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Abstract. Fully homomorphic encryption (FHE) enables secure computation over the encrypted
data of a single party. We explore how to extend this to multiple parties, using threshold fully homo-
morphic encryption (TFHE). In such scheme, the parties jointly generate a common FHE public key
along with a secret key that is shared among them; they can later cooperatively decrypt ciphertexts
without learning anything but the plaintext. We show how to instantiate this approach efficiently,
by extending the recent FHE schemes of Brakerski, Gentry and Vaikuntanathan (CRYPTO ’11,
FOCS ’11, ITCS ’12) based on the (ring) learning with errors assumption. Our main tool is to
exploit the property that such schemes are additively homomorphic over their keys.
Using TFHE, we construct simple multiparty computation protocols secure against fully malicious
attackers, tolerating any number of corruptions, and providing security in the universal compos-
ability framework. Our protocols have the following properties: Low interaction : 3 rounds of
interaction given a common random string, or 2 rounds with a public-key infrastructure. Low
communication: independent of the function being computed (proportional to just input and
output sizes). Cloud-assisted computation: the bulk of the computation can be efficiently out-
sourced to an external entity (e.g. a cloud service) so that the computation of all other parties is
independent of the complexity of the evaluated function.

1 Introduction

Multiparty Computation. Secure multiparty computation (MPC) allows multiple participants
to evaluate a common function over their inputs privately, without revealing the inputs to
each other. This problem was initially studied by Yao [33,34] who gave a protocol for the case
of two semi-honest that follow the protocol specification honestly but wish to learn as much
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information as possible, and Goldreich, Micali and Wigderson [19] extended this to many fully
malicious parties that may arbitrarily deviate from the protocol specification. Since then, the
problem of MPC has become a fundamental question in cryptography. Interestingly, on a very
high level, most prior results for general MPC can be seen as relying in some way on the original
techniques of [34,19].

Fully Homomorphic Encryption. A very different approach to secure computation relies on fully
homomorphic encryption (FHE). An FHE scheme allows us to perform arbitrary computations
on encrypted data without decrypting it. Although the idea of FHE goes back to Rivest et al.
[31], the first implementation is due to the recent breakthrough of Gentry [17], and has now
been followed with much exciting activity, most recently with quite simple and efficient schemes
[10,9,8]. Using FHE, we immediately get an alternative approach to MPC in the case of two
semi-honest parties (Alice and Bob): Alice encrypts her input under her own key and sends the
ciphertext to Bob, who then evaluates the desired function homomorphically on Alice’s cipher-
text and his own input, sending (only) the final encrypted result back to Alice for decryption.
This approach has several benefits over prior ones. Perhaps most importantly, the communication
complexity of the protocol and Alice’s computation are small and only proportional to Alice’s
input/output sizes, independent of the complexity of the function being evaluated. Moreover,
the protocol consists of only two rounds of interaction, which is optimal (matching [34]).7

MPC via Threshold FHE. Since FHE solves the secure computation problem for two semi-honest
parties, it is natural to ask whether we can extend the above template to the general case of many
fully malicious parties. Indeed, there is a simple positive answer to this question (as pointed out
in e.g. [17]) by using a threshold fully homomorphic encryption (TFHE). This consists of a key
generation protocol where the parties collaboratively agree on a common public key of an FHE
scheme and each party also receives a share of the secret key. The parties can then encrypt their
individual inputs under the common public key, evaluate the desired function homomorphically
on the ciphertexts, and collaboratively execute a decryption protocol on the result to learn the
output of the computation. Moreover, it is possible to convert any FHE scheme into TFHE by
implementing the above key-generation and decryption protocols using general MPC compilers
(e.g. [19]). Although this approach already gives the communication/computation savings of
FHE, it suffers from two main problems: (1) It does not preserve round complexity since generic
implementations of the key-generation and decryption protocols will each require many rounds
of interaction. (2) It uses the “heavy machinery” of generic MPC compilers and zero-knowledge
proofs on top of FHE and is unlikely to yield practical solutions.

1.1 Our Results

In this work, we present an efficient threshold FHE (TFHE) scheme under the learning with
errors (LWE) assumption, based on the FHE constructions of Brakerski, Gentry and Vaikun-
tanathan [9,8]. Our starting observation is that basic LWE-based encryption ([30]) is key ho-
momorphic, where summing up several public/secret key pairs (pki, ski) results in a new valid
public/secret key pair (pk∗, sk∗) =

∑
i(pki, ski).Therefore, if each party broadcasts its own

public-key pki, and we define the common public key as the sum pk∗ =
∑

i pki, then each

7 Indeed, Yao’s garbled circuits can be thought of as instantiating an FHE with long ciphertexts (see e.g. [18]).
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party already holds a share ski of the common secret key sk∗. Moreover, if each party decrypts
a ciphertext c under pk∗ with its individual share ski, then these partial decryptions can be
summed up to recover the message. This gives us simple key-generation and decryption proto-
cols, consisting of one round each. Unfortunately, the above discussion is oversimplified and its
implementation raises several challenges, which we are forced to overcome.

Main Challenges of TFHE. The first challenge in instantiating the above idea is that summing-
up key pairs as above does not result in a correctly distributed fresh key pair, and summing up
decryption shares may reveal more than just the plaintext. Nevertheless, we show the security
of this basic approach when augmented with a technique we call smudging, in which parties add
large noise during important operations so as to “smudge out” small differences in distributions.
Perhaps our main challenge is that, in LWE-based FHE schemes, the public key must also contain
additional information in the form of an evaluation key, which is needed to perform homomorphic
operations on ciphertexts. Although the above key-homomorphic properties hold for the public
encryption keys of the FHE, the evaluation keys have a more complex structure making it harder
to combine them. Nevertheless, we show that it is possible to generate the evaluation keys in
a threshold manner by having each party carefully release some extra information about its
individual secret-key and then cleverly combining this information. Although this forces us to
add an extra round to the key-generation protocol in order to generate the evaluation key, the
parties can already encrypt their inputs after the first round. Therefore, we get MPC protocol
consisting of only 3 broadcast rounds: (Round I) generate encryption key, (Round II) generate
evaluation key & encrypt inputs, (Round III) perform homomorphic evaluation locally and
decrypt the resulting ciphertext.

Using TFHE for MPC. Our basic TFHE protocol allows us to achieve MPC in the semi-honest
model. To transform it to the fully malicious setting, we could use generic techniques consisting
of: (1) coin-flipping for the random coins of each party, and (2) having each party prove at
each step that it is following the protocol honestly (using the random coins determined by
the coin-flip) by a zero-knowledge (ZK) proof of knowledge. Unfortunately, even if we were
to use non-interactive zero knowledge (NIZK) in the common-random string (CRS) model for
the proofs, the use of coin-flipping would add two extra rounds. Interestingly, we show that
coin-flipping is not necessary. We do so by showing that our basic MPC protocol is already
secure against a stronger class of attackers that we call semi-malicious: such attackers follow
the protocol honestly but with adaptively and adversarially chosen random coins in each round.
We can now generically convert our MPC in the semi-malicious setting to a fully secure one using
(UC) NIZKs [32] while preserving the round complexity. This gives the first 3 round protocol for
general MPC in the CRS model (while achieving UC security for free). Instantiating the above
approach with general UC NIZKs proofs might already achieve asymptotic efficiency, but it has
little hope of yielding practical protocols. Therefore, we also build efficient Σ-protocols for the
necessary relations, which we can then compile into efficient UC NIZKs in the random-oracle
(RO) model. Therefore, we can get a reasonably efficient and very simple 3-round protocol for
general MPC in the RO model.

Cloud-Assisted MPC. We notice that our protocol can also be easily adapted to the setting of
“cloud-assisted computation”, where an (untrusted) external entity (e.g. “the cloud”) is tasked
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with performing the homomorphic evaluation over the publicly broadcast ciphertexts. This re-
sults in a protocol where the computation of all other parties is small and independent of the
size of the evaluated function! This approach only incurs one additional round in which the
server broadcasts the ciphertext. To get security against a fully malicious server, we also require
the existence of succinct non-interactive argument systems.

Public-Key Infrastructure. Our approach also yields 2-round MPC in the public-key infrastruc-
ture (PKI) setting, by thinking of each party’s original (Round I) message as its public key
and the randomness used to generate it as the secret key. This gives the first two-round MPC
construction in the PKI setting. We note that the PKI can be reused for many MPC executions
of arbitrary functions and arbitrary inputs.

We summarize the above discussion with the following informal theorem:

Main Theorem. (informal) Under the LWE assumption and the existence of UC NIZKs, for
any function f there exists a protocol realizing f that is UC-secure in the presence of a (static)
malicious adversary corrupting any number of parties. The protocol consists of 3 rounds of
broadcast in the CRS model, or 2 rounds in a PKI model. Under an additional “circular
security” assumption, its communication complexity is independent of the size of the evaluated
circuit. In the “cloud-assisted setting” the total computation of each party (other than the
cloud) is independent of the complexity of f .

1.2 Related Work

In the context of general MPC, starting from the original proposal of Yao [34], there has been
a rich line of work studying the round-complexity of secure multi-party computation protocols.
In the semi-honest case, Beaver, Micali and Rogaway [4] gave the first constant-round protocol,
which is asymptotically optimal. An alternative approach using randomized polynomials was
also given by [22,2]. Although the concrete constants were not explicitly stated, they seem to
require at least 4 rounds.In the fully malicious case there is a lower bound of 5 rounds in the
plain model (dishonest majority) [24], but it does not seem to extend to the CRS model or other
setup models. In the CRS model, we can generically compile semi-honest secure protocols into
the fully malicious model using coin-tossing and (UC) NIZKs [32], at the cost of adding two
extra rounds for the coin-toss. Therefore, the best prior works seem to require at least 6 rounds
in the CRS model, although the exact constants were never carefully analyzed.

Recently, Choi et al [11] obtained a UC secure protocol in a “pre-processing” model with a
2-round online stage. However, the pre-processing requires “expensive” computation of garbled
circuits and can later be only used once for a single online computation (it is not reusable). In
contrast, our results give a 2-round UC-protocol in the PKI model, which we can think of as “pre-
processing” that is only performed once and may be reused for arbitrarily many computations.

The works of [12,15,6,13] use additively and somewhat homomorphic encryption to get some
of the most practically efficient MPC implementations. However, since the schemes are not fully
homomorphic, the round and communication complexity in these works is large and linear in
the depth of the circuit.

The work of Bendlin and Damg̊ard [5] builds a threshold version of [30] encryption based on
LWE and ZK protocols for plaintext knowledge. Indeed, the main ideas behind our decryption
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protocol, such as the idea of using extra noise for “smudging”, come from that work. We seem
to avoid some of the main difficulties of [5] by analyzing the security of our threshold scheme
directly within the application of MPC rather than attempting to realize ideal key-generation
and decryption functionalities. However, we face a very different set of challenges in setting up
the complicated evaluation key needed for FHE.

In a concurrent and independent work, Myers, Sergi and shelat [28] instantiate a threshold
FHE scheme based on the “approximate-integer GCD” problem, and use it to build an explicit
MPC protocol whose communication complexity is independent of the circuit size. Perhaps due
to the amazing versatility and simplicity of LWE, our scheme enjoys several benefits over that
of [28], which only works in the setting of an honest majority and suffers from a large (constant)
round-complexity. Most importantly, we believe that our protocol is significantly simpler to
describe and understand.

The idea of using a cloud to alleviate the computational efforts of parties was recently
explored in the work on “server-aided MPC” by Kamara, Mohassel and Raykova [23]. Their
protocols, however, require some of the parties to do a large amount of computation, essentially
proportional to the size of the function f being computed. Halevi, Lindell and Pinkas [21] recently
considered the model of “secure computation on the web” which gets rid of all interaction
between the actual parties, and instead only allows each party to “log in” once to interact with
the server. Unfortunately, this necessitates a weaker notion of security which is only meaningful
for a small class of functions. In contrast, we focus here on standard MPC security for arbitrary
functions, at the cost of additional interaction. In particular, we achieve full security in the model
where the computation occurs in 2 stages (optimal) and each party “logs in” once per stage to
post a message to the server. As an additional benefit, the server does not do any processing
on messages until the end of each stage. Thus, the parties may, in fact, “log in” concurrently in
each stage, unlike [21] where the parties must “log in” sequentially.

1.3 Organization

In the proceedings version of this work, we follow the exposition of [3], and all omitted proofs
can be found there. See [25] for an alternative exposition, using somewhat different abstractions
and a variant of the scheme presented here under the ring LWE assumption.

In Section 3 we start with a basic LWE-based encryption scheme, highlight its homomorphic
properties, and describe how to use it to get the FHE schemes of [9,8]. In Section 4 we then
describe our threshold FHE scheme, and in Section 5 we use it to build an MPC protocol. We
then discuss several variants of this protocol in Section 6.

2 Preliminaries

Throughout, we let κ denote the security parameter and negl(κ) denote a negligible function.
For integers n, q, we define [n]q to be the unique integer v ∈ (−q/2, q/2] s.t. n ≡ v (mod q).

Let x = (x1, . . . , xn) ∈ Zn be a vector. We use the notation x[i]
def
= xi to denote the ith

component scalar. To simplify the descriptions of our schemes, we also abuse notation and

define x[0]
def
= 1. The `1-norm of x is defined as `1(x)

def
=
∑n

i=1 |xi|. For a distribution ensemble
χ = χ(κ) over the integers, and integers bounds B = B(κ), we say that χ is B-bounded if
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Prx←χ(κ)[|x| > B(κ)] ≤ negl(κ). We rely on the following lemma, which says that adding large
noise “smudges out” any small values.

Lemma 1 (Smudging) Let B1 = B1(κ), and B2 = B2(κ) be positive integers and let e1 ∈
[−B1, B1] be a fixed integer. Let e2

$← [−B2, B2] be chosen uniformly at random. Then the
distribution of e2 is statistically indistinguishable from that of e2+e1 as long as B1/B2 = negl(κ).

Learning With Errors. The decisional learning with errors ( LWE) problem, introduced by Regev
[30], is defined as follows.

Definition 2 (LWE [30]) Let κ be the security parameter, n = n(κ), q = q(κ) be integers and
let χ = χ(κ), ϕ = ϕ(κ) be distributions over Z. The LWEn,q,ϕ,χ assumption says that no poly-
time distinguisher can distinguish between the following two distributions on tuples (ai, bi), given

polynomially many samples: Distribution I. Each (ai, bi)
$← Zn+1

q is chosen independently,
uniformly at random. Distribution II. Choose s ← ϕn. Each sample (ai, bi) is chosen as:

ai
$← Znq , ei ← χ, bi := 〈ai, s〉+ ei.

The works of [30,29] show that the LWE problem is as hard as approximating short vector
problems in lattices (for appropriate parameters) when χ is a Gaussian with “small” standard
deviation and ϕ = U(Zq) is the uniform distribution over Zq. The work of [1] shows that, when
q is a prime power, then LWEn,q,χ,χ is as hard as LWEn,q,U(Zq),χ. Therefore, we can assume that
the secret s of the LWE problem also comes from a “small” Gaussian distribution. It is also
easy to see that, if q is odd, then LWEn,q,ϕ,(2χ) is as hard as LWEn,q,ϕ,χ, where the distribution
2χ samples e← χ and outputs 2e.

3 Homomorphic Encryption from LWE

In this section, we give a brief description of the FHE schemes of [9,8].

Basic LWE-based Encryption. We start by describing a basic symmetric/public encryption
scheme E, which is a variant of [30] encryption scheme based on the LWE problem. This scheme
serves as a building block for the more complex FHE schemes of [9,8] and of our threshold FHE
scheme.

– params = (1κ, q,m, n, ϕ, χ) : The parameters of the scheme are an implicit input to all
other algorithms, with: 1κ is the security parameter, q = q(k) is an odd modulus, m =
m(κ), n = n(κ) are the dimensions, and ϕ = ϕ(κ), χ = χ(κ) are distributions over Zq.

– E.SymKeygen(params): Choose a secret key s← ϕn.
– E.PubKeygen(s): Choose A← Zm×nq , e← χm and set p := A · s + 2 · e. Output the public

key pk := (A,p) for the secret key s.

– E.SymEncs(µ): To encrypt a message µ ∈ {0, 1}, choose a ← Znq , e ← χ, and set b
def
=

〈a, s〉+ 2 · e+ µ. Output the ciphertext c = (a, b).
– E.PubEncpk(µ): To encrypt a message µ ∈ {0, 1} under pk = (A,p), choose r ← {0, 1}m

and set a
def
= rT ·A, b

def
= 〈r,p〉+ µ. Output c = (a, b).

– E.Decs(c) – (decryption): Parse c = (a, b), output [b− 〈a, s〉]q mod 2.
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Under appropriate parameters and LWE assumption, the above scheme is semantically secure
with pseudorandom ciphertexts, meaning that, given pk, a ciphertext of a chosen message is
indistinguishable from a uniformly random ciphertext over the appropriate domain Zm+1

q .

Theorem 3 ([30]) Assuming n, q, m ≥ (n+ 1) log(q) + ω(log(κ)) are integers with q odd, and
that the LWEn,q,ϕ,χ assumption holds, the above public key encryption scheme (E.PubKeygen,E.PubEnc,E.Dec)
is semantically secure with pseudorandom ciphertexts.

Approximate encryption. Although we defined symmetric/public key encryption for the message
space µ ∈ {0, 1}, we can (syntactically) extend the same algorithms to any µ ∈ Zq. Unfortunately,
if µ is larger than a single bit, it will not be possible to decrypt µ correctly from the corresponding
ciphertext. However, we can still think of this as an approximate encryption of µ, from which it
is possible to recover the value b− 〈a, s〉 which is “close” to µ over Zq.
Fixing the coefficients. We use E.PubKeygen(s;A), E.PubKeygen(s;A; e) to denote the execution
of the key generation algorithm with fixed coefficients A and (respectively) with fixed A, e. We
use E.SymEncs(µ; a), E.SymEncs(µ; a; e) analogously.

Key-Homomorphic Properties of Basic Scheme. It is easy to see that the scheme E
is additively homomorphic so that the sum of ciphertexts encrypts the sum of the plaintexts
(at least as long as the noise is small enough and does not overflow). We now notice it also
satisfies several useful key-homomorphic properties, which make it particularly easy to convert
into a threshold scheme. In particular, let s1, s2 be two secrets keys, a be some coefficient vector
(a, b1) = E.SymEncs1(µ1; a), (a, b2) = E.SymEncs2(µ2; a) be two ciphertexts encrypting the bits
µ1, µ2 under the keys s1, s2 respectively but using the same randomness a. Then we can write
b1 = 〈a, s1〉+ 2 · e1 + µ1 , b2 = 〈a, s2〉+ 2 · e2 + µ2 and

b∗ := b1 + b2 = 〈a, (s1 + s2)〉+ 2(e1 + e2) + (µ1 + µ2).

So (a, b∗) = E.SymEncs1+s2(µ1 + µ2; a) is an encryption of µ1 + µ2 under the sum of the keys
(s1 + s2) with a noise level which is just the sum of the noises.
Also, if we keep the matrix A fixed, then the sum of two key pairs gives a new valid key pair.
That is, if p1 = As1 + 2e1 , p2 = As2 + 2e2 are public key with corresponding secret keys
s1, s2, then

p∗ := p1 + p2 = A(s2 + s2) + 2(e1 + e2)

is a public key for the corresponding secret key s∗ = s1 + s2.

Security of Joint Keys. We show a useful security property of combining public keys. Assume
that a public key p = As + 2e is chosen honestly and an attacker can then adaptively choose
some value p′ = As′ + 2e′ for which it must know the corresponding s′ and a “short” e′. Then
the attacker cannot distinguish public-key encryptions under the combined key p∗ = p + p′

from uniformly random ones.8 Note that the combined key p∗ may not be at all distributed
like a correct public key, and the attacker has a large degree of control over it. Indeed, we
can only show that the above holds if the ciphertext under the combined key is “smudged”
with additional large noise. We define the above property formally via the following experiment
JoinKeysA(params, B1, B2):

8 A similar idea was used in [16] in the context of threshold ElGamal encryption.
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(-) Challenger chooses s← E.SymKeygen(params), (A,p)← E.PubKeygen(s).
(-) A gets (A,p) and adaptively chooses p′, s′, e′ satisfying p′ = As′ + 2e′ and `1(e′) ≤ B1. It
also chooses µ ∈ {0, 1}.
(-) Challenger sets pk∗ := (A,p∗ = p + p′). It chooses a random bit β

$← {0, 1}. If β = 0,

it chooses a∗
$← Znq , b∗

$← Zq uniformly at random. Else it chooses (a∗, b) ← E.PubEncpk∗(µ),

e∗
$← [−B2, B2] and sets b∗ = b+ 2e∗.

(-) A gets (a∗, b∗) and outputs a bit β̃.
The output of the experiment is 1 if β̃ = β, and 0 otherwise.

Lemma 4 Let q,m, n, ϕ, χ be set as in Theorem 3 and assume that LWEn,q,ϕ,χ assumption
holds. Let B1 = B1(κ), B2 = B2(κ) be integers s.t. B1/B2 = negl(κ). Then, for any ppt
A: |Pr[JoinKeysA(params, B1, B2) = 1]− 1

2 | = negl(κ).

3.1 Fully Homomorphic Encryption from LWE

In this section we present the construction of [9,8]. We start with the syntax of fully homomorphic
encryption.

Definition. A fully homomorphic (public–key) encryption (FHE) scheme is a quadruple of ppt
algorithms FHE = (FHE.Keygen,FHE.Enc,FHE.Dec,FHE.Eval) defined as follows.

– FHE.Keygen(1κ) → (pk, evk, sk): Outputs a public encryption key pk, a public evaluation
key evk and a secret decryption key sk.

– FHE.Encpk(µ),FHE.Decsk(c): Have the usual syntax of public-key encryption/decryption.
– FHE.Evalevk(f, c1, . . . , c`) = cf : The homomorphic evaluation algorithm is a deterministic

poly-time algorithm that takes the evaluation key evk, a boolean circuit f : {0, 1}` → {0, 1},
and a set of ` ciphertexts c1, . . . , c`. It outputs the result ciphertext cf .

We say that an FHE scheme is secure if it satisfies the standard notion of semantic security
for public-key encryption, where we consider the evaluation key evk as a part of the public
key. We say that it is fully homomorphic if for any boolean circuit f : {0, 1}` → {0, 1}
and respective inputs µ1, . . . , µ` ∈ {0, 1}, keys (pk, evk, sk) ← FHE.Keygen(1κ) and ciphertexts
ci ← FHE.Encpk(µi) it holds that: FHE.Dec (FHE.Evalevk (f, c1, . . . , c`)) = f(µ1, . . . , µ`). We say
that the scheme is a leveled fully homomorphic if the FHE.Keygen algorithm gets an additional
(arbitrary) input 1D and the above only holds for circuits f consisting of at most D multiplicative
levels.

Construction. We give an overview of the FHE construction of [9,8]. The construction begins
with the basic encryption scheme E which is already additively homomorphic. We associate

ciphertexts c = (a, b) under E with symbolic polynomials φc(x)
def
= b − 〈a,x〉, an n-variable

degree-1 polynomial over x. so that Decs(c) = [φc(s)]q mod 2. If c1, c2 encrypt bits µ1, µ2 under

a secret key s, we can define the polynomial φmult(x)
def
= φc1(x) ·φc2(x). This already “encrypts”

µ1 ·µ2 in the sense that [φmult(s)]q = µ1 ·µ2 + 2e∗ where e∗ is “small”. Unfortunately, φmult is a
degree-2 polynomial and hence its description is much larger than that of the original ciphertexts
c1, c2.

The main challenge is to re-linearize the polynomial φmult to convert it into a degree-1
polynomial φ′mult which still encrypts µ1 · µ2. Such re-linearization is possible with two caveats:
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(1) The polynomial φ′mult encrypts µ1 · µ2 under a new key t. (2) We need to know additional
ciphertexts ψi,j,τ that (approximately) encrypt information about the key s under a new key t

as follows (recall, we define s[0]
def
= 1):

{ψi,j,τ ← E.SymEnct( 2τ · s[i] · s[j] ) : i, j ∈ [n] ∪ {0}, τ ∈ b{0, . . . , log(q)c}} .

See [9] for the details of this re-linearization procedure. The above ideas give us leveled homo-
morphic encryption scheme for circuits with D multiplicative levels simply by choosing D + 1
secret keys s0, . . . , sD and publishing the ciphertexts {ψd,i,j,τ} which encrypt the required infor-
mation about the level-d secret sd under level-(d+ 1) secret sd+1. The public key of the scheme
is pk ← E.PubKeygen(s0), corresponding to the level-0 secret key s0. The ciphertexts will have
an associated level number, which is initially 0. Each time we multiply two ciphertexts with a
common level d, we need to perform re-linearization which increases the level to d + 1. Using
the secret key sD, we can then decrypt at the top level.

In the above discussion, we left out the crucial question of noise, which grows exponentially
with the number of multiplications. Indeed, the above template only allows us to evaluate some
logarithmic number of levels before the noise gets too large. The work of [8] gives a beautifully
simple noise-reduction technique called “modulus reduction”. This technique uses progressively
smaller moduli qd for each level d and simply “rescales” the ciphertext to the smaller modulus
to reduce its noise level. As an end result, we get a leveled FHE scheme, allowing us to evaluate
circuits containing at most D multiplicative levels, where D is an arbitrary polynomial, used as
a parameter for FHE.Keygen. To get an FHE scheme where key generation does not depend on
the number of levels, we can apply the bootstrapping technique of [17], at the expense of having
to make an additional “circular security assumption”.

4 Threshold Fully Homomorphic Encryption

Syntax. A threshold fully homomorphic encryption scheme (TFHE) is basically a homomorphic
encryption scheme, with the difference that the Keygen and Dec are now N -party protocols
instead of algorithms. We will consider protocols defined in terms of some common setup.

– TFHE.Keygen(setup) – (key generation protocol): Initially each party holds setup. At
the conclusion of the protocol, each party Pk, for k ∈ [N ] outputs a common public-key pk,
a common public evaluation key evk, and a private share skk of the implicitly defined secret
key sk.

– TFHE.Decsk1,...,skn(c) – (decryption protocol): Initially, each party Pk holds a common
ciphertext c and an individual private share skk of the secret key. At the end of the protocol
each party receives the decrypted plaintext µ.

– TFHE.Encpk(µ),TFHE.Evalpk(f, c1, . . . , c`): Encryption and evaluation are non-interactive
algorithms with the same syntax as in FHE.

We do not define the security of TFHE on its own. Indeed, requiring that the above protocols
securely realize some ideal key-generation and decryption functionalities is unnecessarily restric-
tive. Instead, we will show that our TFHE scheme is secure in the context of our general MPC
protocol in section 5.
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4.1 Construction of TFHE

We now give our construction of TFHE, which can be thought of as a threshold version of the
[8] FHE scheme. The main difficulty is to generate the evaluation key in a threshold manner,
by having each party carefully release some extra information about its key-shares. Another
important component of our construction is to require parties to add some additional smudging
noise during sensitive operations, which will be crucial when analyzing security.

Common Setup. All parties share a common setup consisting of:

1. params =
(
{paramsd}0≤d≤D , Bϕ, Bχ, B

eval
smdg, B

enc
smdg, B

dec
smdg

)
, where

– paramsd = (1κ, qd,m, n, ϕ, χ) are parameters for the encryption scheme E with differing
moduli qd.

– Bϕ, Bχ ∈ Z are bounds s.t. ϕ is Bϕ-bounded and χ is Bχ-bounded.
– Beval

smdg, B
enc
smdg, B

dec
smdg ∈ Z are bounds for extra “smudging” noise.

2. Randomly chosen common values (i.e. a common random string or CRS):

{Ad
$← Zm×nqd

}d∈{0,...,D} ,
{

akd,i,τ
$← Znqd :

k ∈ [N ], i ∈ [n]
d ∈ [D], τ ∈ {0, . . . , blog(qd)c}

}
.

Convention. Whenever the protocol specifies that a party is to sample x ← ϕ (resp. x ← χ),
we assume that it checks that |x| ≤ Bϕ (resp. |x| ≤ Bχ) and re-samples if this is not the case
(which happens with negligible probability).

TFHE.Keygen(setup). This is a two-round protocol between N parties.
Round 1:

1. Each party Pk invokes the key generation algorithm of the basic scheme E for each level
d ∈ {0, . . . , D} to get skd ← E.SymKeygen(paramsd) and

(Ad,p
k
d)← E.PubKeygen(skd ; Ad)

so that pkd = Ad · skd + 2 · ekd for some noise ekd. We can think of the values skd as individual
secret keys and pkd as individual encryption keys of party Pk.

2. For every d ∈ [D], i ∈ [n], τ ∈ {0, . . . , blog qc}, the party Pk computes:(
akd,i,τ , b

k,k
d,i,τ

)
← E.SymEncskd

(
2τ · skd−1[i] ; akd,i,τ

)
so that bk,kd,i,τ = 〈akd,i,τ , skd〉 + 2ek,kd,i,τ + 2τ · skd−1[i] for some small noise ek,kd,i,τ . In addition, for
every d, i, τ as above and ` ∈ [N ] \ {k}, the party Pk computes “encryptions of 0”:(

a`d,i,τ , b
`,k
d,i,τ

)
← E.SymEncskd

(0 ; a`d,i,τ )

so that b`,kd,i,τ = 〈a`d,i,τ , skd〉 + 2e`,kd,i,τ for some noise e`,kd,i,τ . The values {b`,kd,i,τ} will be used to
create the evaluation key.

3. Each party Pk broadcasts the values
{
pkd
}
d
,
{
b`,kd,i,τ

}
`,d,i,τ

.
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End of Round 1: At the end of round 1, we can define the following values.

1. For every d ∈ {0, . . . , D}, define: p∗d :=
∑N

`=1 p`d. Let pk := (A0,p
∗
0) be the common public

encryption key of the TFHE scheme.

Notice that, if all parties act honestly then (Ad,p
∗
d) = E.PubKeygen(s∗d;Ad; e

∗
d). where s∗d :=∑N

`=1 s`d, e∗d :=
∑N

`=1 e`d. We can think of these values as the “combined public keys” for each
level d.

2. For every ` ∈ [N ], d ∈ [D], and all i, τ define β`d,i,τ :=
∑N

k=1 b
`,k
d,i,τ .

Notice that, if all parties follow the protocol then:

(a`d,i,τ , β
`
d,i,τ ) = E.SymEncs∗

d
( 2τ · s`d−1[i] ; a`d,i,τ ; e ) where e =

N∑
k=1

e`,kd,i,τ

These “approximate encryptions” are already encrypted under the correct combined secret
key s∗d of level d. However, the “plaintexts” still only correspond to the individual secret keys
s`d−1 at level d− 1, instead of the desired combined key s∗d−1. We fix this in the next round.

Round 2:

1. Each party Pk does the following. For all ` ∈ [N ], d ∈ [D], i, j ∈ [n], τ ∈ {0, . . . , blog qc}:
sample (v`,kd,i,j,τ , w

`,k
d,i,j,τ )← E.PubEncp∗d(0) and e

$← [−Beval
smdg, B

eval
smdg]. Set:

(α`,kd,i,j,τ , β
`,k
d,i,j,τ ) := skd−1[j] · (a`d,i,τ , β`d,i,τ ) + (v`,kd,i,j,τ , w

`,k
d,i,j,τ + 2e)

Note that, if all parties follow the protocol, then the original tuple (a`d,i,τ , β
`
d,i,τ ) approx-

imately encrypts the value 2τs`d−1[i]. The above operation has party Pk “multiply in” its

component skd−1[j] (and re-randomizing via a public encryption of 0) so that the final tuple

(α`,kd,i,j,τ , β
`,k
d,i,j,τ ) approximately encrypts 2τ · s`d−1[i] · skd−1[j].

2. Each party Pk broadcasts the ciphertexts
{

(α`,kd,i,j,τ , β
`,k
d,i,j,τ )

}
d,i,j,τ,`

.

End of Round 2: At the end of round 2, we can define the following values.

1. We define the combined evaluation key components for all d ∈ [D] and all i ∈ [n], j ∈
[n] ∪ {0}, τ as:

ψd,i,j,τ :=

{∑N
`=1

∑N
k=1(α`,kd,i,j,τ , β

`,k
d,i,j,τ ) j 6= 0∑N

`=1(a`d,i,τ , β
`
d,i,τ ) j = 0

Note that, if all parties follow the protocol, then

ψd,i,j,τ = E.SymEncs∗d(2
τ · s∗d−1[i] · s∗d−1[j])

where s∗d :=
∑N

`=1 s`d is the combined secret key and all “errors” are “sufficiently small”.

Outputs:

1. Public Evaluation key: Output evk = {ψd,i,j,τ}d,i,j,τ .
2. Public Encryption key: Output pk = (A0,p

∗
0) as the public key.

3. Share of secret key: Each party Pk has a secret-key share skD.
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TFHE.Encpk(µ): Once the first round of the key-generation protocol is concluded, the public
key pk = (A,p∗0) is well defined. At this point anybody can encrypt as follows. Choose (v, w)←
E.Encpk(µ) using the basic scheme E with the parameters params0 = (1κ, q0,m, n, ϕ, χ). Choose

additional “smudging noise” e
$← [−Benc

smdg, B
enc
smdg] and output the ciphertext c = ((v, w+2e), 0)

with associated “level” 0.

TFHE.Evalevk(f, c1, . . . , ct): Once the second round of the key-generation protocol is con-
cluded, the evaluation key evk is defined. The evaluation algorithm is exactly the same as that
of the underlying scheme FHE of [8].

The Decryption Protocol: TFHE.Dec(c). This is a one-round protocol between N parties. Ini-
tially all parties hold a common ciphertext c = (v, w,D) with associated “level” D. Moreover,
each party Pk holds its share skD for the joint secret key s∗D =

∑N
k=1 skD. At the end all parties

get the decrypted bit µ.

– Each party Pk broadcasts wk = 〈v, skD〉+ 2 · ek, where ek
$← [−Bdec

smdg, B
dec
smdg].

– Given w1, . . . , wN , compute the output bit: µ = [w −
∑N

i=1w
i]qD mod 2.

5 Secure MPC via TFHE

We now present a protocol for general MPC, using the threshold fully homomorphic scheme
TFHE from the previous section. Let f : ({0, 1}`in)N → {0, 1}`out be a deterministic function
computed by a circuit of multiplicative depthD. Let (TFHE.Keygen,TFHE.Enc,TFHE.Eval,TFHE.Dec)
be our TFHE scheme from the previous section, initiated for D levels, and with parameters setup.
Our basic MPC protocol πf for evaluating the function f proceeds as follows.

Initialization: Each party Pk has input xk ∈ {0, 1}`in . The parties share the common param-
eters setup for our D-level TFHE scheme.

Round I. The parties execute the first round of the TFHE.Keygen protocol. At the end of this
round, each party Pk holds the common public key pk and a secret-key share skk.

Round II. The parties execute the second round of the TFHE.Keygen protocol. Concurrently,
each party Pk also encrypts its input xk bit-by-bit under the common public key pk and
broadcasts the corresponding ciphertexts { ck,i ← TFHE.Encpk(xk[i]) }i∈{1,...,`in}. At the end
of this round, each party locally computes the evaluation key evk, and homomorphically
evaluate the function f to get the output ciphertexts { c∗j := Evalevk(fj ; {ck,i}) }j∈{1,...,`out}
where fj is the boolean function for the jth bit of f .

Round III. The parties execute the decryption protocol TFHE.Dec on each of the output
ciphertexts {c∗j} concurrently. At the end of this invocation, each party learns each of the
bits of the underlying plaintext y = f(x1, . . . , xN ), which it sets as its output.

Security for Semi-Malicious Attackers. We show that the above protocol is secure against a
semi-honest attacker corrupting any number of parties. Actually, we show security against a
stronger class of attackers which we call semi-malicious. A semi-malicious attacker follows the
honest protocol specification but with some adversarially chosen random coins (of which it has
knowledge). It can choose its malicious random coins adaptively in each round after seeing the
protocol messages of all honest parties during that round. We state our main theorem without
concrete parameters. We defer the proof to the full version, where we also discuss the settings of
the parameters for our protocol and the corresponding LWE assumption required for security.

12



Theorem 5 Let f be any deterministic poly-time function with N inputs and single output
(same output for all parties). Then there is a setting of parameters params such that, under
the corresponding LWE assumption, the protocol πf securely UC-realizes f in the presence of a
static semi-malicious adversary corrupting any t ≤ N parties.

Proof Intuition. We now give a high-level description of how the proof of security works, and
relegate the proof to the full version. The simulator essentially runs rounds I and II honestly
on behalf of the honest parties, but encrypts 0s instead of their real inputs. Then, in round III,
it tries to force the real-world protocol output to match the idea-world output µ∗, by giving an
incorrect decryption share on behalf of some honest party Ph. That is, assume that the combined
ciphertext at the end of round II is c = (v, w,D). The simulator can get the secret keys skD of
all semi-malicious parties Pk at the end of round I (recall that semi-malicious parties follow the
protocol honestly up to choosing bad random coins which are available to the simulator). It
can therefore approximately compute the decryption shares wk ≈ 〈v, skD〉 of the semi-malicious
parties before (round III) starts. It then chooses the decryption share wh of the honest party

Ph by solving the equation w −
∑

`〈v, w`〉 = 2e + µ∗ where e
$← Bdec

smdg is added noise. The
decrypted value is therefore µ∗. We claim that the simulation is “good” since:

– The way that the simulator computes the decryption share of party Ph is actually statistically
close to the way that the decryption share is given in the real world, when the noise Bdec

smdg

is large enough. This follows by the “smudging” lemma.
– The attacker cannot distinguish encryptions of 0 from the real inputs by the “security of joint

keys” (Lemma 4). In particular, the combined public encryption-key pk is derived as the sum
of an honestly generated public-key ph0 (for party Ph) and several other honestly and semi-
maliciously generated keys for which the attacker must “know” a corresponding secret key.
Moreover, the secret key sh0 of party Ph is now never used during the simulated decryption
protocol. Therefore, by the “security of joint keys”, encryptions under pk maintain semantic
security. There is an added complication here that extra information about the secret key
sh0 is released during rounds I and II of the protocol to create the evaluation key. However,
this extra information essentially consists of ciphertexts under the higher level secret keys shd
for d = 1, . . . , D. Therefore, the full proof consists of several hybrid games where we replace
this extra information with random values starting with the top level and going down.

Security for Fully Malicious Attackers. Our basic MPC protocol is only secure in the semi-
malicious setting. In the full version, we give a general round-preserving compiler from semi-
malicious to fully malicious security using UC NIZKs [32] in the CRS model. In particular,
in each round, the attacker must prove (in zero-knowledge) that it is following the protocol
consistently with some setting of the random coins. Combining this with Theorem 5, we get a
3 round MPC protocol in the CRS model for a fully malicious attacker corrupting any number
of parties.

In the full version (see [3]), we also address the question of instantiating such NIZKs effi-
ciently. We first present simple, efficient, and statistical Σ-protocols for basic LWE-languages.
These Σ-protocols crucially rely on the idea of “smudging” and have an interesting caveat that
there is a gap between the noise-levels for which zero-knowledge is shown to hold and the ones
for which soundness holds. We then use the Σ-protocols for these basic LWE-languages along
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with a series of AND and OR proofs to convert them into Σ-protocols for the more compli-
cated language showing that a party is behaving “honestly”. We can then compile them into
UC-NIZKs and obtain general 3-round MPC protocols, in the random oracle model.

6 Variants and Optimizations

We consider several variants and optimizations of our basic MPC protocol.

Two Round MPC under a PKI. An alternative way to present our protocol is as a 2-round
protocol with a public-key infrastructure (PKI). In particular, we can think of the (round I)

message ( {pkd} , {b
`,k
d,i,τ} ) sent by party Pk as its public key and the value {skD} as its secret

key (in the fully malicious setting, the public key would also contain the corresponding NIZKs).
The entire MPC execution then only consists of the remaining two rounds. Note that this
PKI is very simple and does not need a trusted party to set up everything; we just need a
trusted party to choose a CRS and then each party can choose its own public key individually
(possibly maliciously). Moreover, the PKI can be reused for many MPC executions of arbitrary
functions f with arbitrary inputs. The main drawback is that the size of each party’s public key
is proportional to the total number of parties, and it would be interesting to remove this. The
security analysis is exactly the same as that of our original three round protocol in the CRS
model, just by noting that the first round there consists of broadcast message, which does not
depend on the inputs of the parties (and hence we can think of it as a public key).

Cloud-Assisted Computation. Our protocol can be made extremely efficient by outsourcing
large public computations. In particular, the only intensive computation in our protocol, that
depends on the circuit size of the evaluated function, is the homomorphic evaluation at the end
of round II. In our basic description of the protocol, we assumed that each party performs this
computation individually, but we notice that this computation is the same for all parties and
does not require any secret inputs. Therefore, it is possible to designate one special party P ∗

(or even an external entity e.g. a powerful server, or the “cloud”) that does this computation on
everyone’s behalf and broadcasts the resulting output ciphertexts to everyone else. Moreover,
if P ∗ is one of the parties, it does not need to broadcast its input ciphertexts to everyone else
in round II, since it alone needs to know them when performing the evaluation. That is, the
communication complexity is only proportional to the output size and the inputs of all parties
other than P ∗. This may be useful if the MPC computation involves one powerful party with
a huge input and many weaker parties with small inputs. Broadcasting the output ciphertexts
requires an extra round, raising the round complexity of this variant to 4 rounds in the CRS
model, 3 rounds in PKI model.

The above simple idea already achieves security in the semi-honest model, where we can
trust P ∗ to perform the computation honestly and return the correct result. However, in the
fully malicious setting, we would also require P ∗ to prove that the resulting ciphertext is the
correct one, using a computationally-sound proof system with a fixed polynomial (in the secu-
rity parameter) verification complexity. Such non-interactive proofs are known to exist in the
random-oracle model or under strong assumptions [27,7,20,14].

Ring LWE. In the full version (see [25]), we show a variant of the protocol using ring LWE [26].
This variant provides significant practical efficiency savings over just using standard LWE and
the resulting scheme may be even conceptually simpler than using standard LWE.
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Bootstrapping. In our basic MPC protocol, the communication complexity is proportional to the
maximal number of multiplicative-levels in the circuit of the evaluated function. This is because
we start with a leveled TFHE scheme. To make the communication complexity completely
independent of circuit size, we can rely on the bootstrapping technique of [17]. To apply the
bootstrapping technique, each party Pk only needs to encrypt its secret-key share skk = skD (bit-
by-bit) under the combined public-key pk in round II of the protocol, and we add these values to
the evaluation key. With this modification, we can instantiate our TFHE scheme with some fixed
polynomial D depending on the decryption circuit and maintain the ability to homomorphically
evaluate arbitrarily large function f . Therefore, the communication/computation complexity
of the key-generation and decryption protocols is completely independent of the circuit size of
the function f . For security, however, we must now rely on a non-standard circular-security
assumption for the basic LWE-based encryption scheme E.

Randomized Functionalities and Individual Outputs. Our basic MPC protocol only considers
deterministic functionalities where all the parties receive the same output. However, we can
use standard efficient and round-preserving transformations to get a protocol for probabilistic
functionalities and where different parties can receive different outputs.

Fairness. Our basic MPC protocol achieves security with abort for any number of corrupted
parties. We can also achieve fairness for t < N/2 corruptions. The main idea is that, in Round I,
each party also (threshold) secret-shares its individual secret skkd so that any bN/2c+ 1 parties
can recover it, but any fewer will not get any extra information. If a party Pk aborts in Rounds
II or III, the rest of the parties will reconstruct skkd (at the cost of one extra round) and use
it to continue the protocol execution on Pk’s behalf. Although an honest execution of our fair
MPC protocol still uses 3 rounds of interaction, the protocol may now take up to 5 rounds in
the worst case when some parties abort, where the extra rounds are needed to reconstruct the
keys of the aborted parties.
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