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Abstract

Linearizability is one of the main correctness criteria for implementations
of concurrent data structures. A data structure is linearizable if its oper-
ations appear to execute atomically. Verifying linearizability of concurrent
unbounded linked data structures is a challenging problem because it requires
correlating executions that manipulate (unbounded-size) memory states. We
present a static analysis for verifying linearizability of concurrent unbounded
linked data structures. The novel aspect of our approach is the ability to
prove that two (unbounded-size) memory layouts of two programs are iso-
morphic in the presence of abstraction. A prototype implementation of the
analysis verified the linearizability of several published concurrent data struc-

tures implemented by singly-linked lists.
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Chapter 1
Introduction

Linearizability [HW90] is one of the main correctness criteria for implemen-
tations of concurrent data structures (a.k.a. concurrent objects). Intuitively,
linearizability provides the illusion that any operation performed on a concur-
rent object takes effect instantaneously at some point between its invocation
and its response. One of the benefits of linearizability is that it simplifies
reasoning about concurrent programs. If a concurrent object is linearizable,
then it is possible to reason about its behavior in a concurrent program by
reasoning about its behavior in a (simpler) sequential setting.

Informally, a concurrent object o is linearizable if each concurrent execu-
tion of operations on o is equivalent to some permitted sequential execution,
in which the global order between non-overlapping operations is preserved.
The equivalence is based on comparing the arguments and results of opera-
tions (responses). The permitted behavior of the concurrent object is defined
in terms of a specification of the desired behavior of the object in a sequential
setting.

Linearizability is a widely-used concept, and there are numerous non-
automatic proofs of linearizability for concurrent objects (See Sec. 6). Prov-
ing linearizability is challenging because it requires correlating any concur-
rent execution with a corresponding permitted sequential execution. Proving

linearizability for concurrent objects that are implemented by dynamically al-



located linked data-structures is particularly challenging, because it requires
correlating executions that may manipulate memory states of unbounded
size.

In this paper, we present a novel technique for automatically veritying the
linearizability of concurrent objects implemented by linked data structures.
Technically, we verify that a concurrent object is linearizable by simultane-
ously analyzing the concurrent implementation with an ezecutable sequential
specification (i.e., a sequential implementation). The two implementations
manipulate two disjoint instances of the data structure. The analysis main-
tains a partial isomorphism between the memory layouts of the two instances.
The abstraction is precise enough to maintain isomorphism when the differ-
ence between the memory layouts is of bounded size. Note that the memory

states themselves can be of unbounded size.

Implementation

We have implemented a prototype of our approach, and used it to automati-
cally verify the linearizability of several concurrent algorithims, including the
queue algorithms of [MS96] and the stack algorithm of [Tre86]. As far as
we know, our approach is the first fully automatic proof of linearizability for

these algorithms.

Limitations

Our analysis has several limitations: (i) Every concurrent operation has a
(specified) fized linearization point, a statement at which the operation ap-
pears to take effect. (This restriction can be relaxed to several statements,
possibly with conditions.) (ii) We verify linearizability for a fixed but arbi-
trary number of threads. (iii) We assume a garbage collected environment.
Sec. 4 discusses the role of these limitations. We note that the analysis
is always sound, even if the specification of linearization points is wrong

(see Appendix).



Main Results

The contributions of this paper can be summarized as follows:

e We present the first fully automatic algorithm for verifying lineariz-
ability of concurrent objects implemented by unbounded linked data
structures.

e We introduce a novel heap abstraction that allows an isomorphism
between mutable linked data structures to be maintained under ab-
straction.

e We implemented our analysis and used it to verify linearizability of

several unbounded linked data structures.

For readability, we concentrate on providing an extended overview of our
work by applying it to verify the linearizability of a concurrent-stack algo-

rithm due to Treiber [Tre86]. Formal details can be found in the appendices.



Chapter 2
Verification Challenge

Fig. 2.1(a) and (b) show C-like pseudo code for a concurrent stack that
maintains its data items in a singly-linked list of nodes, held by the stack’s
Top-field. Stacks can be (directly) manipulated only by the shown procedures
push and pop, which have their standard meaning.

The procedures push and pop attempt to update the stack, but avoid
the update and retry the operation when they observe that another thread
changed Top concurrently. Technically, this is done by repeatedly executing
the following code: At the beginning of every iteration, they read a local
copy of the Top-field into a local variable t. At the end of every iteration,
they attempt to update the stack’s Top-field using the Compare-and-Swap
(CAS) synchronization primitive. CAS(&S->Top,t,x) atomically compares
the value of S->Top with the value of t and, if the two match, the CAS
succeeds: it stores the value of x in S->Top, and evaluates to 1. Otherwise,
the CAS fails: the value of S->Top remains unchanged and the CAS evaluates
to 0. If the CAS fails, i.e., Top was modified concurrently, push and pop

restart their respective loops.



[10] #define EMPTY -1 [20] void push(Stack *S, data_type v){

[11] typedef int data_type; 211  Node *x = alloc(sizeof(Node));

[12] typedef struct node.t { 221 x->d = v;

(13]  data_type d; 23] do {

[14] struct node_t *n [24] Node *t = S->Top;

(151 } Node; [25] x->n = t;

[16] typedef struct stack-t { 261 } while (!CAS(&S->Top,t,x)); // @1
[171  struct node_t *Top; 271 }

(18] } Stack;

(a) Stack and Node type definitions [30] data-type pop(Stack *3){

(311 do {
[40] void client(Stack *st) { [32] Node *t = S->Top; // @2
a1 do { [33] if (t == NULL)
[42] if (?) [34] return EMPTY;
[43] push(st, rand()); [35] Node *s = t->n;
[44] else [s6] } while (!CAS(&S->Top,t,s)); // @3
[45] pop(st); [371 data_type r = t->d;
461  } while (1); [38] Treturn r;
a1 } fso] }
(c) The most general client of Stack (b) Concurrent stack procedures

Figure 2.1: A concurrent stack: (a) its type, (b) implementation, and (c¢) most general client.

Specification

The linearization point of push is the CAS statement in line [26] (marked
with @1). This linearization point is conditional: Only a successful CAS is
counsidered to be a linearization point. Procedure pop has two (conditional)
linearization points: Reading the local copy of Top in line [32] (marked
with @2) is a linearization point, if it finds that Top has a NULL-value. The

CAS in line [36] (marked with @3) is a linearization point, if it succeeds.

Verification Goal

We verify that the stack algorithm is linearizable with the specified lineariza-

tion points for 2 threads, using its own code as a sequential specification.



Chapter 3
Our Approach

We use abstract interpretation of a non-standard concrete semantics, the
correlating semantics, abstracted by a novel delta heap abstraction to con-
servatively verify that every execution of any program that manipulates a
stack using 2 threads is linearizable. Technically, we simulate the executions
of all such programs using a single program that has two threads running
the stack’s most-general-client and using a shared stack. (The stack’s most
general client, shown in Fig. 2.1(c), is a procedure that invokes an arbitrary

nondeterministic sequence of operations on the stack.)

3.1 The Correlating Semantics

The correlating semantics “checks at runtime” that an execution is lineariz-
able. It simultaneously manipulates two memory states: the candidate state
and the reference state. The candidate state is manipulated according to the
interleaved execution. Whenever a thread reaches a linearization point in a
given procedure, e.g., executes a successful CAS while pushing data value 4,
the correlating semantics invokes the same procedure with the same argu-
ments, e.g., invokes push with 4 as its value argument, on the reference state.
The interleaved execution is not allowed to proceed until the execution over

the reference state terminates. The reference response (return value) is saved,

10



and compared to the response of the corresponding candidate operation when
it terminates. This allows to directly test the linearizability of the interleaved
execution by constructing a (serial) witness execution for every interleaved
execution. In the example, we need to show that corresponding pops return

identical results.

Example 3.1.1 Fig. 3.1(a) shows a part of a candidate execution
and the corresponding fragment of the reference execution (the
witness) as constructed by the correlating semantics. Fig. 3.1(b)
shows some of the correlated states that occur in the example
execution. Every correlated state consists of two states: the can-
didate state (shown with a clear background), and the reference

state (shown with a shaded background).

The execution fragment begins in the correlated state o,. The
candidate (resp. reference) state contains a list with two nodes,
pointed to by the Top-field of the candidate (resp. reference)
stack. To avoid clutter, we do not draw the Stack object itself.
In the reference state we add an r-superscript to the names of
fields and variables. (We subscript variable names with the id
of the thread they belong to.) For now, please ignore the edges

crossing the boundary between the states.

In the example execution, thread B pushes 7 into the stack, con-
currently with A pushing 4. The execution begins with thread
B allocating a node and linking it to the list. At this point,
oy, thread A’s invocation starts. Although B’s invocation pre-
cedes A’s invocation, thread A reaches a linearization point be-
fore B. Thus, after thread A executes a successful CAS on state
o., resulting in state o4, the correlating semantics freezes the ex-
ecution in the candidate state and starts A executing push(4)
uninterruptedly in the reference state. When the reference ex-

ecution terminates, in o4, the candidate execution resumes. In

11
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this state, thread B has in tg an old copy of the value of the
stack’s Top. Thus, its CAS fails. B retries: it reads the candi-
date’s Top again and executes another (this time successful) CAS
in state 0;. Again, the correlating semantics freezes the candidate
execution, and makes B execute push(7) on the reference state

starting from o;. In o,,, both push operations end.

Thread A invokes a pop operation on the stack in state o,,.
Thread A executes a successful CAS on state o, and the reference
execution starts at o,. When the latter terminates, the correlat-
ing semantics saves the return value, 7, in the special variable
ret”y. When the candidate pop ends in o,, the correlating seman-
tics stores the return value, 7, in ret,, and compares the two,

checking that the results match.

Up to this point, we described one aspect of the correlating semantics: check-
ing that an interleaved execution is linearizable by comparing it against
a (constructed) serial witness. We now show how our algorithm uses ab-
straction to conservatively represent unbounded states and utilizes (delta)
abstraction to determine that corresponding operations have equal return

values.

Comparison of Unbounded States

Our goal is to statically verify linearizability. The main challenge we face
is devising a bounded abstraction of the correlating semantics that allows
establishing that every candidate pop operation, in every execution, returns
the same result as its corresponding reference pop operation. Clearly, using
separated bounded abstractions of the candidate and the reference stack
will not do: Even if both stacks have the same abstract value, it does not
necessarily imply that they have equal contents.

Our abstraction allows one to establish that corresponding operations

return equal values by using the similarity between the candidate and refer-

13



ence states (as can be observed in Fig. 3.1(b)). In particular, it maintains
a mapping between the isomorphic parts of the two states (an isomorphism
function). Establishing an isomorphism function—and maintaining it under
mutations—is challenging. Our approach, therefore, is to incrementally con-
struct a specific isomorphism during execution: The correlating semantics
tracks pairs of nodes allocated by corresponding operations using a corre-
lation relation. We say that two correlated nodes are similar if their n-
successors are correlated (or both are NULL). The maintained isomorphism

is the correlation relation between similar nodes.

Example 3.1.2 The edges crossing the boundary between the
candidate and the reference component of the correlated states
shown in Fig. 3.1(b) depict the correlation relation. In state o,
each node is similar to its correlated node. In states o, and o,
threads B and A have allocated nodes with data values 7 and
4, respectively, and linked them to the list. When thread A’s
corresponding reference operation allocates a reference node, it
becomes correlated in o, with the candidate node that A allo-
cated. When the reference node is linked to the list, in o, the
two become similar. (The node allocated by B undergoes an

analogous sequence of events in oy and o;).

Comparing Return Values

The analysis needs to verify that returned values of corresponding pops
match. Actually, it establishes a stronger property: the returned values of
corresponding pops come from correlated nodes, i.e., nodes that were allo-
cated by corresponding pushs. Note that a node’s data value, once initialized,
is immutable. To simplify the presentation, and the analysis, we consider cor-
related nodes to also have equal data values. Our analysis tracks the nodes
from which the return values are read (if this is the case) and verifies that

these nodes are correlated. Sec. 4 discusses the comparison of actual data values.

14



Example 3.1.3 Thread A executes a pop and gets the reference
return value by reading the data field of the node pointed to by
t’y, in 0p,. The corresponding candidate pop gets the return value
by reading the data field of the node pointed to by t 4, resulting in
04, With 7 being r 4’s value. Our analysis verifies that these nodes
are indeed correlated. Furthermore, consider an incorrect imple-
mentation of (concurrent) push in which the loop is removed and
the CAS in line [26] is replaced by the standard pointer-update
statement S->Top=x. Running our example execution with this
implementation, we find that thread B manages to update Top in
state o, (instead of failing to do so with a CAS). As a result, the
candidate Top is redirected to the node that B allocated, and the
current node at the top of the candidate stack (pushed by A) is
lost. However, the node that A pushed onto the reference stack
is still (eventually) in the reference stack. As a result, when it
is popped from the stack, it will not be correlated with the node
popped from the candidate stack. Our analysis will find this out

and emit a warning.

3.2 Delta Heap Abstraction

Our abstraction summarizes an unbounded number of nodes while main-
taining a partial-isomorphism between the reference state and the candi-
date state. The main idea is to abstract together the isomorphic parts of
the states (comprised of pairs of correlated nodes) and to explicitly record
the differences that distinguish between the states. Technically, this is per-
formed in two abstraction steps: In the first step, we apply delta abstraction,
which merges the representations of the candidate and reference states by
fusing correlated nodes, losing their actual addresses. In the second step, we

bound the resulting delta memory state into an abstract delta memory state

15



using canonical abstraction [SRW02], losing the exact layout of the isomor-
phic subgraphs while maintaining a bounded amount of information on their
distinguishing differences. This abstraction works well in cases where the

differences are bounded, and loses precision otherwise.

Delta Abstraction

We abstract a correlated memory state into a delta state by sharing the rep-
resentation of the correlated parts. Pictorially, the delta abstraction super-
imposes the reference state over the candidate state. Each pair of correlated
nodes is fused into a duo-object. The abstraction preserves the layout of the
reference memory state by maintaining a double set of fields, candidate-fields
and reference-fields, in every duo-object. Recall that a pair of correlated
nodes is similar if their n-successors are correlated (or both are NULL). In
the delta representation, the candidate-field and the reference-field of a duo-
object representing similar nodes are equal. Thus, we refer to a duo-object

representing a pair of similar nodes as a uniform duo-object.

Example 3.2.1 Fig. 3.1(c¢) depicts the delta states pertaining
to some of the correlated states shown in Fig. 3.1(b). The delta
state afn represents o,,. Each node in ¢, is correlated, and sim-
ilar to its correlated node. A duo-object is depicted as a rect-

angle around a pair of correlated nodes. All the duo-objects
§

in 0° are uniform. (This is visually indicated by the ~ sign
inside the rectangle.) The n-edge of every uniform duo-object
implicitly represents the (equal) value of its n"-edge. This is in-
dicated graphically, by drawing the n-edge in the middle of the
uniform duo-object. For example, the n-edge leaving the uniform
duo-object with value 1, implicitly records the n"-edge from the
reference node with value 1 to the reference node with value 3.

Note that the candidate Top and the reference Top, that point
5

to correlated nodes in o0,,, point to the same duo-object in o7, .

16



The delta state of represents o,. The duo-object with data-
value 7 in ¢? is nonuniform; it represents the pair of nodes allo-
cated by thread B before it links the reference node to the list.
(Nonuniform duo-objects are graphically depicted without a ~
sign inside the rectangle.) Note that the n-edge of this nonuni-
form duo-object is drawn on its left-side. The lack of a n"-edge

on the right-side indicates that the n"-field is NULL.

The delta state o? represents o;. The non-correlated node with

data-value 7 is represented as a “regular” node.

Bounded Delta Abstraction

We abstract a delta state into a bounded-size abstract delta state. The main
idea is to represent only a bounded number of objects in the delta state
as separate (non-summary) objects in the abstract delta state, and sum-
marize all the rest. More specifically, each uniform duo-object, nonuniform
duo-object, and node which is pointed to by a variable or by a Top-field,
is represented by a unique abstract uniform duo-object, abstract nonuniform
duo-object, and abstract node, respectively. We represent all other uniform
duo-objects, nonuniform duo-objects, and nodes, by one uniform summary
duo-object, one nonuniform summary duo-object, and one summary node,
respectively. We conservatively record the values of pointer fields, and ab-
stract away values of data fields. (Note, however, that by our simplifying

assumption, every duo-object represents nodes with equal data values.)

Example 3.2.2 Fig. 3.1(d) depicts the abstract delta states per-

taining to the delta states shown in Fig. 3.1(c). The abstract state
§ $

o! represents o?. The duo-objects with data values 1 and 3 in o?

are represented by the summary duo-object, depicted with a dou-
5

ble frame. The duo-object u with data value 4 in o7 is represented

1

by its own abstract duo-object in o; (and not by the summary

17



duo-object) because u is pointed to by (both) Top-fields. The non-
correlated node w with data-value 7 in o? is pointed to by xp. It

is represented by its own abstract node pointed to by xg. The n-
§

field between the candidate node w and the duo-object u in o} is
represented in the abstract state by the solid n-labeled edge. The
absence of an n-labeled edge between abstract nodes or abstract
duo-objects represents the absence of pointer fields. Finally, the
dotted edges represent loss of information in the abstraction, i.e.,

pointer fields which may or may not exist. Note that the sum-
i
i

our analysis: it records the fact that the candidate and reference

mary duo-object in ¢ is uniform. This information is key to

states have (potentially unbounded-sized) isomorphic subgraphs.

The abstract delta state o,ﬂc represents o). The nonuniform duo-
object v in 02 is represented by an abstract nonuniform duo-
object in O'IuC. Note that the abstraction maintains the information
that the duo-object pointed to by v’s candidate n-field, is also
pointed to by the reference Top. This allows to establish that
once thread B links the reference node to the list, the abstract

nonuniform duo-object v is turned into a uniform duo-object.

Recap

The delta representation of the memory states, enabled by the novel use of
similarity and duo-objects, essentially records isomorphism of subgraphs in
a local way. Also, it helps simplify other elements of the abstraction: the
essence of our bounded abstraction is to keep distinct (i.e., not to represent
by a summary node or a summary duo-object) nodes and pairs of correlated
nodes which are pointed-to by variables or by a Top-field. Furthermore, by
representing the reference edges of similar nodes by the candidate edges and
the similarity information recorded in (uniform) duo-objects, the bounded

abstraction can maintain only a single set of edges for these nodes. Specif-
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ically, if there is a bounded number of differences between the memories,
the bounded abstraction is, essentially, abstracting a singly-linked list of
duo-objects, with a bounded number of additional edges. In addition, to
represent precisely the differences between the states using this abstraction,
these differences have to be bounded, i.e., every non-similar or uncorrelated

node has to be pointed to by a variable or by a Top-field.

Example 3.2.3 The information maintained by the abstract delta
state suffices to establish the linearizability of the stack algorithm.

Consider key points in our example trace:

e When thread B performs a CAS on oy, its abstraction 02
carries enough information to show that it fails, and when
B tries to reperform the CAS on o;, its abstraction 0'? can
establish that the CAS definitely succeeds.

e When linking the reference node to the list in state o, and
later in oy, the abstracted states can show that newly cor-
related nodes become similar.

e o the abstraction of o,,, which occurs when no thread
manipulates the stack, indicates that the candidate and the
reference stacks are isomorphic.

e Finally, 02, the abstraction of o,, indicates that the return
value of the reference pop was read from a node correlated to
the one from which r4’s value was read (indicated by ret’

pointing into the correlated node). This allows our analysis

to verify that the return values of both pops agree.

Our analysis is able to verify the linearizability of the stack. Note that
the abstraction does not record any particular properties of the list, e.g.,
reachability from variables, cyclicly, sharing, etc. Thus, the summary duo-

object might represent a cyclic list, a shared list, or even multiple unreachable

19



lists of duo-objects. Nevertheless, we know that the uniform summary duo-
object represents an (unbounded-size) isomorphic part of the candidate and

reference states.

20



Chapter 4
Discussion

In this section, we shortly discuss some key issues in our analysis.

4.1 Soundness

The soundness of the analysis requires that every operation of the executable
sequential specification is fault-free and always terminates. This ensures that
triggering a reference operation never prevents the analysis from further ex-
ploring its candidate execution path. Our analysis conservatively verifies
the first requirement in situ. The second requirement can be proved us-
ing termination analysis, e.g., [BCDOO06]. Once the above requirements are
established, the soundness of the abstract interpretation follows from the
soundness of [SRW02]’s framework for program analysis, in which our analy-
sis is encoded. We note that for many of our benchmarks, showing termina-
tion is rather immediate because the procedures perform a loop until a CAS

statement succeeds; in a serial setting, a CAS always succeeds.

Correlating Function

We used the same correlation function in all of our benchmarks: nodes al-

located by corresponding operations are correlated. (In all our benchmarks,
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every operation allocates at most one object. More complicated algorithms
might require more sophistication.) We note that our analysis is sound with

any correlation function.

Comparison of Return Values

We simplified the example by not tracking actual data values. We now show
how return values can be tracked by the analysis. The flow of data val-
ues within corresponding operations can be tracked from the pushed value
parameter to the data fields of the allocated nodes (recall that correspond-
ing operations are invoked with the same parameters). We then can record
data-similarity, in addition to successor-similarity, and verify that data-fields
remain immutable. This allows to automatically detect that return values
(read from correlated nodes) are equal. Such an analysis can be carried out
using, e.g., the methods of [GDD*04].

4.2 Precision

As far as we know, we present the first shape analysis capable of maintain-
ing isomorphism between (unbounded-size) memory states. We attribute the
success of the analysis to the fact that in the programs we analyze the mem-
ory layouts we compare only “differ a little”. The analysis tolerates local
perturbations (introduced, e.g., by interleaved operations) by maintaining a
precise account of the difference (delta) between the memory states. In par-
ticular, during our analysis, it is always the case that every abstract object
is pointed to by a variable or a field of the concurrent object, except, pos-
sibly, uniform duo-objects. Thus, we do not actually expect to summarize
nonuniform duo-objects or regular nodes. In case the analysis fails to ver-
ify the linearizability of the concurrent implementation, its precision may be

improved by refining the abstraction.
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4.3 Operational Specification

We can verify the concurrent implementation against a simple sequential
specification instead of its own code. For example, in the operational spec-
ification of push and pop, we can remove the loop and replace the CAS
statement with a (more natural) pointer-update statement. Verifying a code
against a specification, and not against itself, can improve performance. For
example, we were not able to verify a sorted-set example using its own code
as a specification (due to state explosion), but we were able to verify it using
a simpler specification. Also, it should be much easier to prove fault-freedom

and termination for a simplified specification.

4.4 Parametric Shape Abstraction

We match the shape abstraction to the way the operations of the concur-
rent objects traverse the heap: When the traversal is limited to a bounded
number of links from the fields of the concurrent object, e.g., stacks and
queues, we base the abstraction on the values of variables. When the traver-
sal is potentially unbounded, e.g., a sorted set, we also record sharing and

reachability.

4.5 Automation

In the stack example, we used a very simple abstraction. In other cases, we
had to refine the abstraction. For example, when analyzing the nonblocking-
queue [MS96|, we found it necessary to also record explicitly the successor
of the tail. Currently, we refine the abstraction manually. However, it is
possible to automate this process using the methods of [LRS05]. We define
the abstract transformers by only specifying the concrete (delta) semantics.

The abstract effect of statements on the additional information, e.g., reacha-
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bility, is derived automatically using the methods of [RSLO3|. The latter can
also be used to derive the delta operational semantics from the correlating

operational semantics.

4.6 Limitations

We now shortly discuss the reasons for the imposed limitations.

Fixed Linearization Points

Specifying the linearization points of a procedure using its own statements
simplifies the triggering of reference operations when linearization points are
reached. In addition, it ensures that there is only one (prefix of a) sequential
execution corresponding to every (prefix of a) concurrent execution. This
allows us to represent only one reference data structure. Extending our
approach to handle more complex specification of linearization points, e.g.,
when the linearization point occurs in the body of another method, is a mat-
ter of future investigation. (See App. A.1 for our treatment of a linearization

point that depends on the future execution of the same thread.)

Bounded Number of Threads

The current analysis verifies linearizability for a fixed (but arbitrary) number
k of threads. However, our goal is not to develop a parametric analysis, but
to lift our analysis to analyze an unbounded number of threads using the
techniques of Yahav [YahO1].

No Explicit Memory Deallocation

We do not handle the problem of using (dangling) references to reclaimed
memory locations, and assume that memory is automatically reclaimed (garbage

collected). Dangling references can cause subtle linearizability errors because
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of the ABA problem.! Our model is simplified by forbidding explicit memory
deallocation. This simplifying assumption guarantees that the ABA problem
does not occur, and hence need not be treated in the model. We believe that
our approach can be extended to support explicit memory deallocation, as
done, e.g., in [YS03]. In our analysis, we do not model the garbage collector,

and never reclaim garbage.

!The ABA problem occurs when a thread reads a value v from a shared location (e.g.,
Top) and then other threads change the location to a different value, say u, and then
back to v again. Later, when the original thread checks the location, e.g., using read or
CAS, the comparison succeeds, and the thread erroneously proceeds under the assumption
that the location has not changed since the thread read it earlier [Mic04]. Suppose, for
example, that the thread is performing a pop, and v is its local copy of the value of Top.
Assume that the thread has managed to read the address w of the successor of the node
that v points to before being preempted. The danger is that, when rescheduled, pop might
continue as if w is the current successor, although it is not necessarily the case.
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Chapter 5

Implementation and

Experimental Results

We have implemented a prototype of our analysis using the TVLA /3VMC [LAS00,
Yah01] framework. Tab. 5.1 summarizes the verified data structures, the run-
ning times, and the number of configurations. Our system does not support
automatic partial-order reductions (see, e.g., [EMCGP99]). For efficiency, we
manually combined sequences of thread-local statements into atomic blocks.

The stack benchmark is our running example. We analyze two variants
of the well-known nonblocking queue algorithm of Michael and Scott: the
original algorithm [MS96], and a slightly optimized version [DGLMO04]. The
two-lock queue [MS96] uses two locks: one for the head-pointer and one
for the tail-pointer. The limited concurrency makes it our most scalable
benchmark. The pessimistic set [VHHS06] is implemented as a sorted linked
list. It uses fine-grained locking: Every node has its own lock. Locks are
acquired and released in a “hand-over-hand” order; the next lock in the
sequence is acquired before the previous one is released. (See App. A for
details.)

We performed our experiments in two settings: (a) every thread executes
the most general client and (b) every thread is either a producer, repeatedly

adding elements into the data structure, or a consumer, repeatedly removing
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| Client type | (a) General client | (b) Producers / Consumers |
’ Data Structure H Threads ‘ Time ‘ # States H

Threads ‘ Time ‘ # States ‘
Stack [Tres6] 3 555 | 64,618 | 2/2 | 1432| 82,497
Nonblocking queue [MS96] 2 1,874 | 116,902 1/1 15 2,518
Nonblocking queue [DGLMO04] 2 340 34,611 1/1 12 1,440
Two-lock queue [MS96] 4 1,296 | 115,456 3/3 4,596 178,180
Pessimistic set [VHHS06] 2 14,153 | 229,380 1/1 2,981 51,755

Table 5.1: Experimental results. Time is measured in seconds. Experiments
performed on a machine with a 3.8 Ghz Xeon processor and 4 Gb memory
running version 4 of the RedHat Linux operating system with Java 5.0, using

a 1.5 Gb heap.

elements. (The second setting is suitable when verifying linearizability for ap-
plications which can be shown to use the concurrent object in this restricted
way.) Our analysis verified that the data structures shown in Tab. 5.1 are lin-
earizable, for the number of threads listed (e.g., for the stack, we were able
to verify linearizability for 4 threads: 2 producer threads and 2 consumer
threads, and for 3 threads running general clients).

We also performed some mutation experiments, in which we slightly mu-
tated the data-structure code, e.g., replacing the stack’s CAS with standard
pointer-field assignment, and specified the wrong linearization point. In all
of these cases, our analysis reported that the data structure may not be
linearizable. (See App. A.2.)
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Chapter 6

Related Work

This section reviews some closely related work.

Conjoined Exploration

Our approach for conjoining an interleaved execution with a sequential exe-
cution is inspired by Flanagan’s algorithm for verifying commit-atomicity of
concurrent objects in bounded-state systems [Fla04]. His algorithm explic-
itly represents the candidate and the reference memory state. It verifies that
at quiescent points of the run, i.e., points that do not lie between the invo-
cation and the response of any thread, the two memory states completely
match. Our algorithm, on the other hand, utilizes abstraction to conser-
vatively represent an unbounded number of states (of unbounded size) and
utilizes (delta) abstraction to determine that corresponding operations have

equal return values.

Automatic Verification

Wang and Stoller [WS05] present a static analysis that verifies linearizabil-
ity (for an unbounded number of threads) using a two-step approach: first
show that the concurrent implementation executed sequentially satisfies the

sequential specification, and then show that procedures are atomic. Their
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analysis establishes atomicity based primarily on the way synchronization
primitives are used, e.g., compare-and-swap, and on a specific coding style.
(It also uses a preliminary analysis to determine thread-unique references.)
If a program does not follow their conventions, it has to be rewritten. (The
linearizability of the original program is manually proven using the lineariz-
ability of the modified program.) It was used to derive manually the lin-
earizability of several algorithms including the nonblocking queue of [MS96],
which had to be rewritten. We automatically verify linearizability for a
bounded number of threads. Yahav and Sagiv [YS03] automatically verify
certain safety properties listed in [MS96] of the nonblocking queue and the
two-lock queue given there. These properties do not imply linearizability.

We provide a direct proof of linearizability.

Semi-Automatic Verification

Doherty et. al. [DGLMO04], Colvin et. al. [CGLMO06], and Gao et. al. [GHO4]
use the PVS theorem prover for a semi-automatic verification of linearizabil-
ity. The proof of Doherty et. al. is based on formalizing both the concurrent
algorithm and its sequential specification as I/O Automata and showing that
there exists a simulation relation between states of these automata. The ex-
istence of a simulation implies that every external behavior of the algorithm

automaton is allowed by the specification automaton.

Manual Verification

Vafeiadis et. al. [VHHS06] manually verify linearizability of list algorithms
using rely-guarantee reasoning. Herlihy and Wing [HW90] present a method-
ology for verifying linearizability by defining a function that maps every state
of the concurrent object to the set of all possible abstract values representing
it. (The state can be instrumented with properties of the execution trace).

Both techniques do not require fixed linearization points.

29



Dynamic Verification

Wing and Gong [WG93| test linearizability using executable sequential spec-
ifications by comparing a concurrent execution with every possible serial
execution that agrees with the global order of operations.

Elmas et. al. [ETQO5] test linearizability using executable sequential
specifications and user-specified fixed linearization points. Their tool was
able to detect concurrency bugs in some industrial-scale concurrent data

structure implementations.

Delta Abstraction

In some sense, the use of duo-objects reduces the problem of tracking cor-
related objects to that of tracking variation in related relations. Another
previous use of this technique in shape analysis is the two vocabulary struc-
tures of Jeannet et. al. [JLRS04].
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Chapter 7
Conclusions

We present an analysis that verifies linearizability by comparing under ab-
straction two unbounded memory states. Being able to perform such a com-
parison under abstraction successfully is rather surprising. When our analysis
succeeds, we attribute its success to the following observation: The candi-
date data structure and the reference data structure are being manipulated
by the same sequence of operations and return the same sequence of results.
Thus, to the external observer, it seems as if the two data structures are in
the same “logical state”. Both data structures are represented in the same
way. Thus, it is reasonable to expect that their memory layouts would be
resemblant. (The only exception is the pessimistic set benchmark, where the
representations of the two data structures differ. See App. A.3 for details.)
By allowing the memory layouts to “differ a little”, we allow the analysis to
tolerate local perturbations introduced by interleaved operations.

Another key factor to the success of the analysis is that while a sequence
of operations may, in general, radically change the contents of a data struc-
ture, the changes in the data structures that we analyzed are performed in
small increments, and the analysis was able to track that the resemblance is
preserved throughout the sequence. The delta abstraction is biased towards
recording the “difference” between nearly-isomorphic memory states, which

isolates the isomorphic parts of the memory states from the non-isomorphic
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parts, so that the latter can be abstracted more precisely.
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Appendix A

Benchmarks

In this section, we describe the benchmarks (Sec. A.1), summarize their

mutation experiments (Sec. A.2) and discuss some key points of their analysis

(Sec. A.3).

A.1 General Description

Fig. A.1, Fig. A.2 and Fig. A.3 show C-like pseudo code for the nonblocking

queue, the two-lock queue and the pessimistic set benchmarks, respectively.

Nonblocking Queue

The nonblocking queue of [MS96] (Fig. A.1) is implemented as a singly-
linked list with Head and Tail pointers, pointing to the head and tail of the
queue, respectively. Head always points to a dummy node. The procedures
enqueue and dequeue iteratively attempt to update the queue without being
interrupted by other threads. To obtain consistent values of various pointers,
rechecking is used to make sure the value of a shared field hasn’t changed
since its local copy was read (lines [26] and [45]). The CAS primitive is
used to update shared fields.

During interleaved execution, the Tail pointer may lag behind the end
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of the list if an enqueuing thread has appended its new node to the list (line
[28]1) but has not swung Tail to point to it (line [33]). The algorithm
employs a helping mechanism, allowing concurrently-executing threads to
advance the Tail pointer (lines [31] and [49]). As a result, Tail always

points to either the last or second to last node in the list.

Optimized Version

Doherty et. al. [DGLMO04] present an optimized version of the dequeue
procedure. In their version, the Tail pointer is read (and possibly advanced)

only after Head has been updated.

Specification of Linearization Points

The linearization point of enqueue is the CAS statement in line [28] (marked
with @1). This linearization point is conditional: Only a successful CAS is
considered to be a linearization point. The linearization point of dequeue
is more subtle: The procedure has two conditional linearization points. The
CAS in line [62] (marked with @3) is a linearization point, if it succeeds.
The reading of h->n in line [44] (marked with @2) is a linearization point,
if the procedure returns EMPTY (i.e., executes line [48]) at the end of the
same iteration.

Linearization point @2 is future dependent, since at the time line [44]
is executed, it is not known how the iteration will terminate. This means
that the correlating semantics cannot deterministically determine whether
to trigger a reference dequeue operation after the execution of line [44] by
a candidate dequeue operation. We handle this problem by triggering an
auxiliary query operation at this point, that checks whether the reference
queue is empty. The query does not alter the reference queue; it only returns
a boolean value recorded by the correlating semantics. Now there are two

cases to consider:

e If the candidate dequeue operation returns EMPTY at the end of the
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iteration, then the last execution of line [44] is indeed a linearization
point. Although the reference dequeue operation was not executed at
that point, the result of the query indicates what its outcome would
have been: If the reference queue was empty at the time, the opera-
tion would have left the queue unchanged and returned EMPTY. In this
case, the execution of the query was equivalent to the execution of the
reference operation, and the return values of the candidate and the
reference operations match. Otherwise, the operation would have re-
moved the first node in the queue and returned its data value. In this
case, the return values of the candidate and the reference operations

do not match, and a linearizability violation is reported.

e [f the candidate dequeue operation does not return EMPTY at the end of
the iteration, then the last execution of line [44] is not a linearization
point. In this case, the result of the query is simply ignored, and no

harm is done.

The specification of linearization points for the optimized version of dequeue

is similar.

Two-Lock Queue

The two-lock queue (Fig. A.2) is implemented as a singly-linked list with
Head and Tail pointers. Head always points to a dummy node. The algo-
rithm employs two separate locks, HLock and TLock, to synchronize access
to the Head and Tail pointers, respectively. Since enqueuers never have to
access Head and dequeuers never have to access Tail, this allows concurrent

enqueuing and dequeuing of elements.

Specification of Linearization Points

The linearization point of enqueue is line [35] (marked with @1), where

the new node is appended to the tail of the queue. The linearization point
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of dequeue is line [43] (marked with @2), where the successor of the head

dummy is read.

Pessimistic Set

The set (Fig. A.3) is implemented as a sorted singly-linked list with a Head
pointer. The first and last nodes in the list are dummy nodes that hold the
minimum and maximum integer values, respectively. (It is assumed that all
integer arguments passed to add and remove are strictly between these two
values.) The intermediate nodes store the elements of the set in ascending
order.

The algorithm employs fine-grained locking synchronization: Every node
is associated with a lock that synchronizes access to its fields. The procedures
add and remove traverse the list in a “hand-over-hand” manner, releasing a
node only after its successor has been locked. This technique is also known

as lock coupling [BSTT7].

Specification of Linearization Points

The linearization point of add is the unlock statement in line [49] (marked
with @1). Intuitively, this is the point where the effect of the operation first
becomes visible to other threads. Similarly, the linearization point of remove
is the unlock statement in line [77] (marked with @2).
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[10] #define EMPTY -1

[11] typedef int data_type;
[12] typedef struct node_t {
[13] data_type d;

[14] struct node_t *n;

(151 } Node;

(161 typedef struct queue.t {
[17] struct node_t *Head;
[18] struct node_t *Tail;
[19] } Queue;

(a) Queue and Node type definitions

[60] void client(Queue *q) {
611 do {

[621 if (?)

[63] enqueue(q, rand());
[64] else

[65] dequeue(q) ;

fe6] } while (1);

671 }

(c) The most general client of Queue

[40] data_type dequeue(Queue *Q){

a1 do {

[42] Node *h = Q->Head;

[43] Node *s = h->n; // Q2
[44] if (b == Q->Head)

[45] if (s == NULL)

[46] return EMPTY;

[a7] else

[48] data_type r = s—->d;

[49] if (CAS(&Q->Head,h,s)) // Q3
[50] Node *t = Q->Tail;

[51] if (h == t)

[52] CAS(&Q->Tail,t,s);

[53] return r;

(541 } while (1);

[ss] }

(d) Optimized dequeue procedure

Figure A.1l: Nonblocking queue [MS96]:

[70]
[71]
[72]
[73]
[74]

[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[331
[34]

[401
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
[531]
[54]
[55]

void initialize(Queue *Q) {
Node *dummy = alloc(sizeof(Node));
Q->Head = dummy;
Q->Tail = dummy;

}

void enqueue(Queue *Q, data_type v){
Node *x = alloc(sizeof(Node));
x—>d = v;
do {

Node *t = Q->Tail;
Node *s = t->n;
if (¢t == Q->Tail)
if (s == NULL)
if (CAS(&t->n,s,x)) // Ql
break;
else
CAS(&Q->Tail,t,s);
} while (1);
CAS(&Q->Tail,t,x);

}

data_type dequeue(Queue *Q){
do {
Node *h

Q->Head;
Node *t Q->Tail;
Node *s = h->n; // Q2
if (h == Q->Head)
if (b == t)
if (s == NULL)
return EMPTY;
CAS(&Q->Tail,t,s);
else
data_type r = s->d;
if (CAS(&Q->Head,h,s)) // @3
return r;
} while (1);

}

(b) Concurrent queue procedures

(a) type definitions; (b) im-

plementation; (c¢) most general client; (d) optimized implementation of

dequeue [DGLMO04].
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[70] void initialize(Queue *Q) {
(711  Node *dummy = alloc(sizeof(Node));
[72] Q->Head = dummy;

[10] #define EMPTY -1 (73] Q->Tail = dummy;
[11] typedef int data_type; [74l  Q->HLock = FREE;
[12] typedef struct node.t { [7s5] ~ Q->TLock = FREE;
(131  data_type d; [7el }
[14] struct node_t *n;
(151 } Node; [30]1 void enqueue(Queue *Q, data_type v){
[16] typedef struct queue_t { (311 Node *x = alloc(sizeof (Node));
[17] struct node_t *Head; [32] x->d = v;
[181 struct node_t *Tail; (331  lock(&Q->TLock) ;
[19] lock_type HLock; [34] Node *t = Q->Tail;
201 lock-type TLock; [35] t->n = x; // Q1
211 } Queue; [36] Q->Tail = x;

(a) Queue and Node type definitions Ezg ! unlock(&Q->TLock) ;
601 void client(Queue *q) {
61} do { 1401 data_type dequeue(Queue *Q){
(62] if (7) 41 lock(&Q->HLock) ;
[63] enqueue(q, rand()); [42] Node *h = Q->Head;
te4] else [43] Node *s = h->n; // @2
[65] dequeue(q) ; [44] if (s == NULL)
te)  } while (1); [45] unlock(&Q->HLock) ;
(671 } [46] return EMPTY;

(c) The most general client of Queue [47] data_type r = s—>d;

[48] Q->Head = s;

[49] unlock (&Q->HLock) ;
[50] return r;
[s11 }

(b) Concurrent queue procedures
Figure A.2: Two-lock queue: (a) type definitions; (b) implementation; (c)
most general client.
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[30] boolean add(Set *S, data_type v){
[31] Node *pred = S->Head;

(321  lock(&pred->NLock);

[33] Node *curr = pred->n;

[34] lock(&curr->NLock);

(351 while (curr->d < v) {

[10] #define EMPTY -1 [36] unlock(&pred->NLock) ;
[11] #define TRUE 1 [371 pred = curr;

[12] #define FALSE O [38] curr = curr—>n;

[13] typedef int data_type; [39] lock(&curr->NLock) ;
[14] typedef struct node.t { 1ol };

(151 data_type d; 411 if (curr->d # v)

[16] struct node.t *n; [421 Node *x = alloc(sizeof(Node));
1171 lock-type NLock; (431 x=>d = v;
(18] } Node; [44] X=>n = curr;
[19] typedef struct set_t { (451 pred—>n = x;
(200 struct node_t *Head; ta6l boolean r = TRUE;
[21] } Set; [471 else
— [48] boolean r = FALSE;
(a) Set and Node type definitions 491 unlock(&pred->NLock) ; /) @l
[90] void client(Set *s) { [50] unlock(&curr->NLock) ;
(011 do { [511  return r;
[92] if (7) [s21 }
[93] add(s, rand());
[94] else [60] boolean remove(Set *S, data_type v){
[95] remove(s, rand()); 611 Node *pred = S->Head;
(961 } while (1); 621  lock(&pred->NLock);
71 } [63] Node *curr = pred->n;

(c) The most general client of Set tea]  lock(&curr->NLock);

651 while (curr->d < v) {
(100 void initialize(Set *S) { [66] unlock(&pred->NLock) ;
11011 Node *Hdummy = alloc(sizeof (Node)); [671 pred = curr;
[102] Hdummy->d = MIN_VALUE; (68) curr = curr—sn;
(1031 Node *Tdummy = alloc(sizeof (Node)); [69] lock(&curr->NLock) ;
[104] Tdummy->d = MAX_VALUE; [701 };
(1051 Hqummy->n = Tdummy; 711 if (curr->d == v)
(1061 S->Head = Hdummy; [721 Node *s = curr->n;
[107]} [73] pred->n = s;
(d) Initialize procedure [74] boolean r = TRUE;
[75] else
[761] boolean r = FALSE;
(771 unlock(&pred->NLock) ; // @2

[78]  unlock(&curr->NLock) ;
[79] return r;
[sol }

(b) add and remove procedures

Figure A.3: Pessimistic set: (a) type definitions; (b) implementation of add
and remove; (c) most general client; (d) implementation of initialize.
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’ H Data Structure H Mutation ‘ Time ‘ # States ‘

1 || Stack [Tre86] (a) 4.646 618
(b) 1.407 170
2 || Nonblocking queue [MS96] (a) 202.929 18611
(b) 8.531 1021
3 || Two-lock queue [MS96] (a) 4.104 766
(b) 3.667 435
4 || Pessimistic set [VHHS06] (a) 118.467 2981

Table A.1: Results of mutation experiments. Time is measured in seconds.
Experiments performed on a machine with a 3.8 Ghz Xeon processor and 4
Gb memory running version 4 of the RedHat Linux operating system with
Java 5.0, using a 1.5 Gb heap.

A.2 Mutation Experiments

Tab. A.1 summarizes the mutation experiments (described below). All the
experiments were performed with two threads, each executing the data struc-
ture’s most general client procedure. In all of the experiments, the analysis
reported that the data structure may not be linearizable.

Note that none of the code mutations we used is observable in a sequential
setting. We verified that by running each of the mutation experiments with

a single thread executing the most general client procedure.

Stack

e Mutation (a): Line [26] of the push procedure was replaced by the

following non-atomic code fragment:

[26a] } while (S->Top # t);
[26b] S->Top = x;

This mutation essentially breaks the atomic CAS(&S->Top,t,x) state-
ment of line [26] into two separate statements: one that compares the
value of S->Top with the value of t, and another that stores the value

of x in S->Top. Line [26b] was specified as the linearization point.
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e Mutation (b): Analogous mutation to line [36] of the pop procedure.

Nonblocking Queue

e Mutation (a): Lines [27], [30] and [31] of the enqueue procedure
were omitted. This means that the procedure attempts to append the
new node to the tail of the queue without checking that the tail points
to the last node in the list (and without trying to advance it in case it

doesn’t).

e Mutation (b): Lines [47] and [49] of the dequeue procedure were
omitted. This means that the procedure returns EMPTY if the tail of
the queue points to the head dummy, without checking that the dummy
is the last node in the list (and without trying to advance the tail in

case it isn’t).

(In both experiments, the specification of the linearization points was not

changed.)

Two-Lock Queue

e Mutation (a): The code of the enqueue procedure was mutated by

adding the following code fragment between lines [35] and [36]:

[35a] unlock(&Q->TLock);
[35b] lock(&Q->TLock) ;

This mutation breaks the continuity of the executing thread’s owner-
ship of the tail-lock.

e Mutation (b): The code of the dequeue procedure was mutated in a
similar way by omitting line [45] and adding the following code lines

after line [43] and after line [47], respectively:

[43a] unlock(&Q->HLock);
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[47a] lock(&Q->HLock);

(In both experiments, the specification of the linearization points was not

changed.)

Pessimistic Set

e Mutation (a): Lines [50] and [78] were wrongly specified as the lin-

earization points of procedures add and remove, respectively.

To see why these linearization points are incorrect, consider, for exam-
ple, the following scenario: Threads A and B concurrently try to add
the same value v to the set. Thread A starts executing, successfully
adds v to the set and unlocks pred. At this point, thread B starts
executing. Since the new node added by A is accessible to B, B finds
that the value v is already in the set, and returns FALSE. Finally, A

resumes execution, unlocks curr and returns TRUE.

If we specify unlock(curr) as the linearization point of the add pro-
cedure, then in the corresponding atomic execution B’s operation is
executed before A’s, and hence it is thread B that returns TRUE while
thread A returns FALSE.

A.3 Analysis

Operational Specification

In the verification of the stack and queue benchmarks, we used simple se-
quential implementations as operational specifications. The sequential im-
plementations use the same representation of the data structure as the con-
current implementations (except for the locks of the two-lock queue). The
sequential procedures are essentially simplified versions of the concurrent

procedures, obtained by omitting unneeded synchronization schemes (e.g.,
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locking, retrying, helping and rechecking) and replacing CAS statements with
regular pointer-update statements.

In the verification of the set benchmark, we used a declarative rather than
an executable specification. The reference set is represented as a collection
of nodes that store its data items and are marked by a special “member” bit.
The reference add operation simply checks whether the given item appears
in the set, and if it doesn’t, allocates a new node storing the item and adds it
to the collection. The reference remove operation checks whether the given
item appears in the set, and if it does, removes the node storing it from the

collection.

Initialization

Our analysis verifies the linearizability of a concurrent object with respect to a
user-specified initial state, i.e., it proves the linearizability of every execution
that starts in a specified state. In all of our experiments, we begin the
analysis with both candidate and reference data structures empty. If the data
structures contain dummy nodes in this state, then corresponding duminy
nodes are correlated. For example, in the analysis of the queue benchmarks,
the candidate head dummy is correlated with the reference head dummy in

the initial state.

Utilized Abstractions

Tab. A.2, Tab. A.3, Tab. A.4 and Tab. A.5 summarize the core predicates
and the instrumentation predicates used in the analysis of the benchmarks.
Tab. A.2 shows the core predicates used for the stack benchmark and for
all the queue benchmarks.
Tab. A.3 shows the instrumentation predicates used to refine the ab-
straction in the verification of the non-blocking queue benchmark. For the
nonblocking queue of [MS96] we recorded for every thread ¢ the successor

of the node pointed-to by its local copy of Tail (predicate tSuccessor(o)).
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|

Predicates ‘ Intended Meaning

|

1| f(o) field f of the candidate concurrent object points to object o
2 || z¢(0) local variable x of candidate thread ¢ points to object o
3 || n(o1,09) the candidate n-field of object 07 points to object 0o
4 || uncorrelated(o) | object o is an uncorrelated candidate object
5 || nonuniform(o) | object o is a nonuniform duo-object
Table A.2: Core predicates for the stack and queue benchmarks. Predi-
cates (1)-(3) have r-superscripted analogs pertaining to the reference mem-
ory state. For example, f7(0) records that field f of the reference concurrent
object points to object o.
’ Predicates ‘ Defining Formula ‘
| 2Successory(0) | 3(o1) : z,(01) An(o1,0) |
Table A.3: Instrumentation predicates for the nonblocking queue benchmark.
For the optimized version of [DGLMO04] we also recorded for every thread
t the successor of the node pointed-to by its local copy of Head (predicate
hSuccessor;(0)).
Tab. A.4 and Tab. A.5 show the core predicates and the instrumentation
predicates used for the set benchmark, respectively.
’ H Predicates \ Intended Meaning
1| f(o) field f of the candidate concurrent object points to object o
2 || z4(0) local variable = of candidate thread ¢ points to object o
3 || n(o1, 09) the candidate n-field of object 07 points to object 0,
4 || uncorrelated(o) | object o is an uncorrelated candidate object
5 || Tail(o) object o is the candidate tail dummy-node
6 || lockedBy(t](0) | the lock of object o is held by candidate thread ¢
7 || dle(oy,02) the data item of object o; is less or equal to the data item of object o0y
8 || member(o) object o belongs to the reference set

Table A.4: Core predicates for the set benchmark.
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’ Predicates

‘ Defining Formula

|

Intended Meaning

inOrder(o)

V(o1) : n(o,01) — (dle(o,01) A —dle(oy,0))

the data item of object o is less than
the data item of o’s n-successor

bn(o1, 09)

n*(o1, 09)

object og is reachable from object o;
via a path of n-fields

rt[f](o)

(01) : f(01) A bn(oy,0)

object o is reachable from the object
pointed-to by field £ of the candidate
concurrent object via a path of n-fields

rt[x¢](0)

3(01) = x¢(01) A bn(oy,0)

object o is reachable from the object
pointed-to by local variable x of
candidate thread t via a path of n-fields

is(o)

3(01,09) : 01 # 09 An(01,0) An(og,0)

object o is pointed-to by the n-fields
of two different objects

Table A.5: Instrumentation predicates for the set benchmark. (n* denotes
the reflexive transitive closure on binary predicate n.)
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Appendix B

Correlated Memory States

In this section, we formalize the representation of correlated memory states.
A correlated memory state is essentially a combination of a pair of concur-
rent memory states and some additional information used to maintain the
correlation relation and to compare operation results. For simplicity, our

semantics allows only for a single concurrent object.

Concurrent Memory States

Fig. B.1(a) defines the semantic domains of concurrent memory states, and
the meta-variables ranging over them. We assume [ € Loc to be an un-
bounded set of locations. A value v € Val is either a location, NULL, or
an integer. ¢t € 7 is the domain of thread identifiers. We also assume the
syntactic domains € V of variable identifiers, f € F of field identifiers, and
pc € PC of program points.

A concurrent memory state og = (tlsf,g) € Xg is a pair: tlsf is a map
that associates the identifier of every thread used by the program with its local
state, and ¢ is the program’s global state. The thread-local state tls € TLS
of a thread t € 7 contains t’s program counter pc € PC and an environment
p € &, mapping t’s local variables to their current values. The local state
tlsf (t) is accessible only to t. The global state g = (A, h,0) € G consists
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€ E=V—Val

tls € TLS=PCxE

tisf € TLSF =T —TLS

h € H= Loc— (F— Val)
€ G=2MxHx(F— Val)
€ Xg= TLSFxgG

(a) standard semantics

gs

ret € R=7T<=Val

la € LA=T<— Loc

¢ € &= Loc— Loc
€ ZC:ZSXZSX(I)XL:AXR
(b) correlating semantics

oc

6L c AL — 2LOCX2LOCX2LOC

S € Ap=ApxHx(F— Val)
65 S AS = TLSFXAM

on € YA =2gXAgXLAXR

(c) delta semantics

Figure B.1: Semantic domains of the standard, the correlating, and the delta
semantics.

of a set A C 259 of allocated memory locations and a global heap h € H,
mapping fields of allocated objects to their current values. The concurrent

object is represented by a mapping o € F — Val of its fields to their values.

Correlated Memory States

Fig. B.1(b) defines the semantic domains of correlated memory states. A cor-
related memory state o = (0%, 0%, ¢,la, ret) € X is a 5-tuple: The concur-
rent memory states 0§ = (tlsf¢, (A h¢,0%)) € Xgand of = (tlsf", (A", h",0")) €
Y5 are the candidate and the reference components, respectively. They both
have the same (finite) set of threads, dom(tlsf®) = dom(#lsf"). The cor-
relation relation is an injective partial function, ¢ € A° — A", mapping

candidate objects to their correlated reference objects.
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The la € T — Loc map assists in constructing the correlation function by
recording the last location allocated by every candidate thread during its cur-
rent operation. When a thread ¢ executing a reference operation allocates an
object [", the semantics updates the correlation function ¢’ = ¢[la(t) — I"].
(In all our benchmarks, every candidate operation and every reference opera-
tion allocates, at most, a single object. Furthermore, the candidate operation
allocates before the corresponding reference operation. Thus, la suffices to
maintain the correlation. If an operation may allocate several objects, or if
the reference allocation may precede the candidate allocation, more compli-
cated machinery might be required.)

The ret € 7 — Val map saves the result of the last reference operation
for every thread. We assume that every procedure proc always writes its
return value to a designated thread-local variable r of the invoking thread.
Furthermore, this variable is expected to get its value from the data field
of an allocated node, or be set to some predefined constant value (either a
boolean value or a special error code). The ret map records for every thread
the location of the node in the former case, or the constant value in the latter.
When a thread ¢’s candidate procedure proc returns, the semantics compares
proc’s return value against ret(t) and checks that the return value is either
a constant value equal to ret(t) or is taken from a node correlated with the

node pointed-to by ret(t).
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Appendix C

Correlated Operational

Semantics

In this section, we formalize the correlated operational semantics.

C.1 Standard Semantics for Multi-Threaded

Programs

Program Syntax

We consider programs written in a language with the set of primitive state-
ments shown in Tab. C.1.

We use a control-flow graph (CFG) to represent a sequential program
executed by a thread ¢t € 7. The control-flow graph consists of a set of
vertices (N; C PC), a set of edges (E; C Ny x N;), a designated entry vertex
(n;), and a map (M;) that associates every edge with a primitive statement.

In addition to the statements in Tab. C.1, we define two special state-
ments for procedure invocation and response (see Tab. C.3). We assume
the syntactic domain proc € Proc of procedure identifiers. For procedure

proc € Proc, we denote by my,,. the number of formal parameters of proc
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and by {21 < i < my} the sequence of proc’s formal parameters. A
procedure invocation initializes the formal parameters to the values of the
actual parameters. A procedure’s response writes the return value to a des-
ignated thread-local variable r. We assume that the assignment to r is either
of the form r = ¢ for some constant ¢ or of the form r =y — d where y is a

local variable and d is the data field of a node object.

Program Semantics

Programs in our language are executed using a standard two-level store se-
mantics for pointer programs (see, e.g., [MS77, Rey02]). We define the mean-
ing of statements using an auxiliary semantic domain of thread-observable
states, or € Xy = € xG. A thread-observable state, or € X, of thread
t € T consists of t’s local environment, p € £, and the global state of the
multi-threaded program, g € G. The meaning of every statement st is given
as a binary relation [st] C Xr x X7, with the intention that (o7, 0%) € [st]
iff the execution of st in memory state or may lead to memory state o7.
Tab. C.2 specifies the meaning of the primitive statements shown in Tab. C.1.
Tab. C.3 specifies the meaning of invocation and response statements. Note
that for a response statement of the form res(proc,y — d), we don’t actually
track the integer data value of the object pointed-to by ¥, but the object’s
location. We use (st, or) ~» o/ as an equivalent notation for (or, of.) € [st].

The behavior of a thread t € 7 in a multi-threaded program can be
described by a transition relation, try C (TLS x G) x (T LS x G), satistying

(({pc, p), 9), ({pc', 0'), ) € triift ((p, g), (¢, 9")) € [M:({pc, pc'))]-

The behavior of a multi-threaded program can be described by a tran-
sition relation, trg C YXg X g, that interleaves the execution of different
threads. lL.e.,

(0g,0%) €trg iff At €T : 0g ~ 0
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’ Statement H

Intended meaning

nop A no-operation statement

r=a Assign the value of constant a to variable x

T =1y Copy the value of variable y to variable x

r=y—f Copy the value of the f-field of the object pointed-to by variable y
to variable x

r— f=y Copy the value of variable y to the f-field of the object pointed-to by
variable x

x = alloc() Allocate a fresh object and assign its address to variable x

x = read(f) Assign to variable z the value of the f-field of the concurrent object

C’AS(&(f), W, 92)

CAS operation on the f-field of the concurrent object

CAS<& xr — f)aylayZ)

CAS operation on the f-field of the object pointed-to by variable x

There is a > relation between the values of variables z and y

(
assume(x X y)
assume(x X a)

There is a > relation between the values of variable z
and constant a

assume(x > read(f))

There is a > relation between the value of variable
and the value of the f-field of the concurrent object

assume((x — f)oy)

There is a > relation between the value of variable y
and the value of the f-field of the object pointed-to by variable x

Table C.1: The

set of primitive statements. assume statements handle con-

ditions. (< stands for either = or #. ¢ stands for a numeric relation (=, #,

<, >, <or >)).
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] Transition H Side Condition

(nop, or) ~ or

(x = a,01) ~ (plz — [d]], (4, , 0))

<.I - y70T> <,0[]3 = 10( )]’ A7 70))

(x=y — f.or) ~ (plr — h(p(y))[], (A h,0)) ply) # NULL

(@ = [ =y,0r) ~ {p. (A4, h[(p(2), ) = p(y)], 0)) p(z) # NULL

(x = alloc(),or) ~ (plx — U], (AU{l},hUI(l),0)) l¢ A

(x =read(f),or) ~ (plz — o(f)], (4, h,0))

(CAS(&(f) 1, 92), 01) ~ {p, (A, I, ol f = p(y2)])) o(f) = p(y1)

(CAS(&(z — [),y1,92),0m) ~ (p, (A, h[(p(@). f) = p(y2)], 0)) || p(x) # NULL, hip(z))f = p(y1)

(assume(z X1y), or) ~> o7 p(z) > p(y)

(assume(x > a),or) ~ or p(x) i [a]

(assume(x > read(f)),or) ~ or p(x) > o(f)

(assume((z — f)oy),or) ~ or h(p(x))f o p(y)
Table C.2: Meaning of statements. or = (p, (A, h,0)). [a] denotes a’s

semantic value.

I(1) initializes all pointer fields at [ to NULL, all integer

fields to 0 and all boolean fields to false. The side-conditions ensure that
the program does not dereference a null-valued pointer: The execution of the
program halts if the dereferenced variable has a NULL value. An allocated

location is guaranteed to
state.

be fresh, i.e.,

it is not used in the current memory

(inv(proc, xq, . ..

’ xmpn)c)’ OT> ~

proc

(plzi

— p(l’l), 1 S Z S mp'r’oc]; <Aa h70>>

(res(proc, ¢), o) ~

{plr = [c]], (A, h, 0))

(res(proc,y — d), or) ~

(plr = p(y)], (4, h, 0))

Table C.3: Meaning of procedure invocation (inv) and response (res) state-
ments. or = (p, (A, h,0)).
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where ~> is an auxiliary relation that describes the change in program state

as a result of the execution of a single statement by thread ¢t € 7

(tisf, g) ~ (tisf[t — tIs'], g') iff ((tlsf (1), g), (tls',g')) € try.

C.2 Correlating Semantics

Main Idea

The correlating semantics alternates between execution in the candidate
memory state and execution in the reference memory state. The additional
information maintained by the correlating semantics (i.e., ¢, la, and ret ) has
no effect on either execution, except that the correlating semantics aborts if
the return value of a candidate operation does not match the return value of
its corresponding reference operation.

The alternation between the candidate and the reference execution is
done using control structures similar to those of [Fla04]. Fig. C.1 shows the
utilized auxiliary functions.

The functions isQutside” and phase® map every thread to its execution
phase in the reference and candidate state, respectively. For thread ¢ € 7 and
reference memory state 0% € Xg, isOutside” (t,0%) holds iff ¢ is outside any
operation in ¢% (this can be determined by ¢’s program counter in o§). For
thread ¢t € 7 and candidate memory state 0§ € Xg, phase®(t,0%) = Outside
if ¢ is outside any operation in o%, phase®(t,0%) = PreLin if t is inside
an operation before reaching the linearization point, and phase®(t,o§) =
PostLin if t is inside an operation after passing the linearization point.
We assume, for simplicity, that this information can be determined by #’s
program counter in ¢§. (This assumption does not hold for the nonblocking
queue benchmark. See App. A.1 for the treatment of this case.)

Note that phase® represents the user’s choice of fixed linearization points.

A candidate thread moves from the Qutside phase to the PreLin phase when
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isOutside” : T x Xg — {true, false}

phase® : T x ¥g — {Outside, PreLin, PostLin}
start” : Proc — PC

getProc : PC — Proc

Figure C.1: Auxiliary functions for the correlating semantics.

it executes a procedure invocation statement. It remains in the PreLin phase
until it executes the statement associated with the CFG edge specified as
the procedure’s linearization point, at which time it moves to the PostLin
phase. It then remains in the PostLin phase until it executes the procedure’s
response statement and returns to the Qutside phase.

By keeping track of threads’ execution phases, the correlating semantics
is able to trigger the reference operation at the linearization point of the
candidate operation, and guarantee that reference operations are executed
atomically. Note that the values of the arguments for the invocation of
the reference operation can be obtained from the candidate memory state.
(Without loss of generality, we assume formal parameters are not modified.)

If the correlating semantics detects a linearizability violation (i.e., the
return value of a candidate operation does not match the return value of
its corresponding reference operation), it derives a special wrong state. For
simplicity, the correlating semantics gets stuck if it encounters a runtime
error in the candidate execution. (Alternatively, we could define a special
error state that is derived in this case.) Our analysis reports the detection

of both linearizability violations and runtime errors.

Transition Rules

Fig. C.2 and Fig. C.3 define the transition rules of the correlating semantics.
We denote the correlating semantics’ transition relation by =-.
We use a separate control-flow graph (CFG) to represent the sequential

implementation of each procedure proc € Proc. The function start” (shown
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in Fig. C.1) maps every procedure to the initial program point of its sequen-
tial implementation. We denote by M" the map that associates every edge
in the control flow graphs of the sequential implementations with a primi-
tive statement. We denote by %" the transition relation that describes the
change in the reference memory state as a result of the execution of a single
statement of procedure proc by thread t € 7.

The function getProc (shown in Fig. C.1) maps a program point of the
candidate implementation to the procedure to which it belongs. (This infor-
mation is used to determine which reference procedure should be triggered

at the linearization point.)
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o = (tlsf, g¢) o’ = (tsf”, g)

oy = (tlsf", g") oy = <tlsf“,g"’)
tlsf(t) = (pcs, pf) tZSfci(t) = (pc{, pi")
tlsf"(t) = (pct, py) tisf"'(t) = (pc}’, p}')

(a) Notations

Vt' € T :isOutside’ (t',0%)

0%~ 08/

( phasec(t,o§) = Outside N phase®(t,0%") = PreLin, or
phase®(t, o) = PreLin A phase®(t,0%') = PreLin, or
phase(t, 0§) = PostLin A phase®(t,0%') = PostLin )

(0§,0%, ¢,la, ret) = (0¢', 0%, ¢, 1, ret)

where
la[t — 1], M ((pcS, pc§)) = alloc() and [€ is the allocated location

la, otherwise

la' =

(b) [candidate] rule

Vt' € T :isOutside” (t',0%)
05~ 08
S S
phase®(t,0%) = PreLin A phase®(t,0%') = PostLin
(0G,06, ¢,la, ret) = (0¢', 0%, ¢,1d’, ret)

where

o lalt — 1¢], M({pc§, pc§')) = alloc() and [€ is the allocated location

a =
la, otherwise

gr/ — gr

tlsf™ = tlsf"[t — (pct’, pt')]

proc = getProc(pcs)

pcy’ = start” (proc)

o = DL o pE(), 1< 6 < e

(¢) [lin-point] rule

Figure C.2: Transition rules of the correlating semantics (part I). The tran-
sition below the solid line is enabled iff the conditions above the solid line
are met.
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—isQutside’ (t, 0%)
y broc,t .,
o~ og

(0g, 0%, ¢,la, ret) = (05,05, ¢, la, ret")

where

o — olla(t) — 1], M"™((pch, pci')) = alloc() and " is the allocated location
B ¢, otherwise

" ret[t — p}'(r)], isOutside” (t, 0%')
ret’ =

ret, otherwise
proc = getProc(pcs)

(d) [reference] rule.

Vt' € T : isOutside’ (', 0%)

0%~ 0/

phasec(t, o0§) = PostLin A phase®(t,0%') = Outside
pi'(r) = my " (ret(t))

(0§,0%, ¢,la, ret) = (0%, 0%, ¢, la, ret)

(e) [finish] rule

Vt' € T :isOutside” (t',0%)

05~ 08/
phasef(t, 0§) = PostLin A phase®(t,0%') = Outside
pi' (1) # my* (ret(t))

(0§, 0%, ¢, la, ret) = wrong
f) [wrong]| rule
( g

Figure C.3: Transition rules of the correlating semantics (part II). (m, is the
map defined in Fig. D.1.)
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Appendix D

Delta Abstraction

In this section, we formalize the delta abstraction. We abstract correlated
memory states using a 2-step successive abstraction. In the first step, we ap-
ply a novel delta abstraction, which explicitly represents the candidate mem-
ory state, and implicitly represents the reference memory state by recording
the differences that distinguish it from the candidate memory state. In the
second phase, we bound delta states into abstract delta memory states using
canonical abstraction [SRW02].

Step I: Delta Abstraction

The delta abstraction abstracts away only the names of the locations of
correlated reference objects and conjoins the representation of the candidate
and reference states.

Fig. B.1(c) defines the semantic domains of delta memory states. The
function toDelta, defined in Fig. D.1, maps a correlated memory state to a
delta memory state. Function toDelta uses two auxiliary functions: mg maps
every correlated candidate location to its corresponding reference location
(and acts as the identity function for all other values); simg(h¢, h") is a
relation that defines the set of similar locations.

The candidate state is represented as is. Every correlated reference ob-
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toDelta: Yo — XA s.t.
toDelta((0%, 0%, ¢, la, ret)) def (0,05, la, ret")
where
0§ = (tlsf°, (A° h°, 0%))
oy = (tlsf", (A", h",0"))
) € A°— A"
ds = (tlsf’, ((0%, 0%, 07°), On, 0'))
tlsf’(t) — (pe, m¢ o p) where tlsf"(t) = (pc, p)
o = my “loor
¢ = A°\ dom(¢)
op, = A" \img(9)
o = A°\ dom(simg(h¢,h"))
5h = m;l O hT|AT\img(sim¢(hc,hT)) O m¢
ret’ = m;l o ret
o(v) v e dom(o
mg(v) = ) )
) otherwise
(1¢,1") € simg(h,h") <= 1" = ¢(1°) A
VfeF:he(le)f = mg (b (1) f)

Figure D.1: The function toDelta mapping correlated states to delta states

ject [ is represented by its correlated candidate counterpart ¢—1(I), which
we refer to as a duo-object. The sets 0 and 0} record the non-correlated
candidate and reference locations, respectively. The set 67° records the
non-similar correlated candidate locations, which represent nonuniform duo-
objects. (dom(¢) \ 87* contains the uniform duo-objects.) The function oy,
records the values of fields for non-correlated reference locations and for non-
similar correlated reference locations. The functions ret’ and o' redirect ref-
erence return values and fields of the reference concurrent object to locations
representing them in the delta state. Similarly, the function tlsf’ redirects
the values of reference local variables to locations representing them in the
delta state.

Note that there is no loss of information when converting a correlated
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state into a delta state, besides the location names, which are unobservable.
We assume, without loss of generality, that the location sets A and A" are
disjoint. (This can be guaranteed by applying renaming prior to the delta

abstraction).

Step 1I: Bounded Delta Abstraction

We bound delta memory states by converting them into logical structures
and employing canonical abstraction [SRW02].

Kleene’s 3-valued logic is an extension of ordinary 2-valued logic with
the special value of 1/2 (unknown) for cases in which predicates could have
either value, 1 (true) or 0 (false). The information partial order on the set
{0,1/2,1} is defined as 0 C 1/2 J 1, and 0L 1 = 1/2.

A 3-valued logical structure S=(U?,1°) is a pair where U® is the universe
of the structure and ¢° is an interpretation function mapping predicates to
their truth-value in the structure, i.e., for every predicate p € P of arity k,
S(p): US" — {0,1/2,1}. A 2-valued structure is a 3-valued structure with
an interpretation limited to {0,1}. The set of 2-valued logical structures is
denoted by 2-Struct, and the set of 3-valued logical structures is denoted by
3-Struct.

We convert a delta memory state,
on = ({tlsf€, (A he,0%)), (tisf', ({65, 07, 07°), On, 0')), La, ret’),

into a 2-valued logical structure S = (U”, %) in the following manner: We
define S’s universe to be the union of all locations in the state, i.e., U° =
A°U4T (recall that A° and A™ are disjoint). We use unary predicates to record
the values of variables (i.e., the environment components of tisf¢ and tlsf’);
fields of the concurrent object (i.e., 0° and o'); the last object allocated by
every candidate thread (i.e., la); and the reference operations’ saved return

values (i.e., ret). We use binary predicates to record the values of pointer-
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fields of heap-allocated objects, i.e., fields that hold either the location of
another heap-allocated object or a NULL value (kept in h¢ and 65,). We also
use unary predicates to record which location set an object belongs to (69,
07, 07% or dom(¢) \ 07°). We use a designated binary predicate eq to track
1dentity equality in the delta-state.

The interpretation of the above predicates is taken directly from the delta
state. In essence, the resulting 2-valued structure contains all the information
which is relevant for the program, except for numerical values.

We establish a Galois connection between the set of program states (or-
dered by set inclusion) and 3-Struct using a canonical abstraction as a rep-
resentation function mapping a 2-valued state to its “most-precise represen-
tation” in 3-Struct (e.g., see [NNH99]).

A 3-valued logical structure S* is a canonical abstraction of a 2-valued
logical structure S if there exists a surjective function f: U — U® ¥ satisfying
the following conditions: (i) For all uy,us € U®, f(u1) = f(uy) iff for all unary
predicates p € P, 1% (p)(u1) = ¢%(p)(uz), and (ii) For all predicates p € P of
arity k£ and for all k-tuples u%, ug, e ,ui € Usﬁ,

#
LS (p)<uﬁ1auﬂ2aaui) — |_| LS(p)<U1,u2,...,uk).

The set of concrete memory states such that S* is their canonical abstrac-
tion is denoted by v(S%). Note that only for a summary node u, 15 (eq) (u, u) =
1/2.
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Appendix E

Soundness

In this section, we prove the correctness of the correlating semantics. Along
with the equivalence of the concrete delta semantics to the correlating se-
mantics and the soundness of [SRW02)’s framework for program analysis,

this implies the soundness of the analysis.

E.1 Preliminary Definitions

Linearizability of a Concurrent Object

Recall that we consider multi-threaded programs in which a collection of
sequential threads of control communicate through a shared data structure
called a concurrent object. A concurrent object provides a finite set of op-
erations that are the only means to manipulate the object. Every operation
has a sequence of arguments with which it is invoked, and when it terminates
it returns a response that includes its termination condition (normal or ex-
ceptional) and its result (return value). (In our formulation, we assume, for
simplicity, that an exceptional termination condition is signaled by a special
return value). Each thread applies a sequence of operations to the concur-
rent object, alternately issuing an invocation and receiving the associated

respoiIise.
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The following notations and definitions are based on [HW90]:

e An invocation event is denoted by (op(arg*) t), where op is an op-
eration name, arg* is a sequence of argument values, and ¢t € 7 is the

invoking thread.

e A response event is denoted by (term(res*) t) where term is a ter-

mination condition and res* is a sequence of results.
e A history is a finite sequence of invocation and response events.

e A history H is sequential if the first event of H is an invocation, and
each invocation, except possibly the last, is followed by a matching

response (i.e., a response associated with the same thread).

e A sequential specification for an object is a prefix-closed set of se-
quential histories for that object. A sequential history is legal iff it
belongs to this set.

e An operation, e, in a history is a pair consisting of an invocation,

inv(e), and the next matching response, res(e).

e A history H induces an irreflexive partial order <y on operations:

ep <y e if res(eg) precedes inv(ey) in H.

e Two histories H; and H, are equivalent if for each thread i, Hy|i =
Hsli. (Where, for history H and thread i, H|i denotes the subsequence
of all events in H associated with thread i. We assume all histories are

well-formed, i.e., H|i is always sequential.)

e If H is a history, complete(H) is the maximal subsequence of H con-
sisting only of invocations and matching responses. l.e., complete(H)
is derived from H by omitting all pending invocations (invocations

not followed by a matching response).
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Definition E.1.1 (linearizability of a history) A history H is lineariz-
able if it can be extended (by appending zero or more response events) to
some history H’ such that complete(H’) is equivalent to some legal sequential

history S, and <gC<g. S is called a linearization of H.

Definition E.1.2 (linearizability of a concurrent object) A concurrent

object 1s linearizable iff all its concurrent histories are linearizable.

Auxiliary Definitions

The goal of our analysis is to verify the linearizability of a multi-threaded
program P, i.e., to prove that every history of P is linearizable. We denote
by (0¢)° € ¥g P’s initial memory state (where the shared data structure is

empty and all threads are at their initial program points).

Definition E.1.3 (sequence) A sequence w over a set M is a total func-
tionm € {i e N |1<i<n}— M for somen € N. The length of a

sequence w, denoted by |r|, is |dom(r)|.

Definition E.1.4 (trace) A trace of a multi-threaded program P with ini-
tial state (Ug)o € X and transition relation trg C Xg X Xg 1S a Sequence T

over the set X5 of memory states such that

2. forall1 <i<|n|—1, (xw(i),7(i+ 1)) € trg.

For trace m, we denote by fr € {i e N | 1 < i < |n|] — 1} — 7 the
function that maps every index 7 to the thread that executes the i'® step in
7. Le., fo(i) = t for the thread ¢t € T such that m(i) ~» x(i + 1). (For

simplicity, we assume ¢ is unique. In particular, if threads’ C'F'G's contain no
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self-loops, then f;(7) is the unique thread whose program counter changes in
the transition from 7 (7) to m(i + 1)).

We denote by stmt(m,i) the statement executed by thread t = f,(i) in
the transition 7 (i) ~» (i+1), i.e., stmt(w, i) = M,({pc, pc')) where t = fr(i),
(i) = (tlsf. g), tisf (t) = (pc, p), w(i+1) = (tsf’, ¢'), and tsf'(¢t) = (pc’, p').
If pc is a program point inside a procedure proc € Proc, we use the notation
pr(m, i) = proc.

An operation execution describes a set of steps that comprise the execu-

tion of a single operation by a single thread (Def. E.1.5).

Definition E.1.5 (operation execution) Let 7 be a trace of program P.
An operation execution of a thread t € T in w is a nonempty sequence of

mndices 11 < 19 < ... <1, such that
o f.(i1) =t and stmt(w,iy) is an invocation statement.

o [f there exists j > iy such that fr(j) =t and stmt(w,j) is a response
statement, then i, is the minimum such j. Otherwise, i, is the maxi-
mum j such that f.(j) = t.

(The operation execution is said to be terminating in the former case,

and non-terminating in the latter.)

o {u}i% ={jli <j<inAfaly) =1t}

A walid guess of linearization points specifies ezxactly one linearization
point for every terminating operation execution, and at most one lineariza-

tion point for every non-terminating operation execution (Def. E.1.6).

Definition E.1.6 (valid guess of linearization points) Let 7 be a trace
of program P. A wvalid guess of linearization points for w is a (possibly

empty) sequence of indices ky < ko < ... < ky, such that
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e For every terminating operation execution iy < ia < ... < i, N T,
{4 = N {k ] = 1.

e For every non-terminating operation execution iy < iy < ... < i, N T,
{5 N {ks T < 1

o Foreveryj (1 <j<m), stmt(m, k;) is neither an invocation statement

nor a response statement.

Given a trace m and a valid guess of linearization points for 7, we can
construct a serial ezecution in which the operations of m are executed atom-
ically in the order of occurrence of their linearization points in 7 (Def. E.1.7
and Def. E.1.8).

We denote by (0%)° € Xg the initial reference memory state (where the

reference data structure is empty and all threads are outside any operation).

Definition E.1.7 (atomic operation execution) Let ol € Xg be a refer-

ence memory state satisfying Vt' € T : isOutside” (', 0%). The atomic op-
eration execution of procedure proc € Proc with argument values {v; }-5" C

Val by thread t € T from initial state o, denoted by atm(proc(vy, ..., Um,.. ), t,0%),

18 a sequence w over Y.g such that

2. w(2) = (tsfT[t — (pct’, pi")], g") where

o5 = (tsf",9")
tlsf" (1) = (pci, py)

pcl’ = start”(proc)

rr __ r proc .
P = Py [Zz — v, 1 S 7 S mproc]

proc,t

3. forall2 <i<|m|—1, w(i) "~ w(i+1)
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4. fori=|m|, isOutside” (t,n(i)) holds

Note: In order for atomic operation executions to be well defined, we need

to make the following assumptions regarding reference operations:

e In every reference memory state o € Xg that satisfies Vi € 7
isOutside” (t,0%), it is always possible to invoke any reference oper-

ation by any thread.

e Omnce a reference operation is invoked, its atomic execution is determin-
istic and fault-free (i.e., free of runtime errors) and terminates within

a finite number of steps.

Definition E.1.8 (serial execution) Let w be a trace of program P, and
ki < ky < ... < ky, a valid guess of linearization points for m. The corre-

sponding serial execution, denoted by ser(mw, k1 < ko < «.. < k), is a

sequence T = w1 -my-. ..+ Ty over Ng (where - is the concatenation operator)
such that
_ 1 1 0
1. m = atm(procy(vy, ..., U5, ), 1, (05)7) where

e proc, = pr(m, ki)
o [ = fﬂ(kl)

o for 1 < j < My, vj = piél(zjf’roc1)
where 7(ky) = (tlsf¢, g%) and tlsf(t,) = (pcs,, pf,)

2. for all 1 <i < m, atm(proc,(vi,..., vl ) t;,(0%);) = (05); - m where

7 Y Mproc;

* (0%)i = mi—1(|mial)
o proc; = pr(m, k;)
o i = fw(kz)
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o for 1 < j < Mppee,, v = pfji(zfmc")

where w(k;) = (tlsf, g°) and tlsf(t;) = (pc., pf)

In what follows, we write ser(m, k1 < ky < ... < k) = 7 - To ... Ty
with the intention that {m;}!", are as defined in Def. E.1.8.

We denote by 7(j,...,1) the subsequence 7 (j),7(j 4+ 1), ..., 7(l) of 7. For
trace w over Xg and state og € Xg, we denote by m X og the sequence 7’
over Xg X Xg such that #'(i) = (n(i),0s) for 1 < i < |n(¢)|. Similarly, we
denote by og x 7 the sequence 7" over X.g X Xg such that 7”(i) = (og, 7(7))
for 1 <4 < |m ().

A combined execution describes the alternate execution of a trace of pro-

gram P and its corresponding serial execution (Def. E.1.9).

Definition E.1.9 (combined execution) Let 7 be a trace of program P,
and ky < ke < ... < k,, a valid guess of linearization points for w. Let
ser(m ky < ky < ... < kp) = m - 79 ... T The corresponding combined
execution, denoted by comb(mw,ky; < ks < ... < ky,), is a sequence over
Y X Xg, defined by

comb(m, ky < ky < ... < ky,) = 7m0 ggemb L Lgpeomb ﬂf,fffyc
where
o Pt = ﬂff’g"b . ﬂff’;"b where
Wi?cmb =7(l,.... k1) x m(1)
7'(5’0,:”1) = 7'('(]{}1 + 1) X 7T1(2, e |7T1‘)

o forall2<j<m: 7ch-omb = Wj"’cmb . ij;,mb where

eomb _ 7T(kj—1 +2,..., l@) X 7"'j—l(‘Trj—l‘)

j?c
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F;’()Tmb =n(k;+1) xm

L4 7T7(i,cl’_7|_n1b’c = 7T(km + 21 AR ‘WD x 7Tm<|7Tm|)

E.2 Linearizability of a Program Trace

Definition E.2.1 (witness for linearizability) Let © be a trace of pro-
gram P, and ky < ky < ... < ky, a valid guess of linearization points for
7. Then ser(m,ky < ky < ... < ky,) = m -7y« ... Ty is a witness for
the linearizability of m by k1 < ky < ... < k,,, if for every terminating
operation execution i1 < is < ... <1, in m, the following condition holds:
Let j be the unique index such that k; € {ij}},. Let t = f.(k;) and
proc = pr(m, k;). Then the response statements executed by thread t in the
transitions 7 (iy) ~» m(in + 1) and (|75 — 1) Progt 7;(|7;]) have equal return

values.

Note: Response statements have two possible forms (see Tab. C.3). The
return value of a response statement of the form “res(proc,c)” is [c]. The

return value of a response statement of the form “res(proc,y — d)” executed

in state or = (p, (A, h,0)) is h(p(y))d.

Definition E.2.2 (linearizability of a program trace) Let 7 be a trace
of program P, and k1 < ko < ... < ky, a valid gquess of linearization points for
. We say that 7 is linearizable by ki1 < ks < ... < ky, iff ser(m,k; <
ky < ... < ky,) is a witness for the linearizability of m by ky < ko < ... < kp,.

Definition E.2.3 (induced history) Let 7 be a trace of program P. The
history induced by m, denoted by H(w), is a sequence 7 of invocation
and response events, corresponding to the sequence of invocation and response

statements executed in .
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Le., let l; < ly < ... < I, be the sequence of all indices l; such that
stmt(m, ;) is either an inv or a res statement. Then || = n, and for all
1 < j < n: If stmt(m,l;) is an inv statement then () is an invocation
event that records the invoked operation, the argument values and the execut-
ing thread fr(l;). If stmt(m, ;) is a res statement then w(j) is a response

event that records the return value and the executing thread fr(1;).

Similarly, for a serial execution 7*¢", H(7*") denotes the sequence of
invocation and response events corresponding to the sequence of invocation

and response statements executed in 7%

Proposition E.2.4 Let w be a trace of program P, and ki < ky < ... < k,,
a valid guess of linearization points for w. Let %" = ser(m, k1 < ko < ... <
kw). If © is a witness for the linearizability of m by ky < ko < ... < ky,,

then H(7*¢") is a linearization of H(w).

Proof: Let H= H(w) and S = H(7*"). Let us extend H to H’ by appending
to H the following response events: For every non-terminating operation
execution iy < ¢y < ... < i, in 7 for which there exists j such that k; €
{i;}7,, append to H the j™ response event of S. By Def. E.2.1, complete(H')
is equivalent to .S. Furthermore, by Def. E.1.8, S is a legal sequential history
and <y C<g. Thus, by Def. E.1.1, S is a linearization of H. [

E.3 Correctness Theorem

We assume we are given a function phase® that specifies the user’s choice
of fixed linearization points for program P. This function should define a
unique valid guess of linearization points for every possible trace of P, and
the goal of the analysis is to verify that every trace is linearizable by this
guess.

The guess for trace w, denoted by Ip(w), is ky < ko < ... < k,, where
{ki}iy = {J | phase(fr(3),n(4)) = PreLin A phase(f-(j),n(j + 1)) =
PostLin}.
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The initial state of the correlating semantics is 02 = ((0%)°, (0%)°, ¢, lao, rety)

where ¢y correlates corresponding dummy nodes of (0¢)" and (0%)?, if any
exist (see App. A.3), and lag and retqy are the empty maps.

Note that we prove the soundness of the analysis under the following
assumptions: every candidate operation and every reference operation allo-
cates, at most, a single object; the candidate operation performs the alloca-
tion before its corresponding reference operation; and the objects allocated
by a candidate operation and its corresponding reference operation contain
equal data items. (In all of our benchmarks, the allocated object contains a
data item given as an argument value to the operation. Since corresponding
candidate and reference operations are invoked with the same argument val-
ues, the data items of their allocated objects are equal.) These assumptions
imply that nodes correlated by the correlating semantics have equal data
items. (The dummy nodes that are correlated in the initial state o2 should
also have equal data items.)

Fig. C.2 and Fig. C.3 define the transition rules of the correlating seman-
tics. The correlating semantics essentially runs in its first two components
the combined traces corresponding to the traces of P and to the fixed lin-
earization points, while maintaining additional information in the ¢, la, and
ret components. The execution of a candidate response statement in a cor-
related state o¢ is allowed (by the [finish| transition rule) only if its return
value matches that of the corresponding reference operation. If the two re-
turn values don’t match, then a transition from o¢ to the wrong state is
allowed (by the [wrong| transition rule). Recall that, by our definitions, cor-
responding return values match if they both have the same constant value

or they are taken from the data fields of correlated nodes.

comb

Definition E.3.1 Let 7 be a trace of program P. Let = comb(r, lp(n)).

comb

We say that the correlating semantics derives m if there exists a trace

corr comb corr

s of the correlating semantics such that w 15 the projection of

onto its first two components. le.,
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corr ‘ _ comb |
- )

o |7 | and

o for all 1 < i < |z|: let 7™ (i) = ((69);, (05):), then 7 (i) =

((69)i, (05)i, iy lag, Tet;) for some ¢y, la;, and ret;.

comb corr

In this case, we say that ™ 15 derwed by T

comb

Definition E.3.2 Let 7 be a trace of program P. Let 7™ = comb(m, Ip(r)).

We say that the correlating semantics derives wrong for ™ if there ewists
1 <1< |7™| such that

comb ( 1 corr

o y. .., 1) is derived by a trace © of the correlating semantics,

and

o 1" (1) = wrong by applying the [wrong] transition rule.

comb

Lemma E.3.3 Let w be a trace of program P. Let 7 = comb(m, lp()).
If © is linearizable by Ip(w), then the correlating semantics either derives

comb

s or derives wrong for wem?.

Sketch of Proof: Let memb = g§omb . gsomb . . geomb ﬂﬁj’i@f’c (we use the
notations of Def. E.1.9).
Suppose first that we ignore the [wrong] transition rule of the correlating

semantics and the condition p'(r) = mqjl(ret(t)) of the [finish] transition

corr

rule. Then we can construct a trace =« of the correlating semantics that

derives T as follows: Let i be any index such that 1 < i < |7¢™?|.

e If both 7™ (¢) and 7™ (i + 1) are in 759" for some 1 < j < m+1, or

if 7¢00(q) is in 759" and (i + 1) is in 7Y | for some 1 < j <m,
then the transition 7" (i) = 7" (i+ 1) is enabled by applying either
the [candidate] or the [finish] rule.  (Note that, by definition, the
condition Vt' € T : isOutside” (t',0%) holds for 0% = (1) and for

o5 = m(|m]) (1 <5 <m).)
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o If 7°(i) is the last state of 759" and 7" (i + 1) is the first state of
759 for some 1 < j < m, then the transition 7" (i) = 7" (i + 1) is
enabled by applying the [lin-point| rule.

e If both 7™ (i) and 7™ (i + 1) are in 759" for some 1 < j < m + 1,
then the transition 7™ (i) = 7" (i + 1) is enabled by applying the

[reference] rule.

Now consider the [wrong] rule and the condition p{'(r) = mgl(ret(t)) of the
[finish] rule. Suppose there exists a transition 7¢"" (i) = 7" (i+1) where we

“r" above, and the condition

applied the [finish| rule in the construction of 7
does not hold. Let ! be the minimum such i. Since the conditions of [finish]
and [wrong] are complementary, 7% (l) = wrong by applying the [wrong]

rule, and therefore the correlating semantics derives wrong for <™. [

Theorem E.3.4 (Correctness of the correlating semantics)
If (=(c =* wrong)) holds, then every trace ® of the candidate multi-
threaded program P is linearizable by Ip(w).

Sketch of Proof: We’ll show that if there exists a trace 7 of the candidate
multi-threaded program P that is not linearizable by Ip(n) then o2 =*
wrong.

Suppose such a trace exists, and let m be the shortest such path. Let
7 =mx(l,...,|w] —1). By our choice of 7w and by Def. E.2.1, stmt(n, |x| — 1)
is a response statement and 7’ is linearizable by {p(7’). Furthermore, Ip(n') =

Ip(n), ser(x’,Ip(x") = ser(m,Ip(r)), and 7om’ = geomb(1  |xcomb| — 1)

comb’

where 7™ = comb(, Ip(7)) and 7 = comb(7’, Ip(7")).

By Lem. E.3.3, there are two possible cases:

comb’ corr!

1.7 is derived by a trace 7w of the correlating semantics. Let
Ip(m) = (k1 < ke < ... < ky,) and ser(m,lp(7)) = my - 79 ... Ty (We use
the notations of Def. E.1.8). Let iy < i3 < ... < i, be the terminating

operation execution in m such that i, = |r| — 1. Let j be the unique
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index such that k; € {i}},. Let t = fr(in) and proc = pr(m,i,).

By our choice of m and by Def. E.2.1, the return value of the response

statement executed in the transition m(i,) ~» 7 (i, + 1) is different from

the return value of the response statement executed in the transition
proc,t

m;(|m;] — 1) "~ m;(|m;|). In particular, the two return values cannot

be the data values of correlated nodes.

The final state of 7" is 7' (|7<"™'|) = (7 (i), Tm(|7m|), @, la, ret)
where ret(t) records the return value of m;(|m;| — 1) Progt mi(|m;)). It
follows that 7' (|x""'|) = wrong by applying the [wrong| rule for

thread ¢. Therefore, 02 =* wrong.

. . . /
. The correlating semantics derives wrong for 7™ Therefore, 02, =*

wrong.
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