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PROTECTING CIRCUITS FROM COMPUTATIONALLY BOUNDED
AND NOISY LEAKAGE∗

SEBASTIAN FAUST† , TAL RABIN‡ , LEONID REYZIN§ , ERAN TROMER¶, AND

VINOD VAIKUNTANATHAN‖

Abstract. Physical computational devices leak side-channel information that may, and often
does, reveal secret internal states. We present a general transformation that compiles any circuit
into a circuit with the same functionality but resilience against well-defined classes of leakage. Our
construction requires a small, stateless, and computation-independent leak-proof component that
draws random elements from a fixed distribution. In essence, we reduce the problem of shielding
arbitrarily complex circuits to the problem of shielding a single, simple component. Our approach
is based on modeling the adversary as a powerful observer that inspects the device via a limited
measurement apparatus. We allow the apparatus to access all the bits of the computation (except
those inside the leak-proof component), and the amount of leaked information to grow unbounded
over time. However, we assume that the apparatus is limited in the amount of output bits per
iteration and the ability to decode certain linear encodings. While our results apply in general to
such leakage classes, in particular, we obtain security against (a) constant-depth circuits leakage,
where the leakage function is computed by an AC0 circuit (composed of NOT gates and unbounded
fan-in AND and OR gates); (b) noisy leakage, where the leakage function reveals all the bits of the
internal state of the circuit, but each bit is perturbed by independent binomial noise—i.e., flipped
with some probability p. Namely, for some number p ∈ (0, 1/2], each bit of the computation is flipped
with probability p, and remains unchanged with probability 1− p.
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1. Introduction. The best of cryptographic algorithms are insecure when their
implementations inadvertently reveal secrets to an eavesdropping adversary. Even
when the software is flawless, practical computational devices leak information via nu-
merous side channels, including electromagnetic radiation (visible and otherwise) [38,
29], timing [7], power consumption [28], acoustic emanations [41], and numerous ef-
fects at the system architecture level (e.g., cache attacks [5, 34, 35]). Leaked informa-
tion is even more easily accessible when the computational device is in the hands of
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an adversary, as is often the case for many modern devices such as smart cards, TPM
chips, and (potentially stolen) mobile phones and laptops. Reducing such information
leakage has proven excruciatingly difficult and costly, and its complete elimination is
nowhere in sight.

Micali and Reyzin [30] proposed a general model for rigorously analyzing protec-
tion against side-channel attacks. They model a side-channel attacker as a two part
entity—the first is the measurement apparatus that performs measurements on the
physical state of the device. This is done on behalf of the second entity which is the
adversarial observer. The observer is assumed to be computationally powerful (e.g.,
polynomial time or even unbounded), and takes as input the measurements of the
apparatus. Thus, the power of the adversarial observer is primarily constrained by
the quality of the information provided by the measurement apparatus.

It is interesting to note that even though computational devices leak abundantly,
many side-channel attacks are hard to carry out and some devices remain unbroken.
This is due to the fact that useful measurements can often be difficult to realize in
practice. Physical measurement apparatus often produce a “computationally lim-
ited” and “noisy” measurement of the state of the object; they usually do not carry
out sophisticated computation. In-depth analysis typically happens in the form of
postprocessing by the observer (rather than in the measurement apparatus).

In this work, we follow the paradigm of Ishai, Sahai, and Wagner [24], who con-
struct a general transformation from any cryptographic algorithm into one that is
functionally equivalent, but also leakage resilient. The particular class of leakage
functions they consider is the class of spatially local measurement functions, namely,
functions that read and output at most k bits of information. In particular, the
leakage functions are completely oblivious to a large portion of the circuit’s state.

In contrast, we are interested in security against global measurements, which are
often easier to carry out than localized measurements that require a focus on specific
wires or memory cells; in many side-channel attacks, the main practical difficulty
for the attacker lies precisely in obtaining high spatial resolution and accuracy. Fur-
thermore, global measurements are typically also more informative than local mea-
surements. The question that motivates our work is whether, analogously to [24],
we can construct a general circuit transformation that tolerates global side-channel
measurements.

1.1. The model. Inspired by Ishai, Sahai, and Wagner [24], we model arbitrary
cryptographic computation by circuits computing over a finite field K (a special case
is Boolean circuits that operate over GF(2)). Since cryptographic devices are often
implemented as digital circuits, our model of computation directly corresponds to
devices in the physical world. Importantly, the circuit has a secret state (such as a
cryptographic key for a block cipher), which we want to protect from the adversary.

Our adversarial model considers an adversary who attacks this circuit by adap-
tively running it on inputs of her choice and learning the result of its computation.
The result is computed from the input and the state (which may be updated by the
computation). With each query to the circuit, the adversary may choose a leakage
function f from some set L of tolerated leakage functions (this choice, as well as the
choice of input to the circuit, may be made adaptively, depending on all the informa-
tion obtained by the adversary up to this point). We allow f to depend on the secret
state and all intermediate results that may occur during computation. We model
this by giving as input to f the values that are carried on all the wires connecting
the circuit’s gates. Since we do not make any assumption on the spatial locality of
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the leakage, we achieve resilience to global leakage functions. However, the set L of
leakage functions we can handle is restricted in other ways, as we discuss below.

On computationally weak and noisy leakages. We consider two classes of leakage
functions in this work.

• Computationally-bounded leakage functions: We assume that L contains only
simple aggregated leakage functions. That is, functions in L are too weak to
perform certain computations (e.g., parity of many bits) and their range is
bounded by some parameter λ. As a concrete example, we consider functions
in the class AC0—that is, functions that can be computed by circuits of small
depth.1 Some restriction on the computational power of the leakage function
is necessary, because of the impossibility results on general circuit obfusca-
tion [3] (see [21, sections 1 and 1.3] for a discussion of the connection be-
tween leakage resilience and obfuscation). The second restriction—bounding
the amount of leakage—is similarly necessary, as otherwise even very sim-
ple leakage functions can output the complete secret state (e.g., the identity
function). Notice, however, that while the amount of information leaked each
time is bounded, the total amount of information leaked over multiple runs
of the circuit is not.
• Noisy leakage functions: Alternatively, instead of limiting the computational
power and output size of f , we assume that L consists only of noisy functions.
That is, functions in L do not compute exact results, but rather their output
is perturbed with some noise. As a concrete example, we assume that the
leakage reveals all the bits of the circuit’s state, perturbed by independent
binomial noise. Notice that in this case the amount of leakage for each run
of the circuit is not bounded.

The restriction of computationally bounded and noisy leakages are motivated by the
observation that physical measurement apparatus typically produce a computationally
simple or noisy measurement of the device’s state. For instance, the power consump-
tion of a cryptographic devices is often described as a simple aggregated functions
such as the Hamming weight or the Hamming distance of the processed data. Also,
physical measurements are inherently noisy. Such noise may result from the environ-
ment (nonalgorithmic noise) or from the device itself (algorithmic noise). Thus we
model the measurement apparatus as a simple (possibly noisy) aggregated function
of the device’s state. We stress that once the leakage is in the hands of the adversary,
she can carry out arbitrary computation (it need not even be efficient).

Of course, the concrete leakage classes for which we present secure circuit trans-
formations are not particularly strong. For instance, in the computationally bounded
setting we instantiate L with AC0. AC0 is weak since it cannot even compute parity
and hence many practical side-channel attacks do not fall into this class (e.g., the
Hamming weight of all wires). Nevertheless it is strong enough to allow for measuring
approximate Hamming weight [1], or the Hamming weight of a subset of the values
on the wires: something routinely measured by side-channel attacks in practice.

For the noisy setting we make the assumption that the value on each wire is
perturbed by independent noise. This assumption may not hold in practice since,
e.g., algorithmic noise is correlated with the processed data. Constructing circuits
that remain secure against correlated noisy leakages is an important research question.

1An earlier version of this paper contained an erroneous claim that our results extend to ACC0[p],
which is AC0 augmented with MODp gates. They do not, because average-case hardness results are
not known for such circuits.
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Intergate wires versus all of the circuit. Formally, we model global leakage func-
tions by giving the values on all wires that connect gates as input to a single leakage
function. One may object that this input to the leakage function does not capture
all of the physical information present in the circuit, because we do not include the
internals of the gates. For instance, we do not give as input the number of conducting
transistors inside the gate, while in practice such low-level effects may significantly
contribute to the physical leakage [42]. In the case of computationally weak leakage
functions, this is not a real limitation, because, although our leakage functions are
computationally weak, they suffice to evaluate constant-size operations (e.g., count
the number of conducting transistors in a Boolean gate). This allows our leakage
functions to simulate the internal behavior of a gate just by knowing its inputs, as
long as this behavior is not too complex.

On leak-free components. Most gates in our protected circuits are, indeed, very
simple constant-size objects. However, we introduce a special component, a so-called
opaque gate. We assume such gates are leak free. That is, they leak on their inputs
and outputs, but the leakage function cannot observe their internals. Naturally, in
order for this assumption to be meaningful, an opaque gate must be complex enough
so that its internals are not simulatable by a leakage function that gets information
only about the wires connected to this gate. In particular, our opaque gates are not
constant size.

However, even though we assume nonconstant-size leak-free components, this
assumption is mitigated by the fact that, in our constructions, these components
are simple, stateless, and computation independent. In particular, the complexity
of implementing our leak-free component is independent of the complexity of the
computed circuit, and they neither hold secrets nor maintain state.

We have two kinds of opaque gates, denoted O (which is used for both construc-
tions) and Q (which is used only for the noisy leakage construction). They have no
inputs. They output an element sampled according to a fixed distribution, which is
independent of the computation being carried out. The O gate, described in more
detail in sections 3.2, samples k uniformly random field elements subject to the con-
dition that they add up to zero (in the case of the field being GF(2), it simply means
sampling a bit string of even parity). The Q gate, described in more detail in sec-
tion 3.3, is more complex; it samples many such k-tuples of field elements and then
computes a degree-two polynomial on them.

Although the requirement of a leak-free component is a strong one, the leak-free
components we require are minimal in some respects.

1. It is a fixed standardized functionality which can be designed and validated
once and added to one’s standard cell library—which is far better than having
to devise separate protection mechanisms for every circuit of interest.

2. It has no secret keys, no inputs, and no internal state, i.e., it is independent of
the computation in the circuit and merely samples from a distribution. While
the assumption of a shielded physical device that samples perfect randomness
is a strong one, we can relax it. For the case of AC0 leakage we can relax this
assumption and require only randomness that is polylog(k) independent [6].
Also, alternatively, we can derandomize our construction by using Nisan’s
unconditional pseudorandom generator (PRG) against AC0 [33]. Notice that
such a PRG still has to be implemented by a leak-free component and, hence,
in this case, our opaque gates become stateful, which requires building leak-
free memory.
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3. Alternatively, because we only need samples from a distribution, we can have
the opaque “gate” simply read its output one by one from a precomputed
list. Thus, it suffices to have leak-proof one-time storage (a consumable “tape
roll”) instead of leak-proof computation. This is an option if the computation
is performed only a bounded number of times.

Of course, leak-free components, however simple, are a limitation. The work of
Ishai, Sahai, and Wagner [24], which protects against leakage of some wire values,
does not utilize these components. Furthermore, subsequent work (see section 1.3)
eliminated the need for these components even in cases of more complex leakage. On
the other hand, many variations of the leak-free component assumption have been
made in the literature. We highlight some of these works below; which ones are more
or less realistic is debatable.

The model of Micali and Reyzin [30] and many subsequent works (e.g., [13, 36, 14])
assume the presence of leak-free memory. This is captured by the statement that “only
computation leaks information” (axiom 1 in [30]), i.e., memory that is not accessed
during a computation step does not affect the observable leakage during that step.

The “oblivious RAM” model of Goldreich [17] and Goldreich and Ostrovsky [19]
reverses the roles: while memory is leaky, the computation is assumed to be on a leak-
free secure processor. In this model, they show a generic transformation that makes
random-access machines resilient to polynomial-time leakage (with polylogarithmic
blowup in memory size and running time). We also note that in the recent circuit
compilers of Juma and Vahlis [26], Goldwasser and Rothblum [20], and Dziembowski
and Faust [11, 12] leak-free components have been used (they have been very recently
eliminated in [21]). We discuss these works in more detail in section 1.3.

1.2. Our results. We demonstrate circuit transformations that compile any
circuit into one that is functionally equivalent but resists attacks by leakage functions
described above. The circuit transformation TR takes as input the description of a
circuit C and compiles it into a transformed circuit Ĉ that uses the same gates as C
(plus the leak-free component). For example, C may be a standard block cipher, in

which case Ĉ would be its secure implementation (note that the entire block cipher
does not have to be computed with a single combinatorial circuit—because we allow
the circuit to maintain state, C can be a clocked circuit with registers).

We define resilience of Ĉ against leakage class L by a simulation-based security
notion, which is essentially the same as the one in [24]. A circuit transformation TR

is said to be resilient to leakages of L if observing the computation of Ĉ with leakages
from L does not offer any advantage over black-box access to C without any leakage.
Formally, we show that for any adversary A that gets to interact with Ĉ by giving it
inputs, observing some physical leakage f ∈ L from the computation on those inputs,
and viewing its outputs, there exists a simulator S with only black-box access to C
such that A and S have indistinguishable output distributions. Let us now discuss
our constructions in more detail.

Leakage resilience from linear secret sharing. Our constructions, at a high level,
are similar to the construction of Ishai, Sahai, and Wagner [24]: we perform a gate-

by-gate transformation. Every wire of C is encoded into a bundle of wires in Ĉ
using a linear secret sharing scheme Π; each wire of the bundle carries a share of the
original wire in C. Each gate in C is replaced by a gadget in Ĉ which operates on
encoded bundles. The gadgets are carefully constructed to use Π internally in a way
that looks “essentially random” to functions in the leakage class L (notice that the
internals of these gadgets may leak), and we show that this implies that the whole
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content of the transformed circuit remains “essentially random” to functions in L.
Hence, the adversary gets no advantage from her observation of the leakage. We
provide two constructions: one resilient against computationally weak leakage, and
the other resilient against noisy leakage.

Resilience to computationally weak leakage. The security of our first construction
relies on an assumption on the computational power of L, namely, that it cannot
decode Π (even when the output of a function in L is then processed by a computa-
tionally unbounded adversary; see Definition 3.2 in section 3.2). This is general for
any Π and L that cannot decode Π. If k is the size of the leakage-resilient encoding Π
of a single bit, then our transformation increases the circuit size by a factor of O(k2).
The following is an informal statement of the result (see Theorem 3.3 for the formal
version).

Informal Theorem 1. Let K be a finite field and let k be a security parameter.
Let L be some class of leakage functions and let LΠ be the class of functions obtained
by adding, to every function in L, any O(k2) field operations in K, arranged at most 3
layers deep. Suppose the encoding Π is such that the adversary, using leakage functions
from LΠ twice, cannot distinguish what field element is encoded. There is a compiler
that transforms any circuit over K into one that is secure against any adversary
that executes the transformed circuit a polynomial number of times, using a leakage
function from L at each execution. The compiled circuit uses O(sk) copies of a circuit-
independent, input-independent, stateless, randomized leak-free gate. The compiler
increases the circuit size by a factor of O(k2).

As a special case, to get secure circuit transformations for concrete leakage classes,
we can invoke circuit lower bounds [16, 22]. Thus, for the case where the scheme Π
is instantiated with the parity encoding (i.e., a bit b is shared into random bits whose
parity is b), and the leakage class L = AC0, the lower bound of Hastad [22] implies
that to functions in L the encoded bit b looks essentially random. The following is
an informal statement of the result (see Corollary 5.2 and discussion thereafter for a
formal version).

Informal Theorem 2. Let k be a security parameter. Let 0 < δ < 1 and
4 < d < 1/δ − 1 be some constants. Let L be the class of AC0 circuits of depth
d − 4, consisting of at most exp(O(k(1−δ)/d)) unlimited-fan-in and-or-not gates, and
at most �kδ/2� output values. There is a compiler that transforms any Boolean circuit
of size s into one that is secure against any adversary that executes the transformed
circuit at most q times, using a leakage function from L at each execution. The
resulting security is information theoretic, with security level qs exp(−Ω(k(1−δ)/d)).
The compiled circuit uses O(sk) copies of a circuit-independent, input-independent,
stateless, randomized leak-free gate. The compiler increases the circuit size by a factor
of O(k2).

In particular, to be resilient to λ bits of leakage by AC0 leakage functions of
depth dλ and size exp(O(λ)), we can use k = (2λ)dλ+6 and achieve security level
qs exp(−Ω(λ)).

Resilience to noisy leakage. The security of our second construction relies on
the assumption that the functions in L output wires of Ĉ perturbed by independent
binomial noise. In this case, we can consider an L that consists of just a single leakage
function. Namely, if wi is the value on wire i, the leakage function Np outputs wi⊕ηi,
where ηi is 1 with some probability p > 0. For such leakages the parity encoding
works again. By the XOR Lemma (see Lemma 4.2 in section 4.1), Np(�a) and Np(�b)

are statistically close when �a and�b are random bit strings of different parity. Similarly
to the construction for computationally weak leakages, we show that computing with
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such encodings yields secure computation against Np leakages. This transformation
increases the circuit size by a factor that is polynomial in 1/p. The following is an
informal statement of the result (see Theorem 3.5 for the formal version).

Informal Theorem 3. Let k be a security parameter. There is a compiler
that transforms any Boolean circuit of size s into one that is secure against any ad-
versary that executes the transformed circuit q times using the leakage function Np

(which gives each wire value correctly with probability 1 − p, as defined above) at
each execution. The resulting security is information theoretic, with security level
qs exp(−Ω(kp6)). The compiled circuit uses two kinds of circuit-independent, input-
independent, stateless, randomized leak-free gates (O(sk) copies of one and O(s)
copies of the other). The compiler increases the circuit size by a factor of O(k2).

Our opaque gates. As already outlined above, our constructions make an extra
requirement: Ĉ uses a small leak-free component O (used in all constructions) and/or
Q (used in the case of noisy leakages). O merely outputs samples from a fixed dis-
tribution, namely, the encoding of 0 under Π (if Π is the parity encoding then O
just outputs random bit strings with parity 0). Q is more complicated and will be
described in section 3.3. Thus, our results can be interpreted as reducing the physical
security of arbitrary circuits to the security of a single simple component, which can
be manufactured in bulk, independently of the larger circuits that need protection.
This approach to physical security follows the approach of Micali and Reyzin [30] of
reductions between physical devices.

Security proof via general composition. Let us call circuit transformations that
replace wires by wire bundles carrying encoded values and gates by gadgets that
operate on these bundles encoding based. We show a general technique for proving
leakage resilience of encoding-based circuit transformations. Namely, we capture a
strong notion of leakage resilience for transformed circuits (or their gadgets), by saying
that they are reconstructible if there exist certain simulators (so called reconstructors)
for the internal wires that fool the leakage class. More precisely, a reconstructor is
given only the encoded inputs and outputs of a transformed circuit (or gadget) and
has to come up with values for the internal wires that look consistent for leakages in
L. We then show a composition result : if all parts of a circuit are reconstructible then
so is the whole circuit. This will imply security of the transformation. Important
contributions of this work are our proof techniques that are particularly useful for
computationally weak leakage functions, and have recently been used in [12]. We
refer the reader to section 4.2 for an outline of the proof techniques.

1.3. Related work. Leakage-resilient cryptography is a very active research
area; in particular, there is a considerable amount of recent work that proposes
techniques to protect specific cryptographic tasks (such as signing, decrypting, or
zero-knowledge proofs) against leakage. We do not survey this work here and focus,
instead, on general transformations.

Chari et al. [8] proved the security of linear secret sharing (specifically, XOR
masking) for protection of values against noisy leakage. They did not, however, specify
how to compute on the shares without reconstructing the original values.

Ishai, Sahai, and Wagner [24] were the first to propose a general circuit transfor-
mation resilient against adversaries who see up to k wires in each invocation of the
circuit. While we use similar techniques for our construction, our security analysis
differs significantly from the one in [24], because we need to handle a broader class of
adversaries and cannot hide any part of the circuit’s state from the leakage function.
Notice that our transformation that resists AC0 leakages is trivially secure against
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k-probing. Hence, our leakage model can be interpreted as a generalization of [24],
using the ideas of leakage functions and reductions between physical components in-
troduced in the work of Micali and Reyzin [30]. It is important to note that our
generalization of the model of [24] comes at a cost: our transformation is less efficient
and requires leak-free components.

Following our work, Rothblum [40] proposed a different circuit transformation
that also resists AC0 leakage but does not require leak-free components; it requires
a computational hardness assumption; however. Miles and Viola [32] and Miles [31]
proposed a circuit transformation that resists more powerful classes of leakage, such
as AC0 augmented with log2 k gates that compute any symmetric function (including
parity), and, under certain computational assumptions, TC0 and even NC1 (their
transformation, like ours, assumes a simple leak-free component).

A different generalization of the work of [24] was proposed by Ajtai [2], who
showed how to compile RAM programs onto ones that are resilient to wire probing;
his transformation can also be viewed in the circuit model, allowing more probed
wires than the transformation of [24].

In a somewhat different vein, following our work, other compilers have been pro-
posed that protect arbitrary computation against any polynomial-time local leakage
function. In particular, Juma and Vahlis [26] and Goldwasser and Rothblum [20]
present techniques that allow computation in the presence of arbitrary bounded-range
polynomial-time leakage functions. The advantage these schemes have over our work
is that they tolerate much stronger leakage functions; the work of Goldwasser and
Rothblum [20] is particularly strong in this regard, as it allows for an exponentially
higher leakage rate (as a function of the transformed circuit size) than the work of
Juma and Vahlis [26]. On the other hand, these works rely on the additional assump-
tion of “only computation leaks information” that we do not use; in other words, they
assume that intermediate results can be placed into nonleaking memory or, equiva-
lently, that different parts of the computation leak independently. (In the case of [20]
this assumption is very strong; the transformed circuit is assumed to be split into very
many pieces that leak independently; in the case of [26], only two pieces are required.)

Similarly to our work, Juma and Vahlis [26] and Goldwasser and Rothblum [20]
make use of leak-free components. The gate in [26] has to do key refreshing of a
secret key for a fully homomorphic encryption scheme, while in [20] for a given public
key the component either outputs a random encryption or an encryption of 0. An
advantage that the work of Juma and Vahlis enjoys is that its transformation requires
only a single copy of the leak-free component for the whole transformed circuit.

Dziembowski and Faust [12] proposed a compiler in the same local-leakage model
as [26, 20] but without relying on computational assumptions. Their compiler relies
on homomorphic properties of the inner product extractor and simplifies both the
compiler and the leak-free gates that were used in earlier works. Goldwasser and
Rothblum [21] eliminated both the computational assumptions and the need for leak-
free components, but retained the assumption that multiple (and numerous) parts of
the circuit leak independently. The already mentioned transformation of Miles and
Viola [32] is also secure in this model of bounded-size polynomial-time “local” leakage,
where “local” means a constant number of independently leaking parts (which are not,
however, local in the sense of circuit layout or time); their result for this model does
not require computational assumptions, but still relies on a leak-free component.

Duc, Dziembowski, and Faust [10], following the work of Prouff and Rivain [37],
proposed a compiler in a leakage model that is very similar to our noisy leakage model,
with each wire leaking a noisy version of its value. Their work allows for more general
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noise distributions and does not require any leak-free gates, but requires more overall
noise to achieve security.

Reader’s Guide. In the next two sections we introduce the security notion of a
circuit transformation. In section 3.2 we give our circuit transformation for compu-
tationally weak leakages, and in section 3.3 for noisy leakages. Security of our con-
struction is proved in section 4. We first define the notion of reconstructibility, then
in section 4.3 and 4.4 we prove that our simple gadgets satisfy these notions. This
is followed by our composition lemma in section 4.5, and finally leads in section 4.6
to stateful circuit transformations. In section 5 we show how our construction for
computationally weak leakage applies to the specific case when the leakage function
is in AC0.

2. Notation. In this paper vectors, denoted �v = (v1, . . . , vn), are column vec-
tors. Matrices are typically denoted by capital letters with an arrow on top. If a
matrix �M has n rows and m columns, then we say that it is an n×m matrix. Mi,j

denotes the (i, j)th element, i.e., the entry in row i and column j. Matrix addition
and vector multiplication are defined in the standard way.

We denote function composition by f ◦ g : x �→ f(g(x)). If L1 and L2 are two
sets of functions, then L2 ◦ L1 is a set of functions {f ◦ g | f ∈ L2, g ∈ L1}. For some
set of functions L we write n×L to denote n “parallel” computations of functions in
L. That is, n × L = {(f1, . . . , fn)|f1, . . . , fn ∈ L}. Notice that we overload notation
and sometimes say that functions f ∈ n × L take n copies of the same input (i.e., f
computes (f1(x), . . . , fn(x))), while sometimes f takes n different inputs x1, . . . , xn

(i.e., f computes (f1(x1), . . . , fn(xn))).
Let C(d, s, λ) denote the class of AND-OR-NOT unlimited fan-in Boolean circuits

with depth d (not counting NOT gates), size s, and λ bits of output. We will some-
times care about arithmetic circuits over a finite field K; in this case, let the function
class SHALLOW(d, s) (for d, s ∈ N) denote the class of functions that can be computed
by deterministic circuits that have at most s field addition, subtraction, and multi-
plication gates that are arranged at most d deep (i.e., the longest path in the circuit
has at most d such gates on it). We will allow an arbitrary number of gates supplying
constants from K; such gates will not be counted as part of s and d. Note that even
if K = GF(2), these two classes are different: one deals with unlimited-fan-in Boolean
operations, while the other deals with algebraic operations of fan-in 2.

The statistical distance of two random variables D1, D2 is

1

2

∑
x

|Pr[D1 = x]− Pr[D2 = x]|.

They are ε-close (denoted by D1 ≈ε D2) if their statistical distance is at most ε. They
are (τ, ε)-computationally close (denoted by D1 ≈τ,ε D2) if for any distinguisher D
that runs in time τ and outputs 0 or 1, D(D1) ≈ε D(D2). The notation d ← D
denotes sampling a value d according to a random variable D (or uniformly, if D is
simply a set).

3. Circuit transformations. A circuit transformation TR takes as input a se-
curity parameter k, a circuit C, and an initial state m0 and produces a new circuit
Ĉ and new initial state m̂0.

2 Let us discuss how C and Ĉ look and what properties

2Throughout this work, we use the hat notation �̂ (reminiscent of the proverbial “tinfoil hat”)
to designate circuits or components that are transformed for leakage resilience.
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the transformation TR needs to satisfy. The discussion below adapts the definitions
of [24] to general classes of leakage functions, as suggested in [30].

The original circuit C. We assume that the original circuit C carries values from
an (arbitrary) finite field K on its wires and is composed of the following gates (in
addition to the memory gates which will be discussed later): ⊕,�, and � (which
compute, respectively, the sum, difference, and product in K, of their two inputs), the
“coin flip” gate $ (which has no inputs and produces a random independently chosen
element of K), and for every α ∈ K, the constant gate constα (which has no inputs
and simply outputs α).

Fan-out in C is handled by a special copy gate that takes as input a single value
and outputs two copies. If we use one output of a gate 	 times, then it is passed
through a subcircuit of 	− 1 copy gates arranged in a tree (the structure of the tree
may be chosen arbitrarily). Notice that copy gates are just the identity (pass-through
wires) and are present mainly for notational convenience.

Stateful circuits. As in the work of Ishai, Sahai, and Wagner [24], we define the
notion of a stateful circuit. A stateful circuit additionally contains memory gates, each
of which has a single incoming and a single outgoing edge. Memory gates maintain
state: at any clock cycle, a memory gate sends its current state down its outgoing
edge and updates it according to the value of its incoming edge. Any cycle in the
circuit must contain at least one memory gate. The state of all memory gates at clock
cycle i is denoted by mi, with m0 denoting the initial state. Inputs to and outputs
from clock cycle i are denoted, respectively, by xi and yi.

3 When a circuit is run in
state mi−1 on input xi, the computation will result in a wire assignment Wi (a wire
assignment to C is a string in Kt, t ∈ N, where each element represents a value on a
wire in C); the circuit will output yi and the memory gates will be in a new state mi.
We will denote this by (yi,mi,Wi) � C[mi−1](xi).

The transformed circuit Ĉ. Ĉ will make use of the same atomic gates as C and
also of leak-free (“opaque”) gates described in sections 3.2 and 3.3. We require from

the transformed circuit Ĉ with state m̂0 that it “behaves identically” to C with initial
state m0. We formalize this by the soundness property of a circuit transformation
TR. That is, for all C and m0, for any number of clock cycles q and any set of inputs
x1, x2, . . . , xq (one for each clock cycle), the distribution of the outputs y1, y2, . . . , yq
is the same for C starting at state m0 and Ĉ starting at state m̂0. (We note that [24]
defined a more relaxed notion of soundness, requiring only indistinguishable, rather
than perfectly identical behavior, but we do not need it in this work.)

Security of circuit transformation TR. We want to make sure that the transformed
circuit leaks no useful information to an adversary. We use the term (L, τ)-adversary
to denote an adversary A with physical observations limited to functions in the class
L and running time (not including the computation by the leakage function itself)
limited to τ . If the adversary A gets to query the circuit q times, each time choosing a
fresh function from L, which computes its output based on the entire wire assignment,
we call it a q-adaptive (L, τ)-adversary. To formalize that such an adversary learns
nothing useful, we show the existence of a simulator S, and prove that anything the
adversary learns can also be learned by S which does not get any leakage.

Consider the experiments in Figure 1 that start with some circuit C in state m0,
and allow it to run for q iterations. In both experiments, we assume that A and S
are stateful, i.e., remember their state from one invocation to the next.

3mi, xi, and yi will be vectors with length n, nI, and nO (resp.).
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Experiment ExprealTR (A,L, q, C,m0, k)

( ̂C, m̂0)← TR(C,m0, 1
k)

(x1, f1)← A( ̂C, 1k), with f1 ∈ L
For i = 1 to q − 1

(yi, m̂i,Wi) � ̂C[m̂i−1](xi);
(xi+1, fi+1)← A(yi, fi(Wi))

(yq, m̂q,Wq) � ̂C[m̂q−1](xq);
Return output of A(yq, fq(Wq)).

Experiment ExpsimTR (S ,A,L, q, C,m0, k)

( ̂C, m̂0)← TR(C,m0, 1
k)

(x1, f1)← A( ̂C, 1k), with f1 ∈ L
For i = 1 to q − 1

(yi,mi)← C[mi−1](xi)

Λi ← S(xi, yi, fi, 1
k), with Λi being the leakage

(xi+1, fi+1)← A(yi,Λi)

(yq,mq)← C[mq−1](xq); Λq ← S(xq, yq, fq, 1
k)

Return output of A(yq,Λq).

Fig. 1. The real world with the adversary A observing the computation of the transformed
circuit ̂C[m̂i] is shown on the left-hand side. On the right-hand side we describe the simulation.

The security definition below says that the transformed circuit is secure if the
outputs of the two experiments are indistinguishable. We are now ready to state
our security notion precisely. The definition is for both computational and statistical
indistinguishability (the latter is obtained by setting the parameter τD to ∞).

Definition 3.1 (security of circuit transformation). Recall that k is the security
parameter. A circuit transformation TR is (L, τA, τS , τD, q, ε)-secure if for every q-
adaptive (L, τA)-adversary A there is a simulator S running in time τS such that for
all (stateful) circuits C with initial states m0

ExprealTR (A,L, q, C,m0, k) ≈τD,ε Exp
sim
TR (S,A, q, C,m0, k) ,

where the random variables are outputs of the experiments. Sometimes, we abbrevi-
ate parameters and refer to a circuit transformation being L-secure, which means it
is (L, τA(k), τS(k), τD(k), q(k), ε(k))-secure for some polynomials τA, τS , τD, q, and
some negligible function ε.

Note that a stronger result is obtained when L, τA, τD, and q are larger (as it
allows for more leakage functions and stronger adversaries), and when τS and the
distinguishing advantage ε are smaller (because it indicates tighter simulation).

In the following sections, we discuss three circuit transformations, which follow a
similar approach that we call encoding-based circuit transformations. We then show
three examples of encoding-based circuit transformations. In section 3.2, we propose
encoding-based transformations for computationally weak and in section 3.3 for noisy
leakages.

3.1. Encoding-based circuit transformations. At a high level, in an en-
coding-based circuit transformation, each wire w in the original circuit C is repre-
sented by a wire bundle in Ĉ, consisting of k wires �w = (w1, . . . , wk), that carry
an encoding of w. The gates in C are replaced gate by gate with so called gadgets,
computing on encoded values. Our construction will ensure that each wire bundle
between two gadgets carries an encoding of its value that is chosen uniformly and
independently of all the wires in the transformed circuit. The main difficulty in the
concrete constructions of section 3.2–3.3 will be to construct gadgets that remain “se-
cure” even if their internals may leak. Before devising the concrete gadgets, let us
explain the main ingredients of encoding-based circuit transformations.

Encoding scheme Π. The main ingredient of the transformations presented below
is an encoding scheme Π = (Enc,Dec), which maps a single element of a finite field
K to a vector in Kk and back. More precisely, for k ∈ N>0, Dec : Kk → K is a
deterministic function, and Enc is a (probabilistic) algorithm that, on input x ∈ K,
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chooses uniformly at random an element of Dec−1(x) (where Dec−1(x) is the set
{y ∈ Kk : Dec(y) = x}).

Linear encoding schemes. A special type of an encoding scheme is a linear encod-
ing scheme, which requires that Dec is an affine function. For k ∈ N>0, Dec is defined
by a decoding vector �r = (r1, . . . , rk) ∈ Kk as Dec : (y1, . . . , yk) �→

∑
i yiri = �rT�y. In

the simplest case of K = GF(2), a linear encoding of a bit x is a random string of k
bits whose exclusive-or is x. The case when K = GF(2) will be called parity encoding,
denoted by Πparity. Further examples of linear encoding schemes are any threshold or
nonthreshold linear secret sharing scheme [4].

We abuse notation and use Enc(x) to denote the distribution of encodings of
x, �x to denote a particular encoding from this distribution, and Enc(x1, . . . , xn) =
(Enc(x1), . . . ,Enc(xn)) = (�x1, . . . , �xn) to denote the encoding of a set of elements
x1, . . . , xn ∈ K. Furthermore, denote by Enc(·) the uniform distribution over all
encodings.

Encoding inputs—decoding outputs. Because the transformed gadgets in Ĉ op-
erate on encodings, Ĉ needs to have a subcircuit at the beginning that encodes the
inputs and another subcircuit at the end that decodes the outputs. However, in our
proofs, we want to be able to also reason about transformed circuits without encoding
and decoding. Thus, we do not require that every transformed circuit Ĉ should have
such encoding and decoding. Instead, we introduce artificial input and output gates
that can be part of C for syntactic purposes. If such gates are present (as they would

be on any “complete” circuit that one would actually wish to transform), then Ĉ will

include input encoding and output decoding. If they are not, then Ĉ will operate on
already encoded inputs and produce encoded outputs.

More precisely, if we wish for Ĉ to include input encoding and output decoding,
then the circuit C given to TR must have a special encoder gate on every input wire.
In C the encoder gate is simply the identity, since no encoding is needed. Also, on
every output wire there must be a special decoder gate, which is also the identity.
These special gates must not appear anywhere else in C and do not count for the
size of the circuit. In Ĉ each encoder gate is replaced by an ̂encoder gadget which
performs encoding (see below) and each decoder gate is replaced by a ̂decoder gadget
that performs decoding (see below).

The ̂encoder gadget takes an input a ∈ K and outputs an encoding (i.e., a wire
bundle) �a ∈ Kk of a. The encoding can be chosen arbitrarily from the support of

Enc(a), e.g., �a = (r−11 a, 0, . . . , 0). The ̂decoder gadget takes an encoding (i.e., a wire
bundle) �a ∈ Kk of a and outputs a← Dec(�a). For our concrete transformations below,
̂encoder and ̂decoder can be implemented with just constα, ⊕, and � gates.

Transformation of the state. So far we have considered the transformation of
stateless circuits. A stateful circuit C additionally has an initial state m0 that is
stored in memory cells. For syntactical reasons we assume that each such memory
cell in C is followed by a mask gate, which is implemented in C by the identity function.

To augment the circuit transformation to handle stateful circuits, we have to
explain how to transform the initial state m0 and what to do with each memory gate.
The initial state is replaced by a randomly chosen encoding Enc(m0). Each memory
gate is replaced by a gadget that consists of k memory gates to store the encoding,
followed by a m̂ask gadget that represents the mask gate in C. The implementation
of the m̂ask gadget is transformation specific and will be described for our concrete
instantiations below. Notice that in contrast to ̂encoder and ̂decoder, the m̂ask

gadget is necessary to achieve security; otherwise we cannot safely tolerate leakage
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Fig. 2. An example of a circuit C and its transformation ̂C.

that exceeds the length of a single encoding.4 The high-level structure of the circuit
transformation is given in Figure 2.

3.2. Circuit transformations resilient to computationally bounded leak-
age. The transformation of [24] protects against leakage that reveals the values of
up to k − 1 wires, and hence, is oblivious to huge parts of the computation. In this
section we now present our circuit transformation TRC that protects circuits against
global, but computationally bounded leakage. More precisely, we will show that from
any linear encoding scheme Π over K, we can construct a circuit transformation TRC

that protects circuits against leakages from class L, where L contains all functions
that cannot decode Π.

To capture formally that leakage functions in L cannot decode Π, we will need
the notion of leakage indistinguishability. Roughly speaking, this notion formalizes
what it means for an encoding of two values to be indistinguishable in the presence of
leakage from L. But let us first introduce a more general definition that speaks about
leakage indistinguishability of two distributions:

Definition 3.2 (leakage indistinguishability of distributions and encodings).
Two distributions X,X ′ are said to be p-adaptive (L, τ, ε)-leakage-indistinguishable
if for any adversary A, running in time τ and making at most p queries to its oracle,

|Pr[x← X : AEval(x,·)(1k) = 1]− Pr[x← X ′ : AEval(x,·)(1k) = 1]| ≤ ε,(3.1)

where Eval(x, ·) takes as input a leakage function f ∈ L and outputs f(x).
We say that an encoding scheme Π is p-adaptive (L, τ, ε)-leakage-indistinguishable

if for any a, a′ ∈ K the two distributions Enc(a) and Enc(a′) are p-adaptive (L, τ, ε)-
leakage-indistinguishable.

Recall that the function class SHALLOW(d, s) (for d, s ∈ N) is the class of func-
tions that can be computed by deterministic circuits (i.e., ones without $ gates) that
have at most s ⊕,�, and � gates that are arranged at most d deep (i.e., the longest
path in the circuit has at most d such gates on it).5

The theorem below shows the existence of a circuit transformation TRC based on
arbitrary leakage indistinguishable linear encoding schemes Π.

Theorem 3.3 (security against computationally bounded leakage). Recall that
k is the security parameter. Furthermore, let LΠ be some class of leakage functions

4The purpose of ̂mask is to guarantee rerandomization of the memory and destroy partial infor-
mation that an adversary may have learnt about the secret state.

5Note that copy and constα gates are allowed in the circuit and do not count towards d or s.
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and let q, εΠ, τΠ ≥ 0.6 If there exists a linear encoding scheme Π over K, with outputs
of size k, that is 2-adaptive (LΠ, τΠ, εΠ)-leakage-indistinguishable, then there exists a
circuit transformation TRC that is (L, τA, τS , τD, q, ε)-secure for

• any τA and τD satisfying τA + τD ≤ τΠ − qsO(k2), where s is the number of
gates in C;
• some τS ≤ τA + qsO(k2);
• some ε ≤ εΠ(q + 1)(s(k + 2) + n), where n is the number of memory gates in
C;
• any L that satisfies L ◦ SHALLOW(3, O(k2)) ⊆ LΠ (for K = GF(2), L ◦

SHALLOW(2, O(k2)) ⊆ LΠ) .
In particular, if the encoding scheme is 2-adaptive LΠ-leakage indistinguishable,

then the transformation is L-secure.
The transformation increases the size of each multiplication gate by a factor of

O(k2) and the size of the rest of the circuit by a factor of O(k).
Notice that we define L implicitly by LΠ and the function class SHALLOW(3, O(k2)).

Loosely speaking, if we want that our circuits are resilient to functions in L, then
we need an encoding scheme Π that is resilient to functions at least from some set
L ◦ SHALLOW(3, O(k2)). Our result is better (or tighter) if the difference between
L and LΠ can be described by functions that are as simple as possible. In our case
the difference between L and LΠ (in terms of computational power) is described by
the class SHALLOW(3, O(k2)). We will present a concrete instantiation of the above
theorem in section 5, where we set Π to Πparity and L to AC0, in which case we obtain
statistical, rather than computational, indistinguishability.

The leak-free gate O. Ideally, one would hope that our transformation TRC re-
quires only standard gates of constant size to transform arbitrary circuits. Unfortu-
nately, it is not clear how to prove security when we restrict TRC to only use such
gates. To show security, we allow TRC to additionally use the leak-free gate O. The
O gate has size linear (in k), but as discussed in the introduction is very simple oth-
erwise. In particular, it has no inputs, and merely outputs an encoding sampled from
the distribution Enc(0). Crucially, while the wires coming out of this gate can be
observed by the leakage function, we assume that the gate itself does not leak infor-
mation. For the case of K = GF(2) our leak-free component can be implemented by
a leak-free subcircuit that works as follows: generate k random bits b0, . . . , bk−1 and
output bi⊕bi+1 mod k for 0 ≤ i ≤ k−1. Note that this subcircuit is of constant depth.

Our transformation follows the outline given in section 3.1 using the gadgets given
in Figure 3. A visual description of its main component, the �̂ gadget, is presented
in Figure 4. At a high-level the �̂ gadget first computes a (not uniformly random)

encoding of a� b represented by the k × k matrix �B. Next, �B is “randomized” with
the matrix �S, resulting in �U . Since eventually �̂ has to output a uniform encoding
of a � b with length k, we compress the “rows” of �U by decoding to obtain �q. The
transformation increases the size of each multiplication gate by a factor of O(k2) and
the rest of the circuit by a factor of O(k), where the constants hidden in O(·) are small.

Incidentally, observe in Figure 3 that because every gadget other than ̂encoder

or ̂decoder ends with a masking by an output of O,7 and wire bundles do not fan-out
(instead, they go through the ĉopy gadget), each wire bundle between two gadgets

6These values are all parameterized by k, and thus, for ease of notation, we omit k.
7One can instead define the basic gadgets as not including this masking with O, and instead

place a mask gate on every wire. The resulting transformation is similar. However, this does not
cleanly generalize to the case of transformations not necessarily based on linear encodings.
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Transformation c = a� b ⇒ �c← �â��b:
Compute the k × k matrix

�B = �a�bT = (ai � bj)1≤i,j≤k using k2 � gates

Compute the k × k matrix �S

where each column of �S is output by O
�U = �B ⊕ �S (using k2 ⊕ gates)

Decode each row of �U using k − 1 ⊕ gates,
k � gates, and k constα gates

to obtain �q = �U�r,
where �r is the decoding vector
(it does not matter how this decoding is
performed as long as there are O(k) wires
in the decoding subcircuit and each one
carries some linear combination of the
wires being decoded, plus possibly a
constant)

�o← O
�c = �q ⊕ �o (using k ⊕ gates)

Transformation c← $ ⇒ �c← ̂$:
ci ← $ for i ∈ [1, k]

Transformation c = a⊕ b ⇒ �c← �â⊕�b
(or c = a � b ⇒ �c← �â��b):

�q = �a ⊕�b (or �q = �a��b)
using k ⊕ (or �) gates

�o← O
�c = �q ⊕ �o (using k ⊕ gates)

Transformation b = mask(a) ⇒ �b← ̂mask(�a)
�o← O
�b = �a⊕ �o (using k ⊕ gates)

Transformation a = constα ⇒ �a← ĉonstα,
for any α ∈ K

Let �α be a fixed arbitrary encoding of α.
�o← O
�a = �α⊕ �o (using k ⊕ gates)

Gadget (�b,�c)← ĉopy(�a)
�ob ← O, �oc ← O
�b = �a⊕ �ob (using k ⊕ gates)
�c = �a⊕ �oc (using k ⊕ gates)

Fig. 3. Gadgets used in the stateless circuit transformation TRC .
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Fig. 4. A step-by-step illustration of the ̂� gadget. Steps (1)–(3) are all part of the transformed
gadget ̂�.

carries an encoding of its value that is chosen uniformly and independently of all the
wires in the transformed circuit. This fact, together with the construction of the
gadgets, is what enables us to show security.

Transformation of stateful circuits. To augment the transformation to handle
stateful circuits we proceed as outlined in section 3.1, namely, we encode the initial
memory m0 by m̂0 ← Enc(m0) and use |m̂0| memory cells to store the result. Each

such bundle of k memory cells is followed by the m̂ask gadget to rerandomize the
state. This masking is necessary to guarantee security as will be discussed later.

In the following lemma we show that our transformation outputs circuits that
are functionally equivalent to C. The security proof is given in section 4 within our
general framework to analyze security of encoding-based circuit transformations.
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Lemma 3.4 (soundness of TRC). The circuit transformation TRC is sound.
Proof. Since we encode the input, do a gate-by-gate transformation, and then

decode the output, it suffices to prove that our gate gadgets work correctly on encoded
values (recall that �r is the decoding vector).

⊕̂ : For �c = �a ⊕ �b ⊕ �o, with �o being an encoding of 0, we get by linearity that
Dec(�c) = a⊕ b.

�̂ : Dec(�c) = �rT(�q ⊕ �o) = �rT(( �B ⊕ �S)�r ⊕ �o) = �rT((�a�bT ⊕ �S)�r ⊕ �o) = (�rT�a)(�bT�r) ⊕
(�rT �S)�r ⊕ �rT�o = ab⊕ �0T�r ⊕ 0 = ab.

�̂, ĉopy, ĉonstα, m̂ask and $̂: Similar to ⊕̂, by linearity.

3.3. Circuit transformations resilient to noisy leakage. So far, Ishai, Sa-
hai, and Wagner [24] discussed leakage classes that consider probing attacks, and we
discussed those that are constrained in terms of their computational power and output
length (section 3.2). In this section, we consider the noisy leakage model, and present
a transformation TRN that makes arbitrary Boolean circuits resilient to leakage that
consists of the values of all the wires in the circuit, except that each bit is flipped with
some probability p ∈ (0, 1/2].8

Noisy leakage. For some noise parameter p ∈ (0, 1/2] the single tolerated leakage
function is L = {Np}, where Np is probabilistic, and is defined as follows: let Bp be
the binomial distribution with parameter p which outputs 1 with probability p and 0
otherwise. Then, for some input �x ∈ {0, 1}∗ we have Np(�x) = �x ⊕�b, where each bit
bi is drawn independently from the distribution Bp.

Ideally, we would hope that the circuit transformation from the previous section
provides security against noisy leakage as well. Indeed, since Theorem 3.3 is very
general, we could just plug in Np for L, and get “some” Np resilience for our circuit
transformation TRC . The security, however, would rely on the additional assumption
that Πparity is Np ◦ SHALLOW(3, O(k2))-leakage-indistinguishable, and it is not clear
what such an assumption would mean in a setting where Np reveals all its inputs per-
turbed by independent binomial noise (recall that SHALLOW(3, O(k2)) describes the
difference between the class of leakages that is tolerated by Πparity and the transformed
circuit).

Furthermore, by inspection of our construction it turns out that TRC is not
particularly tailored to protect against noisy leakages. Indeed, TRC remains “secure”
for very large noise p, but this is not what we want. In practice, we are typically
interested in what happens for low noise and, unfortunately, we can show that in such
a case there is an explicit attack against the transformation TRC (as well as against
the transformation of [24]).

An attack with noisy leakages. Specifically, the attack is against the construction
of the multiplication gadget �̂ in Figure 3. The gadget takes as input two encodings
�a and �b and first computes the k2 bits {ai � bj : i, j ∈ [k]}. Consider the first k bits
(a1 � b1, . . . , a1 � bk). If a1 = 0, then all these bits are 0, whereas if a1 = 1, then
roughly half of them are 1. Given such disparity, using error correction, the adversary
can determine whether a1 is 0 or 1, even if he is given a noisy version of these k bits.
Proceeding in a similar way, he can reconstruct all the bits ai, and thus the input bit
a itself. The fundamental reason why this attack works is that the construction of
the �̂ gadget in Figure 3 does not use its input in a local way, namely, it accesses the
input bits a large number of times.

8Notice that similarly to section 3.2 we can generalize the class of circuits that we can transform
(i.e., to circuits that do computation over an arbitrary field K) and the class of noisy leakage that
we can tolerate. For ease of description we omit the details here.
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To avoid this attack we propose a new circuit transformation TRN . TRN uses as
underlying encoding scheme the parity encoding and proceeds in the same way as the
transformation TRC from section 3.2 (cf. Figure 3), except for the construction of the
multiplication gadget �̂. This new construction of the multiplication gadget avoids
the attack outlined above, and is constructed using a new opaque gate that we call
Q (in addition to the opaque gate O). We stress that the opaque gate Q inherits the
main characteristics of the opaque gate O in that it is stateless, and independent of the
computation. In other words, Q simply produces samples from a fixed distribution.

Before we give the specification of the opaque gate Q and the construction of the
new �̂ gadget, let us state our main theorem that deals with noisy leakages. Note
that, in contrast to Theorem 3.3, this theorem deals with a much more restricted
leakage class, but, as a result, obtains statistical, rather than computational, indis-
tinguishability.

Theorem 3.5. Recall that k is the security parameter. Let p ∈ (0, 1/2], q > 0, and
the leakage function Np be defined as above. There exists a circuit transformation TRN

that is (Np, τA, τS , τD =∞, q, ε)-secure for any τA, for some τS = τA + qsO(k2), and

ε ≤ (q + 1)(n+ (2k + 3)s)(exp(−64kp6) + exp(−15kp5) + exp(−k/512)) ,

where s is the number of gates in C and n is the size of the state of C. The trans-
formation increases the size of each multiplication gate by a factor of O(k2) and the
rest of the circuit by a factor of O(k). Note that for fixed ε, k = O(p−6 log 1/p).

We prove this theorem in a similar way to Theorem 3.3. Namely, we base the
security of TRN on the indistinguishability of the underlying parity encoding scheme
Πparity. As it turns out (which will be discussed in section 4.1), the parity encoding
scheme is information-theoretic Np leakage indistinguishable (note that this is the
reason why in the above theorem we can eliminate to explicitly condition on the
leakage indistinguishability of Πparity). For the details of the proof, we defer to the
next section.

Similar to TRC , the transformation TRN increases the size of each multiplication
gate by a factor of O(k2) and the rest of the circuit by a factor of O(k). Notice that
in contrast to the circuit transformation TRC , our circuit transformation for noisy
leakages requires leak-free gates of size O(k2). All constants hidden in O(·) notation
are small.

The new opaque gate Q. The opaque gate Q is probabilistic, takes no inputs, and
outputs 2k2 + 1 bits. It operates in the following way: sample 2k uniformly random
0-encodings �r(1), . . . , �r(k) and �s(1), . . . , �s(k). Let �R and �S be the following two k × k
matrices:

�R =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�r(1)

...⊕
j∈[1,i] �r

(j)

...⊕
j∈[1,k] �r

(j)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and �S =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�s(1)

...⊕
j∈[1,i] �s

(j)

...⊕
j∈[1,k] �s

(j)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Let us denote by �R© �S the sum of the componentwise product, i.e.,
⊕

i,j∈[1,k] Ri,j �
Si,j . Then the output of the opaque gate Q is the tuple

(�r(1), . . . , �r(k), �s(1), . . . , �s(k), �R© �ST)
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Subgadget �q ← ̂mult(�a,�b):
Compute 2k2 + 1 bits with Q:

(�r(1), . . . , �r(k), �s(1), . . . , �s(k), u)← Q.
Let �a(0) = �a and �b(0) = �b. Compute for i ∈ [k]:

�a(i) = �a(i−1) ⊕ �r(i) and �b(i) = �b(i−1) ⊕ �s(i)

(using O(k2) ⊕ gates).

Let �A = (�ai)i∈[1,k] and �B = (�bi)i∈[1,k].

Compute z
(1)
1 = A1,1 � B1,1 ⊕ u and

for (i, j) �= (1, 1): z
(i)
j = Ai,j �Bj,i

(using O(k2) � gates).

For i ∈ [k]: �w(i) ← O (using O(k) opaque gates O).
Compute �q(i) = �z(i) ⊕ �w(i); let �q = (�q(1), . . . , �q(k))

(using O(k2) ⊕ gates).

Subgadget �c← ̂compress(�q):

Let �q = (�q(1), . . . , �q(k)), with �q(i) ∈ {0, 1}k.
�c = �q(1) ̂⊕ . . . ̂⊕�q(k) (using O(k) ̂⊕ gadgets).

Transformation c = a � b ⇒ �c← �â��b
�q ← ̂mult(�a,�b)

(using O(k2) standard gates and O(k)
O gates and one Q gate).

�c← ̂compress(�q)
(using O(k2) ⊕ gates and O(k) O gates).

Fig. 5. Gadget ̂� in the circuit transformation TRN and its subgadgets ̂mult and ̂compress.
The constants hidden in the O-Notation are small.

Unlike the case for O described in section 3.2, we do not know how to sample the
distribution produced by Q in constant depth.

The new multiplication gadget �̂. The operation of the multiplication gadget �̂
proceeds in two stages.

• The first stage uses a subgadget m̂ult that takes as input two encodings
�a = (a1, . . . , ak) and �b = (b1, . . . , bk) of a and b (resp. ), and outputs a k2

long encoding �q = (q1, . . . , qk2) of a� b.
• The second stage “compresses” this longer encoding into an encoding �c =
(c1, . . . , ck), using a gadget ̂compress.

We describe these two stages and their costs in more detail in Figure 5. Notice that �̂
is carefully constructed to prevent the attack outlined above. Crucially, this requires
that the inputs, �a and�b, are not used too often. We achieve this by generating k copies
of �a and �b as �a(i) = �a(i−1)⊕ �r(i) and �b(i) = �b(i−1)⊕ �s(i) with �r(i), �s(i) ← Enc(0). Next,
�A = (�a(i))i and �B = (�b(i))i are used to compute the k2 long encoding �q = (q1, . . . , qk2)
of a�b. For this to be correct we need the value u that is output by Q. Unfortunately,
it is not clear how to compute u in clear as, e.g., �r(1) and �s(1) are used k times in the
computation of u.

The transformation of the other gates, i.e., of ⊕, $, const, mask, and copy, is
done as in the transformation TRC and is omitted in Figure 5.

In the following lemma we prove the correctness of our circuit transformation
TRN . The security proof follows our general approach and will we presented in the
next section.

Lemma 3.6 (soundness of TRN). The circuit transformation TRN is sound.
Proof. Since the only difference between TRN and TRC is the transformation of

the � gate, we focus on the correctness of �̂. Let �R and �S be the matrices defined

above, and let �̂A be a matrix whose rows are k copies of the vector �a, and �̂B be a
matrix whose rows are k copies of the vector �b. First, a simple calculation shows that

�̂A© �ST =
⊕
i∈[k]

⎡⎢⎣ai �
⎛⎜⎝⊕

j∈[i]

=0︷ ︸︸ ︷
�s
(j)
1 ⊕ . . .⊕ �s

(j)
k

⎞⎟⎠
⎤⎥⎦ = 0,(3.2)

�R© �̂BT = 0,(3.3)
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and

�̂A© �̂BT =
⊕
i,j

a
(i)
j � b

(j)
i =

(⊕
i

ai

)
�
⎛⎝⊕

j

bj

⎞⎠ = a� b.(3.4)

We now establish the correctness of the �̂ gadget by the following computation:⊕
i,j∈[1,k]

q
(i)
j =

⊕
i,j∈[1,k]

[
w

(i)
j

]
⊕ u⊕ ( �̂A⊕ �R)© ( �̂B ⊕ �S)T

= u⊕ �̂A© �̂BT ⊕ �̂A© �ST ⊕ �R© �ST ⊕ �R© �̂BT

= u⊕ �̂A© �̂BT ⊕ �R© �ST (by (3.2) and (3.3))

= �̂A© �̂BT (since �R© �ST = u, by definition)

= a� b (by (3.4)).

4. Proof of security. Before we outline the security proof and introduce our
technical tools, we first discuss useful properties of the parity encoding Πparity. This
will allow us to prove security for concrete function classes, namely, for AC0 and Np

noisy leakages.

4.1. Leakage indistinguishability of the parity encoding Πparity. We show
leakage indistinguishability of the Πparity encoding against multibit range AC0 func-
tions and noisy leakages Np (for p ∈ (0, 1/2]).

AC0 leakage indistinguishability of Πparity. The decoding function of the Πparity

encoding is exactly the parity function, which is hard for AC0. This observation
enables us to prove AC0 leakage indistinguishability of Πparity.

Recall that C(d, s, λ) denotes the class of AND-OR-NOT unlimited fan-in cir-
cuits with depth d, size s, and λ bits of output. If we translate the classical result
of Hastad [22] (as cited in [27, Corollary 1]) to our definition of leakage indistin-

guishability, we get that the parity encoding is (C(d, 2k1/d

, 1),∞, 2−k
1/d+1

)-leakage-
indistinguishable for any constant d. In other words, this protects against AC0 circuits
that output 1 bit. Using the result of Dubrov and Ishai [9, Theorem 3.4], we get the
following corollary that later will be applied to show security of TRC against multibit
AC0 leakages (cf. section 5).

Proposition 4.1 (AC0 leakage indistinguishability of Πparity). For any 0 <
δ < 1 and d ∈ N>1 the parity encoding Πparity is (C(d, exp(O(k(1−δ)/d)), kδ),∞,
exp(−Ω(k(1−δ)/d)))-leakage-indistinguishable.9
Np leakage indistinguishability of Πparity. In this paragraph we prove some useful

properties of the parity encoding Πparity for Np leakages, which leads into Proposi-
tion 4.4 showing that Πparity has Np leakage indistinguishability (for p ∈ (0, 1/2]).

We first present a simple version of the information-theoretic XOR lemma.
Lemma 4.2 (XOR lemma [18, 43]). Let X0 and X1 be two distributions. For any

k ∈ N>0 and b ∈ {0, 1} we define the distributions

−→
Xb = (Xb1 , . . . , Xbk) with b1 ⊕ · · · ⊕ bk = b.

If Δ(X0;X1) ≤ ε, then Δ(
−→
X0,
−→
X1) ≤ εk.

9An even better result is obtained if one restricts d to d = 1; in that case, the ε parameter gets
reduced to exp(−Ω(k − kδ log k)).
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The above lemma can be used to show that Enc(0) is indistinguishable from Enc(1)
by noisy leakage. However, if the same share of an encoding appears on multiple wires,
and each wire leaks with independent noise, the noise can cancel out, making it easier
for the adversary to distinguish. Thus, we now show a technical lemma that bounds
the statistical distance of 	 copies of Np(Enc(0)) from 	 copies of Np(Enc(1)).

Lemma 4.3. For any constant 	, vectors �c1, . . . ,�c� ∈ {0, 1}k, and b ∈ {0, 1}, we
have Δ(D0, D1) ≤ (1 − (2p)�)k with

Db := Db(�c1, . . . ,�c�) =

(
(Np(�e ⊕ �c1), . . . ,Np(�e⊕ �c�))

)
�e←Enc(b)

.

Proof. Since the vectors �ci are known, it suffices to show that

Δ(D0(0, . . . ,0), D1(0, . . . ,0)) ≤ (1− (2p)�)k.

That is, given 	 copies of an encoding �e perturbed by independent binomial noise
drawn from Np, it is (information theoretically) hard to distinguish whether �e is an
encoding of 0 or an encoding of 1.

Towards showing this, first consider the ith coordinate of the encoding �e perturbed
by 	 independent noise terms from Np, i.e., consider the distribution

D′ei = (ei + ηi,1, . . . , ei + ηi,�),

where each ηi,j is drawn independently from the binomial distribution Bp. The sta-
tistical distance between D′0 and D′1 is at most 1−(2p)� by an elementary calculation.
By applying the XOR lemma (cf. Lemma 4.2) we get

Δ(D0, D1) ≤ Δ(D′0, D
′
1)

k ≤ (1− (2p)�)k,

which concludes the proof.
Of course, the situation in the actual transformed circuit won’t be as simple as in

Lemma 4.3; we will not have just multiple copies of the wires, but wires that depend in
predictable ways on other wires. Intuitively, noise cancellation will not be a problem if
a single wire doesn’t influence too many other wires, and hence its value is not leaked
too many times with independent noise. To formalize this constraint, we introduce
the function class LOCAL(	). For some 	,m, n ∈ N, a function f : {0, 1}mk → {0, 1}n
with inputs �x1, . . . , �xm ∈ {0, 1}k is said to be in LOCAL(	) if the following holds for
each i ∈ [1,m]:

for any fixed m−1 inputs �x1, . . . , �xi−1, �xi+1, . . . , �xm, all but at most k	 output
bits of the function f(�x1, . . . , �xm) (as a function of xi) are constant (i.e., do

not depend on xi); the remaining output bits are computed as �xi⊕ �d for some

constant �d.
The identity function, for instance, is in LOCAL(1), while a function that outputs 	
copies of its inputs is in LOCAL(	).

Informally, the proposition below says that an adversary that picks q times func-
tions f ∈ Np ◦ LOCAL(	) obtains nothing more than q	 noisy copies of the target
encoding (essentially Np ◦ LOCAL(	) takes as input an encoding and outputs 	 noisy
copies). To sum it up, we get the following proposition.

Proposition 4.4 (noisy leakage indistinguishability of Πparity). For any p ∈
(0, 1/2] and any constant 	, q ∈ N≥1 the parity encoding Πparity is q-adaptive
(Np ◦ LOCAL(	),∞, (1− (2p)q�)k)-leakage-indistinguishable.
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In particular, Πparity is (Np,∞, (1 − 2p)k)-leakage-indistinguishable (since Np ◦
LOCAL(1) = Np outputs a single noisy copy of its input).

The proof follows immediately from the definition of locality and Lemma 4.3 and
is omitted.

4.2. Outline of the proof techniques.
Notation. By WC(x) we denote a distribution of wire assignments (recall that a

wire assignment of a circuit C is a string in Kt, where each element represents a value
on a wire of C) that is induced when a circuit C is being evaluated on an input x (in
particular, if C is deterministic, thenWC(x) has only one element in its support). We
use WC(x|y) to denote the same distribution conditioned on the fact that the output
of C(x) was y.

In order to show security of our transformation according to Definition 3.1 (see
section 3), we need to build a simulator that comes up with an indistinguishable
environment for arbitrary adversaries A. This simulation must provide answers to
A’s leakage queries f ∈ L, which will be done as follows. For a leakage query f ∈ L,
the simulator comes up with an assignment of all the internal wires of Ĉ that is
consistent with the inputs and outputs of the circuit. This assignment is fed into f
and the simulator returns the result to A.

The computation of the wire assignment is quite simple: wire bundles that are
between two gadgets will be assigned random values, and the internals of the gadgets
will be simulated to be consistent with those random values (note that this will im-
ply that the simulated outputs of O (and Q) used within gadgets will no longer be

encodings of 0). The wires that are used to encode the inputs of Ĉ (in the ̂encoder

gadget) and decode the outputs (in the ̂decoder gadget) will be simulated honestly,
because the simulator knows its inputs and its outputs. The difficult part is showing
that A cannot distinguish the real wire distribution from the simulated one when its
access to the wire values is limited by functions available in the class L.

A mental experiment—security proof with leak-free gadgets. Conceptually, prov-
ing this indistinguishability proceeds in two steps. First, consider a mental experiment
where each gadget in the transformed circuit Ĉ is perfectly opaque. Namely, the only
wires that the adversary A can “see” (via the leakage function f) are the external
wires of the gadgets that connect the output of a gadget to the input of another gad-
get (these are exactly the wires that carry encodings of the values in the circuit C).
The internals of the gadgets are off-limits to A. Once in this (imaginary) world, we
use the first key property of our gadget transformations presented in Figures 3 and 5,
which is captured by the following definition.

Definition 4.5 (rerandomizing). Let C be a stateless circuit with nI inputs,

and no encoder or decoder gates. Let Ĉ be the corresponding transformed circuit.
We say that Ĉ is rerandomizing if, for any fixed input (x1, x2, . . . , xnI) and its en-

coded input X ∈ Enc(x1, x2, . . . , xnI), the encoded output Ĉ(X) is distributed like
Enc(C(x1, x2, . . . , xnI)), i.e., independently of the particular encoding X.

This definition applies, in particular, to single-gadget circuits. In section 4.3 (for
TRC) and section 4.4 (for TRN ), we show that all our gadgets are rerandomizing,
i.e., the gadget’s encoded output is uniformly distributed and independent from the
gadget’s encoded input. For a circuit Ĉ composed of such gadgets, this implies that
wire bundles external to gadgets are distributed like ( �w1, . . . , �wm), where the �wi ←
Enc(wi) are random and independent encodings of the values w1, . . . , wm on the wires
in C. In the mental experiment this observation suffices to simulate wire assignments
without getting noticed by adversaries equipped with leakages in L. More precisely,
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the simulator (who does not know the real wi’s as they may depend on the secret
state) uses an independent random vector �wi

′ for the external wire bundles. By the
leakage indistinguishability of the encoding scheme, such a change in the distribution
will not get noticed by the adversary. By a hybrid argument, the same holds for a
vector of independent encodings of m values as well.

Reduction. Before we declare victory (in this imaginary world), let us look a
little more carefully at the hybrid argument. At each hybrid step, we will prove
indistinguishability by a reduction to the security of the underlying encoding scheme.
In other words, we will show by reduction that if A equipped with functions from
L can distinguish two hybrid wire distributions, then some adversary AΠ, equipped
with functions from LΠ, can distinguish two encodings. Given a target encoding, our
reduction will need to fake the remaining wires of the circuit in a consistent way and
give them as input to the function from L (notice that functions from L expect as

input a full wire assignment for Ĉ).
Efficient reduction for computationally weak leakages. If A specifies a leakage

function f ∈ L for Ĉ, then AΠ will specify its own leakage function fΠ ∈ LΠ for the
target encoding and return its result to A. Since AΠ has only access to its target
encoding via fΠ, fΠ has to fake (in a way that will look real to f and A) all the wires

of Ĉ before it can invoke f . At the same time, fΠ should not be much more complex
than f , because our result is more meaningful when the difference between the power
of LΠ and the power of L is small (recall that in Theorem 3.3 the difference between L
and LΠ was described by SHALLOW(3, O(k2)). The main trick is for AΠ to hard-wire
as much as possible into fΠ, so that when fΠ observes the encoding, it has to do
very little work before it can invoke f . In fact, in this imaginary situation, all the
remaining wires of the hybrid wire distribution can be hardwired into fΠ because of
the rerandomizing property (i.e., the encodings are independent), so fΠ has to simply
invoke f on its input wires and hardwired values.

Local reduction for noisy leakages. To show security against noisy leakages, we
show a reduction to the security of the underlying encoding scheme, similarly to the
computationally weak case. In contrast to the computationally weak leakages, where
the reduction needs to be as weak as the leakage function, we have no such constraint
in the noisy case. However, the reduction should not get to see any wire too many
times, because repeated observations of a noisy wire reduce the amount of uncertainty
about the true value of the wire. Thus, from a single target encoding, we will fake
the wire assignment of Ĉ by using the target encoding as little as possible before
feeding it into the noisy leakage function Np. (We will call such reductions “local”;

see section 4.1.) We ensure this by choosing most of the wires in Ĉ independently
of the target encoding. In fact, in our imaginary world in each hybrid the target
encoding is only used once for �wi while all the other wires are independent. Since in
such a case the adversary only gets a single noisy copy of the target encoding, by the
Np leakage indistinguishability of the parity encoding (cf. Proposition 4.4), she will
not be able to tell apart two consecutive hybrid distributions.

The real world—gadgets may leak. The second step in the proof is to move from
the mental experiment to the real world, where the internals of the gadgets also
leak. Unlike in the mental experiment, where the values of all wire bundles were
independent, values of wires inside a gadget are correlated to its input and output
wire bundles. Thus, they cannot be hardwired. Nor can they be efficiently (or locally)
computed, because the complexity of the gadgets is too high. Instead, they will be
simulated efficiently (or locally) in a way that is leakage indistinguishable.
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The simulation will take, as input, a gadget’s input X and its output Y . Because
our circuits are randomized, the simulation will be randomized, as well. The trick to
getting an efficient (or local) simulator is to pick the randomness ahead of time, and
then hard-wire as many wire values into the simulator as possible without knowing X
and Y . Thus, we define a “reconstructor” as a family of functions (one for each value
of the randomness); the functions themselves will need to be very efficient (or local).
However, the cost of sampling a function from such a family is incurred not inside the
simulated leakage function, but rather by the simulated adversary, and thus it does
not have to be efficient (or local), but merely polynomial time.

Definition 4.6 (reconstructor). Let Ĉ be a (transformed) stateless circuit. We

say that a pair of strings (X,Y ) is plausible for Ĉ if Ĉ might output Y on input X,

i.e., if Pr[Ĉ(X) = Y ] > 0.
Consider a distribution REC

̂C over the functions whose input is a plausible pair
(X,Y ), and whose output is an assignment to the wires of Ĉ. Define REC

̂C(X,Y )
as the distribution obtained by sampling a function R

̂C from REC
̂C and computing

R
̂C(X,Y ). Such a distribution is called an (L, τ, ε)-reconstructor for Ĉ if for any

plausible (X,Y ), the following two wire assignment distribution are (L, τ, ε)-leakage-
indistinguishable:

• W
̂C(X |Y ),

• REC
̂C(X,Y ).

If the support of the distribution REC
̂C is in some set of functions R, we say that Ĉ

is (L, τ, ε)-reconstructible by R.
Intuitively, if a circuit Ĉ is L-reconstructible in R, then a random function in R,

given Ĉ’s encoded inputs X and outputs Y , can compute a wire assignment for Ĉ
that is L-leakage-indistinguishable from Ĉ’s real wire distribution (conditioned on the
inputs being X and the outputs being Y ). Putting it differently, reconstructibility of

Ĉ allows us to simulate Ĉ’s internals from just knowing its inputs and outputs.
On a high level, in the simulation we replace each gadget with its reconstruc-

tor in addition to replacing connecting wire bundles, i.e., the wires that go between
gadgets, with random encodings. The proof that the simulation is indistinguishable
requires first doing a hybrid argument over gadgets as they are replaced by recon-
structors one by one, and then modifying the hybrid argument over the wire bundles
(replacing them by random encodings) as described above. In the hybrid argument
over the wire bundles, we can hard-wire values for every wire in the circuit except
the gadgets connected to the challenge encoding. Simulating the internals of these
gadgets will be done using the reconstructor. We show that all gadgets in Ĉ have
either very efficient reconstructors (for the gadgets of TRC refer to section 4.3), or
reconstructors that make very little use of their inputs (for the gadgets of TRN refer
to section 4.4). We then show that (efficient or local) reconstructibility composes,
which allows us to efficiently (or locally) reconstruct the internals of a complete cir-

cuit Ĉ given only its inputs. Formally such composition is proven in Lemma 4.15 (cf.
section 4.5).

To conclude the proof we rely on the reconstructibility of Ĉ to show security of
the transformation according to Definition 3.1. Informally, the simulator replaces the
secret state by random encodings and lets the reconstructors of the gadgets compute
the internals of Ĉ in a way that is consistent with the random state and the inputs
and outputs of Ĉ. Again, we rely on the efficiency (or locality) of the reconstructors
to keep our reductions as tight as possible.
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A cautionary remark on our proofs. The proofs that we present in the next sec-
tions are technical and require a careful bookkeeping of the involved parameters, in
particular, of the relation between the leakage classes LΠ and L. This is necessary, if
we want to make meaningful security statements about low-complexity leakages such
as circuits of low depth. In particular, we require that the reduction can be evalu-
ated by low-depth circuits: if we start with some low-depth leakage LΠ, and lose too
much in the reduction, then L will become the empty set and no meaningful security
statement can be made. Surprisingly, we show that our reductions are very efficient
(namely, they can be computed by depth-3 circuits), even though they may have to
“fake” computations carried out by deep and complex circuits.

Reader’s guide to the security proof. For readers only interested in the high-level
concept, we give the following reading guide. In section 4.3 we present reconstructors
for the gadgets of TRC . We advise reading Lemma 4.7 as it gives a simple application
of efficient reconstructors. The main technical parts of section 4.3 are Lemmas 4.11
and 4.12. In section 4.4 we present reconstructors for TRN . A simple example of a
local reconstructor is given in Lemma 4.13. The main technical part is Lemma 4.14,
whose proof is moved to Appendix B. In section 4.5 we show that reconstructors
compose. The outline from the last pages highlighted the main ideas of such a com-
position. Finally, in section 4.6 we discuss security of stateful circuits in Lemma 4.19
whose proof may safely be skipped. The proofs of the main Theorems 3.3 and 3.5
only sum up parameters and do not make use of any interesting new techniques.

4.3. Single-gadgets reconstructors for TRC . We show in this section that
all single-gate gadgets from Figure 3 of the transformation TRC have efficient recon-
structors and are rerandomizing. The rerandomizing property follows immediately
from the fact that every gadget’s output is, as the last step of the gadget, masked
by the output of O. Therefore, in the following we focus on showing the existence of
efficient reconstructors. Efficiency is described by the circuit class SHALLOW(d, s).
If a reconstructor is in SHALLOW(d, s), then it can be computed by circuits of depth
d and size s. We are particular interested in keeping d small as later we want to
talk about AC0 reductions (i.e., reductions that can be computed by constant-depth
circuits).

We show first existence of reconstructors for the simple gadgets of TRC , namely,

for ĉopy, m̂ask, ĉonstα, $̂, ⊕̂, and �̂. Except for the ⊕̂ reconstructor the proofs are
moved to Appendix A.

Lemma 4.7 (⊕̂ and �̂ gadgets of TRC are reconstructible). The ⊕̂ and �̂ gadgets
are (L,∞, 0)-reconstructible by SHALLOW(2, O(k)) for any L (where k is the security
parameter.

Proof. We will do the proof for ⊕̂; the proof for �̂ is similar. The reconstructor
REC

̂⊕ is the distribution whose only support is the following circuit R
̂⊕. On inputs

(X,Y ), where X = (�a,�b) (i.e., the desired input of the ⊕̂ gate) and Y = (�c) (i.e., its

desired output), R
̂⊕ assigns the wires of ⊕̂ to �q = �a⊕�b and �o = �c� �q.

If X,Y are chosen as in the definition of a reconstructor (i.e., they are plausible),
then the resulting output of R

̂⊕(X,Y ) is identically distributed to the wire distribu-
tionW

̂⊕(X |Y ), since in both cases �o takes the only possible consistent value �o = �c��q.
Notice that R

̂⊕ can be computed by a circuit of depth 2 because on inputs X,Y it

first will compute �q = �a⊕�b and based on that �o = �c� �q. The � and ⊕ gates above
operate only on single field elements, so R

̂⊕ requires O(k) size.

Lemma 4.8 ($̂ of TRC is reconstructible). The $̂ gadget is (L,∞, 0)-reconstructible
by SHALLOW(0, O(k)) for any L.



1588 FAUST, RABIN, REYZIN, TROMER, AND VAIKUNTANATHAN

Fig. 6. Outline of the reduction in Lemma 4.10.

Lemma 4.9 (ĉopy, m̂ask, and ĉonstα of TRC are reconstructible). The ĉopy

gadget, the m̂ask gadget, and, for every α ∈ K, the ĉonstα gadget are (L,∞, 0)-
reconstructible by SHALLOW(1, O(k)), for any L.

We are now going to prove the reconstructibility of the �̂ gadget. For our result to
be more meaningful it is of vital importance that our simulation is efficient. Presenting
such an efficient simulator for the �̂ gadget, is the main technical difficulty of this
section, since �̂ is a deep, complex circuit. But before we present our shallow simulator
in Lemma 4.11, we first prove a simple technical lemma which relates two leakage-
indistinguishability statements using a “shallow” wire simulator fS .

Lemma 4.10. Let W0,W ′0 be distributions over Kn for some n > 0.10 Let F be a
distribution over n-input functions in some class L . For fS ← F define the following
distributions:

W1 ≡ fS(W0) and W ′1 ≡ fS(W ′0).(4.1)

Let L0 be a class of leakage functions and let ε0 > 0, τ0 > 0. If W0 and W ′0
are (L0, τ0, ε0)-leakage-indistinguishable, then W1 and W ′1 are (L1, τ1, ε1)-leakage-
indistinguishable. Here, for any L1 that satisfies L1 ◦ L ⊆ L0, ε0 = ε1, and τ0 − τ1 is
the time needed to sample from F .

Proof. We show by contradiction that for all adversaries A1 running in time at
most τ1

|Pr[AEval1(W1,·)
1 = 1]− Pr[AEval1(W′

1,·)
1 = 1]| ≤ ε1,(4.2)

where Eval1 can be queried once by A1 with a leakage function f1 ∈ L1, where L1
satisfies L1 ◦ L ⊆ L0.

Suppose for contradiction that (4.2) is violated for some (L1, τ1)-adversary A1,
then we construct an (L0, τ0)-adversaryA0 that breaks the leakage indistinguishability
of the distributions W0 and W ′0. The adversary A0 will invoke A1 as a subroutine,
answering A1’s leakage query and eventually outputting whatever A1 outputs (see
Figure 6). To answer the leakage query f1 ∈ L1, the adversary A0 will use its own
oracle Eval0. The difficulty is that Eval0 evaluates a leakage function f0 ∈ L0 on a
sample either from W0 or W ′0, whereas A1 produces a query f1 to be evaluated on a
(possibly much larger) wire assignment sampled from W1 or W ′1.

10In our case, these will be wire assignments to a circuit with n wires. Notice that this can also
just be a single encoding.
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We address this by using a function fS , drawn from the distribution F , that takes
as input a single “challenge” that is either sampled from W0 or W ′0 and outputs a
full wire assignment from either W1 or W ′1, respectively. To recap, A0 lets A1 choose
f1 ∈ L1, and draws a function fS from F . It then queries Eval0 on f0 = f1 ◦ fS and
forwards the answer back to A1. Finally, if A1 returns a bit b, then A0 outputs b as
its own guess.

To analyze the distinguishing advantage of A0, consider the following two cases:

Pr[AEval0(W0,·)
0 = 1] = Pr[AEval1(fS(W0),·)

1 = 1]
(4.1)
= Pr[AEval1(W1,·)

1 = 1],

Pr[AEval0(W′
0,·)

0 = 1] = Pr[AEval1(fS(W′
0),·)

1 = 1]
(4.1)
= Pr[AEval1(W′

1,·)
1 = 1].

By taking the difference and with (4.2) we get

|Pr[AEval0(W0,·)
0 = 1]− Pr[AEval0(W′

0,·)
0 = 1]| ≤ ε1,

which yields that ε0 = ε1. Observe also that f0 ∈ L0 (i.e., the reduction does not
lose much in the leakage function’s power): since fS ∈ L indeed we have that f0 =
f1 ◦ fS ∈ L1 ◦ L ⊆ L0. Finally, note that the only extra time A0 spends (i.e., τ0 − τ1)
is the time required to sample from the distribution F .

Let us now show that the �̂ gadget is reconstructible by shallow circuits. The
lemma below describes the reconstructor for �̂ and gives the high-level idea of the
proof; the technical details are moved to Lemma 4.12.

Lemma 4.11 (�̂ of TRC is reconstructible). Let LΠ be a class of leakage functions
and let τ > 0, ε > 0. If Π is (LΠ, τ, ε)-leakage-indistinguishable, then the �̂ gadget
is (L, τ − O(k2), kε)-reconstructible by SHALLOW(2, O(k2)) for any L that satisfies
L ◦ SHALLOW(3, O(k2)) ⊆ LΠ (and if K = GF(2), then L ◦ SHALLOW(2, O(k2)) ⊆
LΠ).

Proof of Lemma 4.11. We first describe the reconstructor REC
̂	 for �̂ gadgets,

and then prove that it is indistinguishable from a wire assignment of a real evaluation
of �̂ conditioned on plausible inputs X and outputs Y .

R
̂	 sampled from the reconstructor REC

̂	 takes as inputs plausible values (X,Y ),

where X = (�a,�b) (i.e., the desired input of the �̂ gate) and Y = (�c) (i.e., its desired
output) and is defined as follows.

1. Sample �U uniformly from Kk×k and compute the values on the wires in the
subsequent decoding subcircuits for the computation of �q. (Note that this
procedure need not be in low depth, because it is done as part of sampling
R

̂	, rather than by R
̂	 itself.) Hard-wire the results as R

̂	’s outputs.
2. On input X , R

̂	 computes the matrix �B = (ai � bj)i,j∈[1,k] and outputs it as
part of the wire assignment.

3. R
̂	 computes online �S = �B� �U and �o = �c��q (i.e., once using �B that depends

on input X and once using the input Y = �c).
Circuits sampled from REC

̂	 have size O(k2) (because they need to compute matrices
�B and �S) and depth 2, because �S is computed from �B, that in turn has been computed
from the inputs.

It remains to show that if X,Y are chosen as in the definition of reconstructors,
then R

̂	(X,Y ) and W
̂	(X |Y ) are (L, τ − O(k2), kε)-leakage-indistinguishable. The

reconstructor from above differs from the real wires assignment in that �U is a random
matrix (instead of being �B ⊕ �S, where �S is a matrix whose columns decode to 0). In

the following we will show that one can replace the matrix �S by a matrix sampled
uniformly at random from Kk×k. Since �U is computed as �B ⊕ �S (i.e., for random �S
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the matrix �U is random as required by the reconstructor distribution) this will give
us the desired property of reconstructibility and concludes the proof.

We prove that �S can be replaced by a random matrix using a hybrid argument.
We define hybrid distributions W�

̂	(X |Y ) (	 ∈ [0, k]) as W
̂	(X |Y ), except that for

the first 	 columns of �S the elements are drawn uniformly from K. It is easy to see
that the 0th hybrid uses matrix �S as defined in our construction and the kth hybrid
distributions uses a matrix �S drawn uniformly at random. We show the leakage indis-
tinguishability between two consecutive hybrids by a reduction to the encoding leakage
indistinguishability. More precisely, we will show that for all 	 ∈ [1, k] and all plausible
X,Y , W�−1

̂	 (X |Y ) and W�
̂	(X |Y ) are (L, τ −O(k2), ε)-leakage-indistinguishable.

To this end in the next technical lemma, we show for any 	 ∈ [1, k] and any X
the existence of a distribution F � of functions in SHALLOW(3, O(k2)) samplable in
time O(k2) that take as input a single encoding and map it either to W�−1

̂	 (X |Y )

or W�
̂	(X |Y ), depending on whether the given encoding was an encoding of 0 or

of a random value. By applying Lemma 4.10 to Lemma 4.12 below (setting W0 =
Enc(0),W ′0 = Enc(·)) we get that W�−1

̂	 (X |Y ) and W�
̂	(X |Y ) are (L, τ − O(k2), ε)-

leakage-indistinguishable, where L ◦ SHALLOW(3, O(k2)) ⊆ LΠ. Using the triangle
inequality we get, together with the k hybrids, that W

̂	(X |Y ) and R
̂	(X,Y ) are

(L, τ−O(k2), kε)-leakage-indistinguishable, if Π is (LΠ, τ, ε)-leakage-indistinguishable.
This concludes the proof.

The following technical lemma proves the existence of the distribution F � used
above in Lemma 4.11 and may be skipped by the reader.

Lemma 4.12. For any 	 ∈ [1, k] and any plausible X = (�a,�b), Y = (�c), there
exists a distribution F � over functions in SHALLOW(3, O(k2)) (if K = GF(2) then
SHALLOW(2, O(k2))) that take as input a single encoding and output a wire assign-
ment for �̂, such that for fS ← F �

W�−1
̂	 (X |Y ) ≡ fS(Enc(0)),(4.3)

W�
̂	(X |Y ) ≡ fS(Enc(·)).(4.4)

Proof. fS ← F � given an encoding �e as input shall output a full wire assignment
of �̂, with �e embedded into the 	th column of �S, and with the correct distribution
on the remaining wire values. This guarantees that if the target encoding �e is drawn
uniformly and independently from Enc(0) then fS(�e) is distributed identically to the
hybrid wire distribution W�−1

̂	 (X |Y ). On the other hand, if �e is drawn uniformly and

independently from Enc(·), then fS(�e) is distributed identically to W�
̂	(X |Y ).

The difficulty is that fS must have small (constant) depth, but needs to output a
wire assignment for the deep circuit �̂. We solve this problem by hard-wiring most of
the resulting wire assignment directly into fS . The only parts of the wire assignment
that cannot be hardwired are those that depend on the input �e, but fortunately, they
can be easily computed (indeed, this was the main goal in designing the �̂ gadget).

Concretely, the distribution F � is defined by drawing fS as follows.
1. From given X = (�a,�b) compute consistently the matrix �B = (aibj)i,j∈[1,k]

and hard-wire �a,�b, �B into fS .
2. Most columns of �S are hardwired into fS : left of the 	th column they are

drawn at random, and right of the 	th column they are drawn from Enc(0).
Only the 	th column depends on the input and is filled with the challenge
encoding �e.
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3. Using �B and �S hard-wire all elements of �U = �B ⊕ �S into fS except for the
	th column. For the 	th column, fS computes on input �e, for each i ∈ [1, k],
the value Ui,� = Bi,� ⊕ ei.

4. Consider, for i ∈ [1, k] the decoding subcircuits in �̂ that compute �q with

values from �U . In each subcircuit the wires carry the linear combination of
{Ui,j}j , plus possibly a constant. If this linear combination does not depend
on Ui,� (i.e., the input to fS), then precompute this wire and hard-wire the
result into fS . On the other hand, if it does depend on Ui,� = Bi,� ⊕ ei, then
precompute the partial linear combination except the term that depends on ei
and hard-wire the result into the description of fS . On input �e, fS computes
the missing outputs by ⊕-ing the partial linear combination with the missing
term (which is ei times a constant).

5. With fixed Y and �q from the previous step compute �o = Y � �q and output it.
Let us first consider the outputs of fS that are independent of �e. In W�−1

̂	 (X |Y )

and W�
̂	(X |Y ) the first 	 − 1 columns in �S are independently and uniformly drawn

from Enc(·), whereas the last k − 	− 1 columns are sampled from Enc(0). The other
hardwired outputs that do not depend on �e, are computed honestly from X,Y , and
�S, thus with respect to only these values, W�−1

̂	 (X |Y ), W�
̂	(X |Y ), and the outputs of

fS are identically distributed. If on the other hand an output of fS depends on �e we
distinguish two cases.

1. �e ← Enc(0): this means the 	th column of �S is assigned an encoding drawn
from Enc(0). Together with the observation that all remaining wires are

computed honestly using �S and �B, we get that fS(Enc(0)) and W�−1
̂	 (X |Y )

are distributed identically.
2. �e ← Enc(·): here, the 	th column of �S is assigned a random value in Kk.

With the same observation as above we get that fS(Enc(·)) and W�
̂	(X |Y )

are distributed identically.
It is clear that functions from F � can be sampled in time O(k2). It remains to show
that they can indeed be computed by shallow circuits. The input to fS is used to
adjust the 	th column of �U , which requires a circuit of depth 1 and size k. Additionally,
adjusting the values in the subcircuits for the computation of �q requires computation
of depth 2 (for the computation of ei times a constant and ⊕-ing it) and O(k) size.
Finally, once �q is evaluated, fS needs to compute �o which increases the depth by 1.
Overall, we get circuits of size O(k2) and depth 3. In the case of GF(2), there is no
need to multiply ei by a constant, so the depth is only 2.

4.4. Single gadgets reconstructors for TRN . In this section, we prove that
the gadgets of TRN from Figure 5 are rerandomizing and reconstructibile. We only
present statements and proofs for reconstructibility of the ⊕̂ and �̂ gadgets; for the
simpler gadgets, the reconstructors are the same as in the previous section; it is easy
to see that those are all within LOCAL(3).

Gadgets of TRN are rerandomizing. By inspection of our gadgets, it is easy to see
that they satisfy the rerandomizing property; similarly to the gadgets of TRC , the rea-
son is that the output of each gadget is masked with the output of the opaque gate O.

Gadgets of TRN are reconstructible. On a high level, the reconstructors for the
gadgets of TRN follow the reconstructor constructions from section 4.3. The main
difference is that in the noisy case, we are not concerned about the computational effi-
ciency of the reconstructor, but rather the number of times the reconstructor’s output
depends on its input bits. That is, given the encoded inputs and outputs of a gadget,
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the reconstructor has to simulate the internals in a way that looks indistinguishable
(from the real wire distribution) to noisy leakage Np. Since the gadget’s internal wires
depend on its encoded inputs and outputs, the reconstructor will need to use them
to compute the remaining wires of the gadget. We say that a reconstructor operates
locally if it does not have to use its inputs (i.e., the encoded inputs and outputs of
the gadgets) too often, which essentially means that for a large gadget most of its
internal wires are independent of the encoded inputs and outputs and, hence, can be
hardwired into the reconstructor. Because local functions computed on Enc(0) and
Enc(1) are indistinguishable through Np, our reconstructor will work.

We show that the gadgets of TRN exhibit such a locality property. In particular,
we prove that to reconstruct the ⊕̂ gadget, the reconstructor needs to use its inputs
only 3 times, and can hard-wire the remaining wires. We show similar locality for the
large �̂ gadget.

Importance of locality. One may ask why locality of reconstruction is such an
important property in the presence of noisy leakageNp. To explain this, let us go back
to the outline of the security proof from section 4.2. To show security of TRN according
to Definition 3.1, we need to build a simulator S that answers the adversary’s leakage
queries Np. Since S does not know the circuit’s secret state, it will use random
encodings instead. We show by reduction to the leakage indistinguishability of Πparity

that such a change in the wire distribution (namely, replacing the real secret state
with random encodings) will not get noticed by the adversary. To this end, we put

the target encoding in the secret state and let the reconstructor for Ĉ (that we will
construct in the next section by composition from reconstructors of single gadgets)

simulate all of Ĉ’s internals. If the reconstructor for Ĉ works in a local way, i.e., most
of the wires in Ĉ are independent of the target encoding, then by Proposition 4.4
the statistical distance between the wire distribution using the correct state and the
simulated distribution using random encodings is small. To formally describe such
locality, we use the function class LOCAL(	) formally described in section 4.1. We
remind the reader that functions in LOCAL(	) allow each input bit to affect at most
	 output bits.

Formal statements. Let us first describe reconstructibility of the ⊕̂ gadget.
Lemma 4.13 (⊕̂ gadgets of TRN are reconstructible). The ⊕̂ gadget is (L,∞, 0)-

reconstructible by LOCAL(3) for any L.
Proof. The reconstructor REC

̂⊕ is the distribution whose only support is the

following circuit R
̂⊕. On inputs (X,Y ), where X = (�a,�b) and Y = (�c), R

̂⊕ assigns

the wires of ⊕̂ to �q = �a⊕�b and �o = �c⊕ �q.
If X,Y are chosen as in the definition of a reconstructor (i.e., they are plausible

inputs), then the resulting output of R
̂⊕(X,Y ) is distributed as the real wire dis-

tribution W
̂⊕(X |Y ), since in both cases �o takes the only possible consistent value

�o = �c⊕ �q.
It remains to show that R

̂⊕ is in LOCAL(3). We must show that for each input

�a,�b,�c (when the remaining inputs are fixed) the output of the reconstructor is either
a fixed constant or can be written as the free input plus a constant vector. For input
�a the inputs �b and �c are fixed constants and, hence, the output of R

̂⊕ is constant

except (�a, �q := �a⊕�b, �o := �a⊕ (�b ⊕ �c)). The same analysis works for �b. For �c observe

that �a and �b are fixed and all outputs are constant except (�c,�c ⊕ �q). Hence, we get
that R

̂⊕ ∈ LOCAL(3).
The above lemma works for arbitrary leakage classes L. Later, we set L = Np to

get reconstruction for ⊕̂ that is resilient to noisy leakages.
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The reconstructibility of �̂ is significantly more complicated. Indeed, we will only
fully establish it in the next section, when we show composability of reconstructors. �̂
is built from two subgadgets, m̂ult and ̂compress, where ̂compress itself is composed
of ⊕̂ gadgets. Hence, to apply composability and show existence of a reconstructor
for �̂ (cf. Lemma 4.17 in section 4.5) it remains to show reconstructibility of m̂ult.
Indeed, showing this is the main technical part of this section and is given in the
lemma below, whose proof is moved to Appendix B.

Lemma 4.14 (m̂ult gadgets of TRN are reconstructible). For every p ∈ (0, 12 ],

the m̂ult gadget is (Np,∞, ε(k))-reconstructible by LOCAL(2), where

ε(k) ≤ (2k + 1)(exp(−15kp5) + exp(−k/512)).

4.5. Multigadget circuit reconstructors. In the previous two sections we
showed reconstructors for the gadgets used by the transformations TRC and TRN .
In this section, we are interested in composing such reconstructors to obtain a multi-
gadget circuit reconstructor, i.e., we show the existence of reconstructors for arbitrary
complex circuits. To keep our composition lemma below as general as possible, we
do not focus on our transformations TRC or TRN but rather prove reconstructor
composition for arbitrary encoding-based circuit transformations.

Recall that in an encoding-based circuit transformation each wire w in the original
circuit C is represented by a wire bundle in Ĉ, consisting of k wires �w = (w1, . . . , wk),
that carry an encoding of w. The gates in C are replaced gate by gate with so-called
gadgets, computing on encoded values. For the detailed description of encoding-based
circuit transformations we refer to section 3.1.

In this section, we consider transformed circuits Ĉ without ̂encoder and ̂decoder

gadgets, i.e., we assume that Ĉ’s inputs are already given in encoded form, and the
outputs are not explicitly decoded. The reason for this restriction is that the ̂encoder

and ̂decoder gadgets are by definition not reconstructible, since reconstructors are
only defined for gadgets that take encoded values as inputs and output encoded values.

Lemma 4.15 (reconstructor composition for encoding-based circuits). Let Π =
(Enc,Dec) be any (not necessarily linear) encoding scheme that is (LΠ, τΠ, εΠ)-leakage-
indistinguishable for some LΠ, τΠ, εΠ. Let TR be an encoding-based circuit transforma-
tion and suppose that each corresponding gadget, ĝ, is rerandomizing and (Lĝ, τĝ, εĝ)-
reconstructible by Rĝ, for some Lĝ, τĝ, εĝ. Then for any stateless circuit C of size

s with nI inputs, nO outputs, and m wires, Ĉ ← TR(C) is rerandomizing and
(L

̂C , τ ̂C , ε ̂C)-reconstructible by R
̂C , for• any L

̂C that satisfies (L
̂C ◦ (2 × Rĝ)) ⊆ LΠ (where (2 × Rĝ) denotes two

parallel executions of Rĝ) and L
̂C ⊆ Lĝ;• any τ

̂C ≤ min(τΠ, τĝ) − sτsamp, where τsamp is the maximum time to sample
Rĝ ← RECĝ for all gadgets ĝ;11

• some ε
̂C ≤ mεΠ + sεĝ;

• R
̂C ⊆ (nI + nO) × Rĝ; moreover, if Rĝ ⊆ LOCAL(	), then also R

̂C ⊆
LOCAL(	).

Before we give the proof, let us discuss an interpretation of the important param-
eters. To apply the lemma we require

• a LΠ-leakage-indistinguishable encoding scheme, and
• that all gadgets in Ĉ are Lĝ-reconstructible by Rĝ.

If that is given, then by the composition lemma it is guaranteed that Ĉ ← TR(C) is
L

̂C -reconstructible for any class L
̂C that satisfies

11For simplicity we assume that τsamp is larger than the maximal time to compute gadgets ĝ.
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• (L
̂C ◦ (2×Rĝ)) ⊆ LΠ,

• L
̂C ⊆ Lĝ.

Or put otherwise, if we want that Ĉ is L
̂C -reconstructible for some L

̂C , then we need
an encoding scheme that “tolerates” at least functions from (L

̂C ◦ (2 × Rĝ)) and all
the gadgets have to be at least L

̂C -reconstructible.

Proof of Lemma 4.15. Let Ĉ be the transformed circuit, with inputs denoted
X = (�x1, . . . , �xnI) and outputs denoted Y = (�y1, . . . , �ynO). Let first gadgets denote

the set of topologically first gadgets in Ĉ, and let last gadgets denote the set of
topologically last gadgets in Ĉ. The wires that go between gadgets (i.e., not directly
connected to X or Y , and not part of the innards of some gadget) are called connecting
wires. (We will assume, in order to simplify the proof, that for every two-input gadget,
either both inputs are connected to X , or both inputs are connected to internal wires.
Moreover, we will assume that no gadget is connected to both X and Y . These
assumptions ensure that a first gadget has no connecting wires going into it and that
a gadget cannot be simultaneously first and last. They are without loss of generality,
because they can be easily satisfied by adding copy gates to the inputs as needed.)

The fact that Ĉ is rerandomizing follows immediately from the fact that the last
gadgets are rerandomizing, and the randomness used in each gadget is independent.

The reconstructor REC
̂C is a distribution over circuitsR

̂C with inputs (X,Y ). We

define REC
̂C , with R

̂C ← REC
̂C , for input (X,Y ) that is plausible for Ĉ, as follows.

1. For each ĝ gadget in Ĉ, sample Rĝ ← RECĝ.
2. For each connecting wire bundle, sample a random encoding of a random field

element, i.e., �v ← Enc(v) with v ← K.
3. For each gadget ĝ in Ĉ except for the first gadgets and last gadgets, pre-

compute Rĝ(U, V ) and hardwire the result into R
̂C . Here, U (resp., V ) are

the encodings assigned above to the wire bundles that are the inputs (resp.,
outputs) of ĝ.

4. On input (X,Y ) the reconstructor R
̂C computes the reconstructors of all the

first and last gadgets. For the first gadgets, the input wire bundles are given
in X and the outputs have been hardwired above. Similarly, for the last
gadgets, the inputs have been hardwired and the outputs are given in Y .

We now analyze the class of the reconstructor REC
̂C . For a circuit C with nI inputs

and nO outputs, R
̂C ← REC

̂C on inputs (X,Y ) only needs to compute nI + nO

reconstructors (for the first gadgets and last gadgets). Hence, REC
̂C lies in (nI +

nO) × Rĝ as claimed in the statement. Moreover, each input of R
̂C is used only in

a single gadget reconstructor, and thus locality provided by gadget reconstructors is
preserved by R

̂C .
It remains to show that for any plausible input/output pair (X,Y ), REC

̂C(X,Y )
is (L

̂C , τ ̂C , ε ̂C)-leakage-indistinguishable fromW ̂C(X |Y ). The proof is by a hybrid ar-

gument, outlined as follows. First, we replace all gadgets in Ĉ by their corresponding
reconstructors. Then, we replace all connecting wire bundles with random encod-
ings of random values, keeping the innards of gadgets consistent with these random
encodings.

We first prove that we can replace each gadget in Ĉ with an appropriate gadget
reconstructor keeping the connecting wires consistent. We will use the following no-
tation. Let {ĝi} for i ∈ [1, s] denote the gadgets in Ĉ. Drawing a wire assignment
from the distribution W

̂C(X |Y ) of the real circuit, we denote its elements as follows.

For the ith gadget ĝi in Ĉ, Ui are its inputs and Vi are its outputs (these are iden-
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Fig. 7. Notation used in Claim 2. ĝi− and ĝi+ are reconstructors for gadgets preceding and
following the wire bundle in question that is changed between the two successive experiments. In
the two successive experiments, Wi−1

̂C
and Wi

̂C
, all the other wires bundles are sampled from the

same distribution, whereas �vi is drawn from the honest distribution in Wi−1
̂C

, while �v′i is a random

encoding of a random element in Wi
̂C
.

tified with elements of X or Y if ĝi is a first gadget or a last gadget). Note that
(Ui, Vi) is always plausible for ĝi, by definition. Let us define the following hybrid
wire assignment distributions.
W0

̂C
: W

̂C(X |Y ).

W i
̂C
(i ∈ [1, s]): same as W i−1

̂C
except that the assignment to the wires inside ĝi

is replaced by Rĝi(Ui, Vi) with Rĝi ← RECĝi .
The following claim shows thatW i−1

̂C
andW i

̂C
are (Lĝ, τĝ, εĝ)-leakage-indistinguishable

for all i ∈ [1, s]. More precisely, we make the following claim.
Claim 1. For any i ∈ [1, s], if ĝi is (Lĝ, τĝ, εĝ)-reconstructible, then the distribu-

tions W i−1
̂C

and W i
̂C
are (Lĝ, τĝ − sτsamp, εĝ)-leakage-indistinguishable.

Proof. For any i ∈ [1, s] we use Lemma 4.10 with the following mapping: W1 =
W i−1

̂C
,W ′1 = W i

̂C
and W0 = Wĝi(Ui|Vi),W ′0 = RECĝi(Ui, Vi). To apply Lemma 4.10,

we need to define the distribution F , where fS ← F :
1. for all j ≥ i + 1 sample from Wĝj (Uj |Vj) and hard-wire the result into the

description of fS;
2. for all j ≤ i− 1 run RECĝj (Uj , Vj) to obtain a valid wire assignment for that

part of the circuit. Hard-wire the result into the description of fS ;
3. for the part of the wire assignment that represents ĝi, fS just outputs its

input.
Note that fS takes as long to sample as the time required to either compute or
reconstruct the s− 1 gadgets, which, in our case is upper bounded by τsamp. It is easy
to see that for its input fS is the identity function (it just outputs its inputs together
with hardwired values). Moreover, if fS takes as input a sample fromWĝi(Ui|Vi) then
its output is distributed as W i−1

̂C
. On the other hand if the input is Rĝi(Ui, Vi), then

fS ’s output is identically distributed toW i
̂C
. These facts, combined with Lemma 4.10

and the fact that W0 and W ′0 are (Lĝ , τĝ, εĝ)-leakage-indistinguishable, show that
W1 = W i−1

̂C
and W ′1 = W i

̂C
are (Lĝ, τĝ − sτsamp, εĝ)-leakage-indistinguishable. This

concludes the claim.
Next, we show that we can replace the connecting wire bundles in Ĉ with random

encodings. Associate each bundle of connecting wires with integer i ∈ [1,m] and
denote the encoding carried by this bundle by �vi. Denote by ĝi− the gadget that has
�vi as an output wire bundle, and by ĝi+ the gadget that has �vi as input (see Figure 7).
We define iteratively the following hybrid wire assignment distributions:
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W i
̂C
with i ∈ [s+1, s+m]: same asW i−1

̂C
except that �vi is replaced with a random

encoding �v′i ← Enc(·) (and the internal wires in ĝi− and ĝi+ are adjusted
accordingly, as the wire bundles are given as inputs to the reconstructors of
ĝi− and ĝi+).

Intuitively, Ws
̂C
is the wire assignment distribution that results from running, for

each gadget in Ĉ, its corresponding reconstructor using honestly computed connect-
ing wires. Then, in W i

̂C
for i = s + 1, . . . , s+m, we replace step by step the honest

encodings at the connecting wires with random encodings. These random encod-
ings no longer correctly capture the computation of the circuit, but are still leakage
indistinguishable. The final distribution, Ws+m

̂C
, is identical to REC

̂C(X,Y ).

We next prove a claim stating that for all i ∈ [s+1, s+m] the distributionsWi−1
̂C

and W i
̂C
are (LW , τW , εW)-leakage-indistinguishable.

Claim 2. Let LΠ be some class of leakage functions and let τΠ > 0, εΠ > 0. If Π
is (LΠ, τΠ, εΠ)-leakage-indistinguishable, then for all i ∈ [s+1, s+m] the distributions
W i−1

̂C
and W i

̂C
are (LW , τW , εW)-leakage-indistinguishable with εW = εΠ, τW = τΠ −

sτsamp, and any LW that satisfies (LW ◦ (2×Rĝ)) ⊆ LΠ.
Proof. To prove this statement for any i ∈ [s + 1, s+m], we apply Lemma 4.10

with the following assignment for the distributions: W1 = W i−1
̂C

,W ′1 = W i
̂C
and

W0 = Enc(vi),W ′0 = Enc(v′i) with v′i ← K. Furthermore, we define the distribution
F , with fS ← F that takes as input a single encoding �e.

1. Sample the values for all the connecting wire bundles except �vi according to
W i

̂C
(which is the same as W i−1

̂C
for those wire bundles).

2. For each gadget ĝ in Ĉ except ĝi− and ĝi+, pick a reconstructor from the
appropriate reconstructor distribution Rĝ ← RECĝ, and run Rĝ(U, V ), where
(U, V ) are the sampled values for the input and output wire bundles of ĝ.
The resulting wire assignments for each gadget are hardwired into fS .

3. Pick and hard-wire reconstructors Rĝi
−
← RECĝi

−
and Rĝi

+
← RECĝi

+
and

wire their descriptions into fS . On input �e, run on-line the reconstructors
Rĝi

−
and Rĝi

+
, using as their inputs and outputs the wire bundles already

sampled and �vi set to �e. Output their resulting wire assignments together
with the hardwired wire assignments for all the other gadget reconstructors
from the previous steps.

We claim that

W i−1
̂C
≡ fS(�e), if �e← Enc(vi),

W i
̂C
≡ fS(�e), if �e← Enc(v′i).

Indeed, in either case, all the wires internal to gadgets are computed according to
reconstructors, and the connecting wire bundles except �vi are sampled identically in
the two distributions. If �e← Enc(vi) then, because all the gadgets are rerandomizing,
the joint distribution of �e together with all the other wires is indeed Wi−1

̂C
(note that

this is the only place where we use the fact that the gadgets are rerandomizing, but the
use of this fact here is crucial: if Enc(vi) was correlated with some other connecting
wire bundle, we could not hard-wire that bundle into fS, because it would not be
known until �e was given).

Sampling fS ← F takes sτsamp time, because that is the time required to sample
the reconstructors. Let us now analyze the complexity of fS. Since most of the wire
assignments are hardwired in advance into fS, on input �e fS only needs to run ĝi− and
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ĝi+. Thus, we get that functions fS ← F can be computed in 2×Rĝ. If we now apply
Lemma 4.10 with the fact thatW0 andW ′0 are (LΠ, τΠ, εΠ)-leakage-indistinguishable,
we get thatW1 =W i−1

̂C
andW ′1 =W i

̂C
are (LW , τW , εW)-leakage-indistinguishable for

• τW = τΠ − sτsamp,
• for any class of functions LW that satisfies LΠ ⊇ (LW ◦ (2×Rĝ)), and
• εW = εΠ.

This concludes the proof of the claim.
Putting now the results from Claims 1 and 2 together and setting Lĝ = L

̂C and
LW = L

̂C , we get that W0
̂C
=W

̂C(X |Y ) and Ws+m
̂C

= REC
̂C(X,Y ) are (L

̂C , τ ̂C , ε ̂C)-

leakage-indistinguishable. Here, τ
̂C = min(τΠ, τĝ)− sτsamp and

ε
̂C = mεΠ + sεĝ.(4.5)

This concludes the proof of Lemma 4.15.
Below we give applications of our general composition lemma by showing that

circuits transformed by TRC and TRN are reconstructible.
Reconstructibility of Ĉ ← TRC(C). We establish composition of the single gadget

reconstructors presented in section 4.3 in the corollary below. Since its proof merely
adds up parameters, we move its formal version to Appendix C and give here only a
simple sketch.

Corollary 4.16 (reconstructor for Ĉ ← TRC(C)). Let LΠ be some set of
leakage functions and εΠ > 0, τΠ > 0. Let Π be the underlying encoding scheme of
TRC with Π being (LΠ, τΠ, εΠ)-leakage-indistinguishable. Let C be a stateless circuit

of size s, with nI inputs and nO outputs. Then the transformed circuit Ĉ ← TRC(C)
is rerandomizing and (L

̂C , τ ̂C , ε ̂C)-reconstructible by SHALLOW(2, (nI + nO)O(k2)).
Here, we have ε

̂C = εΠs(k + 2), τ
̂C = τΠ − O(sk2), and L

̂C satisfies LΠ ⊆ L ̂C ◦
SHALLOW(3, O(k2)) (for K = GF(2), LΠ = L

̂C ◦ SHALLOW(2, O(k2))).
Proof (sketch). At a high level the proof is simple. Since TRC is an encoding-

based circuit transformation, and all gadgets used by TRC are rerandomizing and
reconstructible, Lemma 4.15 from above establishes the corollary. In the formal proof
in Appendix C we rigorously analyze the parameters which establish the above coro-
llary.

Reconstructibility of Ĉ ← TRN (C). Before we show reconstructibility of com-

posed circuits Ĉ ← TRN (C) we present a reconstructor for �̂ of TRN . We do this

by viewing �̂ as a circuit composed of ⊕̂ and m̂ult gadgets, for which we have shown
reconstructibility in the last section. Then we apply the composition lemma, which
gives us a reconstructor for �̂. The proof of the lemma below and of Corollary 4.18
can be found in Appendix C.

Lemma 4.17. For every p ∈ (0, 12 ], the �̂ gadget is (Np,∞, ε
̂	)-reconstructible by

LOCAL(3), where ε
̂	(k) ≤ (2k + 1)(exp(−64kp6) + exp(−15kp5) + exp(−k/512)).

We establish reconstructibility of transformed circuits Ĉ ← TRN (C).

Corollary 4.18 (reconstructor for Ĉ ← TRN (C)). Let L
̂C = Np for some p ∈

(0, 1/2]. Let C be a stateless circuit of size s, with nI inputs and nO outputs. Then the

transformed circuit Ĉ ← TRN (C) is rerandomizing and (Np,∞, ε
̂C(k))-reconstructible

by LOCAL(3) with ε
̂C(k) ≤ s(2k + 3)(exp(−64kp6) + exp(−15kp5) + exp(−k/512)).

In Lemma 4.15 and the two corollaries above we considered only the stateless
case, and proved that it is simulatable by a special simulator called “reconstructor.”
In the next section, we will use this special simulator to provide a simulator that
proves security of stateful circuits directly according to Definition 3.1.
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4.6. Security of full circuit transformation. To prove security of the full
transformation according to Definition 3.1 we need to consider stateful circuits. State-
ful circuits have memory and are run and observed multiple times. In contrast, so
far we have only considered stateless circuits that have no persistent state and are
observed once. The main challenge in the stateful setting is the following. Note that
memory has input wires (used at the end of round i − 1 to store the state m̂i) and
output wires (used at the beginning of round i to retrieve m̂i), and therefore the
adversary can obtain leakage related to memory twice. This problem is exacerbated
by adaptivity, which allows the adversary to choose a leakage function for round i
that depends on the results of round i − 1. Thus, the ultimate information obtained
by the adversary about m̂i is considerably more complex than can be computed by
any two fixed functions from L.

We address these difficulties in the proof of the following lemma.
Lemma 4.19. Let τΠ > 0, εΠ > 0, let LΠ be some class of leakage functions,

and let TR be an encoding-based circuit transformation with underlying encoding
scheme Π. Let C be an arbitrary (stateful) circuit with n memory gates, s other
gates (not counting dummy encoder and decoder gates), and m wires connecting

those s gates. Let Ĉ ← TR(C) be its transformation. Suppose all gadgets in Ĉ, ex-

cept ̂encoder and ̂decoder, are rerandomizing and (Lĝ, τĝ, εĝ)-reconstructible by Rĝ

for some Lĝ, τĝ, εĝ. Suppose also that Π is (LΠ, τΠ, εΠ)-leakage-indistinguishable and
2-adaptive (L2Π, τ2Π, ε2Π)-leakage-indistinguishable. Then TR is (L, τA, τS , τD, q, ε)-
secure for

• any τA and τD satisfying τA+ τD ≤ min(τΠ, τ2Π, τĝ)− qsτsamp, where τsamp is
the time to sample12 Rĝ ← RECĝ,
• some τS ≤ τA + qsτsamp,
• some ε ≤ qsεĝ + qmεΠ + (q + 1)nε2Π,
• any L that satisfies (L ◦ (2×Rĝ)) ⊆ LΠ, (L ◦ Rĝ) ⊆ L2Π, and L ⊆ Lĝ.

Before starting with the proof, we discuss an interpretation of the important
parameters. To apply the lemma we require

• that all gadgets in Ĉ (except ̂encoder and ̂decoder) are Lĝ-reconstructible
and
• the underlying encoding scheme Π is LΠ-leakage-indistinguishable and 2-
adaptive L2Π-leakage-indistinguishable.

If that is given, then by the above lemma, the encoding-based circuit transformation
TR is L-secure for any class L that satisfies

• (L◦ (2×Rĝ)) ⊆ LΠ, where (2×Rĝ) denotes parallel execution of Rĝ (which
is the function class in which the gadget reconstructors lie),
• (L ◦ Rĝ) ⊆ L2Π,
• L ⊆ Lĝ.

Stated differently, if we want TR to be L-secure for some L, then we need an encoding
scheme that is secure against functions from (L◦(2×Rĝ)) for a single query, functions
from (L◦Rĝ) (which is a smaller class) for two queries; we also need that all gadgets

ĝ in Ĉ (except ̂encoder and ̂decoder) are at least L-reconstructible. Before we
instantiate the above lemma to show security of our transformations TRC and TRN ,
we give a high-level outline of the proof (the details of the proof are in Appendix D).

Outline of the proof. Define a circuit Ĉ∗ as the circuit that computes a single
clock cycle of Ĉ (recall the notion of clock cycle from the definition of stateful circuits

in section 3), without encoding and decoding and without state. Specifically, Ĉ∗

12As in Lemma 4.15, we assume that τsamp is larger than the time required to compute gadgets ĝ.
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Simulator S(A, q, C)
1. Sample uniformly at random encodings (Z0, . . . , Zq), where each Zi consists of

n encodings of random elements of K
2. Run A(q, C)
3. For each query (fi, xi) of A:
4. Query C[mi−1] on input xi to obtain yi and sample Yi ← Enc(yi)

5. Compute wire assignment WE for the ̂encoder with input xi and its output Xi

6. Compute wire assignment WD for ̂decoder gadget with input Yi and output yi
7. Sample for each connecting wire bundle in ̂C∗ a random encoding �v ← Enc(v) with v ← K
8. For each gadget ĝ in ̂C∗ run the corresponding reconstructor Wĝ ← RECĝ(U, V ),

where U are the encoded inputs and V are the encoded outputs of the gadgets ĝ.
Notice that U and V are part of the connecting wire bundles sampled above.

9. Let W
̂C∗ denote the wire assignment composed from Wĝ in steps (7) and (8).

Return (fi(WE ,W
̂C∗ ,WD), yi) to A

10. Return the output of A.

Fig. 8. Description of the simulator S that runs in the experiment ExpsimTR .

is obtained from Ĉ by removing ̂encoder and ̂decoder gadgets, removing memory,
taking the wire bundles that exit the memory and making them part of the input, and
taking the wire bundles that enter the memory and making them part of the output.
We can then write one clock cycle of the computation (without input encoding and

output decoding) as (m̂i,Enc(yi))← Ĉ∗(m̂i−1,Enc(xi)). We know from Lemma 4.15

that Ĉ∗ has a reconstructor.
We need to show that for every q-adaptive (L, τA)-adversary A, there exists a

simulator S with only black box access to C[mi] such that for every stateful circuit
C[m0], the output distributions of A and S are computationally close.

The idea of the proof is simple: S runs A as a subroutine, simulates its en-
vironment, and outputs A’s result. S needs to simulate the environment without
knowledge of the initial secret state m0; thus, it has to answer A’s leakage queries
without knowing the secret state. Each such leakage query gets as input the wire
assignment of a single clock cycle of Ĉ. To simulate the wire assignment, we can use
the reconstructor for Ĉ∗, giving it the circuit’s true public inputs and outputs and
random values instead of the memory contents. This approach proves security of a
single observation. However, extending this argument to many rounds requires some
additional care.

Main difficulty of the proof. During computation of

(m̂i,Enc(yi))← Ĉ∗(m̂i−1,Enc(xi)),

the adversary can pick a leakage function fi and obtain some knowledge about the
secret state m̂i. Adaptively, based on that knowledge (i.e., on the output yi and the
leakage that may depend on m̂i), the adversary may pick a leakage function fi+1

and get leakage from the execution of Ĉ∗(m̂i,Enc(xi+1)). The difficulty is that the
leakage from both observations, number i and number (i + 1), may depend on the
secret state m̂i, which is the reason why we require the underlying encoding scheme
to be 2-adaptive leakage indistinguishable. (This difficulty does not occur for leakage
from prior or subsequent states, or from other wire bundles, essentially because of
rerandomization.)

We now give a high-level description of the simulator S. The formal specification
is given in Figure 8 and in Appendix D.
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Simulation. S needs to answer the adversary’s query (fi, xi) for each clock cycle
1 ≤ i ≤ q. S generates a simulated wire assignment and then applies fi to it.
Generation of the simulated wire assignment is done as follows. Since S does not
know the content of the secret memory (but the wire assignment may depend on
it), S uses random encodings instead. S also uses the public input xi and output
yi. Note that yi may no longer be the correct output on xi if the contents of the
memory are changed to random values. So the “correct” wire assignment may not
exist. However, a simulated assignment may still be computed: S does so by using the
reconstructors of the gadgets inside Ĉ (except ̂encoder and ̂decoder gadgets, whose
wire assignments are computed honestly from xi and yi).

We need to show that such a simulation is indistinguishable from the adversary’s
observations in the real experiment. Like in Lemma 4.15, this is done by a hybrid
argument. We first show that instead of the real wire assignment, we can replace
all wire bundles with random encodings, and use the gadget reconstructors for the
internal wires of each gadget (except ̂encoder and ̂decoder). Notice that these steps
are essentially the same as in the proof of Lemma 4.15. We could just directly apply
Lemma 4.15 and use the reconstructor for the entire stateless circuit Ĉ∗ rather than
for each gadget, but that would give us worse parameters: specifically, the reduction
in leakage class would be larger, because the reduction in leakage class depends on
the size of the reconstructor.

Next, we consider n(q+1) different hybrids, i.e., we make a hybrid argument over
the number of observations q and the size of the secret state n. In each hybrid step, we
replace the content of a single encoded memory cell with some random encoding. By
the leakage indistinguishability of the underlying encoding scheme Π, two consecutive
hybrids will be indistinguishable. Notice that this is the place where we require Π to
be secure even against 2-adaptive adversaries, since the observation of two consecutive
clock cycles will depend on the target encoding.

In Appendix D we give the technical description of the ideas outlined above.

4.7. Proofs of our main theorems: Theorems 3.3 and 3.5.
Proof of Theorem 3.3. The proof of Theorem 3.3 merely puts together the pa-

rameters from Lemma 4.11 and Lemma 4.19, and may be skipped by the reader.
In this theorem, we are taking assumed parameters from 2-adaptive leakage indis-

tinguishability and also using them for 1-adaptive leakage indistinguishability (since
it is no worse), in order to simplify the theorem statement. So, when applying
Lemma 4.19, we use (L2Π, τ2Π, ε2Π) = (LΠ, τΠ, εΠ). By definition, TRC is an encoding-
based circuit transformation for arbitrary circuits C with size s and n memory cells.
Since all gates have fan-in at most 2, it has m ≤ 2s wires. Recall from the theorem
statement that εΠ > 0, τΠ > 0, and LΠ, L are some leakage classes that satisfy L ◦
SHALLOW(3, O(k2)) ⊆ LΠ (replace SHALLOW(3, O(k2)), with SHALLOW(2, O(k2)),
in the case of GF(2)). Notice, further that as proven in section 4.3 all gadgets in

Ĉ are rerandomizing and (L
̂C , τĝ, εĝ)-reconstructible by SHALLOW(3, O(k2)) (resp.,

SHALLOW(2, O(k2)) for the case of GF(2)) for some parameters τĝ, εĝ. Since our
transformation has to work for any circuit we can assume13 that C is made solely of
� gates. By Lemma 4.11, we get then τĝ = τΠ −O(k2) and εĝ = kεΠ.

We are now ready to apply Lemma 4.19 and get τA+ τD ≤ min(τΠ, τĝ)− qsτsamp.
With τsamp = O(k2) this yields τA+ τD ≤ τΠ− qsO(k2). Similarly, we get τS ≤ τcA+
qsO(k2). Next, we compute the computational distance between the real experiment

13We can make this assumption because the parameters are worst in this case.
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and the simulated experiment:

ε = qsεĝ + qmεΠ + (q + 1)nε2Π ≤ εΠ(q + 1)(s(k + 2) + n).

This concludes the proof.
Theorem 3.3 relies on the assumption that Π is 2-adaptive leakage indistinguish-

able. We will eliminate this additional assumption in the next section using circuit
lower bounds, and show an unconditional result for AC0 leakages.

Proof of Theorem 3.5. The proof of the main theorem for noisy leakages
(Theorem 3.5) follows the same line as the proof of Theorem 3.3 above. We use
Proposition 4.4 to note that the Πparity encoding is (Np ◦ LOCAL(6),∞, (1− (2p)6)k)-
leakage-indistinguishable and 2-adaptive (Np ◦ LOCAL(3),∞, (1 − (2p)6)k)-leakage-
indistinguishable (thus, in this case we can apply Lemma 4.19 with εΠ = ε2Π <
exp(−64kp6), using 1 − x ≤ exp(−x)). Recall from Lemma 4.17 that the gad-
gets are rerandomizing and (Np,∞, ε

̂C(k))-reconstructible by LOCAL(3) with εĝ ≤
(2k + 1)(exp(−64kp6) + exp(−15kp5) + exp(−k/512)). Also note that the number m
of internal wires is at most 2s, because each gate has fan-in at most two.

Notice that Theorem 3.5, unlike Theorem 3.3, doesn’t need to make computational
assumptions about hardness of decoding Π.

5. Instantiation of TRC against AC0 leakage. As mentioned in the last sec-
tion, Theorem 3.5 doesn’t require computational hardness assumptions, while Theo-
rem 3.3 relies on the assumption that decoding is “hard” for functions in L. Lower
bounds on computational tasks are notoriously difficult to prove and, therefore, given
our current state of knowledge, applying our results for computationally bounded
leakages will, in most cases, require computational assumptions about hardness of
decoding for a given class of leakage functions. In this section, however, we highlight
a case in which Theorem 3.3 can be applied for an explicit leakage class.

Recall that C(d, s, λ) denotes the class of AND-OR-NOT unlimited fan-in circuits
with depth d, size s, and λ bits of output. In Proposition 4.1 (cf. section 4.1) we showed
that the parity encoding Πparity is (C(d, exp(O(k(1−δ)/d)), kδ),∞, exp(−Ω(k(1−δ)/d)))-
leakage-indistinguishable, for any constants d ∈ N>0 and 0 < δ < 1.

If we instantiate TRC with Πparity then by Theorem 3.3 we almost instantly obtain
security against leakages modeled as constant-depth circuits. However, there is one
caveat. In Theorem 3.3 we require that Πparity is 2-adaptive leakage indistinguishable,
while Proposition 4.1 only talks about a single observation.

In the following lemma we show generically that a leakage-indistinguishable en-
coding scheme Π is also secure against 2-adaptive adversaries. We would like to
emphasize that the bounds in the lemma are rather bad, since the leakage circuit size
and the adversarial running time lose exponentially in λ (i.e., the amount of leakage
that we tolerate per observation). However, as it turns out, this loss will not matter
much in the application to Corollary 5.2, because the adversary there is informa-
tion theoretic (and thus has arbitrary running time), and the circuit size loss will be
absorbed into the exponent.

The lemma is given specifically for leakage functions modeled by circuits with
unlimited fan-in AND and OR gates, such as is the case for AC0. The proof is moved
to Appendix E.

Lemma 5.1. Let D,E be two distributions and d, s, τ, ε ≥ 0 and L = C(d, s, λ).
If D and E are (L, τ, ε)-leakage-indistinguishable, then D and E are 2-adaptive
(L′, 2−λτ, ε)-leakage-indistinguishable, where L′ = C(d− 2, O(s2−λ), �λ/2�).
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We would like to note that we can generalize this lemma in two ways: first, by a
similar argument we can prove security against p-adaptive adversaries. This, however,
increases the function’s size exponentially in p and λ. Second, observe that we state
this lemma for the special case that the leakage functions are circuits with particular
gates. This can be generalized in a straightforward way to other function classes.

We obtain the following corollary by instantiating Theorem 3.3 with the parity
encoding, the tolerable leakage functions L with AC0 circuits that output up to kδ

bits, and using the above lemma about adaptivity.
Corollary 5.2. Recall that k is the security parameter. Let 0 < δ < 1, 4 < d <

1/δ − 1, and q be some constants. There exists a circuit transformation for circuits
over K = GF(2) that is (L, τA, τS , τD =∞, q, ε)-secure for

• any τA,
• some τS ≤ τA + qsO(k2), where s is the number of gates in C,
• some ε ≤ (q + 1)(s(k + 2) + n) exp(−Ω(k(1−δ)/d)), where n is the number of
memory gates in C,
• L = C(d− 4, exp(O(k(1−δ)/d)), �kδ/2�). Notice that this is in AC0 since d− 4
is constant.

The transformation increases the size of each multiplication gate by a factor of O(k2)
and the size of the rest of the circuit by a factor of O(k).

For example, fixing the relationship δ = 1/(d+2), we now figure out what we need
to do in order to be resilient to λ bits of leakage computed by an AC0 circuit of any
depth dλ (which, using the notation from the Corollary statement, is d−4). Since λ =
�kδ/2�, the security parameter k needs to be at least (2λ)dλ+6. The size of the leakage
circuit can go up to exp(c1k

1/(dλ+6)) > exp(c1λ); and security (i.e., distinguishing
advantage ε) will be at most qs exp(−c2k1/(dλ+6)) < qs exp(−c2λ), for some constants
c1 and c2 (which follow from O and Ω used in Proposition 4.1; they depend on d and
δ, but the exact dependence is not worked out in [9]). Increasing k further would
allow increasing the size of the leakage circuit, decrease the distinguishing advantage,
and allow for more leakage. Unfortunately, because the circuit size would grow in
proportion to k2, the amount of leakage as a fraction of the circuit size would decrease.

We could set δ to be smaller, which would lead a higher k to support the same
amount of leakage, which would lead to higher allowable leakage circuit size and lower
ε, at the expense of a bigger increase in the transformed circuit size. The trade-off is
not easy to quantify, because the constants c1 and c2 would also change.

Proof. The parity encoding is (C(d, exp(O(k(1−δ)/d)), kδ),∞, exp(−Ω(k(1−δ)/d)))-
leakage-indistinguishable (by Proposition 4.1). Lemma 5.1 then shows that the en-
coding scheme is 2-adaptive (L2Π,∞, ε2Π)-leakage-indistinguishable, where

• L2Π is C(d−2, exp(O(k(1−δ)/d)−kδ), �kδ/2�). Since by assumption d < 1/δ−1
we get that (1 − δ)/d > δ and therefore

exp(O(k(1−δ)/d)− kδ) = exp(O(k(1−δ)/d)).

Thus, we can simplify L2Π to C(d− 2, exp(O(k(1−δ)/d)), �kδ/2�), and
• ε2Π = exp(−Ω(k(1−δ)/d)).

We now apply Theorem 3.3 with K = GF(2). To see that the depth of the leakage
class goes from d− 2 to d− 4, we only need to observe that SHALLOW(2, O(k2)) can
be implemented by depth-2 Boolean circuits (where we don’t count NOT gates and
allow sufficient fan-in) by expressing arithmetic gates of fan-in-2 and depth 2 as a
constant-size conjunctive or disjunctive normal form.

Improving the security loss. The bounds from Corollary 5.2 imply that asymptot-
ical parity encoding and our transformed circuits can tolerate similar leakage functions
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as long as d < 1/δ − 1. This restriction can be eliminated by relaxing the security
definition. More precisely, if in Definition 3.1 we restrict the adversary to choose the
leakage function fi, i ≥ 2, adaptively only depending on the output of the leakage
functions14 f1, . . . fi−2, then in Theorem 3.3 we will not require that the underlying
encoding scheme Π is 2-adaptive leakage indistinguishable. The parameters of the our
reduction will then be significantly improved15 for this relaxed security definition.

Appendix A. Proofs omitted from section 4.3.
Proof of Lemma 4.8. The reconstructor REC

̂$
is the distribution whose only

support is the following circuit R
̂$
. Given an empty X (i.e., the desired input of $̂)

and a Y = (�y) (i.e., the desired output of $̂), R
̂$
(X,Y ) outputs a wire assignment

that simply lets the output of $̂ carry the only consistent value, namely, Y . This is
distributed identically to the honest case.

Proof of Lemma 4.9. We will do the proof for the ĉopy gadget; the other two
are similar. The reconstructor RECĉopy is the distribution whose only support is a

circuit Rĉopy that on inputs (X,Y ), where X = (�a) (i.e., the desired input of the ĉopy

gate) and Y = (�b,�c) (i.e., its desired output), assigns the wires of ĉopy in the only

consistent way: �ob = �b� �a and �oc = �c� �a.
If �a,�b,�c are chosen as in the definition of a reconstructor (i.e., they are plausible

inputs), then the resulting output of Rĉopy(X,Y ) is identically distributed to the wire
distributionWĉopy(X |Y ), since in both cases �ob and �oc take the only possible consistent

value �ob = �b � �a and �oc = �c � �a. Notice that Rĉopy can be computed by a circuit of

depth 1 because on inputs �a,�b,�c it needs only to compute �ob, �oc, both requiring a �
operation. The size of RECĉopy is O(k) for computing the 2k � operations.

Appendix B. Proofs omitted from section 4.4. Our goal is to prove
Lemma 4.14, i.e., to show a local reconstructor for m̂ult gadgets. First, we present
a technical lemma (Lemma B.1), which says that an encoding of 0 cannot be distin-
guished from an encoding of 1 even given access to noisy leakage of several copies of
that encoding (offset by fixed vectors), as well as the inner product of that encoding
and another vector whose Hamming weight is not too high. This lemma will then be
used in a hybrid argument of Lemma 4.14 to show that the reconstructor we build
for the m̂ult gadget is leakage indistinguishable.

Specifically, Lemma B.1 talks about statistical closeness of the distributions D0

and D1 defined as follows.
For any constant 	, any constant vectors �c1, . . . ,�c�,�c ∈ {0, 1}k, and any b ∈ {0, 1},

let

Db := Db(p, 	,�c1, . . . ,�c�, c) =

(
(Np(�e ⊕ �c1), . . . ,Np(�e⊕ �c�)), 〈�e,�c〉

)
�e←Enc(b)

.

Here, 〈�e,�c〉 denotes the inner product of �e and �c.
Lemma B.1. Let p ∈ (0, 1/2] and 	 ∈ N be constants, and let �c1, . . . ,�c� ∈ {0, 1}k

and �c ∈ {0, 1}k be k-bit vectors such that �c has Hamming weight at most t (and all
the other �ci are unrestricted). Then, Δ(D0;D1) ≤ (1− (2p)�)k−t.

Proof. We prove this statement based on two claims. Let I denote the positions
where �c is 0, and let �eI denote the restriction of �e to the positions in I. For every

14Notice that the choice of fi and the input xi may still depend on the circuit’s outputs
y1, . . . , yi−1.

15Specifically, the exponential security loss in λ that stems from Lemma 5.1 will not be needed,
because 2-adaptivity will not be needed.
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ς ∈ {0, 1}t and b ∈ {0, 1}, define the distribution Db,ς as follows. Construct a vector
�e such that �eĪ = ς , and �eI is a random sharing of the bit b′ = b ⊕ 〈ς, 111 . . .11〉.
Generate the distribution Db using this vector �e and the vectors �c,�c1, . . . ,�c�.

Claim 3. For every ς∈{0, 1}t the statistical distance Δ(D0,ς ;D1,ς)≤(1− (2p)�)k−t.
Proof. For a fixed ς the last bit of both distributions D0,ς and D1,ς is fixed to

〈�e,�c〉 = 〈ς, 111 . . .11〉. Additionally, in both distributions it fixes t bits of each �e⊕�ci to
the same string. Hence, what remains are k−t coordinates in each �e⊕�ci. By definition
of the distribution we have that

⊕
j∈I ej = b′, with b′ defined as b ⊕ 〈ς, 111 . . .11〉.

Notice that this guarantees that
⊕

j ej = b. Since the only difference between these
two distributions are that in each �e ⊕ �ci those k − t coordinates are either a random
encoding of 0⊕〈ς, 111 . . .11〉 or 1⊕〈ς, 111 . . .11〉 we get Δ(D0,ς ;D1,ς) ≤ (1−(2p)�)k−t
by applying Lemma 4.3. This concludes the proof.

Claim 4. If Δ(D0,ς ;D1,ς) ≤ ε for every ς ∈ {0, 1}t, then Δ(D0;D1) ≤ ε.
Proof. Obviously the distribution Db can alternatively be obtained by first sam-

pling a random ς , and then producing a sample from Db,ς . Such a sampling gives us
by an elementary calculation

Δ(D0;D1) ≤
(
1

2

)t

2tε = ε.

Putting the two claims together we get that Δ(D0;D1) ≤ (1 − (2p)�)k−t, which
concludes the proof.

Proof of Lemma 4.14. The internals of the m̂ult gadget consist of the inputs
(�a,�b), the output �q, and the intermediate values, namely,

(�r(1), . . . , �r(k), �s(1), . . . , �s(k),�a(1), . . . ,�a(k),�b(1), . . . ,�b(k), u, �w, �z).

The reconstructor REC
̂mult

for the m̂ult gadget is a distribution over functions R
̂mult

,

which for plausible inputs (X = (�a,�b), Y = (�q)) proceeds as follows.

1. Set �a(0) = �a and �b(0) = �b and choose uniformly random vectors �a(1), . . . ,�a(k),
�b(1), . . . ,�b(k). �A = {�a(i)}i∈[1,k] and �B = {�b(i)}i∈[1,k] can be hardwired into
the output of R

̂mult
.

2. From �a(0), . . . ,�a(k),�b(0), . . . ,�b(k) compute for i ∈ [1, k] �r(i) = �a(i−1) ⊕�a(i) and

�s(i) = �b(i−1)⊕�b(i). All {�r(i)}i∈[2,k] and {�s(i)}i∈[2,k] can be hardwired into the

reconstructor. �r(1) is computed from the reconstructor’s input �a(0) and �s(1)

from �b(0), respectively.
3. Choose u uniformly at random and compute from �A = (�a(i))i∈[1,k], (�b(i))i∈[1,k],

and u the vector �z. These values can be hardwired into the reconstructor.
4. Compute �w = �z ⊕ �q from the reconstructor’s input �q.
5. Output (�a,�b, {�r(i), �s(i),�a(i),�b(i)}ki=1, u, �q, �z, �w).

We first discuss the underlying function class of REC
̂mult

.
Claim 5. The support of REC

̂mult
is in LOCAL(2).

Proof. We must show that for each input �a,�b, �q the output of the reconstructor is
either a fixed constant or can be written as one of the inputs plus a constant vector.
For input �a the other inputs �b and �q are fixed constants and, hence, the output of
R

̂mult
is constant except (�a(0) = �a,�r(1) = �a ⊕ �a(1)), where �a(1) is a constant vector.

The same analysis works for �b and �q, which yields that R
̂mult
∈ LOCAL(2).

It is easy to see that reconstructed wire assignment differs from the wire assign-
ment produced by a real execution of m̂ult. Nevertheless, we show that the output
of the reconstructor (on plausible inputs �a,�b, �q) is Np leakage indistinguishable from
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the distribution produced during the operation of the m̂ult gadget on inputs �a and �b,
conditioned on the output being �q. There are two main differences between the recon-
structor distribution and the real wire distribution. First,the vectors �a(i) and �b(i) are
uniformly random whereas in the real world, they are random encodings of a (resp.,
b). Second, in the reconstructor distribution, the bit u is uniformly random whereas

in the real world, u = �R© �ST (where the matrices �R and �S are as in section 3.3).
The indistinguishability is shown by a hybrid argument—consider the following

2k + 1 hybrids.
• Hybrid H0: this is the real distribution, conditioned on plausible values �a,�b, �q.
We will take an alternative view of this distribution, by first sampling the
vectors �a(i) and �b(i) as random encodings of a and b, respectively, and then
defining the vectors �r(i) and �s(i) as

�r(i) = �a(i−1) ⊕ �a(i) and �s(i) = �b(i−1) ⊕�b(i)

exactly as in the real wire distribution. It is easy to see that this is exactly
distributed as the real wire assignment (conditioned on the inputs being �a,�b
and the output being �q).
• Hybrid H�, for 1 ≤ 	 ≤ k: H� is the same as H�−1, except that the vector
�a(�)—which is a random encoding of a in H�−1—is replaced with a uniformly
random vector. The vector �r(�) is computed as �a(�−1) ⊕ �a(�) and the vector
�r(�+1) is �a(�+1) ⊕ �a(�). The rest of the values are computed exactly as in the
previous hybrids.
• Hybrid Hk+� for 1 ≤ 	 ≤ k: Hk+� is the same as Hk+�−1, except that the

vector �b(�)—which is a random encoding of b in Hk+�−1—is replaced with a

uniformly random vector. The vector �s(�) is computed as �b(�−1) ⊕ �b(�) and
�s(�+1) is �b(�+1) ⊕�b(�). The rest of the values are computed exactly as in the
previous hybrids.
• Hybrid H2k+1: H2k+1 is the same as H2k except that the bit u = �R© �ST is
replaced with a uniformly random bit.

We show that the hybrid H0 (the real distribution) is indistinguishable from the
hybrid H2k+1 (the output of the reconstructor) in the following three claims.

Claim 6. For every p ∈ (0, 1
2 ] and 1 ≤ 	 ≤ k, the hybrids H� and H�−1 are

(Np,∞, ε(k))-leakage-indistinguishable, where ε(k) ≤ exp(−15kp5) + exp(−k/512).
Proof. The only difference between hybrids H� and H�−1 is in the vector �a(�),

and also, some of the other quantities that are computed using �a(�). Similarly to
Lemma 4.12 we define a distribution F � (	 ∈ [1, k]) over functions fS that take as
input an encoding �e and embed it at �a(�). If �e is an encoding of a then fS outputs a
wire assignment that is distributed as H�−1. If on the other hand fS takes as input
a random encoding then it produces the distribution H�. In contrast to Lemma 4.12
where we were mainly concerned that fS is shallow, in this claim we must guarantee
that fS uses its input only a limited number of times. We solve this by hard-wiring
most of fS outputs directly into the function.

For ease of notation below we will denote the vectors �̃r(i) as the row vectors of
the matrix �R (notice that these vectors are not visible to the leakage function), i.e.,

�R =

⎛⎜⎝ �̃r(1)
...

�̃r(k)

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
�r(1)
...⊕

j∈[1,i] �r
(j)

...⊕
j∈[1,k] �r

(j)

⎞⎟⎟⎟⎟⎟⎠.
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We define the distribution F � by drawing fS as follows.
1. Set �b(0) = �b and sample uniformly at random {�si}i∈[1,k] which are encodings

of 0. Compute �bi = �bi−1 ⊕ �si and hard-wire the results as fixed outputs into
fS . Notice also that {�si}i∈[1,k] allows us to compute (without making use of

the inputs) the matrix �S.
2. Hard-wire the vectors {�a(i)}i
=� into fS : for i < 	, �a(i) is a uniformly random

k bit string. For i > 	, �a(i) is a uniformly random encoding of a. Further,
set �a(0) = �a and compute for all i /∈ {	, 	+ 1} the vectors �r(i) = �a(i−1) ⊕ �a(i).
Hard-wire the result into fS .

3. For all i �= 	 compute �̃r(i) as �a(0) ⊕ �a(i). Hard-wire these results into the
description of fS as intermediate values that will later be used to compute u.

4. On input �e, fS sets �a(�) = �e and computes �r(�) = �a(�−1) ⊕ �a(�) and �r(�+1) =
�a(�) ⊕ �a(�+1). Further compute �̃r� as �a(0) ⊕ �a(�). The vectors �r(�) and �r(�+1)

will be part of fS ’s output. �̃r� will be used in the next step to compute the
bit u.

5. Notice that the whole matrix �S and all rows except �̃r(�) of �R are hard-wired
into fS . To compute u the function fS computes u = �R© �ST.

6. From u, �A, �B, fS computes �z and together with �q (which is hard-wired into
fS) the vector �w = �z ⊕ �q.

By inspection of the above it is easy to see that if �e is an encoding of a then �a(�) is
an encoding of a. Since all other values are either computed honestly from �a(�) or are
hard-wired (and thus have the correct distribution), we get fS(�e) ≡ Hi−1. Similarly
if �e is a random vector, then fS(�e) ≡ Hi. Let us next bound Δ(Hi−1;Hi).

Most of the outputs of fS are hard-wired into the function. There are some
exceptions. The values computed in step 4, �a(�), �r(�), and �r(�+1), have the form of
�e plus some constant. In step 5 we compute u, which indirectly depends on �e (via

�̃r(�)). Essentially, for all i �= 	 we can compute the inner product of the ith row of �R

and the ith column of �S “off-line” and hard-wire the result into fS as an intermediate
value. Additionally, �̃r(�) can be written as �a(0) ⊕ �a(�), where �a(0) is a fixed constant.
Hence, the inner product of �a(0) and the 	th column of �S is a fixed constant as well.
We denote the sum of all these fixed inner products as d. What remains is the inner
product of �a(�) = �e and a fixed constant vector �c which represents the 	th column of
�S. To sum it up we have u = 〈�e,�c〉 ⊕ d, where �c is a uniformly random fixed vector
and d some fixed constant.

Finally, in step 6 we compute vectors �z and �w of length k2. k2 − k bits of these
vectors can be fixed and are independent of �e. For �z, these elements have the form
ei � ci for some constant ci. For �w, they are equal to ei � ci ⊕ qi, where qi are fixed
constants. If the bits ci are all 1 then we have two vectors of the form �e plus a
constant.

To conclude, in total we have at most 5 outputs of the form �e plus a fixed constant
vector, and the bit 〈�e,�c〉 ⊕ d. If we apply a noisy function Np (for some p ∈ (0, 1/2])
to the outputs of fS , then conditioned by �c having Hamming weight at most 17k/32,
we get with Lemma B.1 that the statistical distance between Hi−1 and Hi is upper
bounded by

(1 − (2p)5)15k/32 ≤ exp(−15kp5)

(here we are using (1−x) ≤ exp(−x)). Since �c is a random k bit vector, the probability
that its Hamming is greater than 17k/32 is less than exp(−k/512) by Hoeffding’s
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inequality [23]. Thus, we get

Δ(Hi−1, Hi) ≤ Δ(Hi−1, Hi|E) Pr[E] + Δ(Hi−1, Hi|Ē) Pr[Ē]

< exp(−15kp5)(1− exp(−k/512)) + 1 · exp(−k/512)
< exp(−15kp5) + exp(−k/512) .

Claim 7. For every p ∈ (0, 12 ] and 1 ≤ 	 ≤ k, the hybrids Hk+� and Hk+�−1 are
(Np,∞, ε(k))-leakage-indistinguishable, where ε(k) ≤ exp(−15kp5) + exp(−k/512).

Proof. The proof follows along the lines of the proof of Claim 6.
Claim 8. For every p ∈ (0, 1

2 ], the hybrids H2k+1 and H2k are (Np,∞, ε(k))-
leakage-indistinguishable, where ε(k) ≤ exp(−15kp/16) + exp(−k/512).

Proof. The difference between the two hybrids is that in the former, the bit u
is computed as �R © �ST, whereas in the latter, it is uniformly random. To show
that they are leakage indistinguishable, observe that for every setting of the matrix
�S and all the rows of �R except the first, u = d ⊕ 〈�r(1),�c〉, where d is a fixed bit

that depends on �S and the remaining rows of �R, and �c is the first column of �S.
Assuming �c has Hamming weight at least 15k/32 (which it does with probability at
least 1 − exp(−k/512) by Hoeffding’s inequality [23]), distinguishing u from random
is equivalent to distinguishing the XOR of at least 15k/32 bits of �r(1) from random
givenNp(�r

(1)). By Lemma 4.3, it cannot be distingushed from random with advantage
better than (1− 2p)15k/32 ≤ exp(−15kp/16) (using (1− x) ≤ exp(−x)).

Putting the three claims together we get that the distribution output by the re-
constructor and the real wire distribution are (Np,∞, ε(k))-leakage-indistinguishable
where

ε(k) ≤ k · (exp(−15kp5) + exp(−k/512))
+ k · (exp(−15kp5) + exp(−k/512)) + exp(−15kp/16) + exp(−k/512)

≤ (2k + 1)(exp(−15kp5) + exp(−k/512))

for any constant p ∈ (0, 1/2] (because 15kp/16 ≥ 15kp5 for p ≤ 1/2). This concludes
the proof.

Appendix C. Proofs omitted from section 4.5.
Proof of Corollary 4.16. Recall from the corollary statement that εΠ > 0, τΠ >

0, and LΠ, L ̂C are some leakage classes that satisfy L
̂C ◦ SHALLOW(3, O(k2)) ⊆

LΠ. By definition, TRC is an encoding based circuit transformation, where by
section 4.3 all gadgets in Ĉ are rerandomizing and (L

̂C , τĝ, εĝ)-reconstructible by
SHALLOW(2, O(k2)) for some parameters τĝ, εĝ. Since our transformation has to
work for any circuit we can assume without loss of generality16 that C is made solely
of � gates. By Lemma 4.11, we get then τĝ = τΠ −O(k2) and εĝ = kεΠ.

We are now ready to apply Lemma 4.15 and get

R
̂C = (nI + nO)×Rĝ = (nI + nO)× SHALLOW(2, O(k2))

= SHALLOW(2, (nI + nO)O(k2)).

Notice that (nI + nO) × Rĝ denotes parallel execution of the reconstructors with
different inputs. Further, we have

16We can make this assumption because the parameters are worst in this case.
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• τ
̂C ≤ min(τΠ, τĝ) − sτsamp = τΠ − O(sk2), since all our gadgets have size

O(k2),
• ε

̂C ≤ s(mεΠ + εĝ) = sεΠ(k + 2) (because every gate has fan-in at most two,
the number of wires m is at most 2s).

This concludes the proof.
Proof of Lemma 4.17. We can view �̂ as a circuit composed of k ⊕̂ gadgets (from

̂compress) and a single m̂ult gadget. Hence, the circuit consists of s = k+1 gadgets,
takes nI = 2 inputs (in encoded form), outputs nO = 1 encodings, and has m = 2k−2
wire bundles that connect gadgets. In section 4.4 we showed that ⊕̂ is (L,∞, 0)-

reconstructible by LOCAL(3), for any L, and m̂ult is (Np,∞, ε
̂mult

)-reconstructible by
LOCAL(2) with ε

̂mult
≤ (2k + 1)(exp(−15kp5) + exp(−k/512)).

Further, by Proposition 4.4 the Πparity encoding is (Np◦LOCAL(6),∞, (1−(2p)6)k)-
leakage indistinguishable. Note that 1− (2p)6 ≤ exp(−(2p)6).

We can put these things together by Lemma 4.15. In fact, because ε
̂⊕ = 0 for

all the ⊕̂ gadgets, we can improve the analysis of Lemma 4.15 (which assumed, for
simplicity, that every gadget has the same ε as the worst gadget): since Claim 1

is applied to m̂ult only once, we can replace sεĝ by just ε
̂mult

in the statement of

Lemma 4.15. We therefore get that �̂ is (Np,∞, ε
̂	)-reconstructible by LOCAL(3) with

ε
̂	 ≤ mεΠ + ε

̂mult
= (2k − 2) · (1− (2p)6)k + (2k + 1)(exp(−15kp5) + exp(−k/512))

≤ (2k + 1)(exp(−64kp6) + exp(−15kp5) + exp(−k/512)) .
Notice that the conditions on the leakage classes required by Lemma 4.15 are satis-
fied. The reason for this is that by our choice of the parameters the Πparity encoding
tolerates leakages from 2 × LOCAL(3) = LOCAL(6), where 2 × LOCAL(3) is parallel
execution on the same inputs.

Proof sketch of Corollary 4.18. The proof is similar to the proof of Corollary 4.16
and we only provide a sketch here. By definition, TRN is an encoding-based cir-
cuit transformation, where by section 4.4 all gadgets in Ĉ are rerandomizing and
(Np, τĝ, εĝ)-reconstructible by LOCAL(3) for some parameters τĝ, εĝ. Since our trans-
formation has to work for any circuit we can assume without loss of generality17 that
C is made solely of � gates. By Lemma 4.17, we get then τĝ = ∞, Lĝ = Np, and
εĝ ≤ (2k + 1)(exp(−64kp6) + exp(−15kp5) + exp(−k/512)).

Further, by Proposition 4.4 the Πparity encoding is (LΠ,∞, (1 − (2p)6)k)-leakage-
indistinguishable for LΠ = Np ◦ LOCAL(6).

We are now ready to apply Lemma 4.15 and get R
̂C ⊆ LOCAL(3). Further, we

have
• τ

̂C ≤ ∞,
• ε

̂C ≤ s(2(1−(2p)6)k+(2k+1)(exp(−64kp6)+exp(−15kp5)+exp(−k/512)) ≤
s(2k + 3)(exp(−64kp6) + exp(−15kp5) + exp(−k/512)) (here we use the fact
that every gate has fan-in at most two, the number of wires m is at most 2s).

This concludes the proof.

Appendix D. Proofs omitted from section 4.6.
Proof of Lemma 4.19. Without loss of generality assume that Ĉ contains at least

one rerandomizing and reconstructible gadget (i.e., Ĉ is not the empty circuit). The
simulator S is formally defined in Figure 8. S does not know the real initial secret
state m0 but instead uses random encodings (Z0, . . . , Zq). Furthermore, it computes

17We can make this assumption because the parameters are worst in this case.
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the internal wires of Ĉ∗ for each round i ∈ [1, q] with the reconstructor RECĝ of the
corresponding gadgets (cf. line 8 in Figure 8). We show in this lemma that S running
in experiment ExpsimTR produces an output that is indistinguishable from A’s output in
ExprealTR (cf. Definition 3.1 in section 3 for the description of these experiments). The
proof relies on techniques developed in Lemma 4.15 and uses a hybrid argument with
a series of hybrid simulators.

The first hybrid simulators will replace the real wire assignment of Ĉ∗ with wire
assignments produced by reconstructors of the gadgets. Then, we replace step by step
the elements of the secret state m̂i and the connecting wires (between the gadgets)
with random encodings. Once we have done this replacement, the simulator is as in
Figure 8.

More formally, we consider the following series of hybrid simulators.
• Simulators S01 , . . . ,Sq·s1 : for each i ∈ [1, qs], let j = i mod q. We define the
simulator Si1 as Si−11 except that in the (�i/q� + 1)th execution, we replace
the (j + 1)th gadget ĝ with its reconstructor Rĝ ← RECĝ. Notice that S01 is
essentially the real execution of the original circuit. Notice further that as
in Lemma 4.15 the inputs and outputs of the reconstructor are as in the real
execution with ĝ.
• Simulators S02 , . . . ,Sq·m2 :

– S02 is defined as Sq·s1 ;
– for each i ∈ [1, q ·m] we define the simulator Si2 as Si−12 except that we

replace the ith connecting wire bundle by a random encoding sampled
from Enc(·). Notice that in each of the q executions of Ĉ∗ there are at
most m connecting wires.

• Simulators S0,0,S0,1, . . . ,S0,n,S1,1, . . . ,Sq,n−1,Sq,n:
– S0,0 is defined as Sq·m2 ;
– Si,j for i ∈ [0, q], j ∈ [1, n]: This is as the previous simulator, but where

the jth element of the ith state is replaced with a random encoding.
Notice that in the simulation given by Sq·m2 the simulator essentially replaces the

wire assignment of Ĉ∗ with the wire assignment produced by the reconstructor of the
stateless circuit Ĉ∗. Hence, the indistinguishability of the simulations given by S01
and Sq·m2 follows essentially from Lemma 4.15. We repeat the important parts here
to obtain the final parameters for our result.

Before we show indistinguishability of the hybrid simulators, we notice that for
ease of notation we omit explicitly specifying the wire assignment for the ̂encoder and
̂decoder gadgets (i.e., WE and WD in Figure 8). Indeed, we can easily incorporate

them into the simulation, since their inputs and outputs are known to the simulator.
The indistinguishability of the hybrid simulations Si−11 and Si1, follows directly

from Claim 1 (see Lemma 4.15 in section 4.5) where it was shown that for transformed
stateless circuits we can replace the real wire assignments of gadgets with the wire
assignments of reconstructors. This yields that the computational distance between
the simulation of Si−11 and Si1 is upper bounded by εĝ for any (L, τA)-adversary and
distinguisher running in time τD, where L ⊆ Lĝ and τA + τD ≤ τĝ − qsτsamp. By
applying this result repeatedly over the q rounds and s gates that are evaluated in
each round, we get for any (L, τA)-adversary A

ExprealTR (A,L, q, C,m0, k) ≈τD,q·s·εĝ ExpsimTR (Sqs1 ,A, q, C,m0, k) .(D.1)

We next need to show that for each i ∈ [1, q ·m] the simulations given by Si−12

and Si2 are computationally close. That is, we can show that for each connecting wire
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we can replace the real encoding with a random encoding without getting noticed.
This was shown in Claim 2 (cf. Lemma 4.15 in section 4.5). More precisely, the
computational distance between the simulation of Si−12 and Si2 is upper bounded by εΠ
for any (L′, τA)-adversary and distinguisher running in time τD, where L′ ◦(2×Rĝ) ⊆
LΠ and τA + τD ≤ τΠ − qsτsamp. Applying this result repeatedly over the q rounds
and m wires for each round, we get for any (L′, τA)-adversary A

ExpsimTR (S02 ,A, q, C,m0, k) ≈τD,q·m·εΠ ExpsimTR (Sqm2 ,A, q, C,m0, k) .(D.2)

Notice that in the simulation of S0,0 we replaced the gadgets in all of the q rounds
by reconstructors and the encodings on the connecting wires between the gadgets by
random encodings. To obtain our final simulation, we show that we can replace step
by step the memory by random encodings. We prove this along the lines of Claim 2
in Lemma 4.15. For ease of notation, we identify in the following, Si,0 with Si−1,n,
for i > 0.

Claim 9. Suppose Π is 2-adaptive (L2Π, τ2Π, ε2Π)-leakage-indistinguishable, A is
a q-adaptive (LW , τW)-adversary such that (LW ◦ Rĝ) ⊆ L2Π, where Rĝ is the class
of reconstructors for gadgets ĝ, and τD is the distinguisher running time satisfying
τW + τD ≤ τ2Π − qsτsamp. Then for any initial state m0 and any i ∈ [0, q], j ∈ [1, n]

ExpsimTR (Si,j−1,A, q, C,m0, k) ≈τD,ε2Π ExpsimTR (Si,j ,A, q, C,m0, k) .(D.3)

Proof. We prove this claim by contradiction. Suppose there exists an adversary
A, a distinguisher D, a state m0, and values i ∈ [0, q], j ∈ [1, n] such that (D.3) does
not hold, then we build a 2-adaptive (L2Π, τ2Π)-adversary AΠ that distinguishes an
encoding of the jth element of m̂i from a random encoding. Such AΠ will simulate the
environment for A, placing its target encoding as the jth encoding in the ith state.
Notice that AΠ can observe its target encoding twice. This enables the simulator to
answer to all of A’s queries (x�, f�) in a consistent way.

We distinguish three cases to answer the query (f�, x�), 	 ∈ [1, q], depending on
the value of i.

1. The 	th observation does not contain the ith state: For such a query AΠ

knows the secret inputs and outputs (which either is the ith real state or a
random encoding) and can compute the answer correctly with the appropriate
reconstructor. This simulation is identical to the simulation of Si,j−1 (which
is identical to Si,j for such queries).

2. The 	 = (i + 1)th observation accesses the ith state as part of the input
memory: AΠ puts its target encoding at the jth position of the ith state and
uses the reconstructor (together with other hard-wired inputs) to compute a

wire assignment for Ĉ∗. If the target encoding encodes the element of the
real state then the simulation is identical to Si,j−1. On the other hand, if it is
an encoding of a random value, then the simulation is identical to Si,j . The
difficulty is that AΠ has to come up with a wire assignment for Ĉ∗ that is
consistent with the target encoding. Since the target encoding is only known
to the leakage function, this has to be done inside the leakage function. Hence,
as part of the leakage function, we run the appropriate reconstructor RECĝ

for the gadget that has the target value as input.
3. The 	 = ith observation accesses the ith state as part of the output: The

analysis is similar to step 2, except that inside the leakage function, we need
to use the reconstructor for the gadget that outputs the target encoding.
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A crucial point in the above simulation is that a consistent simulation requires AΠ to
query its target oracle twice: once when the ith state is an input to an evaluation of
Ĉ∗ (i.e., in the (i+1)th round), and a second time when it is part of the output (i.e.,
in the ith round). This is the reason why we need to rely on a 2-adaptive leakage-
indistinguishable encoding scheme. For the details we refer the reader to Claim 2 in
the proof of Lemma 4.15.

Applying Claim 9 repeatedly, we obtain

ExpsimTR (S0,0,A, q, C,m0, k) ≈τD,(q+1)nε2Π ExpsimTR (Sq,n,A, q, C,m0, k) .(D.4)

Note that (D.1), (D.2), and (D.4) hold as long as τA + τD ≤ min(τΠ, τ2Π, τĝ) −
qsτsamp. Combining them and recalling that the simulation given by Sq·s1 is identical
to the simulation given by S02 , and the simulation given by Sq·m2 is identical to the
simulation of S0,0, we get

ExprealTR (A,L, q, C,m0, k) ≈τD,qsεĝ+qmεΠ+(q+1)nε2Π ExpsimTR (S, q, C,m0, k) .

Appendix E. Proofs omitted from section 5.
Proof of Lemma 5.1. Assume for contradiction that D and E are not 2-adaptive

(L′, 2−λτ, ε)-leakage-indistinguishable, then there exists a 2-adaptive (L′, 2−λτ)-adver-
sary A′ that breaks the leakage indistinguishability of C and D with functions from
L′. We will build a (L, τ)-adversary A such that

|Pr[AEval(D,·) = 1]− Pr[AEval(E,·) = 1]| > ε.

A runs A′ as a subroutine and has to adaptively answer its 2 leakage queries f1, f2,
while having only a single query access to its target oracle Eval (i.e., with the function
f ∈ L). We will resolve this by letting f simulate the adaptivity, and outputting the
results of both leakage queries f1 and f2. This will increase the size of the function f
exponentially in λ.
A runs in two phases. A learning phase, where it is supposed to learn all possible

leakage functions that A′ may pick for the second leakage query. Then, a leakage
phase, where it builds a leakage function, obtains valid leakage from Eval with just a
single query, and finally returns the reply to A′.

The learning phase is pretty simple: A runs A′ as a subroutine and gets back
f1. Since A is only allowed to query Eval once, it cannot query Eval with f1 directly.
Instead, it needs to figure out the f2 that A′ will use as its second query for every
possible return value Λ ∈ {0, 1}λ of f1. To do so, it rewinds A′ 2λ times, each time
giving a different Λ to A′ to obtain the function fΛ

2 . (Observe that some values of Λ
may be invalid for the leakage function f1. This might give A′ an indication that she
is run in a simulated environment; in that case, A′ may run forever, but A will stop
her after 2−λτ steps.)

Let us now describe the leakage phase. A will build its leakage function f as
follows: on input S, f computes Λ1 = f1(S), f

Λ1
2 (S), and outputs both values.

The rest of the proof is straightforward: A uses its return from the oracle Eval to
answer the two leakage queries f1, f2 of A′. Since this is a perfect simulation, we get
that if A′ can distinguish with advantage more than ε, then so can A. Notice that
the running time of A is 2−λτ2λ ≈ τ .

We need to compute the circuit complexity of f . All 2λ possible functions of f2
need to be hardwired into the circuit, but they can be computed in parallel with f1
(so they increase the size, but not the depth of the circuit). Then, the output of one
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Fig. 9. The structure of f when L = 1.

of these functions needs to be “selected” according to the output of f1. This selection
can be done by increasing the depth by 2 (not counting NOT gates) and size O(2λ)
(cf. Figure 9 for the case when λ = 1). Thus, we get L′ = C(d− 2, O(s2−λ), �λ/2�) as
stated in the lemma.
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