
Online Subpath Profiling

by
David Oren

A THESIS
Submitted in Partial Fulfillment of the

Requirements of the Degree of
Master of Science

in Computer Science

June 2002

Advisory Committee:

Yossi Matias, Thesis Advisor

Mooly Sagiv, Thesis Advisor

David Bernstein,

Amiram Yehudai.

Online Subpath Profiling

By David Oren

Abstract

We present an efficient online subpath profiling algorithm, OSP, that reports hot

subpaths executed by a program in a given run. The hot subpaths can start at

arbitrary basic block boundaries, and their identification is important for code

optimization; e.g., to locate program traces in which optimizations could be most

fruitful, and to help programmers in identifying performance bottlenecks.

The OSP algorithm is online in the sense that it reports at any point during

execution the hot subpaths as observed so far. It has very low memory and runtime

overheads, and exhibits high accuracy in reports for benchmarks such as JLex and

FFT. These features make the OSP algorithm potentially attractive for use in just-

in-time (JIT) optimizing compilers, in which profiling performance is crucial and

it is useful to locate hot subpaths as early as possible.

The OSP algorithm is based on an adaptive sampling technique that makes

effective utilization of memory with small overhead. Both memory and runtime

overheads can be controlled, and the OSP algorithm can therefore be used for

arbitrarily large applications, realizing a tradeoff between report accuracy and

performance.

We have implemented a Java prototype of the OSP algorithm for Java

programs. The implementation was tested on programs from the Java Grande

benchmark suite and on the SPECjvm benchmark suite and exhibited a low average

runtime overhead.

ACKNOWLEDGMENTS

I would like to thank Evelyn Duesterwald, Jim Larus, David Melski, Ran

Shaham and Eran Yahav for their helpful comments and Alex Warshavski for his

assistance in using Soot.

Last, but not least, I would like to thank Célia Alexander for her support

and encouragement and for the occasional threats when it seemed things were

getting nowhere.

ii

CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF TABLES . v

LIST OF FIGURES . vii

1 Introduction . 1
1.1 Hot Subpaths . 2
1.2 Main Results . 2
1.3 Prototype implementation . 4
1.4 Outline of the rest of this paper . 5

2 The Online Subpath Profiling Algorithm 6
2.1 The Algorithm . 6
2.2 Complexity Analysis and Runtime Overhead 9
2.3 Special Considerations . 12

2.3.1 Sampling and Skipping . 12
2.3.2 Subpaths . 12
2.3.3 Path Length Bias . 13
2.3.4 Concise Samples and Resampling 13
2.3.5 Encoding . 14
2.3.6 Reporting the Results . 15

2.4 A Framework for Profilers . 16

3 Prototype Implementation . 17
3.1 Path Representation . 18
3.2 Encoding . 20

4 Experimental Results . 22
4.1 Runtime Overhead . 24
4.2 Sampling and Efficiency Tradeoff 26
4.3 Memory Overhead . 28
4.4 Accuracy of Results . 28
4.5 Incremental Results . 32
4.6 Arbitrary Length . 33

5 Algorithmic Extensions . 35
5.1 Weighted Paths . 35

5.1.1 Weighing Paths by Length 35

iii

5.1.2 A priori cost of paths . 36
5.2 Using Thresholds . 37
5.3 Subpath Correlation . 38

6 Related Work . 39

7 Conclusions . 42

iv

LIST OF TABLES

4.1 For each program we show the number of basic blocks encountered
during execution, the number of subpaths of length 2n where 1 ≤
n ≤ 5 and the number of distinct subpaths. For JLex there are two
separate entries, one showing the number of subpaths of length up
to 32, the other the number of subpaths of length up to 1024. . . . 23

4.2 The average running time and the standard deviation of the original
program, the instrumented version and the time spent in skipping
mode. 25

4.3 The running time in seconds of the original and the instrumented
programs, and the time the algorithm spent in sampling mode. The
two last columns display the total runtime overhead, and the over-
head generated by the sampling process itself, without taking into
account the cost of deciding when to sample a path. 25

4.4 Varying Runtime Overhead. This table shows the number of oper-
ations per second performed by the original and by the uninstru-
mented programs, for various kinds of operations. For each kind of
operation, a ratio of the numbers is given, and this number gives us
an estimate of the runtime overhead of the instrumentation for this
kind of operation. 26

4.5 The average cost of a basic block, computed by dividing the execu-
tion time by the number of basic blocks (�1) and using the skipping
overhead (�2). The error is computed relative to �1. The values of
� have been normalized for the two groups of tests separately. . . . 27

4.6 The number of subpaths in the sample with and without repeti-
tion, the gain obtained by using concise samples (the ratio between
columns two and three), and the sampling frequency f at the end
of the program. 27

4.7 Memory usage of the different programs. The instrumented memory
does not take into account the memory needed for maintaining the
output of the algorithm. 29

4.8 For the hottest paths in the sample we show their true rank as ob-
tained by counting all subpaths, their count in the sample and in
the full results, their estimated count and the error in the estima-
tion. For each path we also show its length. The table is sorted by
estimated count. 29

4.9 For the hottest path in the sample we show an estimate of their
count error as obtained using Chernoff bounds. 31

4.10 For the fifth hottest path in the sample we show an estimate of their
count error as obtained using Chernoff bounds. 32

v

4.11 Stops after every 10 millions blocks. At each stop point, we show
the rank in the sample of the 5 highest ranking subpaths in the full
count. Note that the 5 highest ranking subpaths are not necessarily
the same at each stop point . 33

vi

LIST OF FIGURES

1.1 Several cold paths sharing a common hot subpath, [3456]. This code
segment may be part of a loop, or may be called numerous times
from other functions. 2

1.2 The OSP Architecture . 4

2.1 The basic OSP algorithm . 8

vii

CHAPTER 1

Introduction

A central challenge facing computer architects, compiler writers and pro-

grammers is to understand a program’s dynamic behavior.

This understanding can be achieved by profiling. Profilers can operate on

several different levels. The most basic form is vertex profiling, where information

is recorded on the number of times each instruction (or each basic block) is exe-

cuted. In edge profiling we are interested in the transition between basic blocks –

whether the branch is taken or not. Finally, in path profiling the whole path the

program takes during program execution (or the paths taken inside procedures)

are examined.

In addition, profilers can be categorized as either offline or online. In offline

profiling, results are collected during program execution, and are presented to the

user after the program has stopped. In online profiling, results are either presented

to the user during program execution, or directly acted upon. The classical example

of online profiling are JIT compilers, where hot spots are compiled and optimized

while the program is running.

In this paper we develop the first profiling algorithm with the following

properties: (i) it is online, and thus well suited for JIT-like compilation and dy-

namic optimizations, where decisions have to be made early in order to control

the rising cost of missed opportunity that results from prediction delay [?]; and

(ii) profiling information is recorded for subpaths that start at arbitrary program

points. Related works are described in Section 6.

1

1
����� ��>>>

2a

��???
2b

�����

nn3
��

��
4
��

5
��

��

nn

6
����� ��>>>

��7a 7b

Subpatℎ Count

[12a34] 1724
[12b34] 268
[2a345] 1724
[2b345] 268
[3456] 6042
[4567a] 1008
[4567b] 1864

Figure 1.1: Several cold paths sharing a common hot subpath, [3456]. This code
segment may be part of a loop, or may be called numerous times from other
functions.

1.1 Hot Subpaths

Considering arbitrary subpaths presents a considerable performance chal-

lenge. As the number of subpaths under consideration could be in the hundreds

of millions, maintaining a full histogram of all subpaths is prohibitively expensive

both in runtime and in memory overheads.

Figure 1.1 presents a situation where several cold paths include a common

section of code [3456]. This common section is hot, even though the paths that

contain it are cold.

1.2 Main Results

In this paper, we present a new online algorithm for Online Subpath Pro-

filing, OSP, that records hot subpaths which start at arbitrary basic block bound-

aries. The OSP algorithm can report an estimate of the k hottest subpaths in a

2

given program on a given run. This can be used by a programmer, an optimiz-

ing compiler or a JIT compiler to locate “hot” areas where optimizations pay off.

Whereas other profiling algorithms are typically limited to certain path types, the

OSP algorithm identifies arbitrary hot subpaths in the program.

The OSP algorithm is online in the sense that it reports at any point during

program execution the hot subpaths as observed so far. It has very low memory

and runtime overheads, and it exhibits high accuracy in reports. For example,

consider the JLex [?] program for generating finite state machines from regular

expressions. The OSP algorithm accurately identifies the 5 hottest subpaths when

profiling this program on the provided sample input. The memory overhead is 45

kilobytes, compared to 170 kilobytes used by JLex. The runtime overhead is 64%,

and could be as low as 17% with an appropriate implementation of the profiler.

The online nature of the OSP algorithm is demonstrated for the FFT pro-

gram. At every point during its execution, the hottest subpaths observed so far

are reported with high accuracy. This feature makes the OSP algorithm very at-

tractive for use in JIT-like compilers, in which profiling performance is crucial and

it is essential to locate hot subpaths as early as possible.

The JLex program generates approximately 22 million subpaths of length

up to 1024 basic blocks. From this input a sample of about 2000 subpaths is

sufficient to correctly identify the 5 hottest subpaths. Results for FFT are even

more favorable, as elaborated in Section 4.

The OSP algorithm is based on an adaptive sampling technique presented

by Gibbons and Matias [?] that makes effective utilization of memory with small

overhead. Both memory and runtime overheads can be controlled, and the OSP

algorithm can therefore be used for arbitrarily large applications, realizing a trade-

off between accuracy and performance. The accuracy depends on the skew level of

3

knobs
��

report OSPoo
**
Agent

hh
��

input // JVM

RR

// output

Figure 1.2: The OSP Architecture

the distribution of the subpaths. The higher the skew the better the performance,

which is an attractive feature as the importance of the profiler is greater for skewed

distributions.

1.3 Prototype implementation

We have implemented a simple prototype of the OSP algorithm in Java for

Java programs, using the Soot [?] framework for program instrumentation. The

architecture of the implementation is described in Figure 1.2. The OSP algorithm

is called by a profiling agent, sitting on top of the JVM. It may accept input param-

eters such as available memory and a limit on runtime overhead; it continuously

reports hot subpaths that can be fed back into the JVM for optimization.

We tested the algorithm on 4 programs from the Java Grande benchmark

suite [?], on JLex [?] and on the SPECjvm benchmark suite [?].

We measured the runtime overhead, the memory overhead and the accuracy

of the results. The runtime overhead averages less than 20%, and the memory

overhead ranges from 40 to 65 kilobytes, compared to 100 to 170 kilobytes used by

the programs. The OSP algorithm identifies the hottest subpaths in each of the

tested programs. This shows that even for low memory and runtime overhead we

can obtain very accurate reports of the program behavior.

4

1.4 Outline of the rest of this paper

Section 2 describes the online subpath profiling algorithm. Section 3 de-

scribes a simple prototype implementation and Section 4 the experimental results

we have obtained. Possible extensions to the algorithm are described in Section 5.

Related works are discussed in Section 6. Conclusions and further work are dis-

cussed in Section 7.

5

CHAPTER 2

The Online Subpath Profiling Algorithm

The OSP algorithm avoids the full cost of counting all subpaths by: (i) sam-

pling a fraction of the executed subpaths, (ii) maintaining the sample in a concise

manner, obtaining a sample that is considerably larger than available memory, and

(iii) identifying hot subpaths and deriving a highly accurate estimate of their count

from subpaths frequencies in the sample.

2.1 The Algorithm

The OSP algorithm is based on the hot-list algorithm presented in [?].

Given a sequence of items the hot-list algorithm maintains a uniform random sam-

ple of the sequence items in a concise manner, namely as pairs of (id, count). The

sampling probability depends on the actual skewness of the data, and is adapted

dynamically during execution. We extend the hot-list algorithm for subpaths, and

maintain a concise sample of subpaths. At every sample point the OSP algorithm

determines the length of the subpath to be sampled according to a predetermined

distribution. The sampled subpath is encoded into a subpath id, and is either

inserted into the resulting histogram (if it was not there already), or the subpath’s

count is incremented. If necessary, the sampling probability is adapted, and the

elements in the sampled set are resampled.

Using concise samples ensures efficient utilization of memory. Instead of

maintaining a multiset of ids, each id has a corresponding counter, and thus a

frequently occurring element will not have a large memory footprint. With an

allowed memory footprint m, and an average count G, the effective sample size is

6

m×G. Thus, G can be defined as the gain obtained from using concise samples.

The exact gain depends on the distribution of the elements in the input set.

The OSP algorithm’s pseudo-code is given in Figure 2.1. The method

enterBlock is triggered for each basic block and determines whether or not

sampleBlock needs to be invoked. The sampleBlock method — the core of the

algorithm — is executed for a very small fraction of the basic blocks, namely those

which are part of a subpath selected to be in the sample. The algorithm main-

tains two variables: skip, which holds the number of basic blocks that will be

skipped before the next sampling begins; and length, which holds the length of

the subpath we wish to sample.

At the beginning of each basic block the enterBlock method is called. If

a path is currently sampled, this method calls sampleBlock. Otherwise, if the

next block is to be sampled (skip is 0), the length of the next sampled subpath is

selected at random using a predetermined probability distribution.

The sampleBlock method appends the current basic block to the subpath

which is currently sampled, using an implementation specific encoding. When

this subpath is of the required length, the sampled set is updated by calling the

updateHotList method. The updateHotList method is responsible for maintain-

ing the hot-list.

The sampling probability determines the selection of skip in the

chooseSkipValue method.

Note that the probability selections of skip, length and the resampling

parameters are chosen so that at any given point the maintained histogram consists

of a random sample representing the subpaths observed so far. The sampling can

be uniform, or it can be appropriately biased, e.g., the probability of a subpath

being sampled can be a function of its length.

7

void enterBlock(BasicBlock b) {
if (sampling)

sampleBlock(b);

else {
if (--skip == 0) {

length = choosePathLength();

sampling = true;

}
}

}

void sampleBlock(BasicBlock b) {
subpath.appendBlock (b);

if (--length == 0) {
updateHotList(subpath.id);

skip = chooseSkipValue();

subpath = new SubPath();

sampling = false;

}
}

(length)
sampled blocks

(skip) (length)
sampled blocks

(skip)

Figure 2.1: The basic OSP algorithm

Let us consider an example of the algorithm in action on the fragment of the

control flow graph shown in Figure 1.1. At program startup, the OSP algorithm

decides how many basic blocks should be skipped before sampling begins (using

the chooseSkipValue function), and assigns this value to the skip variable. Let

this value be 2. The algorithm is then called at the beginning of basic blocks 1

and 2a, each time decreasing the value of skip by one.

When skip becomes 0, at the beginning of block 2a, the algorithm decides

how long a path should be sampled (using the choosePathLength function), and

goes into sampling mode. Let us assume the algorithm has decided to sample

a path of length 4. The next four times it is called (blocks 3, 4, 5 and 6), the

algorithm will append the identifier of the current basic block to the identifier of

the path being generated. Once the identifier for path [3456] has been generated,

the algorithm will update the sampled set with this new subpath id. Finally, the

algorithm will decide how many blocks are to be skipped before sampling begins

again, and will switch to skipping mode.

8

Every time subpath [3456] is sampled, its count in the sample is incre-

mented. Note that it will be sampled at a rate about 3 times the rate of subpath

[4567b], about 6 times the rate of subpath [4567a], and over 20 times the rate of

subpaths [12b34] and [2b345]. Also note that even for a sampling probability of

about 1
40

, it is expected to be sampled approximately 150 times, enabling a very

accurate estimate of its count.

2.2 Complexity Analysis and Runtime Overhead

The skipping overhead, in the enterBlock method, is O(1) operations per

block, with a constant depending on the exact implementation of the skipping

process. The sampling overhead, in the sampleBlock method, is O(1) operations

per sampled block. The cost of table resampling is controlled by setting the new

sampling probability, and can be made to be amortized O(1) per sampled block [?].

Since the number of sampled blocks is a small fraction of the total number of

executed blocks, the total sampling overhead is o(n), where n is the number of

executed blocks, and is o(1) amortized per executed block.

Runtime overhead can be divided into two different parts: skipping over-

head and sampling overhead.

Let us denote the cost of sampling a basic block by �1. This cost is fixed

for different programs and during program execution. The probability distribution

of the path lengths determines an expected path length, l̄. Finally, let � be the

probability of starting a subpath at a given basic block. In order to quantify the

program cost, let � be the average cost of a basic block in a given program and

for a given run, and n the number of basic blocks.

9

Sampling overhead =
Sampling cost

Program cost
=
�1�l̄n

�n
=
�1�l̄

�
(2.1)

Similarily, let �2 be the cost of skipping a basic block, then:

Skipping overhead =
Skipping cost

Program cost
=
�2

�
(2.2)

We have measured three distinct times, the uninstrumented program time:

t1 = n� (2.3)

the instrumented program time:

t2 = n� + n�2 + n�1�l̄ = n(� + �2 + �1�l̄) (2.4)

and the running time for an instrumented program when no sampling is

performed (the profiler simply skips the correct number of basic blocks, but does

not sample any subpaths):

t3 = n� + n�2 = n(� + �2) (2.5)

Using these three measurements, we can compute the total overhead, as

well as the skipping and sampling overhead:

�total =
t2 − t1
t1

=
n(� + �2 + �1�l̄)− n�

n�
=
�2 + �1�l̄

�
(2.6)

�skipping =
t3 − t1
t1

=
n(� + �2)− n�

n�
=
�2

�
(2.7)

10

�sampling =
t2 − t3
t1

=
n(� + �2 + �1�l̄)− n(� + �2)

n�
=
�1�l̄

�
(2.8)

We can now calculate � in two different ways and compare the results

obtained by these two methods. The first is simply to divide the program execution

time by the number of basic blocks executed.

�1 =
t1
n

(2.9)

The second is taking the reciprocal of the skipping overhead (which is linear

in �).

�2 ∼
1

�skipping

=
�

�2

(2.10)

The values obtained by these two methods have to be normalized in order to

be meaningfully compared to each other. That is, given �11 ⋅ ⋅ ⋅ �1n and �21 ⋅ ⋅ ⋅ �2n ,

let

�1min
=

n
min
i=1

�1i

�2min
=

n
min
i=1

�2i (2.11)

We can now normalize the computed values for �, obtaining:

�′1i =
�1i
�1min

�′2i =
�2i
�2min

(2.12)

11

Thus, only the relative values of the computed �s are taken into account,

and the �2 element in �2 is cancelled out.

2.3 Special Considerations

2.3.1 Sampling and Skipping

The sampling and counting are performed using a hot-list algorithm [?].

The hot-list algorithm is given an estimate of the input size, and a permissible

memory footprint. From these values an initial sampling frequency f is computed,

and each subpath is sampled with probability 1
f
.

Let m be the permissible memory footprint, G the expected gain and n the

expected input size, then

f =
n

m×G
(2.13)

Instead of deciding for each subpath whether it should be sampled or not,

a skip value is computed [?]. This value represents how many subpaths must

be skipped before one should be sampled. The skip values are chosen so that

their expected value is f , and for large values of f the performance gain can be

important.

2.3.2 Subpaths

For performance reasons, we observe that it is advantageous to only consider

subpaths whose length is a power of two. Since the number of subpaths increases

(quadratically) with the number of basic blocks, and the number of subpaths in the

input affects accuracy for a given sample size, we improve performance by limiting

12

the input set. Our choice provides significant reduction in the noise that exists in

the sample set. Moreover, for any hot subpath of length k, we can find a subpath

of length at least k
2

which is part of the sample space.

2.3.3 Path Length Bias

Once we have decided a subpath should be sampled, we have to decide how

long a subpath should be sampled. It has been suggested that shorter hot subpaths

will yield better possibilities for optimization (see [?] and its definition of minimal

hot subpaths). Thus, in the current implementation we have decided to prefer

shorter paths. Paths are sampled with a geometric probability distribution, with

a path of length 2n, n ≥ 1, being sampled with probability 1
2n

.

Preferring shorter subpaths also increases the probability of finding minimal

subpaths. In the case of loops, for instance, sampling longer subpaths will often

yield the concatenation of several iterations of the loop.

An important feature of the algorithm is that it can accommodate other

biases towards path lengths. Path length could be selected by any probability

distribution; e.g., geometric (as above), uniform, or one which provides bias to-

wards longer paths. The random selection of length is performed by the method

choosePathLength and the algorithm works correctly for any selected distribution.

2.3.4 Concise Samples and Resampling

The hot-list algorithm maintains a list of concise samples of the sampled

subpaths. This list can be thought of as a histogram: for each sampled subpath we

hold an identifier, and a count representing how many times it has been sampled

so far. Since each sampled subpath uses the same amount of memory even if it is

13

sampled numerous times, the use of concise samples increases the effective sample

size.

The benefit resulting from the use of concise samples depends on the pro-

gram being profiled. Profiling a program having a small number of very hot sub-

paths will benefit greatly from the use of concise samples. At the other extreme,

profiling a program where the subpaths are evenly distributed will not benefit from

them.

If at some point during execution the sample exceeds its allocated memory

footprint, f is increased, all elements in the sample are resampled with a probability

f ′

f
(where f ′ is the previous sampling probability), and all new elements are sampled

with the new probability. This ensures that the algorithm uses a limited amount

of memory, which can be determined before the program starts.

2.3.5 Encoding

Each basic block can be assigned a unique integer identifier. We now need a

function f that given a path P = b1b2 ⋅ ⋅ ⋅ bn where bi are basic blocks, will generate

a unique identifier for the path.

Ideally, we could find a function f that is sensitive to permutation, but not

to rotation. Formally, given two paths, P1 = b1b2 ⋅ ⋅ ⋅ bn and P2, then f(P1) = f(P2)

iff there is some j such that P2 = bj ⋅ ⋅ ⋅ bnb1 ⋅ ⋅ ⋅ bj−1.

The rotation requirement requires some discussion. Assigning different ids

to ‘rotated’ paths may enable more aggressive optimizations, since some optimiza-

tions may involve reordering the basic blocks in order to avoid branch misprediction

penalties. But since we sample the program at random intervals, a loop of length

n will be captured as n different paths, even if the loop is always entered from the

14

same place. Counting these different ‘images’ of the loop as different paths will

make the list of sampled paths more noisy.

Thus, although we would like to differentiate between paths (by assigning

a unique id to each different path), an exception in the case of ‘rotated’ paths may

be useful.

2.3.6 Reporting the Results

At any point during program execution the subpaths in the sample can be

reported. It is important to remember that not all subpaths in the sample have

the same accuracy. Intuitively, the higher the count of the subpath in the sampled

set, the higher the accuracy of the count, and the probability that this subpath is

hot.

We can either report only subpaths whose count in the sampled set exceeds

some threshold, or report the k hottest subpaths in the sampled set. For each

reported subpath, an estimate of its accuracy is given [?].

The accuracy of each path in the sampled set can also be estimated by

using Chernoff bounds.

Pr(x /∈ (1± �)E(x)) ≤ e−
�2E(x)

6 (2.14)

Using this inequality we can find, for a given confidence, an upper bound

for the error.

We are not interested in the exact count of the sampled subpath. Rather,

when we report a subpath as hot, we want to be reasonably sure that it is indeed

hot — if the subpath is hotter than we assume, it does not matter, since it will be

reported anyway. We can use a uni-directional Chernoff bound, yielding a better

15

result:

Pr(x /∈ (1± �)E(x)) ≤ e−
�2E(x)

2 (2.15)

2.4 A Framework for Profilers

The description of the algorithm given here is very general. The behavior

of the algorithm can be modified extensively by changing certain elements. Hence,

the algorithm can serve as a framework for profiling under various preferences or

constraints.

It is very important to remember that many of the decisions presented here

— limiting ourselves to paths of length 2n, giving a higher sampling probability to

shorter paths, for instance — are implementation details, and do not stem from

any limitation in the algorithm itself.

It would be very easy to collect information on paths of arbitrary length,

or on any different subset of paths — for instance, paths of length 1.5n. Another

possibility is to modify the counting method to more accurately identify changes

in the working set of the profiled program. This could be done using a sliding

window that would take into account just the latest encountered subpaths, or with

an aging function that would give more weight to more recent subpaths.

16

CHAPTER 3

Prototype Implementation

We have implemented a prototype in Java, using the Soot framework [?].

In the prototype implementation, profiling a program consists of two steps:

first, the program to be profiled is instrumented. The class files are processed,

and calls to the subpath profiler are added at the beginning of each basic block.

Once the program is instrumented, it can be run and profiled on any given input.

Instrumentation could also be performed dynamically, by modifying the Java class

loader.

Multi-threaded programs are handled by associating a different subpath

profiler with each running thread. This guarantees that subpaths from different

threads are kept separately, and also reduces synchronization overhead between the

different threads. The invocations of the updateHotList method are synchronized.

Our initial experience indicates that this does not create synchronization overhead,

since this method is rarely invoked.

Since we are not notified when a thread ends, we periodically check whether

the thread associated with each subpath profiler is still active, and if not, we make

the subpath profilers eligible for garbage collection.

In the prototype implementation, we did not implement JIT-like optimiza-

tions. Instead, when the JVM exits, a report is generated. For each path in the

sampled set, its description and count are displayed.

In the current implementation the enterBlock method is part of the Java

code. Hence it becomes the dominant factor in the total runtime overhead. A

preferred implementation would be to have this method run in the JVM itself, in

which case the sampling overhead is expected to become dominant. Therefore, in

17

the measurements we have considered these two overheads separately.

3.1 Path Representation

For the reference implementation, we did not focus on path representation,

and only implemented a simple path representation scheme. Path description is

kept as a list of strings, each string describing a basic block. The lists are generated

dynamically and entail some overhead, especially for long paths.

It is important to remember that these descriptions are not strictly nec-

essary. If the OSP algorithm is used in a JIT compiler, no output is necessary,

and the descriptions of the hot subpaths are of no interest — each subpath can be

identified with a unique integer id.

However, even if these descriptions are required, they are not needed during

program execution, but only when the report is displayed. Therefore, if memory

becomes an issue, a possible solution would be to keep the path descriptions not in

memory, but in secondary storage. Each path description would have to be written

to the disk only once, thus maintaining time overhead at acceptable levels.

More complete solutions would involve developing a memory efficient rep-

resentation of the paths: for instance, a naive subpath description could contain

a description of the block where it begins, and for each subsequent branch a bit

signifying whether this branch was taken or not. A path of length n would thus

require c + (n− 1) bits for its description, where c is the number of bits required

to store the identifier of the starting basic block. Since the Java bytecode contains

multiple branch instructions (used with the switch construct) the actual encoding

would have to be more complex.

A different solution altogether would be to represent the subpaths using

18

tries. With tries it will be possible to check whether a subpath is already part of

the sampled set in an online manner, by “walking down” the trie. Once we have

determined a subpath has already been sampled, increasing its count amounts to

increasing the count in the node of the trie that is associated with the last block

of the subpath. Adding a new path can also be done online, by walking down the

trie along the longest prefix of the subpath that can be found in the try and then

adding a new branch in the trie.

However, using tries will require a way to convert paths to a canonical

form, to make sure the trie is not sensitive to rotation. The problem can be

subdivided into two smaller ones, one involving intra-procedural paths, the other

involving inter-procedural ones. For intra-procedural paths, once a subpath has

been sampled, the basic blocks can be “rotated” back to the correct ordering (that

is, the one where the basic block closest to the procedure’s beginning is first). That

way we can ensure a given path is always inserted into the trie in the same order.

For inter-procedural paths, a generalization of this method is required. The

correct ordering could be defined as the ordering where the basic block that is

closest to its procedure’s beginning is first. Each procedure could be given a

numeric identifier (possibly a hash value), to deal with the cases where two basic

blocks have the same ordering value. That way paths will always be represented

in a canonical way.

When inserting a path into the trie, the algorithm would have to keep track

of the ordering value of the inserted blocks. If at some point a lower ranking block

is inserted into the trie, the insertion process will reset, the path will restart its

insertion from that basic block. The algorithm will have to keep track of what

basic blocks were inserted to the trie in the beginning and are now to be inserted

into the trie once sampling ends.

19

3.2 Encoding

The encoding of subpaths determines how subpaths are grouped together for

purposes of counting and reporting. The current implementation uses an encoding

consisting of the subpath length, and of running the exclusive-or operator over

block identifiers. This encoding is simple, efficient, and groups together different

permutations of the same path.

The exclusive-or encoding has a significant drawback: it disregards blocks

that occur an even number of times. The problem is partially solved by making

the length part of the path identifier. This reduces the problem, but does not solve

it completely: for instance, the paths [abbc] and [addc] will be counted as one path.

Alternative Hash Functions One possibility is to use a simple linear hash-

function, f(x) = a × x + b. The problem is that this is sensitive to permutation,

so [abcd], [bcda], [cdba] and [dabc] are counted as different paths. This method of

counting paths introduces a lot of noise into the sample space.

This noise can be avoided by using a simple variant of the linear hash

function. Assume we sampled a path p1, of length n, and containing the basic

blocks b1 ⋅ ⋅ ⋅ bn. Let us sort the identifiers of these blocks, so that b1 ≤ ⋅ ⋅ ⋅ ≤ bn.

Now we can run the linear hash function on b1 ⋅ ⋅ ⋅ bn.

This is not a perfect solution. If a subpath is a loop then we will calculate

the same identifier, no matter how it is sampled, since we sort the ids of the basic

blocks. However, information about order is lost (just like with the XOR encoding).

The important thing is that the encoding will not lose information about blocks

that occur an even number of times.

20

Implications of the XOR Encoding In order to evaluate the quality of the

results, we have run the profiler with a different encoding as well. These tests have

shown that the results obtained by the exclusive-or encoding are correct, in spite

of its drawback.

Although the XOR encoding does lose information, it has no noticeable

effect on the results. First, for all subpaths of length 2, no problem arises. The

problem is for longer subpaths. We have run the profiler on FFT with the linear

hash function and compared results with what we obtained using XOR.

After sorting out through the noise created by the linear hash function, we

found out that the results match.

21

CHAPTER 4

Experimental Results

We have run the profiler on four programs from the JavaGrande benchmark

suite [?], on the JLex utility [?] and on the SPECjvm benchmark suite [?]. All

programs were run on a computer with a 1.2GHz Athlon processor, and 512MB of

memory running Sun’s JDK 1.3.1 on Windows 2000.

Table 4.1 shows the sizes of those programs. It is important to remember

that from the profiler’s view, what matters is not the number of lines of code in

the program, but the program’s dynamic size (its trace length).

The table also displays the number of subpaths encountered during program

execution, as well as the number of distinct subpaths encountered. The subpaths

are those of length 2n, where n ≤ 5. For JLex, it was also possible to obtain

accurate results for paths of length up to 1024. This was not done for the other

programs, since extremely long runtimes would have been needed.

These results show the size of the input data set over which the OSP al-

gorithm works. It is also interesting to note that, even for a very limited subpath

length, obtaining accurate results required an extremely large amount of time

— more than an hour for FFT and HeapSort, almost ten hours on MolDyn and

RayTrace.

We also tried to obtain accurate results for paths up to a length of 65, 536

for JLex. That particular run failed to complete even after more than 100 hours

of running time.

22

Program Basic blocks Subpaths Distinct subpaths

JLex (1024) 2,212,208 22,120,044 828,772
JLex (32) 2,212,208 11,060,983 37,985

FFT 169,867,487 849,337,378 870
HeapSort 124,039,672 620,198,303 1,095
MolDyn 1,025,640,629 5,128,203,088 6,316
RayTrace 1,367,934,068 6,839,670,283 6,800

check 63,551 317,698 6,308
compress 1,408,896,503 7,044,482,458 17,801
jess 403,421,451 2,017,107,198 57,271
db 208,593,066 1,042,965,273 5,104
javac 247,350,713 1,236,753,508 649,191
mpegaudio 724,584,925 3,622,924,568 40,227
mtrt 646,188,073 3,230,940,308 32,356
jack 63,589,082 317,945,353 72,959

Table 4.1: For each program we show the number of basic blocks encountered
during execution, the number of subpaths of length 2n where 1 ≤ n ≤ 5 and the
number of distinct subpaths. For JLex there are two separate entries, one showing
the number of subpaths of length up to 32, the other the number of subpaths of
length up to 1024.

23

4.1 Runtime Overhead

Table 4.2 shows the average and the standard deviation of the running time

of original program abd the instrumented program and the time spent in skipping

mode.

Table 4.3 shows the runtime overhead of the profiler. The total runtime

overhead ranges from 20% to 360%. The sampling overhead (the overhead gener-

ated by the sampleBlock method) is much smaller, ranging from 1% to 56%.

Most of the runtime overhead is created by the skipping process. If the

profiler is incorporated into the JVM — for instance, in order to use it for JIT

compiling — the skipping process will have much lower overhead. In such a case,

the total runtime overhead will be similar to the sampling overhead presented here.

Further understanding of the overhead created by the profiler can be gained

by examining the first section of the JavaGrande benchmark suite. These bench-

marks check raw performance of the JVM, by measuring how many operations of

various kinds are performed per second (Table 4.4). For instance, a loop contain-

ing additions of ints will see a ten fold slow-down. On the other hand, a loop

containing divisions of longs will slowdown only by a factor of 1.18. Creating an

array of 128 longs will have an even smaller slowdown factor of 1.04. This is in

line with Equations 2.1 and 2.2.

As was mentioned earlier, the analysis of runtime overhead can be verified

by computing the average cost of a basic block using two methods and comparing

the results. Table 4.5 shows two values of �, the average cost of a basic block. �1

was computed by dividing the execution time by the number of basic blocks, while

�2 was computed using the skipping overhead (as can bee seen in Equations 2.9

and 2.10) as well as the computed error.

24

Program Orig. Stdev Inst. Stdev Skipping Stdev

JLex 0.418 0.004 0.807 0.030 0.610 0.000
FFT 21.424 0.026 29.185 0.030 25.823 0.050
HeapSort 2.141 0.008 6.503 0.051 5.310 0.004
MolDyn 10.635 0.016 36.220 0.120 32.822 0.008
RayTrace 10.829 0.013 49.893 0.084 45.443 0.009
check 0.390 0.000 0.590 0.030 0.474 0.005
compress 14.248 0.058 53.280 0.051 51.591 0.078
jess 5.135 0.004 16.335 0.008 15.826 0.008
db 24.633 0.058 29.582 0.163 29.289 0.043
javac 10.815 0.019 19.329 0.234 18.548 0.020
mpegaudio 9.069 0.005 29.370 0.026 28.615 0.017
mtrt 5.558 0.021 25.565 0.533 22.993 0.048
jack 4.788 0.004 6.697 0.016 6.572 0.022

Table 4.2: The average running time and the standard deviation of the original
program, the instrumented version and the time spent in skipping mode.

Program Time Instr. Only-sampling Tot. Overhead Sampl. Overhead

JLex 0.418 0.807 0.610 93.06% 47.13%

FFT 21.424 29.185 3.362 36.23% 15.69%
HeapSort 2.141 6.503 1.193 203.74% 55.72%
MolDyn 10.635 36.220 3.398 240.57% 31.95%
RayTrace 10.829 49.893 4.450 360.74% 41.09%

check 0.390 0.590 0.116 51.28% 29.74%
compress 14.248 53.280 1.689 273.95% 11.85%
jess 5.135 16.335 0.509 218.11% 9.91%
db 24.633 29.582 0.293 20.09% 1.19%
javac 10.815 19.329 0.781 78.73% 7.23%
mpegaudio 9.069 29.370 0.755 223.85% 8.32%
mtrt 5.558 25.565 2.572 360.01% 46.29%
jack 4.788 6.697 0.125 39.87% 2.61%

Table 4.3: The running time in seconds of the original and the instrumented pro-
grams, and the time the algorithm spent in sampling mode. The two last columns
display the total runtime overhead, and the overhead generated by the sampling
process itself, without taking into account the cost of deciding when to sample a
path.

25

Benchmark Ops/sec Instrumented Ops/sec Performance Ratio

Add:Int 7.8e8 7.4e7 10.48
Add:Float 7.7e7 4.1e7 1.87
Mult:Int 2.6e8 6.5e7 3.98
Mult:Double 10e7 6.4e7 1.55
Assign:Same:Scalar:Local 1.4e9 8e7 17.75
Cast:IntFloat 8e7 5.4e7 1.48
Create:Array:Long:1 1.5e7 1.2e7 1.23
Create:Array:Long:128 3.8e5 3.7e5 1.04
Loop:For 2.3e8 1.8e7 12.35

Table 4.4: Varying Runtime Overhead. This table shows the number of operations
per second performed by the original and by the uninstrumented programs, for
various kinds of operations. For each kind of operation, a ratio of the numbers
is given, and this number gives us an estimate of the runtime overhead of the
instrumentation for this kind of operation.

As we can see, the values of � computed by the two methods match, except

for the two shortest programs (JLex and check from the SPECjvm suite). The

difficulty with these two programs is that since they are both quite short, the

measurements are affected by initialization time.

4.2 Sampling and Efficiency Tradeoff

Table 4.6 displays the number of sampled subpaths as recorded by our

implementation of the OSP algorithm. The second and third columns are the

number of sampled subpaths with and without repetitions. The Gain column

displays the average count of a subpath in the sampled set, i.e., the gain obtained

by using concise samples. The f column shows the sampling frequency, as defined

in Equation 2.13.

We impose a minimum limit on f , since low values of f generate high

overhead and do not contribute to the accuracy of the results being obtained.

26

Program �1 �2 Error

JLex 23.87 6.96 70.85%
FFT 15.93 15.57 2.29%
HeapSort 2.18 2.16 0.96%
MolDyn 1.31 1.53 16.97%
RayTrace 1.00 1.00 0.00%

check 696.18 14.57 97.91%
compress 1.15 1.20 4.34%
jess 1.44 1.51 4.35%
db 13.40 16.60 23.91%
javac 4.96 4.39 11.54%
mpegaudio 1.42 1.46 2.51%
mtrt 1.00 1.00 0.00%
jack 8.54 8.42 1.43%

Table 4.5: The average cost of a basic block, computed by dividing the execution
time by the number of basic blocks (�1) and using the skipping overhead (�2). The
error is computed relative to �1. The values of � have been normalized for the two
groups of tests separately.

Program # subpaths # distinct subpaths Gain f

JLex 2,183 891 2.45 1,000

FFT 168,885 314 537.85 1,000
HeapSort 10,217 475 21.50 12,304
MolDyn 2,530 353 7.17 400,000
RayTrace 5,276 443 11.90 260,000

check 1907 175 10.90 25
compress 1202 357 3.37 1127116
jess 465 317 1.47 806842
db 2023 213 9.50 104296
javac 517 421 1.23 494704
mpegaudio 736 346 2.13 966112
mtrt 477 381 1.25 1279782
jack 472 326 1.45 127178

Table 4.6: The number of subpaths in the sample with and without repetition,
the gain obtained by using concise samples (the ratio between columns two and
three), and the sampling frequency f at the end of the program.

27

This was important for the FFT program, where the gain is very high. In the

original FFT run, for instance, the sampling probability was one in 40. The results

were similar, but the total runtime overhead was 145% (compared to 36% in the

final run), and the sampling overhead was 102% (compared to 15%).

As has already been mentioned, the OSP overhead does not depend only on

the sampling probability. The HeapSort program performs very simple operations

on integers (comparisons and assignments). Since the cost of sampling, relative to

these simple operations, is high, the sampling overhead is higher for this program

than for others.

4.3 Memory Overhead

Table 4.7 shows the memory overhead of the profiler. The programs’ mem-

ory footprint (for both the instrumented and the uninstrumented versions) was

measured at the end of the execution. The programs’ memory footprint varies

between 100 and 200 kilobytes, and the profiler’s is about 50 kilobytes. For sim-

plicity, we used a straightforward representation of sampled subpaths. Thus, the

actual memory required during a profiling run may be higher. With a different

implementation this can be avoided, as suggested earlier in this section.

4.4 Accuracy of Results

Table 4.8 compares the results obtained by the OSP implementation with

results obtained for a profiler, that collects information about all subpaths (with

no sampling). For brevity, we only show the results for FFT. Similar results were

obtained for JLex.

For each subpath, an estimated count was computed, by dividing its count

28

Program Program footprint Instrumented footprint Overhead

JLex 169,728 213,032 43,304

FFT 107,416 147,168 39,742
HeapSort 107,400 156,360 48,960
MolDyn 111,800 152,664 40,864
RayTrace 108,016 173,816 65,800

Table 4.7: Memory usage of the different programs. The instrumented memory
does not take into account the memory needed for maintaining the output of the
algorithm.

Sample Exact Sample Est. Exact Error Est. Length
rank rank count count count Error

1 1 27,006 108,024,000 109,051,898 0.94% 2.58% 4
2 2 6,479 103,664,000 103,782,188 0.11% 5.27% 16
3 3 12,841 102,728,000 101,713,904 1.00% 3.74% 8
4 4 39,545 79,090,000 79,691,780 0.76% 2.13% 2
5 6 921 14,736,000 14,679,016 0.39% 13.98% 16
6 11 4,322 8,644,000 8,388,604 3.04% 6.45% 2
7 12 4,226 8,452,000 8,388,520 0.76% 6.53% 2
8 10 4,200 8,400,000 8,388,608 0.14% 6.55% 2
9 9 4,155 8,310,000 8,388,608 0.94% 6.58% 2

10 8 4,022 8,044,000 8,388,608 4.11% 6.69% 2

Table 4.8: For the hottest paths in the sample we show their true rank as obtained
by counting all subpaths, their count in the sample and in the full results, their
estimated count and the error in the estimation. For each path we also show its
length. The table is sorted by estimated count.

29

in the sample by the sampling probability and by the a priori probability of sam-

pling a path of that length.

For instance, the hottest subpath in the sample was sampled 27, 006 times.

We divide this number by the a-priori probability of sampling a path of length 4

(that is, by 1
4
), and by the probability of sampling a path (1

1000
). This yields the

count estimate.

The table shows, for each of the ten hottest subpaths in the sample, its

rank in the accurate results. We can see that the estimated count is very close to

the accurate one. For example, the count of the hottest subpath was estimated

with a precision of 0.94%, and of the second hottest with a precision of 0.11%.

In addition to the actual error we have computed an estimated error, using

Chernoff bounds (see Equation 2.14). According to the Chernoff bounds, the error

should be lower than the one computed, with a probability of over 95%. We can

see that in almost all cases, the Chernoff bound is pessimistic, and that the actual

error is much lower than expected.

In spite of the profiler’s preference for short paths, we can see that the

hottest paths were of non-trivial length.

Table 4.9 shows the error estimates obtained using Chernoff bounds on

the hottest subpath identified for each program. From the FFT example we can

assume that the actual error is much lower.

�1 is an upper bound for the error, with a confidence level of 95%. �2 is an

upper bound for the error, for the same confidence level, but using a uni-directional

Chernoff bound. �3 and �4 are upper bounds for the error (bi-directional and uni-

directional), with a confidence level of 80%.

We can learn even from relatively inaccurate measurements, like the mtrt

program. On that particular case, the most frequently occurring subpath was

30

Program name Count �1 �2 �3 �4

JLex 109 40.64% 23.46% 29.76% 17.18%
FFT 27,006 2.58% 1.49% 1.89% 1.09%

HeapSort 825 14.77% 8.53% 10.82% 6.25%
MolDyn 279 25.40% 14.66% 18.60% 10.74%

RayTrace 393 21.40% 12.36% 15.68% 9.05%
check 191 30.70% 17.72% 22.49% 12.98%

compress 48 61.24% 35.36% 44.85% 25.90%
jess 17 102.90% 59.41% 75.37% 43.51%
db 127 37.65% 21.74% 27.57% 15.92%

javac 13 117.67% 67.94% 86.19% 49.76%
mpegaudio 42 65.47% 37.80% 47.95% 27.68%

mtrt 6 150.00% 86.60% 109.87% 63.43%
jack 12 122.47% 70.71% 89.71% 51.79%

Table 4.9: For the hottest path in the sample we show an estimate of their count
error as obtained using Chernoff bounds.

sampled 6 times. As we’ve seen, using bi-directional Chernoff bounds with a

confidence level of 95% we get an error estimate of �1 = 150%. Thus, we know

with very high probability that the expected value of the sampled count is probably

no higher than 15. The converse is also true — had there been a subpath whose

expected count was 15, its count would have been higher than 6 with very high

probability. Thus, we can learn that there are probably no subpaths with a higher

count.

In order to estimate the quality of the results, it is not enough to look at

the hottest subpath in the sample. Table 4.10 shows the four error estimates for

the fifth hottest subpath located in each program. We can see that the results are

still accurate enough.

It is important to stress that better results could be obtained by sampling

more elements from the input set. Obtaining more accurate results will require

31

Program name Count �1 �2 �3 �4

JLex 59 55.23% 31.89% 40.46% 23.36%
FFT 4,289 6.48% 3.74% 4.74% 2.74%

HeapSort 441 20.20% 11.66% 14.80% 8.54%
MolDyn 251 26.78% 15.46% 19.61% 11.32%

RayTrace 206 29.56% 17.07% 21.65% 12.50%
check 96 43.30% 25.00% 31.72% 18.31%

compress 30 77.46% 44.72% 56.74% 32.76%
jess 11 127.92% 73.85% 93.69% 54.09%
db 102 42.01% 24.25% 30.77% 17.76%

javac 8 150.00% 86.60% 109.87% 63.43%
mpegaudio 18 100.00% 57.74% 73.24% 42.29%

mtrt 5 189.74% 109.54% 138.97% 80.24%
jack 7 160.36% 92.58% 117.45% 67.81%

Table 4.10: For the fifth hottest path in the sample we show an estimate of their
count error as obtained using Chernoff bounds.

higher overhead, however.

4.5 Incremental Results

The algorithm can, at any point during program execution, give an esti-

mate of the hottest subpaths encountered so far. In order to test this capability,

we have stopped the FFT example at several equally spaced points. At each of

these points, we took the 5 hottest subpahts in the accurate subpath count, and

checked their rank in the report of the sampling profiler. We can see in Table 4.11

that during program execution the intermediary results obtained by the sampling

profiler match the “true” results obtained by a full count of all subpaths with high

accuracy. Similar results were obtained for JLex.

32

True Rank 6% 12% 18% 24% 30% 36%

1 2 6 1 2 2 1
2 3 4 2 1 1 2
3 1 2 3 3 3 4
4 4 1 8 4 4 3
5 5 5 7 5 5 5

Table 4.11: Stops after every 10 millions blocks. At each stop point, we show the
rank in the sample of the 5 highest ranking subpaths in the full count. Note that
the 5 highest ranking subpaths are not necessarily the same at each stop point

4.6 Arbitrary Length

In order to perform a sanity check on our decision to limit ourselves to

paths of length 2n, we have run a different version of the profiler, which is able to

sample paths of arbitrary lengths. The length of the paths sampled varies from 2

to 1024, with the probability of selecting a path of length n being approximately

1
10n

.

As expected, the results were much more noisy, with the hottest subpaths

being sampled no more than 3 times. In spite of this, the results are acceptable,

with the hottest subpaths corresponding to those obtained when the path lengths

where limited to 2n.

Still, the low count of the results means they are not accurate with high

probability. Therefore, running the OSP algorithm with arbitrary path length

would require a larger sampling probability, and a larger memory overhead, to

make sure paths are sampled often enough for results to be meaningful.

In order to obtain more complete results, while still keeping the noise to a

relatively low level, we have run the profiler with yet another length distribution.

In addition to paths of length 2n we have decided to allow paths of length 3 and 5

33

(with the distribution being 1
2
, 1
4
, . . .).

In the FFT example, the profiler identified hot subpahts of lengths 3 and

5, at the expense of longer subpaths. The 15 hottest subpaths included 3 sub-

paths of length 3 and 1 of length 5. It is interesting to note that these additional

subpaths were concatenations of several loop iterations (shorter versions of which

were already identified), and in this specific case did not add any new information.

34

CHAPTER 5

Algorithmic Extensions

The algorithm can be adapted to different requirements by changing the

way the subpaths are counted. Also, the algorithm can be adapted to report

subpaths which exceed a predetermined threshold, instead of the k hottest ones.

5.1 Weighted Paths

The algorithm can be adapted to different requirements by changing the

way the subpaths are counted.

As was already seen, the algorithm samples shorter subpaths with higher

probability. This probability distribution represents our belief that shorter paths

may be more interesting. This probability distribution may be modified to reflect

other needs.

Other than changing the sampling probability of paths of different lengths,

there are several other options for introducing weights into the subpath sampling

algorithm.

5.1.1 Weighing Paths by Length

The algorithm as presented so far counts the number of times the different

hot subpaths occur in the program. These subpaths may be of different lengths,

but the algorithm does not take this into account.

It may be that we find longer subpaths more interesting, as they enable

understanding of the program flow. On the other hand, as was pointed out by

Larus [?], since some compilers excel at small, local optimizations, we may be

35

interested in the shorter hot subpaths (what he terms minimal subpaths), which

present a great target for optimization.

It is obvious that in either case we should treat differently paths of different

lengths. The easiest way to achieve that goal is to modify the way the algorithm

counts the sampled subpaths. Each time a subpath is encountered, its count will

be increased not by one, but by f(n), where n is the length of this subpath.

Despite its simplicity, this is a very general method. We could modify f

and adapt it to the results we find interesting. It should be emphasized that there

is no “correct” weight function and that different applications will most probably

require different weight functions.

5.1.2 A priori cost of paths

Until now we have assumed that a subpaths is a sequence of basic-blocks,

and that all basic-blocks have the same “cost”. When we sample a path we take

into consideration only the number of basic-blocks it contains, and not the length

of time it takes to execute.

This is a simplification of reality. Different basic blocks may have different

execution costs, for various reasons: they may be of different lengths, or they may

contain instructions that have different costs themselves (for instance, consider the

high cost of I/O operations).

If two subpaths happen an equal number of times during program execution,

they will (with high probability) be sampled an almost equal number of times. It

would be better to consider the path which has a longer execution time hotter than

the other.

In order to achieve this goal, basic blocks can be given an a priori cost

36

during instrumentation. When a path of length n has been sampled, we can define

its cost as the average of the cost of the basic blocks it contains, thus:

�p =
1

n

n∑
i=1

�i

and path with cost �p may be rejected before it is counted, with the prob-

ability of rejection being:

preject = 1− �p
�m

where �m is the cost of the most expensive basic block.

This will ensure that expensive paths will be sampled more often than

inexpensive ones.

sThe a priori cost of a basic block can be computed during program instru-

mentation, and will therefore not incur any overhead during program execution.

5.2 Using Thresholds

The algorithm as described so far samples to hottest subpaths occurring

during program execution. A different approach would be not to limit subpath

sampling and reporting according to the rank of the subpaths.

Instead of a hot-list algorithm, an iceberg query algorithm can be used [?].

This class of algorithms can be used to find elements which occur in some in-

put data set above some specified threshold. The algorithm’s initial parameters

determine the count above which elements should be reported (and their report

probability), and the count below which they should not be (and the matching

probability).

37

Using this class of algorithms would enable us to report the subpaths which

exceed a predetermined threshold, instead of the n hottest ones in the program.

However, as was seen in our results, different programs may have vastly

different subpath distributions, and some fine-tuning of this threshold may be

needed for each program.

5.3 Subpath Correlation

One of the main advantages of the OSP algorithm over other methods is

that it can cross loop and procedure boundaries. The Ball and Larus path profiler

loses information about the context of a path and its correlation to other paths.

For example, consider a loop which contains an if-clause, which separates

odd from even iterations. The subpath profiler will sample two hot subpaths,

one for the behavior occurring for odd iterations, one of the behavior occurring

for even ones. However, the subpath profiler will do more than that. Another

hot subpath that will be sampled is the subpath consisting of the concatenation

of these two behaviors. An optimizing compiler could use this information to

create a specialized unrolled version of the loop that would not contain branching

instructions.

38

CHAPTER 6

Related Work

The original Ball-Larus path profiling algorithm recorded the execution

frequency of intraprocedural, acyclic paths [?]. The program was instrumented

in such a way that each path would generate a unique identifier during program

execution.

Ammons, Ball and Larus extended acylic path profiling [?]. They associated

hardware metrics other than execution frequency with paths. They also introduced

a runtime data structure to approximate interprocedural paths. In practice [?]

these linkages were imprecise, and this method does not connect paths across loop

iterations.

Another interprocedural extension of the Ball-Larus path profiling tech-

nique is described by Melski and Reps [?]. Paths in this technique do not cross

loops. Interprocedural paths are assigned a unique identifier statically.

Larus [?] later described a new approach to path profiling, which captures a

complete picture of the program’s dynamic behavior. He introduced whole program

paths, which are a complete compact record of a program’s entire control flow. A

whole program path crosses both loop and procedure boundaries, and so provides a

practical basis for interprocedural path profiling. Since the whole program path can

be quite large (hundreds of megabytes), it has to be compressed, and compression

is achieved by representing the WPP as a grammar. The grammar is over an

alphabet of symbols representing acyclic paths, but the algorithm can be adapted

to run over an alphabet of symbols representing vertices or edges.

Once the WPP for a program has been collected and compacted, it is possi-

ble to run different analyses on this representation of program flow. Larus presents

39

one such analysis, which identifies hot subpaths. The WPP approach requires two

stages: data collection and analysis. Hence, it cannot be used by a JIT compiler

to locate hot subpaths during program execution.

Duesterwald and Bala [?] analyze online profiling and its application to

JIT compilation. Online profiling is a different challenge than offline profiling: the

longer the program execution is profiled, the later will predictions be made and,

consequently, the lower will be the potential benefit of the predictions. They have

shown that prediction delay is a significant factor in evaluating the quality of a

prediction scheme. Thus, while intuition may call for longer and more elaborate

profiling, the opposite is true: less profiling actually leads to more effective pre-

dictions. We believe it would be interesting to combine hot subpath profiling with

their results.

Taub, Shechter and Smith present an idea for reducing profiling overhead

[?]. This approach produces binaries that periodically record aspects of their ex-

ecutions in great detail. It works because program behavior is predictable, and

it suffices to collect information during only part of the program run-time. After

a specified number of executions, the instrumentation can remove itself from the

program code, and generates no more overhead.

In [?], Arnold and Ryder proposed to maintain two versions of the program

in memory — one instrumented, and one almost uninstrumented. The program

execution can then jump between these two versions, collecting enough data for

effective profiling, but keeping the overhead low. The technique as presented there

is different from the OSP algorithm in several details — back-edges return to the

uninstrumented code, independently of the profiler — but their framework could

be adapted for use by the OSP algorithm.

Bala, Duesterwald and Banerjia present in [?] a dynamic optimization sys-

40

tem called Dynamo. Dynamo is implemented as a native code interpreter that runs

on top of the native processor. Once hot traces are located they are aggressively

optimized, and the next occurrences of those traces will run natively. Hot traces

may begin only at certain predetermined points, so the results obtained by the

OSP algorithm, where no such restriction exists, are more general in nature (as

can be seen in Figure 1.1). It would be interesting to integrate the OSP algorithm

into Dynamo, in order to evaluate its benefits and to compare both methods.

A different approach of using sampling for profiling using a combined soft-

ware and hardware solution is described in [?]. Adaptive sampling techniques have

been used in related fields, such as value profiling [?].

41

CHAPTER 7

Conclusions

In this paper we demonstrated an efficient technique for online subpath

profiling, which is based on an adaptive sampling technique.

The OSP algorithm has been implemented as a prototype, and has been

successfully tested on several Java programs.

If the profiler is incorporated into the JVM, the skipping process can be

incorporated into the JVM as well. As was mentioned, the profiler overhead con-

sists of two parts — the one caused by the skipping process, and the one caused by

the sampling process. Once the skipping process is part of the JVM, its overhead

could be lowered. For a discussion of possible optimizations when incorporating

profiling into a JVM, see [?]. Once the OSP algorithm is fully integrated into a

JVM, its output could be used to locate possible candidates for JIT compilation.

42

REFERENCES

[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance
counters with flow and context sensitive profiling. ACM SIGPLAN Notices,
32(5):85–96, 1997.

[2] M. Arnold and B. G. Ryder. A framework for reducing the cost of instru-
mented code. In SIGPLAN Conference on Programming Language Design
and Implementation, pages 168–179, 2001.

[3] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent dynamic
optimization system. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 1–12, 2001.

[4] T. Ball and J. R. Larus. Efficient path profiling. In International Symposium
on Microarchitecture, pages 46–57, 1996.

[5] E. Berk and C. S. Ananian. JLex – A lexical analyzer generator for Java.
Available at http://www.cs.princeton.edu/˜appel/modern/java/JLex.

[6] M. Burrows. Efficient and flexible value sampling. In Proceedings of the 9th
Conference on Architectural Support for Programming Languages and Oper-
ating Systems, November 2000.

[7] E. Duesterwald and V. Bala. Software profiling for hot path prediction: Less
is more. In Ninth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 202–211, 2000.

[8] P. B. Gibbons and Y. Matias. New sampling-based summary statistics for
improving approximate query answers. In Proceedings of the ACM SIGMOD,
pages 331–342, 1998.

[9] JGF. The java grande forum benchmark suite. Available at
http://www.epcc.ed.ac.uk/javagrande.

[10] J. R. Larus. Whole program paths. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 256–269, 1999.

[11] D. Melski and T. W. Reps. Interprocedural path profiling. In International
Conference on Compiler Construction, pages 47–62, 1999.

[12] S. Sastry, R. Bodik, and J. Smith. Rapid profiling via stratified sampling. In
the 28th International Symposium on Computer Architecture, July 2001.

[13] E. Segal, Y. Matias, and P. B. Gibbons. Online iceberg queries. Technical
report, Tel-Aviv University, 2000.

43

[14] SPEC. The SPECjvm benchmark suite. Available at
http://www.spec.org/osg/jvm98.

[15] O. Taub, S. Schechter, and M. D. Smith. Ephemeral instrumentation for
lightweight program profiling. Technical report, Harvard University, 2000.

[16] R. Vallee-Rai, E. Gagnon, L. J. Hendren, P. Lam, P. Pominville, and V. Sun-
daresan. Optimizing java bytecode using the soot framework: Is it feasible? In
Proceedings of the International Conference on Compiler Construction, pages
18–34, 2000.

[17] J. S. Vitter. Random sampling with a reservoir. ACM Transactions on Math-
ematical Software, 11(1):37–57, 1985.

44

