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One of the open questions in regulatory genomics is how the
efficiency of gene translation is encoded in the coding sequence.
Here we analyse recently generated measurements of folding
energy in Saccharomyces cerevisiae, showing that genes with
high protein abundance tend to have strong mRNA folding (mF;
R¼ 0.68). mF strength also strongly correlates with ribosomal
density and mRNA levels, suggesting that this relation at least
partially pertains to the efficiency of translation elongation,
presumably by preventing aggregation of mRNA molecules.
Keywords: gene translation; mRNA folding; mRNA aggregation;
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INTRODUCTION
Understanding gene expression, and specifically how the effi-
ciency of this process is correlated or encoded in the coding
regions and untranslated regions, has been the topic of dozens of
papers in recent years [1–5].

The abundance level of a protein is related to its mRNA levels,
its translation rate and its degradation rate. Specifically, if we
assume constant mRNA levels, the translation rate should have a
positive effect on the protein abundance (PA), while the
degradation rate should have a negative effect on PA (for example,
see [6]). Expressly, it was suggested that translation and thus PA is
correlated with adaptation to the transfer RNA (tRNA) pool [7],
weak mRNA folding (mF) at the beginning of the open reading
frame (ORF) [8], ORF length [9], GC content [10] and various
ancillary features of the 50 untranslated region (UTR) [1].

In addition, it was found that highly expressed genes tend
to evolve at a slower rate [11], and to have more protein–
protein interactions [12].

Recently, a new technology for measuring folding strength of
RNA sequences at single-nucleotide resolution was developed

[13]. The product of this method, named the Parallel Analysis of
RNA Structure (PARS) score, includes the estimated ratio between
the probability that each nucleotide (nt) in the transcript is in
a double-stranded conformation and the probability that it is in a
single-stranded conformation. The PARS score was computed
in vitro for transcripts devoid of any ribosomes. As mF is a main
feature of a transcript, it might affect its translation rate, or might
be related to its PA in a non-causal way (for example, via its
relation to the mRNA levels).

In this study, we used the availability of such a new tool to
analyse the relationship between mF strength and PA.

RESULTS
The mF strength of a transcript (or a part of it) was defined as the
mean PARS score over the sequence; higher values of this measure
correspond to stronger folding. We found the correlation between
PA (the mean of four data sets, Methods) and mF strength to be
0.68 (P¼ 10�200; Fig 1A); thus, except for measures of codon bias
(for example, the tRNA Adaptation Index (tAI); Methods), the mF
strength is the feature with the highest known correlation to PA
(Fig 1B). Among the analysed features we included amino acid
frequencies (which are known to correlate with the expression
levels [3,14]), GC content and the ORF length. Distinctively the
correlation between mF strength and PA is slightly higher than the
correlation between mRNA levels and PA (Fig 1B).

The correlation remains significant when controlling for mRNA
levels (Fig 1C), and (again excluding codon bias) mF strength is the
feature with the highest correlation to PA given mRNA levels
(Fig 1C). When correlating mF strength with mRNA levels the
correlation (r¼ 0.695; Po10�200) is higher than any other feature
of the coding sequence.

In addition, a significant correlation was found between
predicted local mF energy (Methods) and PA (Fig 1D). When we
performed several regression analysis between PA and various
variables including mF strength, amino acid frequencies, mRNA
levels, codon bias (tAI, Methods), GC content, protein half-life and
gene length, we found that mF strength has significant effect on PA
even when considering all the other variables (P¼ 8.9� 10�17

for mF strength; total correlation of the regressor r¼ 0.84
(Po10�200)); thus, the correlation between mF strength and PA
cannot be explained solely by the aforementioned variables.
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It is important to emphasize that previous papers in the field
have reported different relations between mF and PA, and were
based on predictions of local mF and not real measurements of
mF. Specifically, it was shown that there is selection for weak
folding at the beginning of the coding sequence [7,15], probably
as strong mF in this region decreases the efficiency of ribosomal
binding; furthermore, it was shown that there is selection for
strong predicted mF along the coding sequence (however there is
no correlation between this measure and expression levels) [16].

To understand the observed correlation between mF strength
and PA we performed several more tests. First, we found that there
is a strong correlation between mF strength and ribosomal density
(RD; Methods, r¼ 0.52; Po10�180), and with the product of RD
and mRNA levels (r¼ 0.75; Po10�180), suggesting that the
observed correlation is related to the process of ribosomal
translation (Fig 2A; see regression analysis and comparison to
other features in the Methods and supplementary Tables online).

Second, it is possible that the observed correlation is due to the
folding in specific regions of the transcript (for example, it was
found [7,8,15] that there is selection for weak folding only at the
beginning of the coding sequence, possibly to improve ribosomal
binding). Thus, we computed the correlations between gene
expression levels and mF strength for different segments of the
transcript. We found that the observed correlation is higher when

considering only the coding sequence (r¼ 0.674; Po10�200)
versus when considering the UTRs (50UTR: r¼ 0.374 with
P¼ 1.13� 10�36; 30UTR: r¼ 0.384 with P¼ 1.5� 10�40), and
that the mF strength of different segments of the coding sequence
have similar correlation with PA (Fig 2B; similar results were
obtained when we performed correlations with RD or with the
product of RD and mRNA levels; see supplementary Tables
online). Thus, the observed correlation is related to the ORF and
not due to a specific part of it.

In addition, we found that the ratio between the mean
predicted local folding energy of genes with high PA and the
mean predicted local folding energy of genes with low PA is
higher than in randomized genomes (which maintain the amino
acid content of each gene and the codon bias of the original
genome; see Methods; Po0.05; similar results were obtained for
groups of genes with high/low RD and mRNA levels, Methods);
thus, the stronger folding energy of genes with high PA is probably
under selection, and is not due to amino acid bias.

DISCUSSION
In this study we endeavour to elucidate the reason for the
observed strong correlation between mF strength and gene
expression. To this end, we discerned evidence that supports the
conjecture that the observed correlation between mF strength and
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Fig 1 | Strong association between mRNA folding (mF) strength and protein abundance (PA). (A) A dot-plot of PA versus mean mF strength of the

transcript. (B) Correlation of various features of the coding sequence with PA (features with the top correlations) in comparison to the correlation

with the mF strength. (C) Correlation of various features of the coding sequence with PA given mRNA levels (features with the top partial

correlations), in comparison to the correlation with the mF strength. (D) Correlation between PA and mean absolute levels of predicted local folding

energy along the open reading frame . Note that the mean predicted local folding energy is negative but we show the log of its absolute levels. tAI,

tRNA Adaptation Index.
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expression levels (mRNA levels or PA) is not due to an artefact
and/or bias: First, similar results were obtained based on the
computational predictions of mF, and not only for the PARS score.
Second, the results remain significant also when controlling for
various features of the transcript, which might explain the observed
correlation between the PARS score and PA (for example, amino
acid bias, GC content and dozens of extra features).

Third, a bias in the PARS score is expected to be related to gene
mRNA levels (and not their PA), as it is based on analysis of mRNA
molecules. However, the observed correlation between PA and
mF strength remains significant even when we controlled for
mRNA levels.

In addition, Kertesz et al [13] performed several tests to
demonstrate that their method is without bias. Specifically they
showed that: (A) the RNase cleavage, adaptor ligation and
complementary DNA conversion do not introduce significant
sequence biases, (B) the protocol has a very small bias towards
particular regions along the transcript; (C) the protocol captures
RNA fragments in proportion to their abundance in the initial
pool; (D) the signals generated by RNase V1 (that measures base-
pair conformation) are highly distinct from those generated by S1
nuclease (that measures single-stranded RNA); (E) the RNA

structures measured by PARS are similar to those obtained
with traditional footprinting, reported structures of yeast coding
and non-coding RNAs, and with computational predictions of
RNA structure.

How does mF strength contribute to translation elongation and/
or gene expression efficiency? It is important to emphasize that the
correlations reported in this study do not suffice for determining
the causality of the relation. We propose two general plausible
explanations for the reported phenomenon: (1) Higher expressed
genes are selected for stronger folding that not necessarily
improves directly, and/or in a causal way their expression levels
and/or translation efficiency. (2) The stronger folding of a gene
improves its expression or translation levels in a causal/direct way.

We offer several explicit explanations for the observed
relations.

One possibility is that it increases mRNA half-life. However,
the correlation between mF strength and mRNA half-life is very
low (r¼�0.0607; P¼ 0.026; Fig 2C) in comparison to the
correlations between mF strength and gene expression reported
above, even when controlling for RD (to control for the possibility
that higher ribosomal densities might increase mRNA half-life
[17]; r¼�0.017 with P¼ 0.39). Thus, it seems that mRNA
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degradation, which is usually regulated via the ends of the
transcripts [16,18], is not a main explication for the observed
correlation between PA or mRNA levels and mF strength.

Another possibility is that the observed correlation might be
related to lack of selection for weak mF (which improves
elongation rates) for highly expressed genes, as such genes are
typically occupied by more ribosomes that unfold their mRNA.
However, the observed correlations between mRNA levels/PA
and mF strength remain significant and high even when
controlling for RD (r(PA, PARS|RD)¼ 0.5822, P¼ 6.4� 10�99;
r(mR,PARS|RD)¼ 0.5402, P-value¼ 2.49� 10�196), supporting
the rejection of this hypothesis as a primary explanation for the
observed correlation.

In addition, previous studies based on small-scale experimental
and computational techniques for measuring or estimating mF,
supported the conjecture that strong mF should have a negative
effect on translation elongation and initiation rates [8,19,20].
Thus, strong mF probably does not improve the translation
efficiency of a gene directly.

It is plausible that the observed correlation is due to lesser-
understood features of gene expression.

One plausibility is related to self-folding versus aggregation of
mRNA molecules. If self-intramoleculer folding is strong enough it
can prevent aggregation of mRNA molecules by hybridization
(illustration in Fig 2D; for example, see ref. 21 regarding
competition between self-folding and aggregation of mRNA
molecules). Aggregation of mRNA molecules should decrease
the translation efficiency of the genes involved in it. Therefore,
under this hypothesis, the tendency to aggregate should be more
deleterious for genes with higher mRNA levels and for genes that
are under selection for higher translation rates. Thus, under this
hypothesis, these genes are reasonably under stronger selection for
increased intramoleculer folding.

It is also plausible that the observed correlation is due to (not
necessarily mutually exclusive) facets of the gene translation
process (or more generally the gene expression process) that are
yet unknown. For example, this correlation might be related to the
biophysical and biomechanical features of gene translation
[19,22], which have higher efficiency and/or fidelity when the
mF is higher. The answers related to these aspects of translation
can be gained based on molecular dynamic simulations coupled
with real-time high-resolution measurements of single ribosomes’
translation rates (for example, see ref. 23).

We propose the following experiment for determining the
dominant mechanism that associates mF strength and expression
levels: Generate a highly expressed library of a heterologous green
fluorescent protein(s) with different codon bias and fluorescent
mRNA molecules, while maintaining the protein amino acid
sequence. For each version of the protein, the self-folding (for
example, according to a version of the PARS approach), the
tendency to aggregate (for example, by measuring and analysing
the spatial mRNA molecule florescence distribution; see [24] for
an example of how mRNA molecules can be fluoresced), the
mRNA level, the PA (for example, by the florescent levels of the
green fluorescent protein) and growth rate should be measured.
Such an experiment will enable calculating correlations between
PA or mRNA levels, and mF strength even when controlling for
aggregation levels, in addition to computing the correlations
between aggregation levels and growth rate.

METHODS
Data used. We used the following data in our analysis:
PARS score at a single-nucleotide resolution. The large-scale data
of RNA structure was downloaded from the study by
Kertesz et al [13].

In our analysis we use the ratio of probabilities (instead of the
original log ratio) of each nucleotide. For each transcript, we
average across the PARS score of its nucleotides, and perform our
analyses with the resultant gene vector, representing the PARS
score (mF strength). A similar approach was used when we
analysed subsequences/segments of a transcript.
Protein abundance. We considered four quantitative large-scale
measurements of PA: large-scale data from the study by
Ghaemmaghami et al [25], two large-scale measurements in
two conditions from the study by Newman et al [26] and large-
scale PA from the study by Lee et al [27]. We average across the
four data sets of PA measurements (after normalizing each data set
by its mean), to minimize experimental noise. Similar results were
obtained when we analysed each data set separately (see
supplementary Tables online).
Ribosomal densities. We consider two large-scale RD measure-
ments (the number of ribosomes occupying the transcript divided
by its length); each generated by a different technology. The first
data set was generated more recently by Ingolia et al [28] and the
second by Arava et al [29].

Similarly to the PA, we averaged across the two data sets of
RD to reduce experimental noise. Similar results were obtained
when we analysed each data set separately (see supplementary
Tables online).
mRNA levels. We considered two large-scale measurements of
mRNA levels from the studies by Ingolia et al [28] and Wang et al
[30].

Similarly to PA and RD, we averaged across the two data sets of
mRNA levels.
Coding sequences and UTRs. The coding sequences and UTRs of
Saccharomyces cerevisiae were downloaded from the study by
Kertesz et al [13], and the UTR lengths were based on the study of
Nagalakshmi et al [31].
tRNA copy number. The computation of tAI is based on tRNA
copy numbers (see below). These data were taken from the study
by Tuller et al [7].
dN/dS estimations. These data were taken from the study by Wall
et al [32].
mRNA and PA half-lives. Measurements of mRNA half-lives were
taken from the study by Shalem et al [33], and the measurements
of PA half-lives were taken from the study by Belle et al [34].
Correlations. All the correlations reported in this study are
Spearman correlations.
Prediction of folding energy. We used the Matlab rnafold
function (Matlab Bioinformatics toolbox), which predicts the
folding energy of the secondary structure associated with the
minimum free energy for an RNA sequence (or subsequence).

To obtain the estimation of the mean local folding of a genomic
sequence, we estimated the folding energy of all the sliding
windows of length 40 nt (slide of 1 nt; 40 is the approximated
length of the ribosomes’ footprint [35]), and averaged the resultant
folding energy prediction of all the windows induced by the
sequence. Specifically, mean predicted local folding energies
reported in the paper were performed based on the entire
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transcript of each gene (that is, including 50UTR, ORF and 30UTR)
and for each region (50UTR, ORF and 30UTR) separately. The
correlation between the predicted mean local folding and
the PARS score across the S. cerevisiae ORFs is r¼�0.36
(P¼ 4.2� 10�85).
Randomized profiles of folding energy. To evince that the
correlation between the mean predicted folding energy and PA
is not due to amino acid bias (that is, supporting the conjecture
that the stronger local folding energy of highly expressed genes is
selected for), we performed the following randomization test:

We divided the genes to two groups: 50% of the genes with the
highest PA versus 50% of the genes with the lowest PA. We
computed the ratio between the mean local folding energy in the
group of highly expressed genes, and in the group of lowly
expressed genes.

We compared the obtained ratio correlation with the ratio
observed for randomized versions of the genome. The genome was
randomized in the following manner: for each amino acid in each
gene, we sampled a codon while considering the genomic codon
frequency/codon-bias in S. cerevisiae (that is, more frequent codons
in the genome have a higher probability of being sampled).

Thus, the randomized genomes maintained both the amino
acid content of each coding sequence, and the codon frequencies
of the original genome. We compared the ratio defined above of
the 20 randomized genomes to the original one. Similar analyses
were performed when we divided the genes to the group with top/
lowest: RD, mRNA levels and RD�mRNA (instead of PA).

In all the cases, the ratio between the mean local folding
energy of the group with top values versus the group with the
lowest values was higher for the original data, than all the 20
randomized genomes (that is, empirical P-value o0.05). Speci-
fically, the real ratio was 2.19/4.02/10.7/12.44 standard devia-
tions from the mean of the randomized genomes in the case of PA,
RD, mRNA levels and (RD)� (mRNA levels) respectively.
tRNA Adaptation Index. The tAI [36] gauges the availability of
the different tRNA molecules for each codon along an mRNA (see
exact details in [36]). We obtained tAI measurements from the
study by Tuller et al [7].
Codon Adaptation Index. Codon Adaptation Index is a codon
bias measure similar to the tAI and was downloaded from yeast
database (http://www.yeastgenome.org/).
Analyses preformed based on the PARS score. We performed
non-parametric Spearman correlations for the mean PARS score of
the entire sequence (mF strength, see above) of the 50UTR, coding
sequence and 30UTR, respectively; the mean predicted local
folding energy of the entire sequence (see above) of the 50UTR,
coding sequence and 30UTR, respectively, with the mean
PA, mean PA given mean mRNA levels (partial correlation),
mean RD, the product of the mean RD and mRNA levels, and
mRNA half-lives.

These correlations were compared to the correlations of the
following variables with PA, mean PA given mean mRNA levels
(partial correlation), mean RD, the product of the mean RD
and mRNA levels: GC content, tAI, dN/dS, amino acid frequen-
cies, the length of the coding sequence, mean mRNA levels,
mRNA half-lives and protein half-lives.
mF strength of different segments of the coding sequence. We
sought to investigate the relation between the mean PARS score
(mF strength) of different segments of the transcript, and the PA

of the gene. To that end, we created for each gene a PARS score
profile by averaging across all sliding windows of length 40 nt,
taking up to 40 windows (that is, 40 nt) of the 50UTR upstream to
the start codon and 600 windows (that is, 600 nt) of the coding
sequence. Positions out of the boundaries of a gene (that is, for
genes with 50UTR shorter than 40 nt and/or ORF shorter than
600 nt) were replaced with NaNs (missing values). The product of
this stage is a matrix of mF strength values, with a row (of length
640) for each gene, and the ith column in the matrix correspond-
ing to the ith window from the beginning of the transcript.
We computed the correlation of each of the 640 columns with PA
(Fig 2B) and RD (see supplementary Figs online).

Conversely, we performed the same analysis for 40 windows of
the 30UTR downstream of the stop codon, and 600 windows of the
coding sequence upstream from the stop codon (Fig 2B; the
supplementary Figs online for RD). In this case, we generated a
matrix of mF strength values, with a row (of length 640) for each
gene, and the ith column in the matrix corresponding to the ith
window from the end of the transcript.
Regressors and correlations. To show that the correlation
between mF strength and PA cannot be explained by the
aforementioned additional variables alone, we performed several
linear regression analysis between PA (the dependent variable)
and a set of independent variables that includes the mF strength,
amino acid frequencies, mRNA levels, codon bias (tAI), GC
content and gene coding sequence lengths (a total of 25 variables).
The output of this analysis, performed by MATLAB, shows that
there is a significant positive correlation between the mF strength
and PA, and that it has significant effect on PA even when
considering all the other variables (as reported above). Similar
results were obtained when we replaced the dependent variable
with RD or with the product of the mean RD and mRNA levels: we
found that mF strength has significant effect on mean RD even
when considering all the other variables (P¼ 8.9� 10�17 for mF
strength; total correlation of the regressor r¼ 0.67 (Po10�200));
thus, the correlation between mF strength and RD cannot
alternatively be explained by the aforementioned variables.

Similarly, when we performed the same several regression
with the product of the mean RD and mRNA levels, we received
a correlation of r¼ 0.89 (Po10�200; P¼ 8.9� 10�17 for
mF strength).
The feature ‘product of the mean RD and mRNA levels’. In
addition to the feature RD that represents the mean ribosomal
‘load’ of a certain mRNA of the gene, we also considered the
feature (mRNA levels)� (RD). This feature represents the total
ribosomal load of a certain gene; thus, in our opinion it should
better correlate with coding sequence features related to the
optimality of translation elongation (see also [37]).
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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