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Abstract

We consider the problem of computing the intersection (meet) of heap ab-

stractions, namely the common value of a set of abstract memory stores.

This problem proves to have many applications in shape analysis, such as

interpreting program conditions, refining abstract configurations, reasoning

about procedures, and proving temporal properties of heap-manipulating

programs, either via greatest fixed point approximation over trace seman-

tics, or in a staged manner over the collecting semantics. However, comput-

ing the meet of heap abstractions is non-trivial: its definition as the least

upper bound of all lower bounds does not lead to an effective algorithm. We

describe a constructive formulation of meet that is based on finding certain

relations between abstract heap objects. The enumeration of those relations

is reduced to finding constrained matchings over bipartite graphs. A sim-

ple heuristic is applied in order to reduce computational overhead, and is

supposed to behave well for common real-life scenarios. We describe a pro-

totype implementation of the proposed algorithm for proving temporal heap

properties via staged analysis. It is applied to obtain compile-time garbage

collection on several small but interesting Java programs.
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Chapter 1

Introduction

This thesis addresses the problem of computing the intersection of abstract

dynamic memory configurations. When applied to a set of elements of some

abstract domain (lattice), this operator—commonly referred to as meet—

yields the greatest lower bound of all operands. Specifically, considering

a pair of dynamic memory (also known as heap) configuration abstraction

elements, the corresponding meet value stands for the set of common stores

that are represented by its operands.

As it is undecidable to prove interesting properties even for reasonable

programs, especially in the presence of dynamic memory allocation with

pointers and destructive updates, the use of abstract interpretation [CC77]

to compute an over-approximation of a program’s operational semantics is

a fundamental practice underlying this work. Thus, while proving some

correct program properties may fail, every proved property is assured to

hold.

4



1.1 The Usefulness of Meet for Heap Analyses

Common wisdom in program analysis is that an efficient join operator, used

to merge information along different control flow paths, is normally sufficient

for solving dataflow problems.1 However, the ability to effectively compute

the meet of abstract elements, namely the abstract value that represents

the common configurations implied by them, is found to be useful in many

circumstances. In particular, it is useful for a variety of problems concern-

ing heap abstractions. For example, reasoning about temporal properties of

heap-manipulating programs, requires combining information which is nat-

urally computable by a forward analysis (e.g., shape information), and such

that is naturally computable by a backward analysis (e.g., reference liveness

information). Such combinations are naturally formulated with meet (the

idea of combining forward and backward analyses using meet is heavily used

elsewhere though, e.g., see [KRS94, SKS00]). A particular instance of this

approach is aimed at an automatic discovery of dead memory objects and

reference fields, such that provides for static garbage collection and improved

runtime GC performance, respectively. An extension of previous work ad-

dressing this problem [SYKS03], this has been the main initiator for this

thesis, and is further discussed in Section 3 and Section 5.

Nonetheless, a meet operator is proved useful for other cases as well. For

example, it can be used to approximate the effect of code blocks, e.g., when

applying interprocedural analysis [JLRS04]. Another interesting application

of the meet is to refine an analysis according to a semantic condition. This

is similar to the focus operation of TVLA [LAS00]. In particular, it ensures

the possibility of conducting strong destructive pointer updates. These and
1Dually, [Kil73, KU76, Tar81] only require a meet operator.
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additional applications are described in Section 3.

1.2 Main Results

We describe a solution to the problem of computing the meet operator for

heap abstraction domains. For generality, abstractions are defined using 3-

valued logic, following [SRW02], which defines a family of heap abstractions.

The main contributions of this thesis are summarized as follows:

• We present an effective algorithm for computing the meet operator

over sets of 3-valued structures. It is derived from a new, alternative

definition for formulating meet for heap abstraction domains, that

is based on finding certain relations between abstract heap objects.

The enumeration of these relations is reduced to solving a generalized

matching problem over bipartite graphs. This induces a straightfor-

ward algorithmic method to obtain meet.

• In the general case, the result of a meet of arbitrary 3-valued struc-

tures might be exponential in the size of the input. Furthermore, even

with respect to the size of the output, a polynomial bound cannot be

proved, as this would reduce to solving NP-complete problems (this is

an immediate consequence of [Yor03]). Nonetheless, in common real-

life cases where operands of meet are proper bounded abstractions

of their represented concrete counterparts, performance may increase

significantly. Such effectiveness is achieved by applying a heuristic to

reduce the expansion of the search involved with finding the formulat-

ing elements of the meet value. Our limited experience indicates that

the algorithm is highly efficient in practice, normally performing with

very low redundancy.
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• An exemplified survey of new applications of meet for proving program

properties, specifically such that address temporal safety properties

by combining forward and backward analyses, and such that involve

refinement of abstract values according to predefined semantic criteria

(see Section 3). In one case, the use of meet is shown to surpass current

techniques used in TVLA (namely, the focus operation [SRW02]), in

the sense that—although somewhat more expressively restrictive—it

is naturally defined and guaranteed to be computable.

• An implementation of the meet algorithm in TVLA—a system for

generating program analysis from operational semantics [LAS00]: this,

along with other implemented auxiliary mechanisms, allows TVLA

users to employ analyses involving meet, in order to solve new heap

concerned problems.

• An instantiation of a meet-based analysis, providing for a prototype for

compile-time garbage collection in Java. This was used as a proof-of-

concept for static verification of memory management properties, and

was applied to several small yet interesting example programs. The

results suggest that the analysis is sufficiently precise for capturing

interesting dynamic store related properties, through static methods.

Additionally, it was used for empirical evaluation of the proposed meet

algorithm, which proved to induce fairly low redundancy by performing

virtually polynomial by the size of the output.

1.3 Running Example

Fig. 1.1 shows a simple program in a Java-like language that processes the

elements of a singly-linked list. This program serves as the running example
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1 class SLL { /∗ Sing ly−l i n k e d l i s t . ∗/
2 public SLL n ;
3 public int val ;
4 } ;
5

6 class Main {
7 public stat ic void main ( S t r ing args [ ] ) {
8 SLL x , y , t ;
9

10 /∗ L i s t c rea t i on . ∗/
11 x = null ;
12 while ( . . . ) {
13 y = new SLL ( ) ;
14 y . va l = . . . ;
15 y . n = x ;
16 x = y ;
17 }
18

19 . . .
20

21 /∗ L i s t t r a v e r s a l . ∗/
22 y = x ; /∗ x = nu l l ; ∗/
23 while ( y != null ) {
24 System . out . p r i n t ( y . va l ) ;
25 t = y . n ; /∗ f r e e y ; or y . n = nu l l ; ∗/
26 y = t ;
27 }
28 }
29 }

Figure 1.1: A program for creating and traversing a singly-linked list.
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in this thesis. Instantiated compile-time garbage collection analyses, that

rely on the use of a meet operator to intersect bidirectional analysis stages,

are able to verify interesting properties: for example, the element pointed

by y in line 25 can be statically deallocated right after t is assigned, thus

assuring reclamation of unused space at the earliest possible time. Alterna-

tively, it can be proved that null assignments to x right after line 22, and to

y.n right after line 25, are safe, thus promoting earlier reclamation of space

by a runtime GC.

1.4 Outline

The rest of the thesis is organized as follows: Section 2 gives an overview of

program analysis of heap-manipulating programs using 3-valued logic. Sec-

tion 3 motivates the need for using a meet operator, in addition to join, for

various abstract interpretation problems, and in particular 3-valued logic

based analyses. In Section 4, we present a new algorithm for meet. Sec-

tion 5 discusses experimental results concerning the actual implementation

of staged bidirectional analysis and its application to obtain compile-time

GC. Related work is discussed in Section 6. Section 7 gives concluding re-

marks. Finally, formal proofs, and a description of implementation related

issues, appear in Appendix A and Appendix B, respectively.
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Chapter 2

3-Valued Shape Analysis
Primer

We give an overview of first order transition systems (FOTS), the formal-

ism underlying the parametric analysis framework of [SRW02]. FOTS may

be thought of as an imperative language built around an expression meta-

language based on first-order logic with transitive closure.

2.1 Concrete Program Configurations

In FOTS, program states are represented using 2-valued logical structures.

Definition 2.1. A 2-valued logical structure over a set of predicates P is a

pair S! = (U !, I!), where:

• U ! is the universe of the 2-valued structure.

• I! is the interpretation function mapping predicates to their truth-value

in the structure: for every predicate p ∈ P of arity k, I!(p) : U !k →

{0, 1}.

Throughout the rest of this thesis we assume that the set of predicates
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Core predicates
eq(v1, v2) Object v1 equals object v2

ref(v) Reference variable ref points to object v
fld(v1, v2) Field fld of object v1 point to object v2

Instrumentation predicates
r[ref,fld](v) Object v is heap-reachable from reference variable ref

through a fld field path of objects
is[fld](v) Object v is pointed by fld field of more than one object
c[fld](v) Object v resides on a cycle along fld field path of objects

Table 2.1: Predicates used to represent shape information in the running
example and their intended meaning.

includes the binary predicate eq, and insist that it is interpreted as equality

between individuals.

In the context of shape analysis, a logical structure is used as a shape

descriptor, with each individual corresponding to a heap-allocated object

and predicates of the structure corresponding to properties of heap-allocated

objects.

In the following, we use pI!(v) as an alternative notation for I!(p)(v),

omitting the superscript I! when no confusion is likely. The notation P(k)

refers to the set of predicates of arity k in P. We denote the set of all 2-

valued logical structures over a set of predicates P by SP
2 . We will mostly

assume that the set of predicates P is fixed and abbreviate SP
2 to S2.

Table 2.1 shows the predicates used to record properties of individuals

for the analysis of our running example. A unary predicate ref(v) holds

when the reference (or pointer) variable ref points to the object v; in our

example ref ∈ {x, y, t}. Similarly, a binary predicate fld(v1, v2) records the

value of a reference (or pointer-valued) field fld; in our example fld ∈ {n}.

We also define additional so-called “instrumentation” predicates to cap-
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ture connectivity properties of individuals. As observed in [SRW02] instru-

mentation predicates provide for more precise information when applying

abstraction on a concrete semantics. In particular, in Table 2.1 we de-

fine instrumentation predicate that capture reachability information (via

the predicate r[ref,fld](v)), sharing information (via the predicate is[fld](v))

and information on cycles in the heap graph (via the predicate c[fld](v)).

In this thesis, program configurations (i.e., 2-valued logical structures)

are depicted as directed graphs. Each individual of the universe is drawn

as a node. The value of a nullary predicate p() is denoted by writing its

name and value in a box labeled “Nullary”. A unary predicate p(u), which

holds for an individual u, appears next the corresponding node. If a unary

predicate represents a reference variable, then it is shown by having an

arrow drawn from its name to the node pointed by the variable. A binary

predicate p(u1, u2), which holds for a pair of individuals u1 and u2, is drawn

as a directed edge from u1 to u2, and labeled p. We make an exception for

eq, which is not drawn since any two nodes are different.

Fig. 2.1(a) shows a concrete program configuration arising after the exe-

cution of the statement t = y.n at line 25 in the running example of Fig. 1.1.

This configuration consists of a 7-elements singly-linked list, where x points

to the first element of the list (i.e., the predicate x(v) holds for the first

element as shown by the edge connecting x and the first element), and the

variables y and t point to the fourth and the fifth element of the list, re-

spectively. In addition, all list elements are reachable from x through of an

n field path of objects (i.e., the predicate r[x, n](v) holds for all the nodes in

this configuration). Finally, the fourth element of the list is reachable from

y through a n field path (i.e., r[y, n](v) holds for this element), and the fifth

12
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n

n
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Figure 2.1: (a) A concrete program configuration arising after the execution
of the statement t = y.n; (b) An abstract program configuration approxi-
mating the concrete configuration in (a).

through seventh elements of the list are reachable from both y and t (i.e.,

both r[y, n](v) and r[t, n](v) hold for these elements).

2.2 Operational Semantics

In FOTS, program statements are modeled by actions, that specify how

statements transform an inbound logical structure into an outbound logical

structure. This is done primarily by defining the values of the predicates

in the outbound structure using first-order logical formulae with transitive

closure over the inbound structure [SRW02].

2.3 Abstract Program Configurations

We now describe the abstractions used to create a finite (bounded) repre-

sentation of a potentially unbounded set of 2-valued structures (representing
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heaps) of potentially unbounded size. The abstractions we use are based on

Kleene 3-valued logic [SRW02], which extends Boolean logic by introducing

a third value 1
2 , denoting values that may be either 0 or 1. In particular, we

utilize the partially ordered set {0, 1, 1
2}, where 0 % 1

2 and 1 % 1
2 , with the

join operation defined by

t1 & t2 =

{
t1 if t1 = t2,
1
2 otherwise.

Definition 2.2. A 3-valued logical structure over a set of predicates P is a

pair S = (U, I), where:

• U is the universe of the 3-valued structure.

• I is the interpretation function mapping predicates to their truth-value

in the structure: for every predicate p ∈ P(k), I(p) : Uk → {0, 1, 1
2}.

A 3-valued logical structure can be used as an abstraction of a larger

2-valued logical structure, that is, a 2-valued logical structure that contain

more nodes. This is achieved by letting an abstract configuration (i.e., a 3-

valued logical structure) contain summary individuals, namely, individuals

that corresponds to one or more individuals in some concrete configuration

represented by the abstract one. Formally, a summary individual u is such

that eqI(u, u) = 1
2 .

In this thesis, 3-valued logical structures are also depicted as directed

graphs, where unary reference predicates, as well as binary, predicates with
1
2 values are shown as dotted edges. Summary individuals appear as double-

circled nodes.

We denote the set of all 3-valued logical structures over a set of predicates

P by SP
3 , usually abbreviating it to S3. We define a preorder on structures,

denoted by %, based on the concept of embedding.

14



Definition 2.3. Let S = (U, I) and S′ = (U ′, I ′) be two structures and let

f : U → U ′ be a surjective function. We say that f embeds S in S′, denoted

S %f S′, if for every predicate p ∈ P(k) and k individuals u1, . . . , uk ∈ U ,

pI(u1, . . . , uk) % pI′(f(u1), . . . , f(uk)) . (2.1)

We say that S is embedded in S′, denoted S % S′, if there exists a function

f such that S %f S′.

Given a 3-valued structure S, γ(S) denotes the set of concrete 2-valued

structures that are embedded in S. We also extend γ for sets of 3-valued

structures, point-wise. In this case, we say that XS ∈ ℘(S3) over-approximates

a set of concrete stores XS′ ∈ ℘(S2) if XS′ ⊆ γ(XS).

2.4 Bounded Program Configurations

Note that the size of a 3-valued structure is potentially unbounded and that

S3 is infinite. The abstractions studied in this thesis rely on a fundamen-

tal abstraction function for converting a potentially unbounded structure—

either 2-valued or 3-valued—into a bounded 3-valued structure. This func-

tion is parameterized by a special set of predicates A, referred to as the

abstraction predicates.

Let A ⊆ P(1) be a set of unary predicates. An individual u1 ∈ U1

in a structure S1 = (U1, I1) is said to be A-compatible to an individual

u2 ∈ U2 in a structure S2 = (U2, I2) iff, for every predicate p ∈ A, either

pI1(u1) % pI2(u2) or pI2(u2) % pI1(u1).

A 3-valued structure is said to be A-bounded if no two distinct individuals

in its universe are A-compatible. An A-bounded structure can have at most

2|A| individuals. We denote the set of all A-bounded, 3-valued structures

15



over a set of predicates P by SP,A
3 ⊂ SP

3 , and allow to omit the superscripts

when no confusion is likely.

The abstraction function βP,A
blur : SP

3 → SP,A
3 converts a (potentially

unbounded) 3-valued structure into an A-bounded, 3-valued structure, by

merging all pairs of A-compatible individuals. Namely, βP,A
blur ((U, I)) =

(U ′, I ′), where U ′ is the set of A-compatible equivalence classes of U , and

the interpretation I ′ of each predicate p ∈ P(k) and each k individuals

c1, . . . , ck ∈ U ′, is given by

pI′(c1, . . . , ck) =
⊔

ui∈ci

pI(u1, . . . , uk) .

Fig. 2.1(b) shows an A-bounded structure obtained from the structure

in Fig. 2.1(a), with A = P(1).

The abstraction function βblur serves as the basis for abstract interpre-

tation in TVLA [LAS00]. In particular, it serves as the basis for defining

various different abstractions for the (potentially unbounded) set of 2-valued

logical structures that may arise at a program point.

2.5 Powerset Heap Abstraction

This abstraction is based on the fact that there can only be a finite num-

ber of bounded structures that are non-isomorphic to one another. Note

that two structures are isomorphic when there exists a bijection between

their universes such that preserve the interpreted values of all predicate for

all tuples of individuals. The powerset abstraction function bounds struc-

tures with respect to a set of abstraction predicates, and removes duplicate

(isomorphic) structures.

For simplicity, we will consider canonic bounded structures. Note that

the individuals of an A-bounded structure are uniquely identified by the set
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of values induced by their interpretation to predicates in A. We refer to such

a set of predicate values associated with an individual as the individual’s

canonical name. For example, the individual pointed by x in Fig. 2.1(b) has

the canonical name {x )→ 1, y )→ 0, t )→ 0, r[x, n] )→ 1, r[y, n] )→ 0, r[t, n] )→

0, c[n] )→ 0, is[n] )→ 0}. A canonic bounded structure is a bounded structure

whose individuals are identified by their canonical names. We refer to the

set of all canonic bounded structures by ŜP,A
3 ⊂ SP,A

3 . Note that for some

given P and A, ŜP,A
3 is finite.

Given some structure S ∈ SP
3 , the canonic abstraction function βP,A

canonic :

SP
3 → ŜP,A

3 first applies βP,A
blur to S, then renames the individuals of the

resulting structure by assigning them with their respective canonical names.

The powerset heap abstraction function α : ℘(S2) → ℘(Ŝ3) is given by

α(XS) = {βcanonic(S) |S ∈ XS} .

We use the Hoare ordering to obtain an order over sets of structures, as

follows: for two sets of structures XS1,XS2 ∈ S3, we write XS1 % XS2 iff

∀S1 ∈ XS1 ∃S2 ∈ XS2 : S1 % S2 ,

where S1 % S2 is given by Definition 2.3. Note that Hoare ordering induces

a preorder, as it may not satisfy antisymmetry.

In order to simplify the exposition of the material presented in this thesis,

we refine the 3-valued structure powerset, thus making the Hoare ordering

antisymmetric, by eliminating “redundant” structures. A set of 3-valued

structure XS is independent w.r.t. embedding if, for all S, S′ ∈ XS,

S % S′ =⇒ S = S′.

We denote by ℘ #$(S3) ⊂ ℘(S3) the set of 3-valued structure independent sets.

The operation ∆ : ℘(S3) → ℘ #$(S3) eliminates redundant structures, such

17



that ∆(XS) = XS′ iff XS′ ⊆ XS and XS % XS ′. The following proposition

summarizes the properties of 3-valued independent powerset abstraction do-

main.

Proposition 2.4. Given the embedding partially ordered set (S3,%), ℘ #$(S3)

forms a complete lattice with respect to Hoare ordering, where:

(a) ⊥ = ∅.

(b) / =
{
(∅, I), ({u}, I 1

2
)
}
, where p

I 1
2 uk = 1

2 for all p ∈ P(k).

(c) For some P ⊆ ℘ #$(S3), the join and meet operators are given by
⊔

P = ∆(
⋃

P )

P =
⊔{

XS′ ∈ ℘ #$(S3)
∣∣ ∀XS ∈ P : XS ′ % XS

}
.

Proof. This is a well-known practice in lattice theory.

In the following, we will use XS1 & XS2 and XS1 0 XS2 as a shorthand

for
⊔
{XS1,XS2} and {XS1,XS2}, respectively.

The following proposition establishes the technique for abstract inter-

pretation used throughout this thesis.

Proposition 2.5. Defining α#$ : ℘(S2) → ℘ #$(Ŝ3) to be α#$ = ∆ ◦ α,

℘(S2)
α!"

!
γ
℘ #$(S3)

forms a Galois connection.

Proof. This is an immediate extension to the Galois connection ℘(S2)
α
!
γ
℘(S3),

see [SRW02].

In the following, we will omit the explicit superscript notation and use

α to denote the redundancy eliminating variant α#$.
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From an algorithmic point of view, a join operator can be efficiently

computed for canonic 3-valued structures, based on immediate matching

of canonical names. However, the definition of the meet operator given in

Proposition 2.4 is not tractable. It is given here as a strawman to demon-

strate the algorithmic challenges involved with computing meet values. This

definition exemplifies that every poset which is closed under join for all sub-

sets, is also closed under meet.
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Chapter 3

The Meet Operator and its
Uses in Program Analysis

This section motivates the need for using meet operators—in addition to

join—for program analysis. Most of the material in this section is well known

and applicable to arbitrary lattices and Galois connection. We demonstrate

it using 3-valued structures so as to motivate the use of the meet algorithm

described in this thesis.

3.1 Partial Interpretation of Program Conditions

The simplest application of meet operators is to partially interpret program

conditions. In some cases, this enables to drastically improve the precision

of program analysis by avoiding some infeasible control flow paths. The

abstract effect of a program condition can be conservatively defined by

XSin 0 XScond ,

where XSin is a set of 3-valued structures representing the concrete states

that may occur before the program condition, and XScond is a set of 3-valued

structures that represents the program condition. In particular, the result is
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Figure 3.1: 3-valued structures representing a program condition, or an
abstraction refinement, where y != null.

⊥ when the condition is not feasible, thus allowing the analysis to omit XSin

from the abstract values after the condition. This also allows the analysis

to prove the absence of errors specified by certain conditions, e.g., cleanness

conditions. When XSin 0 XScond 2= ⊥, a potential error is flagged.

The soundness of partial interpretation is immediate from the Galois

connection ℘(S2)
α
!
γ
℘ #$(S3). In particular, let [[cond]] % S2 be the states for

which a program condition cond holds. Then, for every XSin ∈ ℘ #$(S3), the

following equations hold:

γ(XSin) ∩ [[cond]] ⊆ γ(XSin 0 α([[cond]])) (3.1)

α(γ(XSin) ∩ [[cond]]) % XSin 0 α([[cond]]) . (3.2)

Example 3.1. Fig. 3.1 shows the 3-valued structure XSy != NULL, which

represents the program condition y != NULL at line 23 in the running

example of Fig. 1.1. The partial interpretation of the program condition

y != NULL, when the input structure XSin is the 3-valued structure shown

in Fig. 2.1(b), is obtained by XSout = XSin 0 XSy != NULL, which yields as
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expected XSout = XSin. This is due to the fact that the n field of the object

referenced by y in XSin is not null.

The advantage of using meet is that it provides an effective way to ap-

proximate program conditions. Moreover, in many cases α([[cond]]) can be

easily computed for certain forms of program conditions. For example, it

is straightforward to define 3-valued structures which correspond to pointer

equalities.

3.2 Refining 3-Valued Structures Based on Seman-
tic Conditions

A meet operator can be used to refine a given abstract value, based on

some semantic condition which does not directly correspond to the pro-

gram syntax. For a given fixed set of 3-valued structures X̂S, the operation

F̃ocus cXS : ℘ #$(S3) → ℘ #$(S3) is defined by

F̃ocus cXS(XS) = XS 0 X̂S .

Here, the structures of X̂S are used to refine the abstract values of XS.

Example 3.2. An important issue in pointer analysis is handling destruc-

tive pointer updates. In order to guarantee that the statement y.n = x in

line 15 of Fig. 1.1 is interpreted as a strong update, we may set X̂S to be

the set shown in Fig. 3.1, thus requiring that y points to a definite value.

Notice that this idea is similar to program conditions. In fact, y.n = x is

implemented by requiring that y is not null.

The refinement operation F̃ocus is similar to the Focus operation im-

plemented in TVLA [LAS00], conforming to the specification of [SRW02].

The TVLA operation refines the abstract value according to a first order
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Figure 3.2: (a) a set of structures representing the semantic condition re-
quiring the presence of a last element in a singly-linked list; (b) the set
of structures obtained by applying meet on the set in (a) and the single
structure in Fig. 2.1(b), and enforcing integrity constraints.

logical formula. Since first order formulas are more expressive than 3-valued

abstractions, the TVLA focus is more expressible than the one obtained by

a meet operator and its user interface is more high-level. However, TVLA’s

Focus is incomplete in the sense that it is not well defined for every 3-valued

structure and input formula. This is in line with the fact that the Focus

operation generalizes the problem of first order satisfiability, which is unde-

cidable.
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Example 3.3. Fig. 3.2 shows an example of an abstraction refinement that

can be obtained by a meet operator, but for whom the TVLA Focus is un-

defined (yielding an exception). The semantic condition used requires that

a singly-linked list has a last element, leading to an infinite number of struc-

tures in [SRW02]. Setting X̂S to be the set shown in Fig. 3.2(a), F̃ocus cXS

is applied to the structure shown in Fig. 2.1(b). The finite set of structures

shown in Fig. 3.2(b) is that resulting from the meet-based focus operation.

Note that, an additional step is taken in order to enforce integrity constraints

on the resulted structures, thus sharpening imprecise structures and elimi-

nating inconsistent ones, with respect to a set of constraints implied by the

instrumentation predicates and accompanying integrity rules [SRW02].

3.3 Backward Demand Shape Analysis

Demand shape analysis aims at proving that certain store properties cannot

hold at a particular program point. For example, it is useful for verifying

safety properties of stores, e.g., proving that a null dereference cannot occur

at some program point, for any input.

While such properties can usually be revealed using ordinary (forward)

analysis, previous work [HRS95, DGS98] has shown that demand-driven

(backward) analysis reduces the cost of an exhaustive analysis by answer-

ing a dataflow query, thus potentially requiring only partial expansion of the

involved abstract domain configurations. It is commonly assumed that back-

ward demand analysis can be directly derived from the forward exhaustive

analysis: this can be achieved by reversing the effect of the forward col-

lecting semantics underlying the abstract interpretation analysis—applying

non-deterministic update for variables whose values are changed through
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some program statement—and interpreting the program statements counter

flow-wise. Thus, in order to verify that some program configuration XS

cannot occur at program location pt, it is sufficient to apply the resulted

backward analysis on XS starting at pt, and verify that it yields an infeasi-

ble path, i.e., no valid configuration is associated with the beginning of the

program.

Nonetheless, applying such techniques to (forward-based) shape analysis

[SRW02] yields an imprecise backward demand analysis. Primarily, this is

due to the fact that the preciseness of shape analysis leans on past-related

properties—such as sharing and reachability—whereas those are inaccessi-

ble to a backward analysis. In order to improve the preciseness of back-

ward shape analysis, the collecting semantics can enforce further feasibility

constraints—such that are derived from the program semantics—on stores

associated with certain program locations. For example, in order for a pro-

gram configuration XS to be feasible after a program statement of the form

lhs = rhs, we require that, given XS, both lhs and rhs evaluate to the same

value. This way, irrelevant configurations that might have occurred due to

non-deterministic updating of variable values performed by the backward

analysis, may be filtered out instead of being further propagated.

Clearly, feasibility conditions can be expressed in the form of first order

logical formulas. Nonetheless, similar to what was explained in Section 3.1

and Section 3.2 regarding the use of a meet operator for implementing ab-

straction refinement, such a technique can be naturally applied to the back-

ward case as well: given some fixed set of 3-valued structures X̂Sst repre-

senting the set of feasible configurations after a program statement st, the

set of feasible program stores succeeding st can be conservatively obtained
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by

XSin 0 X̂Sst .

Here, XSin is a set of 3-valued structures representing the concrete states

immediately succeeding st, yielded so far by the analysis.

Example 3.4. Fig. 3.3 demonstrates the use of a meet operator for enforcing

feasibility constraints while performing backward demand shape analysis.

Assume that, for some initial structure, the backward analysis yields the

structure shown in Fig. 3.3(a) right before the statement x = y in line 16 of

Fig. 1.1. The structures shown in Fig. 3.3(b)—as derived from the semantics

of the statement y.n = x in line 15 of Fig. 1.1—represent the feasibility

requirements that apply after that statement. Applying the meet operator

to the structure sets in Fig. 3.3(a) and Fig. 3.3(b) yields the refined, feasible

structure set shown in Fig. 3.3(c), right after the statement in line 15.

3.4 Interprocedural Analysis using Procedure Spe-
cific Abstractions

In [JLRS04], the meet operator is used to conduct functional interprocedural

analysis (see [SP81]). Only the main ideas are sketched here.

Recall that the main problem in the functional approach to interproce-

dural analysis (and in structural dataflow analysis in general, e.g., [Tar81])

is operating on representations of sets of transitions between concrete states.

The effect of a code block B is a binary relation τ ⊆ S2 × S2,

τ =
{
(Sin, Sout) |B,Sin ! Sout

}
,

where B,Sin ! Sout denotes the fact that the execution of B on Sin may

terminate and yield a state Sout. Let τ1 and τ2 be relations on concrete
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Figure 3.3: (a) a 3-valued structure representing a set of configurations that
may arise after the statement y.n = x, as yielded by the non-deterministic
update of the backward collecting semantics applied to the next statement,
x = y; (b) the set of structures representing the feasibility condition asso-
ciated with the statement y.n = x; (c) the resulted feasible structures as
obtained by applying meet on (a) and (b).
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Figure 3.4: A set of dual-vocabulary, 3-valued structures representing the
effect of x = prepend( e, x ). Tagged predicates denote a posteriori proper-
ties.

states. The composition of τ1 and τ2 can be defined as
{

(S1, S3)
∣∣∣∣ (S1, S2, S3) ∈

{
(S1, S2, S

′) | (S1, S2) ∈ τ1, S′ ∈ S2
}

∩
{
(S′′, S2, S3) | (S2, S3) ∈ τ2, S′′ ∈ S2

}
}

.

Every pair of concrete structures can be represented as a dual-vocabulary

structure with two sets of predicates Pin and Pout, representing Sin and Sout,

respectively. This allows the relation τ to be conservatively represented

using a set of dual-vocabulary, 3-valued structure with predicates for the

values before and after a transition. For example, Fig. 3.4 shows a dual-

vocabulary 3-valued structure set representing the effect of prepending an

element pointed by e to a linked list pointed by x, before and after a call

x = prepend( e, x ).

Since meet operations safely approximate intersections of concrete states,

the composition of two dual-vocabulary, 3-valued structures S"
1 and S"

2 can

be computed by
(
S"

1

[
Ptmp ← Pout,Pout ←

1
2
]
0 S"

2

[
Ptmp ← Pin,Pin ← 1

2
])[

Ptmp ← 1
2
]

.

Here, an auxiliary temporary set of predicates Ptmp is used to match the

output of S"
1 with the input of S"

2, thus employing a triple-vocabulary

structure to simulate the composition. The operation S[Pset ← 1
2 ], for

set ∈ {in, out, tmp}, sets the predicates of Pset of the triple-vocabulary struc-

ture S to 1
2 .
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This technique, equipped with some further adjustments aimed to handle

exchange of arguments and return values, is proved useful for interprocedu-

ral analysis by composing the effect of a procedure call—in the form of a

dual-vocabulary 3-valued structure set XSf—on some given program con-

figuration XSin that holds prior to that call. Furthermore, the use of a meet

operator naturally provides for a rather modular approach, in the sense that

neither parties—the caller nor the callee—needs a concrete notion of locally

scoped properties of the other party (e.g., local variables). Hence, setting

these properties to 1
2 provides for an immediate and effective approximation.

3.5 Verification of Temporal Properties via Trace
Abstractions

Proving general temporal properties is challenging since some properties are

only violated on infinite traces. In [Cou02, Theorem 13] it is shown how to

employ abstract interpretation to an upper approximation to the (infinite)

set of possible (infinite) traces. In [YRSW03], an abstract interpretation

algorithm for computing such approximation was given. It represents traces

using 3-values structures. To guarantee soundness, the algorithm starts with

/ and computes greatest fixed points. On every iteration a longer prefix of

the trace is explored. As a result, the set of represented traces is reduced

until a fixed point occurs. The use of a meet operator allows to naturally

implement such an iterative procedure by merging the longer traces with

existing results. For details the reader is referred to [Cou02, Theorem 13].
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3.6 Bidirectional Staged Verification of Temporal
Properties

Certain temporal properties can be efficiently verified without explicitly rep-

resenting traces. For example, a reference variable or object field is dead (i.e.,

not live) at a given program point if on every execution that goes through

this point it is not used before being redefined.1

The (possibly infinite) set of temporal properties is defined as the least

fixed point of the following (not necessarily computable) system of equations:

−→CSentry = CSinit

−→CSl2 =
{
Sout

∣∣ (l1, l2) ∈ E, Sin ∈ −→CSl1, (l1, l2), Sin
−→!Sout

}

←−CSexit = CSfinal ∩
−→CSexit

←−CSl1 =
{
Sin

∣∣ (l1, l2) ∈ E, Sout ∈
←−CSl2, (l1, l2), Sout

←−!Sin
}
∩ −→CSl1

Here, it is assumed that the concrete 2-valued states also record information

on holding temporal properties. The program is represented as a control

flow graph, with entry and exit nodes entry and exit, respectively, and a set

of control flow edges E. CSinit is the initial set of concrete stores at the entry

location, such that include all possible values associated with temporal prop-

erties. CSfinal represents the set of states in which all temporal properties

are set to their final values (that is, their values upon termination of the exe-

cution). We write (l1, l2), Sin
−→!Sout to denote the transformation induced by

the forward execution of the statement or condition at edge (l1, l2). Program

conditions are interpreted according to the standard semantics. Note that

the forward semantics non-deterministically sets values of temporal proper-

ties. We write (l1, l2), Sout
←−!Sin to denote the transformation induced by the

1This is somewhat similar to persistent [MP89] properties that continuously hold from
a given point in the trace.
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backward execution of the statement or condition at edge (l1, l2). This se-

mantics sets the values of the changed temporal properties. Variables whose

values are changed, are updated non-deterministically.

The above system of equations does not terminate for programs with

loops. Therefore, an upper approximation to this system is conservatively

computed by representing sets of states using 3-valued structures. Extra

predicates store values of tracked temporal properties. Moreover, the ability

to define unary predicates allows tracking of an unbounded number of tem-

poral properties. Both forward and backward executions are conservatively

executed on 3-valued structures. However, as backward reasoning uses re-

sults obtained by the forward counterpart, it is considered a secondary stage

taking place after the forward reasoning is complete. Finally, intersection

(∩) is over-approximated using meet (0).

Example 3.5. Bidirectional staged analysis can be applied to obtain compile-

time garbage collection information. In particular, we are interested in iden-

tifying the first point in the trace where an object is not further used, and

therefore may be safely deallocated by a free statement. Thus, the backward

execution of a statement tracks the use of objects. Technically, our analysis

maintains a use(v) predicate to track object future usage information.

An object v is denoted used in a statement or a condition at edge (l1, l2),

if a reference expression e, that evaluates to v, is used for dereference at that

statement. Thus, in such a case, the backward execution of the statement

(l1, l2), Sout
←−!Sin records in Sin the fact that v is used, by setting use(v) to 1.

As mentioned, the forward execution of a statement non-deterministically

sets values to use(v).

Fig. 3.5(a) shows one of the structures that arise before the statement
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Figure 3.5: 3-valued structures representing sets of program configurations,
including heap object and reference field liveness, that arise (a) before the
execution of the statement t = y.n; and (b) after it is executed.
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t = y.n at line 25 of Fig. 1.1, and Fig. 3.5(b) shows one of the structures that

arise after that statement. The object referenced by y is still used before the

statement, as use(v) holds for the individual referenced by y. Nonetheless,

the object referenced by y is not (further) used after that statement, as

use(v) does not hold for the individual referenced by y. Verifying that

use(v) does not hold for any individual v referenced by y, for all structures

that may arise after the said statement, we conclude that free y may be

inserted after the statement t = y.n to free the object referenced by y, as it

is no longer used in the program. Moreover, since for all structures arising

before that statement, the object referenced by y is still used, placing a

free y after that statement will free the space referenced by y at the earliest

possible time.

Example 3.6. Another application of bidirectional staged analysis is the

computation of heap reference liveness, providing for compile-time optimiza-

tion of runtime garbage collection effectiveness. For each object reference

field, we identify whether it is live at any point in the trace, meaning that

it may be used, prior to being redefined, after that point. We are inter-

ested in spotting points in the trace where an object reference field becomes

dead, and therefore may be assigned a null value, thus significantly reduc-

ing potential GC drag time [SKS01]. Here again, the backward execution of

the statement tracks the uses (dereference) and redefinitions (assignment)

of object fields. In particular, for each reference field f which is a member

of some object v, the predicate live[f ](v) is used to record future use and

re-definition information.

A reference field f of an object v is denoted used in a statement or

a condition at edge (l1, l2), if a reference expression e—which is not an l-
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value—refers to the value of f . In this case, the backward execution of

the statement (l1, l2), Sout
←−!Sin sets live[f ](v) to 1. Otherwise, f is denoted

redefined if it is being assigned a new value, namely, being referred to by an

l-value expression e. In this case, the backward execution of the statement

sets live[f ](v) to 0. Here as well, forward execution non-deterministically

sets values to live[f ](v).

Fig. 3.5(a) shows one of the structures arising before the statement

t = y.n at line 25 of Fig. 1.1, and Fig. 3.5(b) shows one of the structures

arising after that statement. The n field of the object referenced by y is used

at that statement, as it is reflected in live[n](v) which holds for the individ-

ual referenced by y. However, that field is not being used any further prior

to being redefined after the statement, as live[n](v) does not hold for the

individual referenced by y. Verifying that live[n](v) does not hold for any

individual v referenced by y, for all structures arising after the statement,

it follows that a y.n = null statement may be inserted after t = y.n, thus

dropping the redundant reference and allowing the runtime GC to reclaim

the space of the object held by y.n, in a timely manner. Here as well, since

the n field of the object pointed by y is live for all structures arising before

the statement t = y.n, setting it to null right after that statement releases

the reference as soon as possible.

Section 5 demonstrates bidirectional staged analysis as it was applied to

conservatively approximate the liveness of heap objects and reference fields,

thus implementing a proof of concept for the above examples.
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Chapter 4

Computing Meet for Sets of
Heap Abstractions

This section describes a proposed implementation of the meet operator for

the powerset domain of 3-valued structures with Hoare ordering.

Since the applications concerned apply meet to a finite number of sets,

it suffices to consider the problem of computing meet for two sets. The

following lemma reduces the problem of computing the meet of two sets to

the problem of computing the meet of a pair of single-element (singleton)

sets.

Lemma 4.1. Let X and Y be two elements of a partially ordered powerset

with Hoare ordering. Then

⊔

x∈X
y∈Y

{x} 0{ y} = X 0 Y .

Proof. See Appendix A.1.

Since the join operation is known to be efficiently computable for do-

mains of canonic abstraction, in the rest of this section we only consider the

following problem.

35



Problem 4.2. Given two structures S1 = (U1, I1) and S2 = (U2, I2) over a

fixed set of predicates P, compute {S1} 0 {S2}.

4.1 Computing Meet for a Pair of Abstract Heaps

We establish a connection between the structures that comprise the result

of the meet operation and certain relations that hold between the input

structures. We first define the meet of two Kleene values t1 and t2 by

t1 0 t2 =






t1 if t1 % t2,

t2 if t2 % t1,

⊥ otherwise.

Definition 4.3 (Meet Correspondence). Given two structures S1 =

(U1, I1) and S2 = (U2, I2), a relation M ⊆ U1×U2 is a meet correspondence

between S1 and S2 if it is (a) full, i.e.,

u1 ∈ U1 =⇒ ∃v2 ∈ U2 : u1 M v2

v2 ∈ U2 =⇒ ∃u1 ∈ U1 : u1 M v2 ,

and (b) consistent, i.e., for every predicate p of arity k, and a pair of k-

tuples of nodes u1, . . . , uk ∈ U1
k and v1, . . . , vk ∈ U2

k, such that ui M vi for

i = 1 . . . k,

pS1(u1, . . . , uk) 0 pS2(v1, . . . , vk) 2= ⊥ .

We can use a meet correspondence to construct a common lower bound

of two structures in the following way.

Definition 4.4. Given a meet correspondence M between two structures,

S1 = (U1, I1) and S2 = (U2, I2), the operation S1 0M S2 yields the M -

intermediate structure S = (U, I) of S1 and S2, where

U = M ,
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and the interpretation for any predicate p of arity k and any k-tuple of nodes

(u1, v1), . . . , (uk, vk) ∈ Uk is given by

pS((u1, v1), . . . , (uk, vk)) = pS1(u1, . . . , uk) 0 pS2(v1, . . . , vk) .

Clearly, from Definition 4.3 we get that an M -intermediate structure is

well-defined for every meet correspondence M .

Proposition 4.5. Given two structures S1 = (U1, I1) and S2 = (U2, I2), and

a meet correspondence M ⊆ U1×U2, let S = (U, I) be their M -intermediate

structure obtained by S1 0M S2. Then, S % S1 and S % S2.

Proof. See Appendix A.2.

We are now ready to characterize the result of the meet operation in

terms of meet correspondences.

Lemma 4.6. Let MS1,S2 ⊆ ℘(U1 × U2) denote the set of meet correspon-

dences between two structures, S1 = (U1, I1) and S2 = (U2, I2). Then

⊔

M∈MS1,S2

{S1 0M S2} = {S1} 0 {S2} .

Proof. See Appendix A.3.

Lemma 4.6 already gives us a naive algorithm to compute a meet value by

enumerating all relations M ∈ U1×U2, and—for each of them which is a meet

correspondence—compute S1 0M S2. Unfortunately, this straightforward

approach is not tractable, since possibly many of the 2|U1|×|U2| enumerated

relations are not meet correspondences. Our proposed algorithm efficiently

enumerates a superset of meet correspondences, but such that contains only

very few redundant relations.
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function Meet(S1 = (U1, I1), S2 = (U2, I2))
/* Verify consistency of nullary predicates. */
if exists p ∈ P(0) such that pS1() 0 pS2() = ⊥ then return ∅
/* Form candidate match edges by unary correspondence. */
E ← ∅
foreach u ∈ U1, v ∈ U2 do

if pS1uk 0 pS2vk 2= ⊥ for all p ∈ P(k), k > 0 then
E ← E ∪ {(u, v)}

/* Set matching quotas based on summary property. */
Qa, Qb ← {w )→ 1 |w ∈ U1 ∪ U2}
foreach u ∈ U1 do

if eqS1(u, u) = 1
2 then Qb ← Qb[u )→ max{degree(u,E), 1}]

foreach v ∈ U2 do
if eqS2(v, v) = 1

2 then Qb ← Qb[v )→ max{degree(v,E), 1}]

/* Find matchings and filter meet correspondences. */
XS ← ∅
foreach M ∈ EnumAbMatch((U1 ∪ U2, E), Qa, Qb) do

if M ∈ MS1,S2 then XS ← XS & {S1 0M S2}
return XS

Figure 4.1: An algorithm for computing the meet of structures S1 and S2

over a fixed a set of predicates P.
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4.2 Enumerating Meet Correspondences

An algorithm for computing the meet of two structures, S1 = (U1, I1) and

S2 = (U2, I2), over a set of predicates P, is shown in pseudo-code in Fig. 4.1.

The algorithm views the problem of finding meet correspondences as finding

constrained matchings in the complete bipartite graph (U1, U2, U1 × U2),

such that satisfy the fullness and consistency constraints, as detailed in

Definition 4.3. In order to find all constrained matchings, the algorithm

uses an incremental approach to solve the constraints, as follows.

Verifying consistency of nullary predicates. A preliminary check is used

to quickly determine whether the two structures disagree on a nullary

predicate (in such a case the result of the meet is an empty set).

Solving consistency for unary properties. By unary property of an in-

dividual u, we consider the interpretation of any predicate of arity

k > 0 over the k-tuple uk. By checking every pair (u, v) ∈ U1 ×U2 for

consistency over all unary properties, the algorithm avoids the formu-

lation of redundant E edges: clearly, if for some u ∈ U1 and v ∈ U2,

there exists a predicate p of arity k > 0 such that pS1uk 0 pS2vk = ⊥,

then (u, v) cannot be a part of any meet correspondence.

Solving fullness constraint. Observing that, in any meet correspondence—

due to the special nature of the equality predicate eq—a non-summary

individual of one structure can relate to at most one individual of the

other structure, while every node must be matched at least once in

order to satisfy the fullness constraint, the algorithm generates the fol-

lowing problem: given the edge set E formed in the previous stage, as-

sociate a matching range of [1, 1] and [1,degree(u,E)] to non-summary
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and summary individuals, respectively. Then, find all matchings in the

graph (U1 ∪U2, E) that satisfy these quotas. Clearly, any such match-

ing satisfies the fullness constraint. The solution to this problem is

discussed in Section 4.3.

Solving remaining consistency constraints. This is achieved by check-

ing consistency over all predicates of arity k > 1, for every matching

computed by the previous stage.

Having formed and verified all meet correspondences incrementally, the

algorithm then constructs and collects (join) all intermediate structures in-

duced by those correspondences, as described in Definition 4.4.

4.3 Enumerating Full b-Matchings in a Bipartite
Graph

We consider the following problem of graph matching.

Problem 4.7. Given an undirected graph G = (V,E) and minimal and

maximal quotas on nodes Qa, Qb : V → Z, such that Qa(u) ≤ Qb(u) for all

u ∈ V , find all M ⊆ E such that Qa(u) ≤
∣∣{(u, v) ∈ M}

∣∣ ≤ Qb(u) for all

u ∈ V .

This problem generalizes the problem of enumerating b-matchings, by

also assigning lower matching quotas to nodes.

Considering an input to Problem 4.7, we say that a node in the graph

is violated if its lower quota exceeds its degree, thus such quota cannot be

satisfied by any matching. We say that a node is saturated if its upper quota

is not greater than zero, thus none of its incident edges can be included in

any matching. A node of zero degree is said to be isolated. We now consider

a general strategy to solve the generalized matching enumeration problem.
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Lemma 4.8. Given an input to Problem 4.7, consider the following strategy:

1. If the graph is empty, return a set consisting of the empty matching.

2. Select some node u ∈ V .

3. If u is violated, return an empty set.

4. If u is either saturated or isolated, remove u and its incident edges

from the graph, and return the solution to the new problem.

5. Select some edge e ∈ E that is incident with u.

6. Return the union of the solutions of the following sub-problems:

(a) e-exclusive matchings: remove e from the graph, and solve the

new problem.

(b) e-inclusive matchings: if e’s other endpoint is not saturated, then

remove e from the graph, decrement the lower and upper quotas

of both endpoints by 1, solve the new problem, and add e to any

matching in the returned solution.

Then, applying this strategy yields a solution to the problem.

Proof. See Appendix A.4.

While an algorithm to enumerate generalized matchings can be imme-

diately derived from the strategy described in Lemma 4.8, it does not nec-

essarily expand the search space in an effective manner. In particular, the

selection of nodes for expansion may significantly speed up the convergence

of the recursion, as demonstrated by each of the following policies:
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1. Determining terminal cases prunes entire sub-portions of the search

space, hence violated nodes should be selected at highest priority.

2. Removing redundant nodes reduces the overhead induced by the pres-

ence of their incident edges, and so they should be selected and re-

moved (along with their incident edges) at high priority.

3. For all other cases, nodes whose induced forking degree of the search

space is minimal are considered better candidates for selection, as their

selection at early stages suggests that the search process commits to

mandatory edges at higher priority. This way, the potential volume of

the expanded search suffix may be significantly reduced.

Our proposed solution associates an additional value with each node in

the graph, and selects nodes with such minimal associated value at high

priority.

Definition 4.9. Given an input to Problem 4.7, we define the residual

combinatorial degree of a node u to be

RCD(u,E,Qa, Qb) =
∣∣∣
{
E′ ⊆

{
(u, v) ∈ E

} ∣∣∣ Qa(u) ≤ |E′| ≤ Qb(u)
}∣∣∣

Put in another way, the RCD of a node, with respect to an edge set and

lower and upper matching quotas, is the number of subsets of its incident

edges set that satisfy its quotas. In the case of ordinary matching, where

both quotas are 1 for every node, this value equals the node’s degree. Clearly,

only violated nodes have an RCD value of 0, and therefore will be selected at

highest priority. Redundant nodes have an RCD value of 1, and so do nodes

with a single incident edge and a lower quota of 1—indicating a mandatory

edge for any matching. For all other cases, this heuristic prefers nodes of

lower degrees, but also nodes of lower quotas.
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function EnumAbMatch((V,E), Qa, Qb)
/* If graph is empty, return empty matching. */
if V = ∅ then return {∅}
/* Select some node of minimal RCD. */
Let u be a node in minRCD(u,E,Qa(u),Qb(u)) V

/* If node is violated, return no matching. */
if degree(u,E) < Qa(u) then return {}
/* If node is isolated / saturated, throw and recurse. */
if degree(u,E) = 0 or Qb(u) ≤ 0 then

V ← V " {u}
E ← E " {(u, v) ∈ E}
return EnumAbMatch((V,E), Qa, Qb)

/* Select some edge and throw it from edge set. */
Let (u, v) be an edge in E
E ← E " {(u, v)}
/* Recurse without selected edge. */
M ← EnumAbMatch((V,E), Qa, Qb)

/* Decrement quotas, recurse, and add selected edge. */
if Qb(v) > 0 then

Qa ← Qa[u )→ Qa(u) − 1, v )→ Qa(v) − 1]
Qb ← Qb[u )→ Qb(u) − 1, v )→ Qb(v) − 1]
M′ ← EnumAbMatch((V,E), Qa, Qb)
M ← M∪

{
M ∪ {(u, v)} |M ∈ M′};

return M

Figure 4.2: An algorithm for enumerating all matchings in a graph with
lower and upper node matching quotas.
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Fig. 4.2 shows the pseudo-code of our proposed heuristic algorithm,

which applies the minimal RCD heuristic on node selection of the strategy

described in Lemma 4.8. The correctness of this algorithm is immediately

inherited from that of its underlying strategy.

4.4 Correctness

The following theorem establishes the correctness of the meet algorithm

described in Section 4.2.

Theorem 4.10. Given an input to Problem 4.2, the result of Meet(S1, S2)

is a correct solution.

Proof. As the algorithm joins M -intermediate structures for all M ∈ MS1,S2 ,

following Lemma 4.6 it yields {S1} 0{ S2}.

4.5 Performance

In the general case, the computation of meet for a pair of arbitrary 3-valued

structures might yield a result that is exponential in the size of the input,

due to combinatorial explosion induced by 1
2 predicate values. Hence, the

efficiency of an algorithm to compute meet for a 3-valued structure powerset

domain is measured with respect to the size of the output. But, even so it

appears that polynomial bounds by the size of the output can not be proved:

a polynomially bound solution to the 3-valued structure meet problem could

easily be reduced to solve the 3-colorability decision problem in polynomial

time, thus is NP-hard. Note that, this is in line with (and an immediate

consequence) of [Yor03].

Nonetheless, as the surveyed applications in general—and the experi-

mental part concerning bidirectional staged analysis in particular—mostly
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manipulate canonic (or near-canonic) bounded structures that are proper

α-images of their represented concrete structures, the enumeration of meet

correspondences is simplified: unary abstraction predicate values determine

strict correspondence between non-summary individuals, thus their match-

ing induces no degree of freedom through the search procedure. Since,

thanks to the heuristic used, those are matched earlier through the search, it

follows that the expansion of the search space due to matching alternatives

for summary individuals is postponed to the tail of the recursive search pro-

cess, thus keeping the search tree mostly linear and minimizing redundant

paths.

Indeed, the effectiveness of the heuristic approach has been empirically

tested in several settings. More specifically, its performance was measured

with respect to two sources of redundancy that might occur during the

computation:

1. The percentage of non-meet-correspondences—such that do not satisfy

consistency for all tuples of individuals over all predicates—out of all

unary-based correspondences, as computed by EnumAbMatch. This

indicates the level of redundancy involved with the computation of

correspondence relations that is based on unary property inconsistency

elimination only.

2. The percentage of non-beneficial recursive steps—whose returned value

is an empty set—out of total recursion steps. This indicates the effec-

tiveness of the heuristic approach that is applied to the enumeration

strategy.

Fortunately, throughout gained experimental experience, both ratios are

very close to 0 (see Section 5). This suggests that the described algorithm
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performs virtually polynomial by the size of the output, with respect to some

empirically obtained redundancy factor. The exact computational overhead

is determined by the actual implementation choices taken, specifically those

used for solving full b-matchings enumeration, as follows:

1. Priority queues, used to maintain order and obtain nodes with minimal

RCD values, as well as supporting an operation of RCD value key

decrement upon decreasing of node quotas and edge removals.

2. The actual computation induced by RCD value updates.

Alternatives for both selections, as well as details of the actual implementa-

tion chosen and possible performance improvements, are further discussed

in Appendix B.

Finally, the proposed algorithm also outperforms several other imple-

mentations of the meet operator, as described in Section 6.
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Chapter 5

Applications and
Experimental Results

Following Section 3.6, the use of a meet operator for bidirectional staged

analysis has been applied to conservatively approximate compile-time mem-

ory management related properties. The following sections describe two in-

stances of this approach, the former aimed at allowing compile-time garbage

collection and the latter promoting earlier reclaiming of unused space by a

runtime garbage collector. Finally, a prototype implementation for static

GC of Java programs is described, as well as actual experimental results for

a set of small but interesting Java programs.

The instantiation of those analyses leans on an implementation of the

proposed meet algorithm, as well as additional auxiliary mechanism, in

TVLA [LAS00]. These are described in Appendix B.

5.1 Free Analysis

The analysis described in this section aims at providing for static garbage

collection in Java programs, thus substituting a runtime GC mechanism.

This feature is most desirable for lightweight Java-based platforms, such as
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JavaCard, where the penalty induced by runtime GC is intolerable due to

limited space and processing power. Such platforms normally support an

explicit free directive, and require static deallocation schemes for dynamic

memory objects.

The actual instantiation involves a bidirectional, dual-stage analysis to

conclude future usage information for each heap allocated object, at all pro-

gram locations, as it was sketched in Example 3.5. The first (forward) stage

tracks shape related information (see Table 2.1) but keeps the use(v) predi-

cate value to be 1
2 for all individuals v, by that representing non-deterministic

interpretation of it. The second (backward) stage assumes false (0) value for

use(v) for all v, then updates its value where a dereference expression evalu-

ates to v. This stage updates shape (history) related predicates to 1
2 where

they are affected by a backward execution of a statement (e.g., assignments),

thus representing non-deterministic interpretation of those predicates.

An auxiliary phase, taking place at the end of the analysis, conserva-

tively yields the actual locations where an object reference—in the form of

a reference variable or a one-level field dereference—can be issued an explicit

free directive. This is obtained by verifying that use(v) does not hold for

any individual v pointed by it, for all structures that may arise at that loca-

tion. However, in order to avoid redundant free statements (e.g., generating

a sequence of free statements all along some objects “death” period), this

information is only generated for particular program locations, where usage

information is known to be affected, namely such involving the evaluation of

a dereference expressions. Note that such a simple heuristic in conservative,

as it might miss locations that are verified for a safe free statement where

particular branch involving patterns are involved. Nonetheless, a more rig-

orous approach—namely, such that examines the relations between pairs of
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consecutive program locations around a conditional statement—can easily

overcome this shortcoming.

5.2 Nullify Analysis

Another analysis concerning static reasoning on garbage collection is in-

tended to assist a runtime garbage collector by dispensing object references

that are dead at some program location, namely references that are not

used prior to being re-assigned throughout any execution path starting that

location. As garbage detection in Java is based on dynamic reachability

analysis and has no notion of possible future usage, previous work [SKS01]

has shown that the reclamation of unused space might suffer considerable

delays incurred by dead references. While static (reference) variable liveness

analysis is a well-known technique in program analysis, we are interested in

its extension for object reference fields.

Here again, bidirectional staged analysis is used to approximate reference

field liveness information for each heap allocated object, at all program lo-

cations, as described in Example 3.6. Similar to the above (see Section 5.1),

live[f ](v) predicate values are retained 1
2 (non-deterministic) during the for-

ward stage of the analysis, and are updated by the backward stage to true

(1) or false (0) depending on the use or definition of reference expressions

evaluating to the f field of individual v, respectively.

As in Section 5.1, an auxiliary phase is applied to conservatively yield

the actual locations where, for some reference variable x and reference field

f, an object reference field x. f may be assigned a null value. This is achieved

by verifying that live[f ](v) does not hold for any individual v for which x

holds, for all structures that may arise at each of these locations. Similarly,
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a heuristic is applied to yield only these locations where the liveness of a ref-

erence field may be affected. Similar drawbacks and possible compensation

hold for this case as well.

5.3 Prototype Implementation

The implemented prototype is derived from the one described in [SYKS03],

and is based on meet capable version of the TVLA framework [LAS00] (see

Appendix B). The prototype consists of the following components:

A front-end, which translates a Java program (.class file) into a TVLA

program. It is based on the J2TVLA translation engine, written by

Roman Manevich, and uses the Soot framework [VRHS+99].

A bidirectional staged analyzer, which applies either of the above de-

scribed analyses to the translated TVLA program. A dedicated speci-

fication is used to instantiate the appropriate static analysis algorithm,

as per the required analysis.

A back-end, which traverses the analysis results and extracts free or nul-

lify information, respectively. It is implemented using TVLA libraries.

5.4 Experimental Results

Table 5.1 shows our benchmark programs. The first four programs involve

manipulations of singly-linked lists. DLoop and DPairs involve manipula-

tions of doubly-linked lists. small−javac is motivated by [SKS01], where the

the code of the JavaC compiler is manually rewritten, issuing null assign-

ments to heap references. Our nullify analysis is able to yield the manual

rewriting automatically.
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Program Description
Loop Construct and traverse a linked list (Fig. 1.1)
CReverse Constructive list reversal
Delete Delete an element from a list
DLoop Doubly-linked list variant of Loop
DPairs Doubly-linked list traversal in pairs
small−javac Emulation of JavaC’s parser facility

Table 5.1: description of the benchmark programs.

For all benchmark programs, both our free and nullify analyses man-

aged to determine exact object use and reference field liveness, respectively.

Thus, they yielded accurate free and nullify information, respectively, such

that allows the reclamation of unused space at the earliest possible time. For

example, considering the program in Fig. 1.1, the free analysis was able to

determine the safe deallocation of the object pointed by y right after line 25,

thus deallocating list elements as soon as they are being traversed. Our nul-

lify analysis was able to verify the safe null assignment to y.n after line 25,

which leads—together with the safe null assignment to x after line 22 (con-

cluded easily by a traditional stack variable liveness analysis)—to earlier

reclamation of further unused objects by the runtime garbage collector. In

CReverse, the analyses show that the elements of a linked list can be deallo-

cated or nullified as soon as they are copied to the reversed list. In Delete,

it is shown that an object can be freed as soon as it is taken out of the list,

although it is still reachable from a temporary variable. Similar properties

are proved for the doubly-linked lists programs as well.

Table 5.2 shows the costs of the analyses as they were applied to the

benchmark programs. It only considers the core analysis done by TVLA, as

front-end and back-end computational overhead is insignificant compared to
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Program Forward Backward Meet redundancy %
Time Space Time Space Matching Recursion

Free analysis
Loop 4.14 1.20 8.80 4.42 0.0 (0.0) 2.0 (0.7)
CReverse 9.42 2.64 22.57 12.02 0.0 (0.0) 1.4 (0.5)
Delete 28.50 5.71 119.89 18.90 0.8 (0.02) 1.1 (0.05)
DLoop 6.82 1.72 13.20 8.11 0.0 (0.0) 2.3 (0.6)
DPairs 14.47 2.93 20.83 11.20 0.0 (0.0) 1.1 (0.3)
small−javac 656.75 26.18 543.17 51.33 17.0 (0.6) 5.9 (0.5)
Nullify analysis
Loop 4.00 1.21 9.21 4.40 0.0 (0.0) 1.7 (0.7)
CReverse 9.71 2.73 22.61 11.59 0.0 (0.0) 1.4 (0.5)
Delete 28.10 5.82 119.32 19.13 0.7 (0.02) 1.1 (0.06)
DLoop 6.71 1.74 12.12 8.16 0.0 (0.0) 1.3 (0.6)
DPairs 14.58 3.20 25.79 11.66 0.0 (0.0) 0.9 (0.2)
small−javac 607.44 27.19 573.58 52.87 17.6 (0.7) 6.2 (0.5)

Table 5.2: analyses costs for the benchmark programs. Time is measured in
seconds, and space is measured in MB. Meet redundancy shows the percent-
age of redundant computations, denoting both overall and average case (in
parentheses), w.r.t. redundant enumerated matchings as well as redundant
recursion steps through matchings enumeration.
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that of TVLA. The experiments were done on an AMD Athlon XP 2800 ma-

chine with 512 MB of memory, running Windows XP. Several observations

can be made:

• Obviously, time and space consumption is strictly correlated between

the two analyses, as they both use very similar abstractions (only the

object use and field liveness predicates differ), and consequently their

induced transition formulas resemble.

• In most cases, the backward stage takes significantly more time com-

pared to the forward stage (up to a factor of 4 for the Delete program).

This can be attributed to the naive implementation of the meet algo-

rithm, which uses explicit recursion for graph matchings enumeration,

thus causing excess overhead as whole graphs are being duplicated

through recursive calls. Indeed, analysis statistics indicate that the

meet operator has the lion’s share concerning this increase in time

(taking up to 70% of the backward analysis time for the Delete pro-

gram). This also explains the excess memory consumption experienced

in the backward stage. (See Appendix B for a discussion of implemen-

tation alternatives.)

• Redundancy measurement results of the meet algorithm (following

Section 4.5) indicate that—in most benchmark programs—the over-

all percentage of non-meet-correspondence enumerated matchings is

kept below 1% (and is literally zero for most cases), and that the

percentage of non-beneficial recursive steps is kept below 2.5% (with

average case below 1%). For the small−javac case, the analyses suf-

fer from significantly greater overall redundancy (up to 17.6% non-

meet-correspondence matchings, and up to 6.2% redundant recursion
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steps). However, the low average case measures (below 0.7% non-

meet-correspondences, and 0.5% redundant recursion steps), imply

that worst-case redundant cases are singular and happen quite rarely.

These results strengthen our intuition that the proposed heuristic in-

deed promotes fast convergence of meet correspondences enumeration,

and is highly suitable for this kind of analyses.

• While the variance among analyses times of the benchmark programs

generally corresponds to that experienced in earlier work [SYKS03],

where single queries were manually issued to the same benchmark pro-

grams, it appears that time overhead has increased by an order of mag-

nitude. As this unfortunate performance degradation is unexpected—

analysis complexity has been reduced by most aspects compared to

the above work—we believe that it can be attributed to the changes

that the TVLA system has gone through since then, such as the use

of differencing to automatically update instrumentation predicates.

Hence, it is evident that our meet algorithm is practically highly efficient,

in the asymptotic sense, as it induces very low redundancy rates compared

to the actual size of the output. Also, it is shown that a meet-based, bidi-

rectional staged analysis is capable of capturing precise heap object use

and field liveness information, hence is suitable for automatic discovery of

garbage collection information during compile-time. Nonetheless, the cur-

rent implementation involves considerable computational overhead, partly

due to circumstantial implementation choices in the meet algorithm (that

can mostly be overridden by alternative means), as well as performance and

scaling problems that are framework inherent.
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Chapter 6

Related Work

6.1 Computing Meet of Heap Abstractions

In [JLRS04], a meet operator is used to instantiate interprocedural shape

analysis (see Section 3.4). Two algorithms are presented for computing meet

over the powerset domain of canonical abstraction.

The first algorithm describes a naive approach to obtain meet for canoni-

cally bounded structures, by first substituting them with their corresponding

sets of canonicalized structures,1 and then computing meet in pairs over the

expanded sets. Computing meet for a pair of canonicalized structures takes

polynomial time. However, canonicalization might induce an exponential in-

crease in the size of the input sets. Contrary to that, our algorithm does not

assume the input structures to be canonically bound, hence it corresponds

to a meet operator for the general-case 3-valued structure powerset domain,

thus providing better preciseness for problems involving structures that are

(temporarily) not canonic (the staged bidirectional analysis in Section 3.6 is

an actual example). Furthermore, as canonicalization is completely avoided,

it keeps computational cost closer to the actual size of the output. A triv-
1Canonicalization is a semantic reduction, akin to substituting abstract elements by

their respective set of join-irreducibles.
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ial example is applying meet to a pair of identical sets, containing a single

canonically bounded structure: while the result is clearly the same set, and

is formulated by our algorithm by directly revealing the single meet corre-

spondence that holds, the first algorithm of [JLRS04] would expand a whole

set of canonicalized structures, that collapse back to the same single struc-

ture. Note that, for a pair of properly canonicalized structures, the two

approaches perform essentially the same.

The second proposed algorithm obtains a meet operator by transform-

ing one of the operand structures into a dynamic set of constraints, then

applying it to the other operand. While generally more efficient than the

first algorithm, in order to retain feasibility the algorithm avoids the gen-

eration of certain constraints, implying that the yielded result is in fact an

over-approximation of the actual meet value.

In [KR04], a class of formulas that precisely characterize canonically

bounded structures, and form a Boolean algebra, is presented. Computing

meet for a set of formulas of this class is done in an analogous way to the

algorithm in [JLRS04]: first, a normalization step is applied to the formulas,

similar to the canonicalization step in [JLRS04]; then, conjunction is used

to compute the result.

In [YRS04], a symbolic (semi-) algorithm for meet is presented. The

algorithm converts canonicalized structures to formulas, then uses logical

conjunction to compute the result in the domain of formulas. Converting

the resulting formula back to the domain of structures is done with a theo-

rem prover. Such a symbolic algorithm suggests that a finer concretization

function than the one defined in Section 2 can be used. Specifically, this

concretization function also accommodates a set of integrity constraints C,
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and is defined by

γC(S) =
{
S′ | S′ % S, S′ |= C

}
.

The advantage of the symbolic algorithm lies within the fact that it provides

the most precise result with respect to γC , and by that is apt to analyses

that require ultra-high precision. However, its performance can be quite

low, due to the use of canonicalization and a potentially large number of

calls to a theorem prover.

6.2 Enumerating Matchings in Graphs

The problem of finding matchings in graphs has been extensively studied

over the years. In particular, the generalized variant of finding a b-matching,

given some quota function b : V → N on nodes, can be modeled by a

constrained class of integer linear programming problems, such that can be

solved in polynomial time [EJ70]. Clearly, the problem of finding a matching

such that satisfies lower node quotas as well, can be reduced to b-matching

in a straightforward manner, by doubling the number of inequalities.

This implies that the enumeration of all applicable b-matchings can be

obtained as a simple application of the above: given an input to the matching

problem, start by obtaining two distinct valid matchings. Then, for some

e ∈ E that distinguishes between them, recursively find all valid matchings

including and excluding e. As each recursive step is guaranteed to run

in polynomial time and yield at least one valid matching, the total time

required for this algorithm is guaranteed to be polynomial by the size of the

output.

Obviously, since polynomial time bounds were not proved for the match-

ing algorithm presented in this thesis, such an approach is favorable when
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asymptotic time bounds are concerned. Nonetheless, with practical consid-

erations in mind, our described enumeration method seems to be beneficial

as it does not involve exhaustive generation of independent valid matchings,

but rather the incremental generation of the whole set. Our experience shows

that redundancy factors induced by this algorithm are very low, implying

very good behavior in practice.

6.3 Compile-Time Memory Management Analysis

This section considers the free and nullify analyses, that were sketched in

Section 3.6 and manifested in Section 5.

Our described free analysis falls in the category of compile-time garbage

collection research, where static techniques are applied to identify and recy-

cle garbage memory cells. Most of the work in this area has been concen-

trated on functional languages [Bar77, ISY88, FW91, Ham95, Jon99]. This

thesis demonstrates a free analysis that applies to an imperative language

with destructive updates, and is capable of reclaiming an object that is still

reachable, but not used further in the run.

In recent work (e.g., [Bla98]) escape analysis, which allows stack allo-

cation of dynamic objects, has been applied to Java. This way, an object

is deallocated as soon as its allocating method returns. While this tech-

nique has been proved useful, it is limited to objects that do not “escape”

their allocating method. Contrary to that, our described technique applies

to all program objects, and allows their deallocation before their allocating

method returns.

In region-based memory management [BTV96, TT94, AFL95, HET02],

the lifetime of an object is predicted at compile-time. An object is associated
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with a memory region, and the allocation and deallocation of the memory

region are inferred automatically during compile-time. An interesting future

work would be instantiating our framework with a static analysis algorithm

for inferring earlier deallocation of memory regions.

Liveness analysis [Muc97] may be used in the context of a runtime GC

to reduce the size of the root set (i.e., by ignoring dead stack or global

variables) or to reduce the number of scanned references (i.e., ignoring dead

heap references).

In [App92, ADM98, HDH02], liveness information for root references

is used to promote unused space reclamation. In [SKS02], dynamic mea-

surements are conducted to estimate the potential space savings gained

by communicating the liveness of stack reference variables, global reference

variables, and heap reference fields to a runtime garbage collector. The con-

clusion there is that heap liveness information incorporates a significantly

larger potential for space savings than that associated with stack and global

variables liveness information only. A straightforward way of communicat-

ing heap liveness information to a runtime GC is by assigning null to dead

heap references. Such a technique is actually instantiated in this thesis,

using a staged static analysis algorithm.

In [SYKS03], a framework for verifying temporal heap safety proper-

ties is instantiated with static algorithms for compile-time memory man-

agement. These algorithms consist of a single forward phase, during which

information regarding the history of execution is recorded by a heap safety

automaton. The input to these algorithms consists of a user specification as

for the temporal heap safety property that is of interest, and the output is

a conservative answer to whether or not the input property hold for for all
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program execution paths. For example, the free analysis of [SYKS03] takes

as input a free property query of the form (pt, x), and returns as output a

conservative answer as to whether or not free x can be safely inserted after

program point pt. In contrast, the algorithms in this thesis do not require

nor rely on user-specified properties, but rather generate a set of valid prop-

erties automatically. Furthermore, since each analysis phase—forward and

backward—is applied once to conservatively obtain all temporal properties

that hold for all program locations, it is believed that this approach may

be significantly more efficient compared to a multiple query instantiation of

the analysis in [SYKS03].
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Chapter 7

Conclusion

In this thesis we present a new algorithm for computing meet for a heap ab-

straction domain. We describe a set of heap analysis related problems that

can be conservatively resolved given an effective meet operator. We present

a new algorithm for computing meet, along with a heuristic approach that

is aimed to enhance its performance for commonly encountered cases. The

algorithm is implemented in the TVLA framework, and meet-based bidi-

rectional staged analyses are instantiated to obtain compile-time garbage

collection information. Experimental results show that such analyses yields

precise results in some non-trivial cases, and that the meet algorithm per-

forms with very low redundancy.

Our results suggest several directions for future work. First, the imple-

mentation of the meet algorithm can be significantly improved to minimize

processing overhead due to explicit recursion and excess duplication of data

structures. This, along with further improvements to the TVLA framework,

may lead to better scalability of our proposed compile-time GC mechanisms

for larger programs, as well as scaling other techniques, such as interpro-

cedural shape analysis. Unfortunately, we failed to apply our compile-time

61



analyses to actual JavaCard example programs (as it is done in [SYKS03])

and upcoming efforts are hoped to achieve this goal. Finally, further re-

finements to our method of computing meet, as well as possible concrete

asymptotic time bounds for certain cases of bounded 3-valued structures,

can be pursued.
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Appendix A

Proofs

Recall the definition of the Hoare ordering for two sets X and Y to be

X % Y ⇐⇒ ∀x ∈ X ∃y ∈ Y : x % y . (A.1)

Also, for some poset, recall that Z = X Y if Z is a lower bound of X

and Y

Z % X ∧ Z % Y , (A.2)

and Z is greater than any lower bound of X and Y

Z ′ % X ∧ Z ′ % Y =⇒ Z ′ % Z . (A.3)

A.1 Proof of Lemma 4.1

Proof. We show that Z is the meet of X and Y , by proving compliance to

both Eq. (A.2) and Eq. (A.3).

From the definition of meet, for some x ∈ X, y ∈ Y it holds that

{x} 0{ y} %{ x} and {x} 0{ y} %{ y}. Since {x} % X and {y} % Y ,

from transitivity of the partial order it follows that {x} 0 {y} % X and

{x} 0{ y} % Y . Considering the set
{
{x} 0{ y}

∣∣ x ∈ X, y ∈ Y
}

,
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it holds that both X and Y are among its upper bounds. As Z is defined

to be its least upper bound, we get that Z % X and Z % Y , thus satisfying

Eq. (A.2).

Let Z ′ be some Hoare poset element such that Z ′ % X and Z ′ % Y .

From Eq. (A.1) we get that

∀z′ ∈ Z ′ ∃x ∈ X : z′ % x

and

∀z′ ∈ Z ′ ∃y ∈ Y : z′ % y .

The combination of the above yields

∀z′ ∈ Z ′ ∃x ∈ X, y ∈ Y : z′ % x ∧ z′ % y ,

and applying Eq. (A.1) we get that

∀z′ ∈ Z ′ ∃x ∈ X, y ∈ Y : {z′} %{ x} ∧{ z′} % {y} .

From the definition of meet it follows that

∀z′ ∈ Z ′ ∃x ∈ X, y ∈ Y : {z′} %{ x} 0 {y} .

Clearly, for any x′ ∈ X, y′ ∈ Y it holds that

{x′} 0 {y′} %
⊔

x∈X
y∈Y

{x} 0{ y} = Z ,

hence, from transitivity of the partial order relation it follows that

∀z′ ∈ Z ′ : {z′} % Z .

From Eq. (A.1) we get that

∀z′ ∈ Z ′ ∃z ∈ Z : z′ % z ,

and applying it again yields Z ′ % Z, thus satisfying Eq. (A.3).
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A.2 Proof of Proposition 4.5

Proof. We form a pair of functions f1 : U1 → U and f2 : U2 → U , that

embed S into S1 and S2, respectively. Let

f1 =
{(

(u, v), u
) ∣∣ (u, v) ∈ U

}

and

f2 =
{(

(u, v), v
) ∣∣ (u, v) ∈ U

}
.

Following Definition 4.3, M is a full relation. Therefore, from the construc-

tion of S as in Definition 4.4, if follows that both f1 and f2 are surjec-

tive. Additionally, for any predicate p of arity k and any k-tuple of nodes

(u1, v1), . . . , (uk, vk) ∈ Uk, it holds that

pS((u1, v1), . . . , (uk, vk)) % pS1(u1, . . . , uk)

and

pS((u1, v1), . . . , (uk, vk)) % pS2(v1, . . . , vk) .

From the definition of f1 and f2 we get

pS((u1, v1), . . . , (uk, vk)) % pS1(f1((u1, v1)), . . . , f1((uk, vk)))

and

pS((u1, v1), . . . , (uk, vk)) % pS2(f2((u1, v1)), . . . , f2((uk, vk))) .

Hence, S % S1 and S % S2.
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A.3 Proof of Lemma 4.6

Proof. We show that XS is the meet of {S1} and {S2} by proving it satisfies

Eq. (A.2) and Eq. (A.3).

From Proposition 4.5, for any M ∈ MS1,S2 and an induced M -intermediate

structure S, it holds that S % S1 and S % S2. Then, considering the set

{
{S1 0M S2} | M ∈ MS1,S2

}

it holds that both {S1} and {S2} are among its upper bounds. As XS is

defined to be the least upper bound of this set, we get that XS % {S1} and

XS % {S2}, thus satisfying Eq. (A.2).

Let XS′ be some 3-valued structure set such that XS′ % {S1} and XS′ %

{S2}. From Eq. (A.1) we get that

∀S′ ∈ XS′ : S′ % S1

and

∀S′ ∈ XS′ : S′ % S2 .

The combination of the above yields

∀S′ ∈ XS′ : S′ % S1 ∧ S′ % S2 .

Let S′ = (U ′, I ′) be some structure in XS′, then there exist surjective func-

tions f1 : U ′ → U1 and f2 : U ′ → U2, that embed S′ into S1 and S2,

respectively. Let M = f2 ◦ f1
−1 ⊆ U1 × U2. Since both f1 and f2 are

surjective, M is full. Also, for any predicate p of arity k, and any k-tuple

w1, . . . , wk ∈ U ′k,

pS′
(w1, . . . , wk) % pS1(f1(w1), . . . , f1(wk))
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and

pS′
(w1, . . . , wk) % pS2(f2(w1), . . . , f2(wk)) ,

therefore

pS′
(w1, . . . , wk) % pS1(f1(w1), . . . , f1(wk)) 0 pS2(f2(w1), . . . , f2(wk)) .

(A.4)

Since for any such predicate and tuple pS′(w1, . . . , wk) 2= ⊥, it holds that

pS1(f1(w1), . . . , f1(wk)) 0 pS2(f2(w1), . . . , f2(wk)) 2= ⊥ .

Let u1, . . . , uk ∈ U1
k and v1, . . . , vk ∈ U2

k be two k-tuples, such that

ui M vi for i = 1 . . . k. From the construction of M , there exist a k-tuple

w1, . . . , wk ∈ U ′k, such that ui = f1(wi) and vi = f2(wi) for i = 1 . . . k,

hence

pS1(u1, . . . , uk) 0 pS2(v1, . . . , vk) 2= ⊥ ,

namely, M is consistent and therefore is a meet correspondence.

Let S = (U, I) be the M -intermediate structure S1 0M S2. From the

construction of M and Definition 4.4, we get that

U =
{
(f1(w), f2(w))

∣∣ w ∈ U ′} .

Define f : U ′ → U to be

f =
{(

w, (f1(w), f2(w))
) ∣∣w ∈ U ′} (A.5)

Clearly, f is a surjective function. Following Definition 4.4, for any predicate

p of arity k, and any k-tuple ((f1(w1), f2(w1)), . . . , (f1(wk), f2(wk))) ∈ Uk

(alternatively, for any k-tuple w1, . . . , wk ∈ U ′),

pS((f1(w1), f2(w1)), . . . , (f1(wk), f2(wk))) =

pS1(f1(w1), . . . , f1(wk)) 0 pS2(f2(w1), . . . , f2(wk)) .
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Then, following Eq. (A.4), for any such predicate and tuple, it holds that

pS′
(w1, . . . , wk) % pS((f1(w1), f2(w1)), . . . , (f1(wk), f2(wk))) .

Then, following Eq. (A.5),

pS′
(w1, . . . , wk) % pS(f(w1), . . . , f(wk)) ,

and so f embeds S′ into S, thus S′ % S. Since XS is the least upper bound

of all {S10M S2}, M ∈ MS1,S2, there exists some S∗ ∈ XS such that S % S∗.

Transitivity of the partial order relation yields S′ % S∗, S∗ ∈ XS, for any

S′ ∈ XS′. It follows that XS′ % XS, thus satisfying Eq. (A.3).

A.4 Proof of Lemma 4.8

Proof. We use structural induction on the reduction of the problem, to prove

the correctness of the recursive approach.

Basis. Given an empty graph, the strategy yields the empty matching,

which is the only valid matching. Hence, this is a correct solution to

the case where |V | = |E| = 0.

Induction hypothesis. For some n,m ≥ 0, such that either n > 0 or

m > 0 (or both), assume that the strategy yields a correct solution

to any input satisfying either |V | < n and |E| ≤ m, or |V | ≤ n and

|E| < m.

Induction step. Let G = (V,E) be a graph such that |V | = n and |E| =

m. We observe the different cases encountered.

Terminal cases. Clearly, the discovery of a violated node implies

that no matching can satisfy its lower quota, hence no valid

75



matching exists. Returning the empty set, the strategy yields

a correct solution.

Redundancy elimination. As no edge that is incident with a sat-

urated node can participate in a valid matching, the problem

induced by the removal of such a node and its incident edges has

a solution that is equivalent to the original problem. Similarly,

an isolated node cannot affect any matching, thus is redundant

to the solution. As these reduced problems have a smaller set

of vertices, following the induction hypothesis the strategy yields

the correct solution.

Partitioning. Obviously, for some selected edge e, the set of valid

matchings can be partitioned to those including e and those ex-

cluding it. Then, the union of the solutions obtained for these

two sub-problems yields a complete solution to the original one.

We examine the recursive reduction applied by the strategy for

both cases.

Exclusive partition. Consider the sub-problem induced by re-

moving e from the edge set, and keeping all matching quotas

intact. Clearly, any e-exclusive matching that satisfies the

original problem, is also applicable to the new sub-problem,

as e is not used and the quotas are the same. Obviously,

any matching satisfying the new sub-problem is applicable

to the original one. Following the induction hypothesis, the

strategy yields the correct solution to this sub-problem.

Inclusive partition. If e’s other endpoint is not saturated, con-

sider the sub-problem induced by removing e from the edge
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set, and decrementing its endpoints’ lower and upper quotas

by 1. Clearly, any e-inclusive matching that satisfies the orig-

inal problem, is applicable to the new sub-problem, having

e removed from it, as the new quotas suffice for the rest of

the edges that might be included. Also, any matching satis-

fying the new sub-problem is an applicable e-inclusive one to

the original problem, having e added to it. Then, adding e to

any solution obtained for the new problem, and following the

induction hypothesis, the strategy yields the correct solution

to this sub-problem.

Thus, we get that the union of these two partitions yields a correct

solution to the original problem.

It follows that the strategy yields the correct solution to any valid input.
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Appendix B

Implementation

This section describes the implementation of the meet algorithm and its

integration into the TVLA framework of [LAS00]. Some technical improve-

ments over the schematic description in Section 4 are briefly discussed. Fi-

nally, guidelines for applying this framework to obtain bidirectional staged

analysis of heap-manipulating programs are sketched.

B.1 Meet algorithm implementation

The binary meet operator for 3-valued structure powerset elements has been

implemented in the TVLA framework. The implementation is immediately

derived from the pseudo-code shown in Fig. 4.1 and Fig. 4.2, together with

the observation of Lemma 4.1: a wrapper method collects (join), for each

pair of structures of the operand sets, the respective set of structures com-

posing their meet value; this set is computed by an inner method, as de-

scribed in Fig. 4.1, which in turn uses a helper call to enumerate the set

of constrained matchings over the bipartite graph representing the unary

correspondence edges, as described in Fig. 4.2.

In order to measure the effectiveness of our heuristic approach, collected
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statistics are used to record redundant computation. These follow the guide-

lines described in Section 4.5.

Several low-level details that are hidden in the pseudo-code description

of the matching algorithm should be addressed by a proper implementation.

One of them is a proper way to compute RCD values. For that matter, the

following easily computable alternative definition of RCD was used:

RCD(u,E,Qa, Qb) =
Qb(u)∑

d=Qa(u)

(
degree(u,E)

d

)
.

Note that, in this context, for some n ≥ 0, i > 0, we naturally define
(n
0

)
to

be 1,
( n
n+i

)
and

( n
−i

)
to be 0.

The repeated selection of a node of least RCD value, while continuously

decreasing RCD values due to edge selection and node quota decrements,

suggests the use of a priority queue with an efficient decrease-key function.

In practice, a Fibonacci heap [FT87] was used.

Some further improvements were considered but not yet implemented.

The most important of them is the development of an iterative variant to

the recursive declarative description. Obviously, the use of literal recursion

induces excess duplication of data structures between recursion steps, as well

as extra overhead caused by the recursive calls themselves. The porting into

an iterative version requires some “generational notion” to be supported by

the priority queue. One way to achieve this is use a fully persistent priority

queue with minimal (constant) space penalty and similar time bounds, such

as the purely functional priority queues of [BO96].

Another technical improvement addresses the actual decrement of RCD

values, by exploiting Pascal triangle dependencies to reduce the amount of

binomial coefficient calculations down to a constant number, per recursion
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step.

B.2 Reference set functionality

Aiming at easy means to apply staged analysis of heap-manipulating pro-

grams, and in particular a bidirectional analysis as described in Section 3.6,

simple functionality has been provided in TVLA, allowing the reuse of re-

sults of a previous analysis stage for the purpose of abstraction intersection

during a subsequent stage.

First, a simple mechanism was provided to load the results of a previously

concluded analysis, for each analysis node (e.g., program location), as a

special reference member associated with that node. Second, the analysis

sequence for each analysis node has been extended such that, in addition

to the normal transformer that is applied to each input element, a binary

meet is performed against the target node’s reference set, prior to merging

(join) the resulted structures into that node’s working set. In particular,

for a bidirectional analysis as described in Section 3.6, this refinement of

abstraction through meet is the abstract equivalent of the set intersection

applied by the backward collecting semantics.

The above mechanism can be easily adopted to instantiate a bidirectional

staged heap analysis, by following these simple guidelines (note that, heap

reference liveness analysis is used as example):

• A forward analysis stage employs transformers that update shape-

related predicates, while keeping all liveness-related predicates as 1
2 .

The results of this stage are saved for future use.

• A backward analysis stage first loads the results of the above forward

stage. Starting with liveness predicate values set to 0 (assuming ev-
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erything is dead by the end of the execution) and unknown 1
2 shape

values, it performs a preliminary intersection with the reference set of

the exit node, to get the actual initial abstraction for the backward

stage.

• The backward analysis’ transformers update liveness-related predi-

cates, while conservatively setting shape-related predicates to 1
2 when

a destructive update is encountered. Nonetheless, since a meet opera-

tor is applied against the target node’s reference prior to merging the

results into that node, the overall resulting abstraction is precise both

liveness- and shape-wise.

An instantiation of such a staged analysis is evaluated in Section 5.
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