S) instead of γ(X).

14



Chapter 3

Characterizing 3-Valued Structures by
First-Order Formulas

This chapter and the next one present our results on the expressive power of 3-valued structures.
Given a 3-valued structure S, the question that we wish to answer is whether it is possible to give
a formula γ̂(S) that characterizes the set of 2-valued structures that S represents:

S\ |= γ̂(S) iff S\ v S.

This question has different answers depending on what assumptions are made. The task of gen-
erating a characterizing formula is challenging because we have to �nd a formula that identi�es
when embedding is possible.

3.1 A Negative Result
In this section, we present a negative result about the possibility of characterizing a 3-valued
structure by means of �rst-order formulas. The following theorem shows that it is not always
possible to characterize an arbitrary 3-valued structure by a �rst-order formula.

Theorem 3.1.1 There exists a 3-valued structure that represents a set of concrete structures not
expressible by any �rst-order formula.
Sketch of Proof: It is well known that there exists no �rst-order formula that characterizes 3-
colorability of undirected graphs (e.g., see [Cou96]).1 The 3-valued structure S shown in Fig. 3.1
describes undirected graphs. We draw undirected edges as two-way directed edges. This structure
uses a set of predicates P = {eq, f, b}, where f(v1, v2) and b(v2, v1) denote the forward and
backward directions of an edge between the nodes v1 and v2. The absence of a self loop on any of
the three summary nodes implies that a concrete structure can be embedded into this structure if
and only if it can be colored using 3 colors. Therefore, γ(S) cannot be characterized by a �rst-order
formula.

1This result remains true even if the logic is extended with transitive closure and even if P = NP.
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Figure 3.1: A 3-valued structure that represents 3-colorable undirected graphs.

3.2 FO-Identi�able Structures
Intuitively, the dif�culty in characterizing the meaning of 3-valued structures is how to identify
uniquely the correspondence between concrete and abstract nodes using a �rst-order formula. To
avoid structures like the one shown in Fig. 3.1, we now de�ne a subclass of 3-valued structures, in
which it is possible to identify uniquely each individual using a formula.
De�nition 3.2.1 We say that a node u in a 3-valued structure S is FO-identi�able if there exists a
formula nodeS

u(w) with designated free variable w such that for every concrete 2-valued structure
S\ that embeds into S using a function f , and for every concrete node u\ ∈ US\:

f(u\) = u ⇐⇒ S\, [w 7→ u\] |= nodeS
u(w) (3.1)

S is called FO-identi�able if all the nodes in S are FO-identi�able.
The idea behind De�nition 3.2.1 is to have a formula that uniquely identi�es each individual

u of the 3-valued structure S. This will be used to identify the set of individuals of a 2-valued
structure that are mapped to u by the embedding.
Remark. One of the interesting features of FO-identi�able structures is that the structures generated
by the focus operation de�ned in [LA00] are all FO-identi�able. Also, structures like the ones shown
in Fig. 3.1 are not FO-identi�able even if P = NP .

We now introduce a standard concept for turning valuations into formulas.
De�nition 3.2.2 For a predicate p of arity k and Kleene value B ∈ {0, 1, 1/2}, we de�ne the
formula pB(v1, v2, . . . , vk) to be the characterizing formula of the value B for p, by:

p0(v1, v2, . . . , vk)
def= ¬p(v1, v2, . . . , vk)

p1(v1, v2, . . . , vk)
def= p(v1, v2, . . . , vk)

p1/2(v1, v2, . . . , vk)
def= 1

The main idea in the above de�nition is that, for B ∈ {0, 1}, pB holds when the value of p is
B, and for B = 1/2 the value of p is unrestricted. This is formalized by the following lemma:
Lemma 3.2.3 For every 2-valued structure S\ and assignment Z

S\, Z |= pB(v1, . . . , vk) iff ιS
\
(p)(Z(v1), . . . , Z(vk)) v B

De�nition 3.2.1 is not a constructive de�nition, because the premise ranges over arbitrary 2-
valued structures and arbitrary embedding functions. For this reason, the next section introduces a
testable condition that implies FO-identi�ability.
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3.3 Bounded Structures
We now de�ne a subclass of 3-valued structures for which we can give a constructive way to identify
nodes:
De�nition 3.3.1 A bounded structure over vocabulary P is a structure S = 〈US , ιS〉 such
that for every u1, u2 ∈ US , where u1 6= u2, there exists a predicate symbol p ∈ P1 such that
(i) ιS(p)(u1) 6= ιS(p)(u2) and (ii) both ιS(p)(u1) and ιS(p)(u2) are not 1/2.
Remark. This de�nition of bounded structures was given in [SRW99]2 to guarantee that shape
analysis terminates; it is slightly more restrictive than the one given in [SRW02, LA00], which did
not impose requirement 3.3.1(ii). However, it does not limit the set of problems handled by our
method. Let S be a 3-valued structure that only satis�es the �rst requirement. It is possible to
construct from S a �nite set of bounded structures X such that γ(X) = γ(S). This is based on
the idea that a structure with an inde�nite unary predicate value on a particular individual u, can
be represented by two structures with 0 and 1 values on u, respectively. When u is a summary
node we need to create an additional structure with two occurrences of u, for 0 and 1 values for the
predicate.

The algorithm for computing such set X from S is shown in Fig. 3.2. It can be shown that the
algorithm always terminates. The main idea is that the algorithm reduces the number of inde�nite
values for unary predicates by enumerating the 0- and the 1-cases.

The consequence of De�nition 3.3.1 is that there is an upper bound on the size of any bounded
structure S, i.e., |US | ≤ 2|P1|.

Example 3.3.2 Consider the class of bounded structures associated with the List data type de-
clared from Fig. 2.1(a). Here the predicate symbols are P = {n, eq} ∪ PVar ∪ {rq | q ∈
PVar} ∪ {is}, yielding unary predicates P1 = {x, y, t, e, rx, ry, rt, re, is} for program insert.
Therefore, the maximal number of individuals in a structure is 29 = 512. (However, this is a
worst-case bound; an application of the analysis does not necessarily create structures that have
this many individuals. For instance, at most 6 individuals arise in any structure in the complete
analysis of insert.)

The following lemma shows that bounded structures are FO-identi�able:
Lemma 3.3.3 Every bounded 3-valued structure S is FO-identi�able , where

nodeS
ui

(w) def=
∧

p∈P1

pιS(p)(ui)(w) (3.2)

Example 3.3.4 The �rst-order node formulas for the structure S shown in Fig. 2.2, are:
nodeS

u1
(w) = x(w) ∧ rx(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)

∧¬ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w) (3.3)
nodeS

u2
(w) = ¬x(w) ∧ rx(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)

∧¬ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)
2To be precise, the de�nition of bounded structures that was given in [SRW99] concerns only a subset of unary

predicated, called abstraction predicates. Throughout this thesis, to simplify the presentation, we assume that all unary
predicates are abstraction predicates.
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procedure TR(S: Structure): Set of bounded structures
X := {S}
while there exists a structure S′ ∈ X

such that there exists u ∈ US′ and p ∈ P1

such that ιS
′
(p)(u) = 1/2 do

Select and remove S′ from X
let S0 = S′

ιS0(p)(u) := 0
X = X ∪ {S0}
let S1 = S′

ιS1(p)(u) := 1
X = X ∪ {S1}

if u is a summary node then
let S01 = S′

add new node u′ to S01

set all predicate values for u′ to be the same as for u
ιS01(p)(u) := 0
ιS01(p)(u′) := 1

X = X ∪ {S01}
�

od
return X

Figure 3.2: An algorithm that takes a structure S that is bounded according to the de�nition in
[SRW02], and returns a set of structures X that are bounded according to the more restrictive
de�nition in [SRW99], such that S and X represent the same set of concrete structures.
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Remark. De�nition 3.2.1 can be generalized to characterize 2-valued structures, by also allowing
extra designated free variables for every concrete element and using equality in the node formula
to check if the concrete element is equal to the designated variable. In particular, for a 2-valued
structure S with US = {u1, . . . , un}, use nodeS

u(w, v1, . . . , vn) instead of nodeS
u(w). Then, for

each ui ∈ US we de�ne nodeS
u(w, v1, . . . , vn) def= w = vi. However, the equality formula cannot

be used to identify nodes in a bounded structure because equality evaluates to 1/2 on summary
nodes.

3.4 Characterizing FO-identi�able structures
To characterize an FO-identi�able 3-valued structure, we have the following issues to cope with:

1. We must ensure the existence of a surjective embedding function.

2. We must ensure that every concrete individual is represented by some abstract individual.

3. We must ensure that corresponding concrete and abstract predicate values meet the embed-
ding condition of Eq. (2.2).

De�nition 3.4.1 (First-order Characteristic Formula) Let S = 〈U = {u1, u2, . . . , un}, ι〉 be
an FO-identi�able 3-valued structure.

We de�ne the totality characterizing formula to be the closed formula:

ξS
total

def= ∀w :
n∨

i=1

nodeS
ui

(w) (3.4)

We de�ne the nullary characteristic formula to be the closed formula:

ξS
nullary

def=
∧

p∈P0

pιS(p)() (3.5)

For a predicate p of arity r ≥ 1, we de�ne the predicate characteristic formula to be the
closed formula:

ξS [p] def= ∀w1, . . . , wr :
∧

{u′1,...,u′r}∈U

r∧

j=1

nodeS
u′j

(wj) ⇒ pιS(p)(u′1,...,u′r)(w1, . . . , wr) (3.6)

The characteristic formula of S is de�ned by:

ξS def= (∃v1, . . . , vn :
∧n

i=1 nodeS
ui

(vi) ∧
∧

k 6=j ¬eq(vk, vj))
∧ ξS

total

∧ ξS
nullary

∧ ∧maxR
r=1

∧
p∈Pr

ξS [p]

(3.7)

The characteristic formula of set X ⊆ 3-STRUCT[P] is de�ned by:

γ̂(X) = F ∧ (
∨

S∈X

ξS) (3.8)

Finally, for a singleton set X = {S} we write γ̂(S) instead of γ̂(X).
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The main ideas behind the four conjuncts of Eq. (3.7) are:

� The existential quanti�cation in the �rst conjunct requires that the concrete structures have
at least n distinct individuals. For each abstract individual in S, the �rst sub-formula locates
the corresponding concrete individual. Overall, this conjunct guarantees that embedding is
surjective.

� The totality formula ensures that every concrete individual is represented by some abstract
individual. It guarantees that the embedding function is well-de�ned.

� The nullary characteristic formula ensures that the values of nullary predicates in the concrete
structures are at least as precise as the values of the corresponding nullary predicates in S.

� The predicate characteristic formulas guarantee that predicate values in the concrete struc-
tures obey the requirements imposed by an embedding into S3.

Example 3.4.2 After a small amount of simpli�cation, the characteristic formula γ̂(S) for the
structure S shown in Fig. 2.2 is FList ∧ ξS , where ξS is:

∃v1, v2 : nodeS
u1

(v1) ∧ nodeS
u2

(v2) ∧ ¬eq(v1, v2)
∧ ∀w : nodeS

u1
(w) ∨ nodeS

u2
(w)

∧ ∧
p∈P1

∀w1 :
∧

i=1,2(nodeS
ui

(w1) ⇒ pιS(p)(ui)(w1))
∧ ∀w1, w2 : (nodeS

u1
(w1) ∧ nodeS

u1
(w2) ⇒ eq(w1, w2) ∧ ¬n(w1, w2) ∧ ¬n(w2, w1))

∧ (nodeS
u1

(w1) ∧ nodeS
u2

(w2) ⇒ ¬eq(w1, w2) ∧ ¬n(w2, w1))

The integrity formula FList is given in Example 2.2.2. The node formulas are given in Exam-
ple 3.3.4, and the predicates for the insert program in Fig. 2.1(b) are shown in Table 2.1. We
simpli�ed the formula in Eq. (3.7) by combining implications that had the same premises.

Note that for a �xed maxR, the size of ξS is polynomial in the size of S. For example, TVLA
only supports predicates of arity at most 2 and thus ξS can have at most a quadratic number of
terms.
Remark. The formula γ̂(X) is in Existential-Universal normal form (and thus decidable) whenever
F is.

The following theorem shows that for every FO-identi�able structure S, the formula γ̂(S)
characterizes the set of concrete structures represented by S.

Theorem 3.4.3 For every FO-identi�able 3-valued structure S and 2-valued structure S\:

S\ ∈ γ(S) iff S\ |= γ̂(S)

3In bounded structures, ξS [p] for unary predicates p can be omitted because it is implied by ξS
total. In fact, it can

be omitted only for the abstraction predicates, as de�ned in [SRW02]; however throughout this thesis we consider all
unary predicates as abstraction predicates.
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Chapter 4

Characterizing General 3-Valued
Structures by NP Formulas

In this chapter we show how to characterize general 3-valued strucutres.

4.1 Motivating Example
When S does not have FO-identi�able nodes, γ̂(S) only provides a suf�cient test for the embedding
of concrete structures into S.

Example 4.1.1 When Eq. (3.7) is applied to the 3-valued structure S shown in Fig. 3.1, we get

∃v1, v2, v3 :
∧3

i=1 nodeS
ui

(vi)
∧

k 6=j ¬eq(vk, vj)
∧ ∀w :

∨3
i=1 nodeS

ui
(w)

∧ ∀w1, w2 :
∧

k 6=j(nodeS
uk

(w1) ∧ nodeS
uj

(w2) ⇒ f1/2(w1, w2))
∧ ∀w1, w2 :

∧
k 6=j(nodeS

uk
(w1) ∧ nodeS

uj
(w2) ⇒ b1/2(w1, w2))

∧ ∀w1, w2 :
∧3

i=1(nodeS
ui

(w1) ∧ nodeS
ui

(w2) ⇒ b0(w1, w2))
∧ ∀w1, w2 :

∧3
i=1(nodeS

ui
(w1) ∧ nodeS

ui
(w2) ⇒ f0(w1, w2))

(4.1)

Because this example does not include unary predicates, the node formula given in Lemma 3.3.3
evaluates to 1 on all elements. Hence, Eq. (4.1) can be simpli�ed to:

∃v1, v2, v3 :
∧3

i=1 1
∧

k 6=j ¬eq(vk, vj)
∧ ∀w :

∨3
i=1 1

∧ ∀w1, w2 :
∧

k 6=j(1 ∧ 1 ⇒ 1)
∧ ∀w1, w2 :

∧
k 6=j(1 ∧ 1 ⇒ 1)

∧ ∀w1, w2 :
∧3

i=1(1 ∧ 1 ⇒ ¬b(w1, w2))
∧ ∀w1, w2 :

∧3
i=1(1 ∧ 1 ⇒ ¬f(w1, w2))

= ∃v1, v2, v3 :
∧

k 6=j ¬eq(vk, vj)
∧ ∀w1, w2 : ¬f(w1, w2)
∧ ∀w1, w2 : ¬b(w1, w2)
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The simpli�cation is due to the fact that the implication in Eq. (3.6) unconditionally holds for
all pairs of distinct individuals, because f and b evaluate to 1/2 on those pairs, except for the
requirement imposed by the absence of self-loops in S.

This formula is only ful�lled by graphs with at least 3 nodes and no edges, which are obviously
3-colorable. But this formula is too restrictive, and does not capture some 3-colorable graphs.

It is not surprising that 3-colorability cannot be expressed with a �rst-order formula since it
is an NP-complete problem and even with transitive closure, �rst-order logic can only express
non-deterministic logspace computations [Imm99].

4.2 Characterizing General 3-Valued Structures
Existential monadic second-order formulas is a subset of Fagin's second-order formulas [Fag75],
named NP formulas, that capture NP computations. A formula in existential monadic second-order
logic has the form:

∃V1, V2, . . . , Vn : ϕ

where the Vi are set variables, and ϕ is a �rst-order formula that can use membership tests in Vi.
We show that in this subset of second-order logic, the characteristic formula from De�nition 3.4.1
can be generalized to handle arbitrary 3-valued structures using existential quanti�cation over set
variables (with one set variable for each abstract individual).

De�nition 4.2.1 (NP Characteristic Formula) Let S = 〈U = {u1, u2, . . . , un}, ι〉 be a 3-valued
structure.

We de�ne the following formula to ensure that the sets are non_empty:

νS
non_empty[i]

def= ∃wi : nodeS
ui

(wi) (4.2)

We de�ne the following formula to ensure that the sets Vk, Vj are disjoint:

νS
disjoint[k, j] def= ∀w1, w2 : nodeS

uk
(w1) ∧ nodeS

uj
(w2) ⇒ ¬eq(w1, w2) (4.3)

The NP characteristic formula of S is de�ned by:

νS def= ∃V1, . . . , Vn :∧n
i=1 νS

non_empty[i] ∧
∧

k 6=j νS
disjoint[k, j]

∧ ξS
total

∧ ξS
nullary

∧ ∧maxR
r=1

∧
p∈Pr

ξS [p]

(4.4)

where ξS
total, ξS

nullary, ξS [p] are given in De�nition 3.4.1, except that nodeS
ui

is the NP formula
nodeS

ui
(w) def= (w ∈ Vi). (Here, we abuse notation slightly by referring to Vi in nodeS

ui
(w). This

could have been formalized by passing V1, . . . , Vn as extra parameters to nodeS
ui

.)
The NP characteristic formula of set X ⊆ 3-STRUCT[P] is de�ned by:

γ̂NP (X) = F ∧ (
∨

S∈X

νS) (4.5)

Finally, for a singleton set X = {S} we write γ̂NP (S) instead of γ̂NP (X).
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Example 4.2.2 After a small amount of simpli�cation, the NP characteristic formula νS for the
graph shown in Fig. 3.1 is:

∃V1, V2, V3 :
∧3

i=1 ∃wi : nodeS
ui

(wi)
∧ ∧

k 6=j ∀w1, w2 : (nodeS
uk

(w1) ∧ nodeS
uj

(w2) ⇒ ¬eq(w1, w2))
∧ ∀w :

∨3
i=1 nodeS

ui
(w)

∧ ∀w1, w2 :
∧3

i=1(
∧

j=1,2 nodeS
ui

(wj) ⇒ ¬f(w1, w2) ∧ ¬b(w1, w2))
∧ ∀w1, w2 :

∧
k 6=j(nodeS

uk
(w1) ∧ nodeS

uj
(w2) ⇒ ¬eq(w1, w2))

and the node formulas are given in De�nition 4.2.1.

The following theorem generalizes the result in Theorem 3.4.3 for an arbitrary3-valued structure
S, using NP-formula γ̂NP (S) to characterize the set of concrete structures represented by S.

Theorem 4.2.3 For every 3-valued structure S, and 2-valued structure S\:

S\ ∈ γ(S) iff S\ |= γ̂NP (S)
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Chapter 5

Supervaluational Semantics for
First-Order Formulas

In this chapter, we consider the problem of how to extract information from a 3-valued structure by
evaluating a query. A compositional semantics for 3-valued �rst-order logic is de�ned in [SRW02];
however, that semantics is not as precise as the one de�ned here. The semantics given in this section
can be seen as providing the limit of obtainable precision.

5.1 Speci�cation
The notion of supervaluational semantics, de�ned below, generalizes [vF66, RLS02].

De�nition 5.1.1 (Supervaluational Semantics of First-Order Formulas) Let S be a 3-valued
structure and ϕ be a closed formula. The supervaluational value of ϕ in S, denoted by 〈〈ϕ〉〉(S),
is de�ned to be the join of the values of ϕ obtained from each of the concrete structures that S
represents, i.e.,

〈〈ϕ〉〉(S) def=
⊔

S\∈γ(S)

[[ϕ]]S
\

2 ([]) (5.1)

Notice that the above de�nition does not provide a constructive way to compute 〈〈ϕ〉〉(S)
because γ(S) is usually an in�nite set.

Following De�nition 5.1.1, the most-precise conservative value that can be reported for the
value of formula ϕ in the concrete structures represented by S is

〈〈ϕ〉〉(S) =





1 if S\ |= ϕ for all S\ ∈ γ(S)
0 if S\ 6|= ϕ for all S\ ∈ γ(S)
1/2 otherwise

(5.2)

The compositional semantics given in [SRW02] and used in TVLA can yield 1/2 for ϕ, even
when [[ϕ]]S

\

2 is 1 for all the concrete structures S\ that S represents (or when [[ϕ]]S
\

2 is 0 for all
the S\). In contrast, when the supervaluational semantics yields 1/2, we know that any sound
extraction of information from S must return 1/2.
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5.2 Implementation
If an appropriate theorem prover is at hand, 〈〈ϕ〉〉(S) can be computed as follows:

〈〈ϕ〉〉(S) =





1 if γ̂(S) ⇒ ϕ is valid
0 if γ̂(S) ⇒ ¬ϕ is valid
1/2 otherwise

(5.3)

We provide an experimental implementation of this action, as explained in the following chap-
ter.
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Chapter 6

Some Experimental Applications

In this chapter, we report on experiments in which we used γ̂ and an existing theorem prover
for �rst-order logic to read out information from 3-valued structures in a conservative, but rather
precise way. These experiments demonstrate how the approaches described in this thesis can be
harnessed in the context of program analysis: the results described below go beyond what previous
systems were capable of.

6.1 Implementation Details
The TVLA ([LAS00]) system performs iterative �xed-point computations and yields at every
program point p a set Xp of bounded structures. It guarantees that γ(Xp) is a superset of the
2-valued structures that can arise at p in any execution. To carry out the experiments, we have
incorporated the procedure for generating γ̂ into TVLA and used SPASS [Wei] to verify validity
of formulas.

SPASS follows other theorem provers in allowing axioms to express requirements on the set of
structures considered. We used SPASS axioms to model integrity rules. However, because SPASS
does not support transitive closure, we could only partially model transitive-closure integrity rules.
We replaced uses of n+(v1, v2) by uses of a new designated predicate t[n](v1, v2). Therefore,
SPASS will consider some structures that do not represent potential stores. As a consequence,
SPASS can fail to verify that a formula is valid for our intended set of structures; however, the
opposite can never happen: whenever SPASS indicates that a formula is valid, it is indeed valid for
our intended set of structures. To avoid some of the spurious failures to prove validity, we added
axioms to guarantee that (i) t[n](v1, v2) is transitive and (ii) t[n](v1, v2) includes all of n(v1, v2);
thus, t[n](v1, v2) includes all of n+(v1, v2). Because transitive closure requires a minimal set,
which is not expressible in �rst-order logic, this approach still provides a looser set of integrity
rules than we would like. However, it is still the case that whenever SPASS indicates that a formula
is valid, it is indeed valid for the set of structures in which t[n](v1, v2) is exactly n+(v1, v2).

An additional obstacle is that SPASS does not always terminate, because �rst-order logic is
undecidable in general. In the examples described below, SPASS always terminated.

The rest of this chapter presents two examples. The �rst example, discussed in Section 6.2,
demonstrates how supervaluational semantics allows us to obtain more precise information from a
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3-valued structure than we would have otherwise. The second example, discussed in Section 6.3,
demonstrates how to use the 3-valued structures obtained from a TVLA analysis to construct a loop
invariant; this is then used to show that certain properties of a linked data structure hold on each
loop iteration.

6.2 Querying Using Supervaluational Semantics
We implemented the supervaluational procedure described in Chapter 5, employing SPASS. The
enhanced version of TVLA generates the formula γ̂(S) and makes at most two calls to SPASS to
compute the supervaluational value of a query ϕ in structure S.

Example 6.2.1 On the structure S from Fig. 2.2, the supervaluational value of the formula

ϕx→next6=NULL
def= ∃v1, v2 : x(v1) ∧ n(v1, v2)

is 1. The reason for this is that S represents a list with at least two nodes; i.e., all concrete structures
represented by S have at least two nodes. One node, u\

1, corresponding to u1 in S, is pointed to by
program variable x. The other node, corresponding to the summary node u2, must be reachable
from x. Consider the sequence of nodes reachable from x, starting with u\

1. Denote the �rst node
in the sequence that embeds into u2 by u\

2. By the de�nition of reachability, there must be an
n-link to u\

2 from a node embedded into u1. But the integrity rules guarantee that there is exactly
one node that embeds into u1, namely, u\

1. Therefore, the formula x(v1) ∧ n(v1, v2) holds for
[v1 7→ u\

1, v2 7→ u\
2].

To compute this value, we applied SPASS to check the validity of γ̂(S) ⇒ ϕx→next6=NULL;
SPASS indicated that the formula is valid. This guarantees that the formula ϕx→next6=NULL evaluates
to 1 on all the concrete structures that embed into S.

Note that this formula will evaluate to 1/2 in TVLA, because n(u1, u2) = 1/2.

6.3 Generating and Querying a Loop Invariant
TVLA computes, for each program point p, a set Xp of bounded structures that overapproximate
the set of stores that may occur at that point. We then used the enhanced version of TVLA to
generate γ̂(Xp). Because TVLA is sound, γ̂(Xp) must be an invariant that holds at program point
p. In particular, when p is a program point that begins a loop, γ̂(Xp) is a loop invariant.

Example 6.3.1 Let X = {Si | i = 1, . . . , 5} denote the set of �ve 3-valued structures that TVLA
found at the beginning of the loop in the insert program from Fig. 2.2. Appendix A shows the
Si and their characteristic formulas. The loop invariant is de�ned by

γ̂(X) = FList ∧ (
5∨

i=1

ξSi)
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We checked that in every structure that can occur at the beginning of the loop, x points to a
valid list, i.e., one that is acyclic and unshared. This property is de�ned by the following formulas:

acycx
def= ∀v1, v2 : rx(v1) ∧ n+(v1, v2) ⇒ ¬n+(v2, v1)

unsx
def= ∀v : rx(v) ⇒
¬(∃w1, w2 : ¬eq(w1, w2) ∧ n(w1, v) ∧ n(w2, v))

listx def= acycx ∧ unsx

We applied SPASS to check the validity of γ̂(S) ⇒ listx; SPASS indicated that the formula is
valid.

It is interesting to note that the size of ξS2 is bigger than the size of ξS1 . This is natural because
S2 has more de�nite values, which imposes more restrictions than are imposed by S1.

28



Chapter 7

Characterizing Canonical Abstraction
by First-Order Formulas

This section de�nes an alternative abstract domain for use in shape analysis (and other logic-
based analyses). The ordering relation in the abstract doman This section provides an alternative
formulation of the abstraction which does not rely on embedding, as is the case for the abstraction
de�ned in Section 2.4. Instead, the new abstract domain relies on a simple operation called
canonical abstraction, which maps concrete structures into a limited subset of bounded structures.

7.1 Canonical Abstraction
Canonical abstraction was de�ned in [SRW99] as an abstraction with the following properties:

� Provides a uniform way to obtain 3-valued structures of a priori bounded size. This is
important to automatically derive properties of programs with loops by employing itera-
tive �xed-point algorithms. Canonical abstraction maps concrete individuals into abstract
individuals according to the de�nite values of the unary predicates.

� The information loss is minimized when multiple individuals of S are mapped to the same
individual in S′,

This is formalized by the following de�nition:
De�nition 7.1.1 A structure S′ = 〈US′ , ιS

′〉 is a canonical abstraction of a structure S, if there
exists a surjective function canonic : US → US′ , induced by the following mapping:

canonicc(u) = u{p∈P1|ιS(p)(u)=1},{p∈P1|ιS(p)(u)=0} (7.1)

such that, for every p ∈ Pk of arity k,

ιS
′
(p)(u′1, . . . , u

′
k) =

⊔

ui ∈ US , s.t.
canonic(ui) = u′i ∈ US′ ,

1 ≤ i ≤ k

ιS(p)(u1, . . . , uk) (7.2)

We say that S′ = canonic(S).
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The name �u{p∈P1|ιS(p)(u)=1},{p∈P1|ιS(p)(u)=0}� is known as the canonical name of individual
u. The subscript on the canonical name of u involves two sets of unary predicate symbols: (i) those
that are true at u, and (ii) those that are false at u.

Example 7.1.2 In structure S from Fig. 2.2, the canonical names of the individuals are as follows:
Individual Canonical Name

u1 u{x,rx},{y,t,e,is,ry,rt,re}
u2 u{rx},{x,y,t,e,is,ry,rt,re}

Note that in context of the canonical abstraction, S represents lists with at least three nodes,
pointed to by x, but it does not include a list with two nodes. The reason is that predicates n and
eq have inde�nite values in S; but a list with two nodes does not have both 0 and 1 values for the
corresponding entries, as required for minimizing information loss as formalized in Eq. (7.2). In
contrast, according to the abstraction that relies on embedding, de�ned in Section 2.4, S represents
lists with two or more elements.

To characterize canonical abstraction, we have to rede�ne the subset of 3-valued structures of
interest. We are interested only in 3-valued structures that that are �images of canonical abstraction�
(ICA), i.e., results of applying canonical abstraction to 2-valued structures.
De�nition 7.1.3 (Image of canonical abstraction (ICA)) Structure S is an ICA if there exists a
2-valued structure S\ such that S is the canonical abstraction of S\.

Concretization of 3-Valued Structures. Canonical abstraction allows us to de�ne the (potentially
in�nite) set of concrete structures represented by a set of 3-valued structures, that are ICA
De�nition 7.1.4 (Concretization of3-Valued Structures) For a set of structuresX ⊆ 3-STRUCT[P],
that are ICA, we denote by γc(X) the set of 2-valued structures that X represents, i.e.,

γc(X) = {S\ ∈ 2-STRUCT[P] | exists S ∈ Xsuch that S is the canonical abstraction of S\ and S\ |= F}
(7.3)

Also, for a singleton set X = {S} we write γc(S) instead of γc(X).
The abstract domain is a powerset of ICA structures, where the order relation is set inclusion.

This de�nes a Galois connection between sets of 2-valued structures and sets of ICA structures.

7.2 FO-Identi�able Structures
We have to rede�ne the notion of FO-identi�able nodes, given in Section 3.2, to use canonical
abstraction rather than embedding, used in De�nition 3.2.1.

De�nition 7.2.1 We say that a node u in a 3-valued structure S is FO-identi�able if there exists a
formula nodeS

u(w) with designated free variable w, such that for every concrete 2-valued structure
S\, if S is the canonical abstraction of S\, i.e., S\ ∈ γc(S), then for every concrete node u\ ∈ US\:

canonic(u\) = u ⇐⇒ S\, [w 7→ u\] |= nodeS
u(w) (7.4)

S is called FO-identi�able if all the nodes in S are FO-identi�able.
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7.3 Characterizing Canonical Abstraction
An ICA structure is always a bounded structure, in which nullary and unary predicates always have
de�nite values.1 This is formalized by the following lemma:

Lemma 7.3.1 If 3-valued structure S = 〈US , ιS〉 over vocabulary P is ICA then:

(i) S is a bounded structure.

(ii) For each nullary predicate p, ιS(p)() ∈ {0, 1}.

(iii) For each element u ∈ U and each unary predicate p, ιS(p)(u) ∈ {0, 1}.

The following lemma shows that ICA structures are FO-identi�able:

Lemma 7.3.2 Every 3-valued structure S that is an ICA is FO-identi�able, where

nodeS
ui

(w) def=
∧

p∈P1

pιS(p)(ui)(w) (7.5)

Using this fact, we can de�ne the formula τS that characterizes the set of 2-valued structures
represented by S using canonical abstraction. The formula τS is merely ξS with additional con-
juncts to ensure that the information loss is minimized, i.e., for every predicate p of arity r > 1 and
every 1/2 entry of p, the concrete structure has both a corresponding 1 entry and a corresponding
0 entry.

De�nition 7.3.3 (First-Order Characteristic Formula for Canonical Abstraction) Let 3-valued
structure S = 〈US , ι〉 be an ICA.

For a predicate p of arity r > 1, we de�ne the closed formula for p:

τS [p] def=
∧
{u′1,...,u′r}∈US

∧
ιS(p)(u′1,...,u′r)=1/2

∧ ∃w1, . . . , wr :
∧r

j=1 nodeS
u′j

(wj) ∧ p(w1, . . . , wr)

∧ ∃w1, . . . , wr :
∧r

j=1 nodeS
u′j

(wj) ∧ ¬p(w1, . . . , wr)
(7.6)

The formula of S is de�ned by:

τS def= ξS ∧
maxR∧

r=2

∧

p∈Pr

τS [p] (7.7)

The characteristic formula for canonical abstraction of a set of ICA structures X ⊆
3-STRUCT[P] is de�ned by

γ̂c(X) = F ∧ (
∨

S∈X

τS) (7.8)

Also, for a singleton set X = {S}, where S is an ICAstructure, we write γ̂c(S) instead of γ̂c(X).
1If not all unary predicates are de�ned as abstraction predicates, then the result may be a bounded structure of the less

restrictive kind mentioned in Section 3.3. Also, unary predicates that are not abstraction predicates may have inde�nite
values.
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Example 7.3.4 The characteristic formula for canonical abstraction of the structure S shown in
Fig. 2.2 is:

γ̂c(S) = γ̂(S)
∧ ∀w1, w2 : ∃w1, w2 : nodeS

u1
(w1) ∧ nodeS

u2
(w2) ∧ n(w1, w2)

∧ ∃w1, w2 : nodeS
u1

(w1) ∧ nodeS
u2

(w2) ∧ ¬n(w1, w2)
∧ ∃w1, w2 : nodeS

u2
(w1) ∧ nodeS

u2
(w2) ∧ n(w1, w2)

∧ ∃w1, w2 : nodeS
u2

(w1) ∧ nodeS
u2

(w2) ∧ ¬n(w1, w2)
∧ ∃w1, w2 : nodeS

u2
(w1) ∧ nodeS

u2
(w2) ∧ eq(w1, w2)

∧ ∃w1, w2 : nodeS
u2

(w1) ∧ nodeS
u2

(w2) ∧ ¬eq(w1, w2)

(7.9)

where γ̂(S) is given in Example 3.4.2. As stated in Example 7.1.2, S does not represent a list with
two nodes. Indeed, a 2-valued structure that represents a list with two nodes does not satisfy this
formula, because the last four lines of Eq. (7.9) can not be satis�ed by any assignment within this
structure.

Remark. Note that γ̂c is in Existential-Universal normal form (and thus decidable) whenever F
is.

Theorem 7.3.5 For every 3-valued structure S that is an ICA and a 2-valued structure S\:

S\ ∈ γc(S) iff S\ |= γ̂c(S)
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Chapter 8

Related Work

There is a sizeable literature on structure-description formalisms for describing properties of linked
data structures (see [BRS99, SRW02] for references). The motivation for the present work was to
understand the expressive power of the shape abstractions de�ned in [SRW02].

In previous work, Benedikt et al. [BRS99] showed how to translate two kinds of shape descrip-
tors, �path matrices� [Hen90, HN90] and the variant of shape graphs discussed in [SRW98], into
a logic called Lr (�logic of reachability expressions�). The shape graphs from [SRW98] are also
amenable to the techniques presented in this thesis: the characteristic formula de�ned in Eq. (3.7)
is much simpler than the translation to Lr given in [BRS99]; moreover, Eq. (3.7) applies to a
more general class of shape descriptors. However, the logic used in [BRS99] is decidable, which
guarantees that terminating procedures can be given for problems that can be addressed using Lr.

The Pointer Analysis Logic Engine (PALE) [MS01] provides a structure-description formalism
that serves as an assertion language; assertions are translated to second-order monadic logic and fed
to MONA. PALE does not handle all data structures, but can handle all data structures describable
as graph types [KS93]. Because the logic used by MONA is decidable, PALE is guaranteed to
terminate.

One point of contrast between the shape abstractions based on 3-valued structures studied in
this paper and both Lr and the PALE assertion language is that the powerset of 3-valued structures
forms an abstract domain. This means that 3-valued structures can be used for program analysis by
setting up an appropriate set of equations and �nding its �xed point [SRW02, RSL03]. In contrast,
when PALE is used for program analysis, an invariant must be supplied for each loop.

Other structure-description formalisms in the literature include ADDS [HHN92] and shape
types [FM97].

The supervaluational semantics for �rst-order logic discussed in Chapter 5 is related to a number
of other supervaluational semantics for partial logics and 3-valued logics discussed in the literature
[vF66, Bla02, BG00, RLS02]. Compared to previous work, an innovation of Eq. (5.3) is the use
of γ̂ to translate a 3-valued structure to a formula. In fact, Eq. (5.3) is an example of a general
reductionist strategy for providing a supervaluational evaluation procedure for abstract domains by
using existing logics and theorem-provers/decision-procedures; as we discuss at greater length in
[RSY03], a supervaluational evaluation procedure can be obtained whenever an appropriate logic,
γ̂ function, and theorem-prover/decision-procedure are available.
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Chapter 9

Final Remarks

In [RSY03], we discuss how to perform all operations required for abstract interpretation in the
most-precise way possible (relative to the abstraction in use), if certain primitive operations can
be carried out, and if a suf�ciently powerful theorem prover is at hand. Chief among the primitive
operations that must be available is γ̂; thus, the material that has been presented in here shows how
to ful�ll the requirements of [RSY03] for a family of abstractions based on 3-valued structures
(essentially those used in [SRW02] and in the TVLA system [LAS00]).

In ongoing work, we are investigating the feasibility of actually applying the techniques from
[RSY03] to perform abstract interpretation for abstractions based on 3-valued structures. This
approach could be more precise than TVLA because, for instance, it would take into account in
a �rst-class way the integrity formula of the abstraction. In contrast, in TVLA some operations
temporarily ignore the integrity formula, and rely on later clean-up steps to rectify matters.

We are also investigating the feasibility of using the results from this paper to develop a more
precise and scalable version of TVLA by using assume-guarantee reasoning. The idea is to allow
arbitrary �rst-order formulas with transitive closure to be used to express pre- and post-conditions,
and to analyze the code for each procedure separately.

Finally, this work provides a way for TVLA to be used as a generator for loop invariants for
existing veri�cation systems, and to provide a �search space� for systems like [FQ02]. This system
tries combinations of inferred or user-supplied formulas to see if it can identify loop invariants.
However, currently it cannot infer the formulas required for list or tree data structures; in this case,
TVLA can be used as a sub-procedure for generating such formulas.
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Structure CharacteristicFormula

x, y // GFED@ABCu1
n // u2

n
¸¸

S1 rx, ry

OO

rx, ry

OO

nodeS1
u1

(w) = x(w) ∧ y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeS1
u2

(w) = ¬x(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

ξS1 = ∃v1, v2 :
∧

i=1,2 nodeS1
ui

(vi) ∧ ¬eq(v1, v2)
∧ ∀w :

∨
i=1,2 nodeS1

ui
(w)

∧ ∀w1, w2 :
∧

i=1,2 nodeS1
ui

(wi) ⇒
¬eq(w1, w2) ∧ ¬n(w2, w1)

∧ ∀w1, w2 :
∧

i=1,2 nodeS1
u1

(wi) ⇒
∧eq(w1, w2) ∧ ¬n(w1, w2)

x // GFED@ABCu1
n // GFED@ABCu2

S2 rx

OO

y, rx, ry

OO

nodeS2
u1

(w) = x(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ¬ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeS2
u2

(w) = ¬x(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

ξS2 = ∃v1, v2 :
∧

i=1,2 nodeS2
ui

(vi) ∧ ¬eq(v1, v2)
∧ ∀w :

∨
i=1,2 nodeS2

ui
(w)

∧ ∀w1, w2 :
∧

i=1,2 nodeS1
ui

(wi) ⇒
¬eq(w1, w2) ∧ ¬n(w2, w1) ∧ n(w1, w2)

∧ ∀w1, w2 :
∧

i=1,2 nodeS1
u1

(wi) ⇒
∧eq(w1, w2) ∧ ¬n(w1, w2)

∧ ∀w1, w2 :
∧

i=1,2 nodeS1
u2

(wi) ⇒
∧eq(w1, w2) ∧ ¬n(w1, w2)

x // GFED@ABCu1
n // GFED@ABCu2

n // u3

n
¸¸

S3 rx

OO

y, rx, ry

OO

rx, ry

OO

nodeS3
u1

(w) = x(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ¬ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeS3
u2

(w) = ¬x(w) ∧ y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeS3
u3

(w) = ¬x(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

ξS3 = ∃v1, v2, v3 :
∧

i=1,2,3 nodeS3
ui

(vi) ∧
∧

k 6=j ¬eq(vk, vj)
∧ ∀w :

∨
i=1,2,3 nodeS3

ui
(w)

∧ ∀w1, w2 : (
∧

i=1,2 nodeS3
u1

(wi) ⇒
eq(w1, w2) ∧ ¬n(w1, w2))

∧ (
∧

i=1,2 nodeS3
u2

(wi) ⇒
eq(w1, w2) ∧ ¬n(w1, w2))

∧ (nodeS3
u1

(w1) ∧ nodeS3
u2

(w2) ⇒
¬eq(w1, w2) ∧ ¬n(w2, w1) ∧ n(w1, w2))

∧ (nodeS3
u2

(w1) ∧ nodeS3
u3

(w2) ⇒
¬eq(w1, w2) ∧ ¬n(w2, w1))

∧ (nodeS3
u1

(w1) ∧ nodeS3
u3

(w2) ⇒
¬eq(w1, w2) ∧ ¬n(w2, w1) ∧ ¬n(w1, w2))

Table A.1: The left column shows the structures that arise at the beginning of the loop in the
insert program from Fig. 2.1(b). The right column shows the characteristic formula for each
structure. Note that we omit the redundant sub-formulas ξS [p], for p ∈ P1, that are part of ξS

total

and nodeSi
uj

(w) de�nitions.
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Structure CharacteristicFormula

x // GFED@ABCu1
n // u2

n //

n
¸¸

GFED@ABCu3
n // u4

n
¸¸

S4 rx

OO

rx

OO

y, rx, ry

OO

rx, ry

OO

nodeS4
u1

(w) = x(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ¬ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeS4
u1

(w) = ¬x(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ¬ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeS4
u3

(w) = ¬x(w) ∧ y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeS4
u4

(w) = ¬x(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

ξS1 = ∃v1, . . . , v4 :
∧

i=1,...,4 nodeS4
ui

(vi) ∧
∧

k 6=j ¬eq(vk, vj)
∧ ∀w :

∨
i=1,...,4 nodeS4

ui
(w)

∧ ∀w1, w2 :
(
∧

i=1,2 nodeS4
u1

(wi) ⇒
eq(w1, w2) ∧ ¬n(w1, w2))

∧ (
∧

i=1,2 nodeS4
u3

(wi) ⇒
eq(w1, w2) ∧ ¬n(w1, w2))

∧ (nodeS4
u1

(w1) ∧ nodeS4
u2

(w2) ⇒
¬eq(w1, w2) ∧ ¬n(w2, w1))

∧ (nodeS4
u2

(w1) ∧ nodeS4
u3

(w2) ⇒
¬eq(w1, w2) ∧ ¬n(w2, w1))

∧ (nodeS4
u1

(w1) ∧ nodeS4
u3

(w2) ⇒
¬eq(w1, w2) ∧ ¬n(w2, w1) ∧ ¬n(w1, w2))

∧ (nodeS4
u3

(w1) ∧ nodeS4
u4

(w2) ⇒
¬eq(w1, w2) ∧ ¬n(w2, w1))

∧ (nodeS4
u1

(w1) ∧ nodeS4
u4

(w2) ⇒
¬eq(w1, w2) ∧ ¬n(w2, w1) ∧ ¬n(w1, w2))

∧ (nodeS4
u2

(w1) ∧ nodeS4
u4

(w2) ⇒
¬eq(w1, w2) ∧ ¬n(w2, w1) ∧ ¬n(w1, w2))

x // GFED@ABCu1
n // u2

n //

n
¸¸

GFED@ABCu3

S5 rx

OO

rx

OO

y, rx, ry

OO

nodeS5
u1

(w) = x(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ¬ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeS5
u2

(w) = ¬x(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ¬ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeS5
u3

(w) = ¬x(w) ∧ y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

ξS3 = ∃v1, v2, v3 :
∧

i=1,2,3 nodeS5
ui

(vi) ∧
∧

k 6=j ¬eq(vk, vj)
∧ ∀w :

∨
i=1,2,3 nodeS5

ui
(w)

∧ ∀w1, w2 :
(
∧

i=1,2 nodeS5
u1

(wi) ⇒
eq(w1, w2) ∧ ¬n(w1, w2))

∧ (
∧

i=1,2 nodeS5
u3

(wi) ⇒
eq(w1, w2) ∧ ¬n(w1, w2))

∧ (nodeS5
u1

(w1) ∧ nodeS5
u2

(w2) ⇒
¬eq(w1, w2) ∧ ¬n(w2, w1))

∧ (nodeS5
u2

(w2) ∧ nodeS5
u3

(w2) ⇒
¬eq(w1, w2) ∧ ¬n(w2, w1))

∧ (nodeS5
u1

(w1) ∧ nodeS5
u3

(w2) ⇒
¬eq(w1, w2) ∧ ¬n(w2, w1) ∧ ¬n(w1, w2))

Table A.2: Table A.1 continued.
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Appendix B

Proofs

Lemma 3.2.3 For every 2-valued structure S\ and assignment Z

S\, Z |= pB(v1, v2, . . . , vk) iff ιS
\
(p)(Z(v1), Z(v2), . . . , Z(vk)) v B

Proof of the if direction: Suppose that ιS\
(p)(Z(v1), Z(v2), . . . , Z(vk)) v B. There are two cases

to consider: (i) B = 1/2 or (ii) ιS
\
(p)(Z(v1), Z(v2), . . . , Z(vk)) = B. If B = 1/2, then by

De�nition 3.2.2, pB(v1, v2, . . . , vk) = 1 and thus by De�nition 2.1.3, S\, Z |= pB(v1, v2, . . . , vk)
for all Z. If B = 1, then ιS

\
(p)(Z(v1), Z(v2), . . . , Z(vk)) = 1 or by de�nition De�nition 2.1.3,

S\, Z |= p(v1, v2, . . . , vk) which is S\, Z |= p1(v1, v2, . . . , vk) by De�nition 3.2.2. Similarly,
if B = 0, then ιS

\
(p)(Z(v1), Z(v2), . . . , Z(vk)) = 0 implies that S\, Z |= ¬p(v1, v2, . . . , vk) =

p0(v1, v2, . . . , vk).
Proof of the only-if direction: Assume that S\, Z |= pB(v1, v2, . . . , vk). If B = 1/2, then
ιS

\
(p)(Z(v1), Z(v2), . . . , Z(vk)) v B trivially holds. If B = 0, apply De�nition 3.2.2 to the

assumption to get S\, Z |= ¬p(v1, v2, . . . , vk), which implies ιS
\
(p)(Z(v1), Z(v2), . . . , Z(vk)) =

0 = B, by De�nition 2.1.3. Similarly, ifB = 1, the assumption implies ιS
\
(p)(Z(v1), Z(v2), . . . , Z(vk)) =

1 = B.
Lemma 3.3.3 Every bounded 3-valued structure S is FO-identi�able, where

nodeS
ui

(w) def=
∧

p∈P1

pιS(p)(ui)(w)

Proof: Consider a bounded 3-valued structure S = {U, ιS}. We shall show that every element
u ∈ U is FO-identi�able using the formula de�ned in Eq. (3.2). Let S\ be a 2-valued structure that
embeds into S using a function f , and let u\ be a concrete element in US\ . By De�nition 3.2.1,
we have to show that the following holds:

f(u\) = u ⇐⇒ S\, [w 7→ u\] |= nodeS
u(w)

Proof of the if direction: Suppose that S\, [w 7→ u\] |= nodeS
u(w). In particular, each conjunct of
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nodeS
u must hold, i.e., for each predicate p ∈ P1, S\, [w 7→ u\] |= pιS(p)(u)(w). Using Lemma 3.2.3

we get that ιS
\
(p)(u\) v ιS(p)(u). In addition, the embedding condition in Eq. (2.2), requires,

in particular, that for each unary predicate p ιS
\
(p)(u\) v ιS(p)(f(u\)) holds. Let u1 = f(u\).

For the sake of argument, assume that u1 6= u. Recall that S is a bounded structure, in which
every individual must have a unique combination of de�nite values of unary predicates. As a
consequence, there must be a unary predicate p such that ιS(p)(u1) 6= ιS(p)(u) and the value of
p on both u1 and u is de�nite. This yields a contradiction, because v on de�nite values implies
equality; however ιS

\
(p)(u\) = ιS(p)(u) and ιS

\
(p)(u\) = ιS(p)(f(u\)) = ιS(p)(u1) can not

hold simultaneously, by the assumption.
Proof of the only-if direction: Suppose that f(u\) = u. Using Eq. (2.2), the embedding function f

guarantees that for each unary predicate p, ιS
\
(p)(u\) v ιS(p)(f(u\)). This means that S\, [w 7→

u\] |= pιS(p)(f(u\))(w) by Lemma 3.2.3, or S\, [w 7→ u\] |= pιS(p)(u)(w) by the assumption. This
holds for all unary predicates, and thus holds for their conjunction as well, namely, for the formula
nodeS

u .
Theorem 3.4.3 For every FO-identi�able 3-valued structure S, and a 2-valued structure S\:

S\ ∈ γ(S) iff S\ |= γ̂(S)

Proof: In Lemma B.0.6, we show that the if-direction holds, even when S is not FO-identi�able,
i.e., every concrete structure satisfying the characteristic formula γ̂(S) is indeed in γ(S). In
Lemma B.0.7 we show the only-if part, i.e., for an FO-identi�able structure, the other direction is
also true.

Lemma B.0.6 Let S be a �rst-order structure with set of individuals U = {u1, u2, . . . , un}. Let
nodeS

ui
(w) used in γ̂(S) be an arbitrary �rst-order formula free in w. Then, for all S\ such that

S\ |= γ̂(S), S\ ∈ γ(S).
Proof: Let S\ = 〈U \, ι\〉 be a concrete structure such that S\ |= γ̂(S). We shall construct a
surjective function f : U \ → U such that S\ vf S. Let Z\ be an assignment such that S\, Z\ |= ϕ

where ϕ
def=

∧n
i=1 nodeS

ui
(vi) ∧

∧
k 6=j ¬eq(vk, vj) (the �rst line of Eq. (3.7) without the existential

quanti�cation). De�ne the function f : U \ → U by:

f(u\) =





ui if Z\(vi) = u\

uj if for all i, Z\(vi) 6= u\ and uj is an arbitrary element such that
S\, [w 7→ u\] |= nodeS

uj
(w)

(B.1)

Let us show that every concrete element is mapped to some element in U . In the case that
Z(vi) = u\, the concrete element u\ is mapped to ui ∈ U by f . Otherwise, because S\ |= ξS [total]
holds, at least one of its disjuncts must be satis�ed by each u\, i.e. S\, [w 7→ u\] must satisfy
nodeS

uj
(w) for some uj ; thus f 's de�nition will map u\ to this uj . Therefore, f(u\) is well-de�ned.

In addition, every element ui ∈ U is assigned by f to some concrete element u\
i ∈ U \ such

that Z(vi) = u\
i . Since S\, Z\ satis�es the sub-formula

∧
k 6=j ¬eq(vk, vj), all such elements u\

i are
different. Therefore, f(u\) is surjective.

Let p be a nullary predicate. Because S\ satis�es ξS
nullary, it must satisfy each conjunct, in

particular S\ |= pιS(p)(). Using Lemma 3.2.3 we get that ιS
\
(p)() v ιS(p)().
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Let p ∈ P be a predicate of arity r ≥ 1. Let u\
1, u

\
2, . . . , u

\
r ∈ U \ and let us show that

ιS
\
(p)(u\

1, u
\
2, . . . , u

\
r) v ιS(p)(f(u\

1), f(u\
2), . . . , f(u\

r)) (B.2)

Let Z be an assignment such that Z(wi) = u\
i for i = 1, . . . , r. Because S\ |= ξS [p], we

conclude that S\, Z satis�es the body of Eq. (3.6). Consider the conjunct of the body with premise∧r
j=1 nodeS

f(u\
j)

(wj). By de�nition of f , S\, wj 7→ u\
j satis�es nodeS

f(u\
j)

(wj) for all j = 1, . . . , r,
which means that the premise is satis�ed by S\, Z. Therefore, the conclusion must hold: S\, Z |=
pιS(p)(f(u\

1),...,f(u\
r))(w1, . . . , wr)) and the result follows from Lemma 3.2.3.

Lemma B.0.7 For every 3-valued FO-identi�able structure S, and 2-valued structure S\ such that
S\ |= F and S\ v S, S\ |= ξS .
Proof: Let f : S\ → S be a surjective function such that S\ vf S. Let u\

i be an arbitrary element
such that f(u\

i) = ui. De�ne an assignment Z\ such that Z\(vi) = u\
i; u\

i must exist because f is
surjective. Because S is FO-identi�able, by De�nition 3.2.1 we conclude that for every 1 ≤ i ≤ n,
S\, Z\ |= nodeS

ui
(vi). Because f is a function, all u\

i are distinct elements, meaning that S\, Z\

satis�es the sub-formula
∧

k 6=j ¬eq(vk, vj).
Because f is a function, for every u\ there is u such that f(u\) = u. Then, by De�nition 3.2.1,

S\, [w 7→ u\] |= nodeS
u(w), i.e., every assignment to w in S\ satis�es some disjunct of ξS

total. That
is S\ satis�es ξS

total.
For every nullary predicate p ∈ P0, using Eq. (2.2) and Lemma 3.2.3, we conclude that S\

satis�es pιS(p)(). Therefore, S\ satis�es ξS
nullary.

Let p ∈ P be a predicate of arity r. Let u\
1, . . . , u

\
r ∈ U \ and let Z\ be an assignment such that

Z\(wi) = u\
i . We shall show that S\, Z\ satisfy the body of Eq. (3.6). If the premise of the implica-

tion is not satis�ed then the formula vacuously holds. Otherwise, S\, Z\ |= nodeS
ui

(wi) for all i =
1, . . . , r. Then, by De�nition 3.2.1, f(u\

i) = ui. Using Eq. (2.2) on f , we get ιS\
(p)(u\

1, . . . , u
\
r) v

ιS(p)(f(u\
1), . . . , f(u\

r)), which means that ιS
\
(p)(u\

1, . . . , u
\
r) v ιS(p)(u1, . . . , ur) holds. By

Lemma 3.2.3, we conclude that S\, Z\ satis�es pιS(p)(u1,...,ur)(w1, . . . , wr).

Theorem 4.2.3 For every 3-valued structure S, and a 2-valued structure S\:

S\ ∈ γ(S) iff S\ |= γ̂NP (S)

Proof: In Lemma B.0.8, we show that the if-direction holds, i.e., every concrete structure satisfying
the NP-characteristic formula γ̂NP is indeed in γ(S). In Lemma B.0.9 we show the only-if part.

Lemma B.0.8 Let S be a logical structure with set of individuals U = {u1, u2, . . . , un}. Then,
for all S\ such that S\ |= γ̂NP (S), S\ ∈ γ(S).
Proof: Let S\ = 〈U \, ι\〉 be a concrete structure such that S\ |= γ̂(S). We shall construct a
surjective function f : U \ → U such that S\ vf S. Let Z\ be an assignment such that S\, Z\ |= ϕ
where ϕ is the body of νS without the existential quanti�ers on sets. Let Z\(Vi) = Ui ⊆ U \.
Consider the following de�nition:

f(u\) = {ui | u\ ∈ Ui} (B.3)
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f(u\) is a set of size at most 1 because the pair S\, Z\ satis�es the sub-formula νS
disjoint. This

insures that the sets U1, . . . , Un are disjoint, i.e., each concrete element belongs to at most one set.
For simplicity, we say that f(u\) = ui, whenever f(u\) = {ui}.

We shall show that every concrete element is mapped by f to some element in U . Because
S\, Z\ satis�es ξS

total, we conclude that every concrete element satis�es the formula nodeS
ui

(w) for
some ui. Also, nodeS

ui
(w) given in De�nition 4.2.1 is a membership test in the set Vi; therefore,

every concrete element must be a member of some set Ui. Thus, u\ is mapped to ui ∈ U , by the
de�nition of f in Eq. (B.3). This shows that f is well-de�ned.

Because S\, Z\ satis�es |= νS
non_empty[i] for i = 1, . . . , n, it must be that every Ui contains at

least one element, say u\
i , that is mapped to ui by f . Because the sets are disjoint, all such elements

u\
i are different. Therefore, f is surjective.

Let p be a nullary predicate. Because S\ satis�es ξS
nullary, it must satisfy each conjunct, in

particular S\ |= pιS(p)(). Using Lemma 3.2.3 we get that ιS
\
(p)() v ιS(p)().

Let p ∈ P be a predicate of arity r ≥ 1. Let u\
1, u

\
2, . . . , u

\
r ∈ U \ and let us show that

ιS
\
(p)(u\

1, u
\
2, . . . , u

\
r) v ιS(p)(f(u\

1), f(u\
2), . . . , f(u\

r)) (B.4)

Let Z\
1 be an extension of assignment Z\ such that Z\

1(wi) = u\
i for i = 1, . . . , r. Because

S\, Z\ |= ξS [p], we conclude that S\, Z\
1 satis�es the body of Eq. (3.6). Consider the conjunct of the

body with premise
∧r

j=1 nodeS
f(u\

j)
(wj). By de�nition of f , S\, wj 7→ u\

j satis�es nodeS
f(u\

j)
(wj)

for all j = 1, . . . , r, which means that the premise is satis�ed by S\, Z\
1. Therefore, the conclusion

must hold: S\, Z\
1 |= pιS(p)(f(u\

1),...,f(u\
r))(w1, . . . , wr)) and the result follows from Lemma 3.2.3.

Lemma B.0.9 For every 3-valued structure S, and 2-valued structure S\ such that S\ |= F and
S\ v S, S\ |= ξS .
Proof: Let f : S\ → S be a surjective function such that S\ vf S. De�ne an assignment Z\ such
that Z\(Vi) = Ui ⊆ U \ and Ui = {u\

i | f(u\
i) = ui}.

Because f is a surjective function, there must exist at least one concrete element that is mapped
to ui by f . This element belongs to the set Ui. Therefore, S\, Z\ |= ∧n

i=1 νS
non_empty[i].

Because f is a well-de�ned function, it maps each concrete element to exactly one element
ui ∈ U , which induces the set Ui. Therefore, a concrete element cannot belong to more than one
set; hence S\, Z\ |= ∧

k 6=j νS
disjoint[k, j].

Because f is a function, f maps every concrete element to some element in U . Therefore, every
concrete element belongs to some set, i.e., satis�es some disjunct of ξS

total. That is S\, Z\ |= ξS
total.

For every nullary predicate p ∈ P0, using Eq. (2.2) and Lemma 3.2.3, we conclude that S\, Z\

satis�es pιS(p)(). Therefore, S\, Z\ |= ξS
nullary.

Letp ∈ P be a predicate of arity r. Letu\
1, . . . , u

\
r ∈ U \ and letZ\

1 be an extension of assignment
Z\ such that Z\

1(wi) = u\
i . We shall show that S\, Z\

1 satisfy the body of Eq. (3.6). If the premise of
the implication is not satis�ed, then the formula vacuously holds. Otherwise, S\, Z\

1 |= nodeS
ui

(wi)
for all i = 1, . . . , r. Then, by De�nition 4.2.1, u\

i belongs to the set Ui. The de�nition of Ui implies
that f(u\

i) = ui. Using Eq. (2.2), we get ιS
\
(p)(u\

1, . . . , u
\
r) v ιS(p)(f(u\

1), . . . , f(u\
r)) which
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means ιS
\
(p)(u\

1, . . . , u
\
r) v ιS(p)(u1, . . . , ur). By Lemma 3.2.3 we conclude that S\, Z\ satis�es

pιS(p)(u1,...,ur)(w1, . . . , wr).

Lemma 7.3.1 If 3-valued structure S = 〈U, ιS〉 over vocabulary P is ICA then:

(i) S is a bounded structure.

(ii) For each nullary predicate p, ιS(p)() ∈ {0, 1}.

(iii) For each element u ∈ U , and each unary predicate p, ιS(p)(u) ∈ {0, 1}.

Proof: Let S\ = {U \, ιS
\} be a 2-valued structure, such that S is the canonical abstraction of S\.

Let canonic : U \ → U be the mapping that identi�es S as the canonical abstraction of S\.

(i) Show that S is a bounded structure. By Eq. (7.1), every abstract element represents concrete
elements with the same canonical name. Thus, for two distinct abstract elements u0, u1 ∈
US , the canonical name of concrete elements represented by u0 is different from the canonical
name of concrete elements represented by u1. Without loss of generality, assume that the
canonical names differ in a unary predicate p, such that p evaluates to 0 on all concrete
elements represented by u0, and p evaluates to 1 on all concrete elements represented by u1.
From the join operation in Eq. (7.2), it follows that the value of p on u0 must be 0 and the
value of p on u1 must be 1. This shows that, in general, every pair of distinct elements in S
differs in a de�nite value of some unary predicate, proving that S is a bounded structure.

(ii) Letpbe a nullary predicate. Show that ιS(p)() ∈ {0, 1}. By Eq. (7.2), ιS(p)() = t{ιS\
(p)()} =

ιS
\
(p)(). This means that p has the same value in S and S\. Because S\ is a concrete structure,

the value of p must be de�nite.

(iii) Let p be a unary predicate and let u ∈ U . Show that ιS(p)(u) ∈ {0, 1}. Suppose that the
opposite holds: ιS(p)(u) = 1/2. By Eq. (7.2), there exist two concrete elements, denoted
by u0 and u1, such that canonic(u0) = u and canonic(u0) = u, and p evaluates to 0 on
u0 and to 1 on u1. Hence, these concrete elements have different canonical names and by
Eq. (7.1) they cannot be mapped by canonic to the same abstract element; this contradicts
the supposition and hence ιS(p)(u) ∈ {0, 1}.

Lemma 7.3.2 Every 3-valued structure S that is an ICA is FO-identi�able, where

nodeS
ui

(w) def=
∧

p∈P1

pιS(p)(ui)(w) (B.5)

Proof: Let S = {U, ιS} be a 3-valued structure that is ICA. We shall show that every element
u ∈ U is FO-identi�able using the formula de�ned in Eq. (7.5). Let S\ = {U \, ιS

\} be a 2-valued
structure, such that S is the canonical abstraction of S\, induced by a function canonic, and let
u\ ∈ US\ . By De�nition 7.2.1, we have to show that the following holds:

canonic(u\) = u ⇐⇒ S\, [w 7→ u\] |= nodeS
u(w)
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Proof of the if direction: Suppose that S\, [w 7→ u\] |= nodeS
u(w). Let u1 = canonic(u\). For the

sake of argument, assume that u1 6= u. S is an ICA and using Lemma 7.3.1(i) we get that S is a
bounded structure. By De�nition 3.3.1, there exists a unary predicate p that evaluates to different
de�nite values on u and u1. Without loss of generality, suppose that p evaluates to 0 on u and to
1 on u1. This implies the following two facts. First, from property Eq. (7.2) of the de�nition of
canonical abstraction, p also evaluates to 1 on all concrete values mapped to u1 by canonic; in
particular, p must evaluate to 1 on u\. Second, recall that by assumption, each conjunct of nodeS

u

must hold, i.e., for each predicate p ∈ P1, S\, [w 7→ u\] |= pιS(p)(u)(w). Because p evaluates to 0
on u, we get from De�nition 3.2.2 that S\, [w 7→ u\] |= p0(w), which means ιS

\
(p)(u\) = 0 and

a contradiction is obtained.
Proof of the only-if direction: Suppose that canonic(u\) = u. BecauseS is an ICA by Lemma 7.3.1(iii)
we know that all unary predicates have de�nite values in S. Let p be a unary predicate. Let
B ∈ {1, 0} be such that ιS(p)(u) = B. Because p has de�nite value B on u in S, by Eq. (7.2) it
must have the same de�nite value B on all concrete nodes in S\ that are mapped to u by canonic;
in particular, on u\: ιS

\
(p)(u\) = B. Therefore, using De�nition 3.2.2, S\, [w 7→ u\] |= pB(w),

in other words, S\, [w 7→ u\] |= pιS(p)(u)(w). This holds for all unary predicates, and thus holds
for their conjunction as well, i.e., for the formula nodeS

u .
Theorem 7.3.5 For every 3-valued structure S that is an ICA and a 2-valued structure S\:

S\ ∈ γc(S) iff S\ |= γ̂c(S)

Proof: In Lemma B.0.10, we show that the if-direction holds, i.e., a 3-valued structure S is the
canonical abstraction of every concrete structure satisfying the characteristic formula γ̂c(S); in
Lemma B.0.11 we show the other direction.

Lemma B.0.10 Let S be an ICA with set of individuals U = {u1, u2, . . . , un}. Let nodeS
ui

(w) be
an arbitrary formula free in w, used in γ̂c. Then, for all S\ such that S\ |= γ̂c(S), S is a canonical
abstraction of S\.
Proof: Let S\ = 〈U \, ι\〉 be a concrete structure such that S\ |= γ̂c(S). We shall construct
a surjective function canonic : U \ → U such that S\ is a canonical abstraction of S. From
De�nition 7.3.3 it follows, in particular, that S\ |= ξS . Let Z\ be an assignment such that S\, Z\ |=
ϕ where ϕ

def=
∧n

i=1 nodeS
ui

(vi)∧
∧

k 6=j ¬eq(vk, vj) (the �rst line of Eq. (3.7) without the existential
quanti�cation). De�ne the function canonic : U \ → U by:

canonic(u\) =





ui if Z\(vi) = u\

uj if for all i, Z\(vi) 6= u\ and uj is an arbitrary element such that
S\, [w 7→ u\] |= nodeS

uj
(w)

(B.6)

Let us show that every concrete element is mapped to some element in U . In the case that
Z(vi) = u\, the concrete element u\ is mapped to ui ∈ U by canonic. Otherwise, because
S\ |= ξS [total] holds, at least one of its disjuncts must be satis�ed by each u\, i.e., S\, [w 7→ u\]
must satisfy nodeS

ui
(w) for some ui; thus canonic's de�nition will map u\ to this ui. Therefore,

canonic(u\) is well-de�ned.
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In addition, every element ui ∈ U is assigned by canonic to some concrete element u\
i ∈ U \

such that Z(vi) = u\
i . Since S\, Z\ satis�es the sub-formula

∧
k 6=j ¬eq(vk, vj), all such elements

u\
i are different. Therefore, canonic(u\) is surjective.

We shall show that canonic satis�es Eq. (7.1) and Eq. (7.2); that is, canonic identi�es S as
the canonical abstraction of S\.

First, let us show that Eq. (7.2) holds for the abstraction imposed by canonic, namely that a
predicate p in S has the most precise abstract value w.r.t. the concrete values that it represents, as
is imposed by canonic.

Because S is an ICA, all nullary predicates in S must have de�nite values, by Lemma 7.3.1(ii).
S\ satis�es ξS

nullary; therefore, by De�nition 3.2.2, nullary predicates in S\ must have the same
de�nite values as in S; this shows that Eq. (7.2) holds for nullary predicates.

Because S is an ICA, all unary predicates in S must have de�nite values, by Lemma 7.3.1(iii).
Let p be a unary predicate and let u ∈ U be an individual of S such that ιS(p)(u) = b. We
shall show that p has the same de�nite value b on all concrete elements mapped to u by canonic.
Because the join of these values is also b, we will get that Eq. (7.2) holds for p and u. Recall that S\

satis�es formula ξS [p], hence each assignment to w satis�es the conjunct nodeS
u(w) ⇒ pb(w) of

ξS [p]. Let u\ ∈ U \ be an individual of U \ such that canonic(u\) = u and consider an assignment
in which w is mapped to u\. By the de�nition of canonic, this assignment satis�es nodeS

u(w), the
premise of the conjunct. Therefore, it satis�es the conclusion, i.e., S\, [w 7→ u\] satis�es pb(w).
Using De�nition 3.2.2 we get that ιS

\
(p)(u\) = b.

Let p be a predicate of arity r > 1. If p has a de�nite value b in S on a tuple u1, . . . , ur,
ξS [p] requires that p evaluates to the same de�nite value b on every concrete tuple u\

1, . . . , u
\
r

such that canonic(u\
i) = ui (by the same argument as for unary predicates). Therefore, the join

operation returns b as the most precise abstract value of p for these concrete tuples. Otherwise, if p
evaluates to 1/2 on u1, . . . , ur ∈ U , there must be two tuples of elements in U \, say u\

01, . . . , u
\
0r

and u\
11, . . . , u

\
1r, such that S\, [w1 7→ u\

01, . . . , wr 7→ u\
0r] |= ¬p(w1, . . . , wr) and S\, [w1 7→

u\
11, . . . , w1 7→ u\

1r] |= p(w1, . . . , wr), because S\ |= τS [p]. Thus, p evaluates to 0 on the �rst
tuple and to 1 on the second tuple of the concrete structure; therefore, the most precise value
obtained by the join operation on these values is 1/2.

We shall show that canonic satis�es Eq. (7.1), i.e., it maps elements according to their canonical
names. This involves showing two directions:

1. For the sake of contradiction, assume that there are two distinct elements u\
0, u

\
1 ∈ U \ that

have the same canonical name (meaning that for all p ∈ P1, ιS
\
(p)(u\

0) = ιS
\
(p)(u\

1)),
but canonic(u\

0) 6= canonic(u\
1). Because S is a bounded structure, there must be unary

predicate p that evaluates to 0 on canonic(u\
0) and to 1 on canonic(u\

1). As shown above,
p evaluates to the same de�nite values in the concrete structure S\: ιS

\
(p)(u\

0) = 0, and
ιS

\
(p)(u\

1) = 1 and a contradiction is obtained.

2. For the sake of contradiction, assume that two concrete elements, denoted by u\
0, u

\
1 ∈ U \,

have different canonical names, but are mapped by canonic to the same same element in
U : canonic(u\

0) = canonic(u\
1), denoted by u. By de�nition of canonic, S\, [w 7→ u\

i]
satis�es nodeS

canonic(u\
i)

(w), for i = 0, 1, in other words S\, [w 7→ u\
i] satis�es nodeS

u(w).
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Therefore, it satis�es each conjunct of node formula, i.e., for all p, S\, [w 7→ u\
i] satis�es

piotaS(p)(u)(w). From this and the fact that all unary predicates in S have de�nite values
because S is an ICA, we conclude by De�nition 3.2.2, that ιS\

(p)(u\
i) = ιS(p)(u). Therefore,

ιS
\
(p)(u\

0) = ιS(p)(u) and ιS
\
(p)(u\

1) = ιS(p)(u), for all p ∈ P1. Therefore, u\
0 and u\

1

have the same canonical name and a contradiction is obtained.

Lemma B.0.11 For every 3-valued structure S that is an ICA and 2-valued structure S\ such that
S\ |= F , such that S is the canonical abstraction of S\, S\ |= τS .
Proof: Let canonic : U \ → U be the mapping that identi�es S as the canonical abstraction of S\.
canonic is a surjective function and possesses the properties in Eq. (7.1) and Eq. (7.2).

First, we show that S\ |= ξS . Let u\
i be an arbitrary element such that canonic(u\

i) = ui. De�ne
an assignment Z\ such that Z\(vi) = u\

i; u\
i must exist because canonic is surjective. Because S

is FO-identi�able, by Lemma 7.3.2 we conclude that for every 1 ≤ i ≤ n, S\, Z\ |= nodeS
ui

(vi).
Because canonic is a function, all the u\

i are distinct elements, meaning that S\, Z\ satis�es the
sub-formula

∧
k 6=j ¬eq(vk, vj).

Because canonic is a function, for every u\ there is a u such that canonic(u\) = u. Then,
by De�nition 7.2.1, S\, [w 7→ u\] |= nodeS

u(w), i.e., every assignment to w in S\ satis�es some
disjunct of ξS

total. That is, S\ satis�es ξS
total.

Because S is an ICA, nullary predicates have the same de�nite values in S and in S\, by
Lemma 7.3.1(ii). Therefore, by De�nition 3.2.2, S\ satis�es pιS(p)(), for every nullary predicate
p ∈ P0, which means that S\ satis�es ξS

nullary.
Let p ∈ P be a predicate of arity r. Let u\

1, . . . , u
\
r ∈ U \ and let Z\ be an assignment such

that Z\(wi) = u\
i . We shall show that S\, Z\ satis�es the body of Eq. (3.6). Consider a conjunct

of the body. If the premise of the implication in this conjunct is not satis�ed, then the conjunct
vacuously holds. Otherwise, S\, Z\ |= nodeS

ui
(wi) for all i = 1, . . . , r. Then, by Lemma 7.3.2,

canonic(u\
i) = ui. We have two cases to consider: (i) if ιS(p)(u1, . . . , ur) = b ∈ {1, 0}

then by Eq. (7.2) ιS
\
(p)(u\

1, . . . , u
\
r) = b, in other words, S\, Z\ satis�es pb(w1, . . . , wr). (ii) if

ιS(p)(u1, . . . , ur) = 1/2 then by De�nition 3.2.2, pιS(p)(u1,...,ur)(w1, . . . , wr) = p1/2(w1, . . . , wr) =
1, which holds for any assignment.

To complete the proof, we show that for every p ∈ Pr of arity r > 1, τS [p] holds. Let p be a
predicate that evaluates to 1/2 on a tuple u1, . . . , ur ∈ S. Because S is an ICA ιS(p)(u1, . . . , ur) =
1/2 means that the join operation in Eq. (7.2) yields 1/2. By the de�nition of join as the least upper
bound, and using the information order in De�nition 2.3.1, we conclude that (i) S\ must contain at
least two distinct tuples; denoted by u\

01, . . . , u
\
0r and u\

11, . . . , u
\
1r. Because canonic(u\

ij) = uj

for i = 0, 1 and j = 1, . . . , r, by Lemma 7.3.2 we get that S\, [w 7→ u\
ij ] |= nodeS

uj
(w). Therefore,

each tuple satis�es
∧r

j=1 nodeS
uj

(wj). (ii) p evaluates to 0 on the �rst tuple and 1 on the second
tuple. This shows that S\ |= τS [p].
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Appendix C

The Design of CoreC

This chapter is intended as a reference manual for the C code Simpli�er.

C.1 Introduction
In this chapter we address a practical aspect of program analysis � dealing with real applications
coded in C. Towards this end, we develop Simpli�er, a tool that transforms a C program into an
equivalent C program that uses only a small subset of the C language, called CoreC. This tool
enables faster development of source-code analyzers; it was used by CSSV [DRS03] to check real
C programs for string errors. The novelty of our work is the design of CoreC and the meaning-
preserving translation rules from C to CoreC.

The main features of CoreC are:

� The CoreC syntax is compact and simple: (i) the number of different constructs that may
appear in a CoreC program is relatively small; (ii) each construct has only one operation and
simple arguments. This syntax makes it easy to specify the semantics of CoreC programs,
because each statement performs a single operation.

� Due to the this, CoreC makes it easy to de�ne and implement static analyses and source-to-
source transformations of C programs. All that is needed to handle the full C language is to
specify the semantics for CoreC constructs. The reason is that the translation rules preserve
the semantics of the original program.

� CoreC is an executable intermediate representation, which enables easy debugging of CoreC
itself.

� As opposed to many other intermediate representations, CoreC is portable across different
machines and compilers.

The rest of the chapter is organized as follows: Section C.2 de�nes a subset of C called CoreC.
Source-to-source translation rules for converting C into CoreC are described in Section C.3. Related
work is described in Section C.5. Finally, the limitations of the current translation are listed in
Section C.4.
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C.2 The CoreC Language Subset
The CoreC language is a subset of C with the following restrictions:

� The only control-�ow constructs are goto and an if-statement with gotos in the then- and
else-clauses.

� Expressions cannot have side effects. In particular, assignments are statements. Expressions
such as +=, ++, and comma expressions are not allowed.

� There are two types of expressions: (i) Boolean comparison expressions used in if-conditions,
and (ii) �Value� expressions (arithmetic, dereferences, and address expressions), which are
used as L-values and R-values in assignments. Both types of expressions are rather limited.
They cannot include more than one operation. The �eld operator (a.b) is not considered as
an operation, and therefore can appear more than once in an expression. Dereference ( * )
is considered as an operation. The only exception to this rule is the address operator, which
can be applied to a dereference: &((*a).b). Moreover, at most one side of an assignment
can include an operation. Value expressions cannot include comparison operators. Finally,
logical connectives &&, ||, and ! are not allowed at all.

� Variables can only be initialized through regular assignments; initializations in declarations
are not allowed. As a consequence, variables de�ned with const type quali�ers are not
allowed, because they cannot be initialized, except in a declaration. However, const quali-
�ers can be safely removed, because we assume that the original program passes compilation,
which guarantees that the program contains no assignments to const variables.

The syntax of the CoreC language is given in Table C.1. The syntax is in extended BNF. IDEN-
TIFIER and CONSTANT represent valid identi�er and constant symbols, accepted by standard C
compilers. The syntax follows the de�nitions given in [Deg95] and [KR78]. Section C.5 compares
CoreC syntax to other representations.
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<CoreC> ::= (<functionDe�nition> | <declaration>) ∗
<declaration> ::= <declarationSpeci�ers> [<declarator> ]
<functionDe�nition> ::= [<declarationSpeci�ers> ]<declarator>

<declaration> ∗ <compoundStatement>
<declarationSpeci�ers> ::= (<storageClassSpeci�er> | <typeSpeci�er>)∗
<storageClassSpeci�er> ::= TYPEDEF | EXTERN | STATIC | AUTO | REGISTER
<typeSpeci�er> ::= VOID | CHAR | SHORT | INT | LONG | FLOAT | DOUBLE | SIGNED |

UNSIGNED | <structOrUnionSpeci�er> | <enumSpeci�er> | typeName
<structOrUnionSpeci�er> ::= (STRUCT | UNION) [IDENTIFIER]{<structDeclaration>+ }
<structDeclaration> ::= <speci�erList> <structDeclarationList>
<speci�erList> ::= (<typeSpeci�er>)+
<structDeclarationList> ::= <structDeclarator> (, <structDeclarator>)∗
<structDeclarator> ::= <declarator> |

<declarator> : <constantExpression>
<enumSpeci�er> ::= ENUM [IDENTIFIER][{<enumeratorList> }]
<enumeratorList> ::= <enumerator> (, <enumerator>)∗
<enumerator> ::= IDENTIFIER [= <constantExpression> ]
<declarator> ::= [<pointer> ]<directDeclarator>
<pointer> ::= (∗)+
<directDeclarator> ::= IDENTIFIER |

<directDeclarator> ( [<declaration> ]∗ , [...]) // function
| <directDeclarator> [CONSTANT ]// array

Table C.1: The CoreC syntax.
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<compoundStatement> ::= {<declaration>∗ <statement>∗ }
<statement> ::= <compoundStatement>

| IDENTIFIER : <statement>
| <Assignment>;
| IF ( <booleanExpression> ) goto IDENTIFIER; else goto IDENTIFIER;
| GOTO IDENTIFIER ;
| RETURN [<primaryExpression> ];
| <Call>;
| ; // empty statement

<Assignment> ::= <name> = <simpleExpression>
| <deref> = <primaryExpression>

<deref> ::= (∗ <name>)(.FIELD_NAME)∗
<simpleExpression> ::= <primaryExpression>

| (typeName) <primaryExpression> // cast
| <primaryExpressoin> <binop> <primaryExpressoin>
| <unop> <primaryExpressoin>
| <deref>
| <address>
| <Call>

<address> ::= &<name> | &<deref>
<Call> ::= IDENTIFIER ( [<argList> ])
<argList> ::= primaryExpression [, primaryExpression ]*
<booleanExpression> ::= <primaryExpression> <relop> <primaryExpression>
<name> ::= IDENTIFIER ( .FIELD_NAME )∗
<primaryExpression> ::= <name> | CONSTANT
<relop> ::= == | ! = | <= | >= | < | >
<binop> ::= + | − | ∗ | / |% | ^ | << | >> | | | &
<unop> ::= + | − | ∼

Table C.1: The CoreC syntax.

C.3 From C into CoreC
A C program is converted into a CoreC program by translating complex expressions into expressions
with at most one operation. In certain cases, new temporary variables are introduced to store
intermediate values. The resulting CoreC program is equivalent to the original C program in the
sense that if the C program is de�ned according to ANSI-C, both C and CoreC programs provide
the same output.

Example C.3.1 Fig. C.1 shows an example program SkipLine and its translation to CoreC.
Note that double pointer indirections are translated into two sequential pointer indirections and that
the for loop is translated into an if-goto loop.
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] de�ne SIZE 5 void SkipLine(int NbLine,
char** PtrEndText)

{
int indice;
for (indice=0; indice<NbLine;

indice++)
{

**PtrEndText = '\n';
(*PtrEndText)++;

}
**PtrEndText = '\0';

}
void main()
{

char buf[SIZE]="a\nb;
char *r, *s;
r = buf;
SkipLine(1,&r);
fgets(r,SIZE-1,stdin);
s = r + strlen(r);
SkipLine(1,&s);

}

void SkipLine(int NbLine,
char** PtrEndText)

{
int indice; char *tmp4;
indice=0;
begin_loop:

if (indice>=NbLine)
goto end_loop;
else goto loop_body;
loop_body:{

char *tmp1; char *tmp2; char *tmp3;
tmp1 = *PtrEndText
*tmp1 = '\n';
tmp2 = *PtrEndText;
tmp3 = tmp2 + 1;
*PtrEndText = tmp3;

}
indice = indice + 1;
goto begin_loop;

end_loop:
tmp4 = *PtrEndText
*tmp4 = '\0';

}
void main()
{

char buf[5];
char *r; char *s;
char **tmp4; char **tmp7;
int tmp5; int tmp6;
buf[0]='a';
buf[1]='\n';
buf[2]='b';
buf[3]='\0';
buf[4]='\0';
r = buf;
tmp4 = &r;
SkipLine(1,tmp4);
tmp5 = SIZE-1;
fgets(r,tmp5,stdin);
tmp6 = strlen(r);
s = r + tmp6;
tmp7 = &s;
SkipLine(1,tmp7);

}
(a) (b)

Figure C.1: Example: (a) SkipLine, a string-manipulation function from EADS Airbus with a
toy main program; (b) the result of translation SkipLine program to CoreC.
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This section provides a high-level description of the algorithm for converting C to CoreC.
It is based on the algorithm for translating abstract syntax into abstract machine code, used in
compilers, as described in Chapter 7 of [App98]. To provide a front-end-independent description
of the translation process, we assume that an abstract syntax tree (AST) of the input C program is
given in a form that allows top-down traversal and property retrieval. At the end of the traversal
of the input AST, an equivalent AST is generated, containing only legal CoreC constructs. The
translation process recursively traverses each sub-expression of an AST node, generates equivalent
CoreC constructs for each subexpression, and combines them.

C.3.1 Internal structure
To de�ne the translation inductively, the algorithm uses an internal structure named CoreC Unit
(CCU). CCU accumulates declarations and statements created during traversal. CCU also contains
sub-expressions to be combined in a higher level. The CCU structure has a similar functionality
to the Tr_exp structure in [App98]. The differences are due to the complexity of C language,
compared to Tiger. As in Tr_exp, there are several kinds of CCU structures (see Table C.2):

CCUExp - CoreC expression.

CCUBool - Boolean expression, contains only one relational or equality operator, applied to
primary_expressions.

CCUArgList - list of CoreC expressions, to be used as arguments to a CoreC function call.

CCUCond - if a Boolean expression can be used either as a value or in a conditional jump (i.e. the
translation depends on the context), the decision is delayed and conditional unit CCUCond is
generated. The Boolean expression is used as a condition in if-statement. This if-statement
is added to the statement list in the basic part of CCU. Two new labels are generated for
true and false clauses of this if-statement. Each label is added to the suitable list of labels in
CCUCond. Now, it is the responsibility of the caller to "patch" the labels at the right places
(either where if-branches start or where the value of the Boolean expression is assigned to a
new temporary, for future use in an expression).

CCUStmt - holds two list of labels, referenced by the statements of the unit, but not yet located.
When the translation of current unit is �nished, the labels will be added before and after
the statements of this unit. This "patch" is handy for translating "break" and "continue"
statements used within loops and switch.

C.3.2 Value/Address computations
Sometimes we will have CCU of one kind and we will need to convert it to an equivalent unit
of another kind. For example, f = (a > b)||(c < d) requires the conversion of CCUCond into
CCUExp, so that the "true" or "false" results of computing || can be stored into "f". In general, the
translation process may convert a value computation into an address computation and visa versa.
To convert a "conditional" into a value, we invent a new temporary variable and assign "1" to it.
This assignment is added to the statement list of current unit, preceded by labels from the "true"
list of CCUCond. We handle the "false" branch similarly. The result is just the temporary.
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CCU { CoreDeclarations d; CoreStatements s; }
CCUStmt extends CCU { LabelList start_labels, end_labels; }
CCUExp extends CCU { CoreExpression exp; }
CCUBool extends CCU { CoreBoolean exp; }
CCUArgList extends CCU { CorePrimaryList list; }

Table C.2: CCU (CoreC Unit) is a structure used for translation

C.3.3 L-value and R-value
Translation of an expression depends on whether it is an L-value or an R-value. When an expression
is an R-value it denotes a value fetched from a location (i.e., the contents). When an expression is
an L-value it denotes a location (i.e., an address) in which a value can be stored (for example, when
the expression appears on the left-hand side of an assignment). Replacing an L-value expression
by a temporary variable may change the meaning of the program (for example, see the use of a.f
in a.f = b + c, b = &(a.f)). Therefore, we need special translation rules for expressions that
serve as L-values.

C.3.4 Translation rules
Main modules of the algorithm are listed in Table C.3. Each module takes an arbitrary C construct
and produces a CoreC unit, which is semantically equivalent to the input construct. This CoreC
unit contains CoreC declarations and statements generated during the simpli�cation process of the
input construct, including new variables and their initializations.

Informal pseudo-code description of the translation algorithm can be found in [Yor02]. In that
document, some informal naming conventions are used to save space: exp denotes an expression,
stmt denotes a statement, "e.f" denotes symbolic structure of expression, + denotes concatenation
of elements of the same type into a list. Also note the function IsCore(exp, core_type), that checks
whether the expression exp is a legal CoreC expression of type core_type, as de�ned in Table C.1.

CCUStmt simplify_stmt(stmt);
Input: C statement.
CCUExp simplify_lvalue(exp);
Input: Arbitrary C expression denoting an L-value
Generates an error when exp does not denote an L-value.
CCU simplify_exp(exp);
Input: Arbitrary C expression denoting an R-value
CCU simplify_bool_exp(exp);
Input: C expression representing a Boolean value
Generates either CCUCond or CCUExp.

Table C.3: Main modules of the translation algorithm.
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CCUStmt simplify_decl(d);
Input: an arbitrary C declaration with/without initialization.
Output: CoreC declaration equivalent to the input declaration, with
the following exceptions: (a) removing "const" quali�ers; (b) ini-
tialization is converted into an assignment, which is added to the
statement list.
CCUExp simplify_post(exp, bin_op);
CCUExp simplify_pre(expbin_op);
Input: C-expression denoting post-inc (x++) or post-dec(x�)
operation and a suitable binary operator (+ or -).
Generates an error when exp does not denote an l-value.
CCUExp simplify_unary(exp, un_op, SymbolTable *scope);
Input: C-expression denoting the operand of a unary operator un_op
from the following list: ∼e −e +e
CCUExp simplify_binary(e1, e2, bin_op);
Input: C-expressions e1, e2 denoting operands of a binary opera-
tion: +− ∗/%|& <<>> according to bin_op param.
CCUExp simplify_op_assign(e1, e2, bin_op);
Input: C expressions e1, e2 of and assignment "e1 op e2", where op
is one of the following: +=, -=, *=, /=, bin_op denotes binary oper-
ator suitable for the assignment. Output: Expression equivalent to
the value returned by the assignment after the evaluation, equiva-
lent CoreC assignment, and additional declarations and statements
created in the simpli�er process.

Table C.3: Main modules of the translation algorithm.

C.4 Limitations of the Current Translation
We implemented the translation algorithm described above, using Microsoft AST Toolkit [TSBTG]
as a frontend and a backend. This tool builds an abstract syntax tree of a program and allows traversal
and modi�cation of the tree. It also produces an output of the (modi�ed) abstract syntax tree in the
form of a C program.

Explicit casting. Signed/unsigned warning in the simpli�ed code that is not produced by the
original code. For example, consider the program fragment on Fig. C.2(a) and it's translation
on Fig. C.2(b). The last line of the translation produces a signed/unsigned mismatch.

Initialization lists - limited treatment for (i) casting of list elements when types do not match; (ii)
nested initialization lists with missing elements. Simpli�er may fail in some cases even if the
initialization is correct according to ANSI C. It is recommended to correct the original code
by adding explicit casting, missing elements, and nested lists for initialization of structure
�elds.
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unsigned int a, b;
if (n < a/b) ...

int n; unsigned int a, b, tmp;
tmp = a/b;
if (n < tmp) ...

(a) (b)

Figure C.2: Example: (a) a program fragment and (b) its translation to CoreC.

Erroneous output might be produced for the following features:

� variable-length parameter lists
� setjmp/longjmp
� signals
� system calls such as system, exec, abort, etc.

sizeof expression is replaced by a constant, which may be machine dependent.

Optimizations: The current translation rules do not produce minimal size CoreC code. It is
possible to minimize the number of new variables, labels, and statements introduced during
translation, by reusing temporaries, for example.

C.5 Related Work
There are numerous tools that convert C to an intermediate representation (IR), many of which are
machine independent. Most compilers convert C code to IR before generating assembly. Program-
analysis tools usually use a front-end to translate the program to some IR suitable for analysis and
optimizations. Such tools also contain a back-end to convert IR back to C. The output is often
generated in a canonical form, more limited than general C syntax (for example, SUIF, SimpleC).

C.5.1 IR-C
Similar to CoreC, IR-C (see [Leu02]) retains the executablity of the output by representing the
IR in C syntax. Another similarity is the attempt to simplify C expressions into three-address
instructions. IR-C produces lower-level code than CoreC.

C.5.2 CIL
The CIL (C Intermediate Language) in [NMRW02] is a high-level intermediate representation for
C which has many features common to CoreC. However, CoreC conceptually defers from CIL. In
general, CoreC is more structured and performs deeper simpli�cation of the input program. The
main differences between CoreC and CIL are listed in Table C.4.
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CoreC CIL
Converts initialization of a vari-
able in its declaration to a regu-
lar assignment, which requires re-
moving const modi�ers from all
types. This conversion is applied
to global variables as well as lo-
cals. Therefore, initialization of
global variables is performed in a
meta-main function implanted in
the beginning of the original main
function.

Applies the same conversion
only for local variables, whereas
global variables can be initialized
at declaration.

Converts initialization lists and
array initializations to assign-
ments, including assignments to
missing elements.

Applies these conversions only for local variables.

Always removes operators ? → []. Index operator is removed only for pointers, not for arrays.
Converts static variables in func-
tions into global variables. �
� Adds missing function declarations.
Supports only goto-statement
and if -statement with goto's on
its branches.

Supports additional control
�ow constructs: while, break,
continue, switch.

Transforms expressions with
side-effects into sequences of
statements.

Retains ++ operator.

Supplies original code line �

Does not allow nesting, except for �elds.

Allows nested expressions (both
�elds and operators), which re-
duces the number of temporary
variables and new statements in-
troduced by the translation.

Retains scopes. Removes scopes inside functions (requires renaming)
� Removes declarations for unused entities (types, variables).

Always converts expressions
with &&, ‖
into explicit if-statements.

Treatment of boolean expres-
sions and conditions:
(i) convert expression with
&&, ‖ operators into explicit
if-statement.
(ii) duplicate expressions and
statements that depend on
boolean operation.
(iii) to avoid excessive duplica-
tion use a goto for statements that
have more than 5 instructions.

Table C.4: Differences between the features supported by CIL and
CoreC.
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CoreC CIL
Has only a canonic form of if-
statement: if () goto L1 else goto
L2.

Allows arbitrary statements as if-clauses.

Implemented under Windows
with Microsoft Visual Studio
compiler.

Implemented for UNIX systems
with GCC and has support for
special GCC options.

Table C.4: Differences between the features supported by CIL and
CoreC.

C.6 Complexity
The number of new variables introduced during the translation process is linear in the number of
operations in the input program. For each new variable, exactly one assignment is performed.
The only exception is in the translation of && and ‖ operators to an expression, where the new
variable that denotes the value of the expression is assigned in both branches of an if-statement.
The number of new labels is linear in the number of loop (while, do-while, for) and conditional
(if, case) constructs in the program. The translation of initialization lists and array initializations
is linear in the number of initializers.
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