
Maximizing Non-Linear Concave Functions in Fixed Dimension

Sivan Toledo∗

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Abstract

Consider a convex set P in IRd and a piecewise poly-
nomial concave function F :P → IR. Let A be an al-
gorithm that given a point x ∈ IRd computes F (x) if
x ∈ P, or returns a concave polynomial p such that
p(x) < 0 but for any y ∈ P, p(y) ≥ 0. We assume
that d is fixed and that all comparisons in A depend
on the sign of polynomial functions of the input point.
We show that under these conditions, one can find
maxP F in time which is polynomial in the number of
arithmetic operations of A. Using our method we give
the first strongly polynomial algorithms for many non-
linear parametric problems in fixed dimension, such
as the parametric max flow problem, the parametric
minimum s-t distance, the parametric spanning tree
problem and other problems.

In addition we show that in one dimension, the
same result holds even if we only know how to approx-
imate the value of F . Specifically, if we can obtain an
α-approximation for F (x) then we can α-approximate
the value of maxF . We thus obtain the first poly-
nomial approximation algorithms for many NP-hard
problems such as the parametric Euclidean Traveling
Salesman Problem.

1 Introduction

Consider a convex set P in IRd and a piecewise poly-
nomial concave function F :P → IR. Let A be an al-
gorithm that given a point x ∈ IRd computes F (x) if
x ∈ P , or returns a separation polynomial, a concave
polynomial p such that p(x) < 0 but for any y ∈ P ,
p(y) ≥ 0. We assume that d is fixed and that all
comparisons in A depend on the sign of polynomial
functions of the input point which are called compari-
son polynomials. Our main result is that under these

∗This research was supported in part by the Defense Ad-
vanced Research Projects Agency under Grant N00014–91–J–
1698. Author’s e-mail address: sivan@theory.lcs.mit.edu.

conditions, one can find maxP F and a maximizer in
time which is polynomial in the number of arithmetic
operations of A. Cohen and Megiddo [3, 4] and inde-
pendently Norton, Plotkin and Tardos [9] obtained a
similar result for the case where F is piecewise linear
and the separation and comparison polynomials are
all linear.

The technique of [3, 4, 9] extends the parametric
search paradigm of Megiddo [7] whose main idea is
to simulate A symbolically on a point x? which is a
maximizer of F . Since x? is not known, a method
for resolving comparisons in the simulated algorithm
must be provided. Since every comparison is assumed
to depend on the sign of some polynomial p in the in-
put point, we could decompose IRd into cells in which
the sign of p is constant. Determining the cell which
contains x? enables us to determine the sign of p(x?)
and to resolve the comparison. When a comparison
polynomial is linear, the space decomposition is into
a hyperplane H and two open half spaces. We call
such a hyperplane a critical hyperplane. The restric-
tion of F to H is a concave function in one dimen-
sion lower. By induction, the maximum of F on H
can be found. The assumption that the comparison
polynomials are linear also makes it relatively easy to
explore the neighborhood of H , and to determine on
which side of it F is increasing, thereby resolving the
comparison. Since it is assumed that F is piecewise
linear, there is a maximizer of it which is a vertex of its
graph which can be found using linear programming.

In this paper we show how to solve the problem
without assuming that F is piecewise linear and that
the comparison and separation polynomials are lin-
ear. Since in this case it is no longer true that the
decomposition of the space into cells which are invari-
ant for the sign of a comparison polynomial consists
of a hyperplane and two open half spaces, we cannot
use the parametric searching technique directly. In-
stead we use a searching technique which is based on
the weighted Euclidean 1-center algorithm of Megiddo
[8]. In this technique, the d dimensional algorithm

works by simulating the d − 1 dimensional one on a
hyperplane that contains a maximizer of F . Unfor-
tunately, the parametric searching technique as de-
scribed by Megiddo and others [7, 3, 4, 9] can use only
a certain class of algorithms as the non-parametric al-
gorithm. It turns out that parametric searching algo-
rithms do not belong to this class, since they compute
roots of polynomials. Using Collins’ cylindrical alge-
braic decomposition algorithm [1], we extend the class
of algorithm which can serve as non-parametric algo-
rithms. This “closes” this class under the operation
of paramertization, and enables us to apply the para-
metric searching technique recursively.

Another consequence of the non-linearity of the
comparison polynomials is that it becomes difficult to
explore the neighborhood of a critical hyperplane by
exploring the behavior of the comparison polynomials
in the neighborhood of a point. We therefore develop a
new technique to decide on which side of a critical hy-
perplane F is maximized. This technique is based on
the observation that we can avoid resolving some com-
parisons and take both sides of the associated branch
simultaneously. We show that at any time during the
execution of our algorithm there can be only one un-
resolved comparison, which is the one corresponding
to the hyperplane on which the highest value of F
was computed. The last problem that must be solved
is that of finding a maximizer of F when there is no
maximizer which is a vertex of the graph of F . This
is done by computing certificates of optimality during
the execution of the algorithm in lower dimensions,
and using Lagrange multipliers to find a maximizer.

Using our new method we obtain the first strongly
polynomial algorithms to a wide variety of non-linear
parametric problems in fixed dimension. For example,
given a graph in which the edges have concave poly-
nomial weights, we can maximize the max flow in the
graph, the minimum spanning tree, the minimum s-t
distance and so on. The generality of our results does
not come for free, and the cost is a double exponen-
tial dependency on the dimension in the running time
of our algorithms, while in the linear case it is singly
exponential.

The second result obtained in this paper is the ap-
plication of Megiddo’s technique to the approximation
of the maximum of univariate piecewise polynomial
concave functions which are NP-hard to evaluate, but
for which there is an approximate evaluation algo-
rithm. Specifically, if there is an algorithm A that
on input x ∈ [a, b] computes a value F (x) ≥ A(x) ≥
αF (x) in time T , then we can compute in time O(T 2)
a value m that satisfies max[a,b] F ≥ m ≥ α max[a,b] F .
Since in most cases in which evaluating F is NP-

hard finding maxF is also NP-hard, we thus obtain
the first polynomial approximation algorithm to many
NP-hard problems, such as the parametric Euclidean
Traveling Salesman Problem.

The model of computation we use in this paper is
one in which all the solutions of a zero-dimensional
polynomial ideal can be found in constant time, when
the number of generators and variables is constant. It
should be stressed that these assumptions are satis-
fied if one is using symbolic computation, and it can
be verified that our algorithms are indeed polynomial
both in terms of the number of arithmetic operations
performed (which is our main result), and in terms of
bitwise operations.

2 Maximizing One Dimensional Con-
cave Functions

We begin with a brief review of Megiddo’s para-
metric search technique [7] and how to use it to solve
parametric maximization problems. We first define
the class of algorithms we can use as evaluators of F .

Definition Let A be an algorithm that gets as a part
of its input a point x ∈ IRd, and returns a real num-
ber depending on x, denoted F (x). We say that A is
polynomial in x with degree δ if the only dependencies
on x are:

1. A is allowed to evaluate the polynomials
p1(x), . . . , pk(x) of degree at most δ, where δ does
not depend on the input.

2. The only operations on variables inA that depend
on x are addition of such variables, addition of
constants, and multiplication by constants.

3. The conditional branches in A that depend on x
depend only on signs of variables that depend on
x.

Definition A point x0 ∈ P is called a non-singular
point of F if there is an ε > 0 such that the restriction
of F to P ∩{x : |x−x0| < ε} is a polynomial function.
If x0 is a non-singular point of F , this restriction of F
is called the piece of F at x0.

Corollary 1 If A is polynomial in x with degree δ,
then all the variables in A that depend on x contain
polynomials of degree of at most δ, and F (x) is piece-
wise polynomial whose pieces are polynomials of degree
at most δ.

Assume that we have an efficient algorithm A for
evaluating F (x), which is polynomial in x with some
fixed degree δ, and that F is a concave function.
Megiddo’s main idea is to simulateA at a maximizer of
F , denoted x?. As long as no comparisons are made,
that is, no conditional branches that depend on the
input point are to be executed, it is easy to simulate
the algorithm, by treating the variables as polynomi-
als and performing polynomial arithmetic. How do we
resolve a conditional branch that depend on the sign
of a variable? We find the roots of the polynomial
stored in that variable, and locate x? among them as
follows. We evaluate F at each of the roots, and deter-
mine the location of a maximizer with respect to each
of the roots. (For now we assume that if we can eval-
uate F at a point we can also decide the direction to
x?, and in section 2.1 we justify this assumption.) In
other words, for every root, we test whether it is x?, or
else whether x? is to its left or to its right. Given this
information, we can easily decide which way should
the branch take, since the sign of a polynomial is con-
stant between its roots. We thus obtain a smaller and
smaller interval that is known to contain x?, and fi-
nally the algorithm terminates. In section 2.1 we show
how to obtain at this stage a maximizer of F and the
two pieces of F to its left and right. These pieces
allow us to generalize the algorithm to higher dimen-
sions, and they provide a certificate of optimality for
the maximizer.

In more abstract terms, given a comparison poly-
nomial p, we decompose the space (here IR) into cells
which are invariant for the sign of p. In the one dimen-
sional case, the cells are points, which are the roots of
p, and open intervals. Given this decomposition, we
decide in which cell there is a maximizer of F , and
thus resolve the comparison.

Running time analysis. Assuming that the algo-
rithm A runs in T0 time, the one dimensional max-
imization algorithm runs in time T1 = O(T 2

0), since
whenever the algorithm makes a comparison, we eval-
uate the function at each of the roots. Megiddo [7]
noticed that if we also have a parallel algorithm that
evaluates the function, we can exploit the parallelism
to obtain faster maximization algorithm. Assume that
the parallel algorithm uses P processors and runs in Tp

parallel time. We simulate the algorithm sequentially.
In each parallel step there are at most P independent
comparisons. Instead of evaluating the function at
each of the roots of all the associated polynomials, we
perform a binary search over the set of O(P) roots to
locate x? among them. This results in O(log P) eval-
uations of F , and O(P) overhead for performing the

binary search by repeatedly finding the median of the
set of unresolved roots. Having done this, we can de-
termine the sign of each of the O(P) roots at x? and
proceed to the next parallel step. The total cost of this
procedure is T1 = O(PTp +T0Tp log P). Since we only
require that comparisons will be made in parallel, we
can use Valiant’s weak model of parallel computation
[10].

2.1 Where is F Maximized?

Given a point x1, we need to determine the loca-
tion of x? relative to x1. The techniques for doing so
in one dimension and the techniques that were used
by [3, 4, 9] do not seem to generalize to non-linear
comparison polynomials and higher dimensions. This
section describes a new technique which is easy to gen-
eralize. We evaluate F (x1). If we have previously en-
countered a point x0 such that F (x0) ≥ F (x1), we can
safely assume that there is a maximizer in the direction
of x0. Otherwise, we do not resolve the comparison.
We duplicate the state of the simulated algorithm, and
in one copy resolve the comparison as if there is a max-
imizer to the left of x1, and in the other copy as if there
is a maximizer to the right of x1. We run those two
copies in parallel (by interleaving their execution on
a sequential machine). For each root of a comparison
polynomial we obtain (from either copies; we do not
know which one of them is correct), we evaluate F at
that point. As long as we do not encounter a value
of F larger then F (x1), we can determine which side
of a given root contains a maximizer. If we run into
a point x2 where the value of F is larger than F (x1),
we again will not be able to resolve the comparison.
But in this case, the maximizer is on the same side of
x1 as x2, so now we can resolve the comparison that
involved x1. In particular, we can decide which copy
of the algorithm was given the correct answer and dis-
card the other. Of course, we now must run two copies
of the algorithm in which we resolve the comparison
involving x2 in different ways. There are always two
copies of the algorithm executing. Eventually, both of
our copies will terminate. Each one of them returns
F (x) as a polynomial. One of them corresponds to the
piece of F to the right of the point xk with the highest
F value encountered, and the other corresponds to the
piece of F to the left of this point. We maximize these
polynomials over the corresponding intervals. If one of
them attains a maximum higher then the other inside
its interval, this is the optimum, and this polynomial
is the piece of F on both sides of the maximum. Oth-
erwise, they both attain the same maximum, and in
that case the point xk is a maximizer, and these two

polynomials are the pieces of F on its two sides. Since
in most cases the cost of evaluating F dominates the
cost of duplicating the state of the algorithm we ignore
this cost in the running time analysis.

The same idea works in any dimension. Let
F : IRd → IR be a concave function. Suppose that
we already know the value of F at some points in
IRd, and that the highest value we computed is F (x0).
Given a hyperplane H , let the maximum of F on H be
F (x1). If F (x0) ≥ F (x1), we can safely assume that
there is a maximizer in the direction of x0. Otherwise
there is another point x on the other side of H with
F (x) > F (x1). Hence at the intersection of the line
segment xx1 with H the value of F must be higher
then F (x1) due to the concavity of F , a contradiction.

2.2 Finding a Feasible Point

In many cases the domain P is either all of IRd, or
easy to compute as the intersection of a polynomial
number of constraints pi(x) ≥ 0, where the pi’s are
concave polynomials, such as in the parametric max
flow problem. But there are cases in which the do-
main of F is defined by an exponential number of con-
straints, such as the parametric minimum s-t distance
in a connected graph. Using ideas from [3, 4, 9], we de-
scribe how to deal with this problem in the non-linear
case.

We assume that there is an algorithm Af for testing
whether a point x belongs to P , which either declares
that x ∈ P , or declares that x 6∈ P and provides in
addition a violated constraint p(x) < 0, where p is a
concave polynomial. We use this algorithm to either
find a point xf in P or decide that P is empty. If P
is empty we report this and halt. Otherwise, given
a critical point x0, we test whether x0 ∈ P , and if
not, we know that there is a maximizer of F in the
direction of xf .

We simulate the feasibility testing algorithm Af on
xf . During the simulation, we maintain an interval
[a, b], which is known to contain P . In addition, for
each endpoint z ∈ {a, b} of the interval, if it is fi-
nite, we also maintain a constraint pz that is violated
if we pass this endpoint. (We begin with the inter-
val (−∞,∞).) When we must resolve a comparison,
we find the roots of the comparison, and determine
whether one of them is a feasible point, in which case
we return this point and halt. If a given root being
tested is not in P , a violated constraint p is returned.
Since for each x ∈ P , p(x) ≥ 0, we know that P must
lie in [a, b] and also in the interval {x : p(x) ≥ 0}.
We therefore update [a′, b′] = [a, b] ∩ {x : p(x) ≥ 0}.
If this new interval is empty, we conclude that P is

empty. Note that this event actually carries more in-
formation, since if we assume without loss of generality
that {x : p(x) ≥ 0} is to the left of [a, b], then the two
constraints p and pa provide a certificate that P is
empty. If the new interval in not empty and not equal
to [a, b], we replace the polynomials associated with
the updated endpoints with p. It is easy to see that if
we have a parallel feasibility testing algorithm, we can
exploit the parallelism and obtain a faster algorithm
using Megiddo’s scheme.

If at no point of the simulation the feasible interval
becomes empty, then our simulated algorithm termi-
nates, and returns an answer. In addition, we have
an interval [â, b̂] where P must lie. If the algorithm
returns “yes”, it means that every point in [â, b̂] is a
feasible point. Otherwise, it returns “no” and a vi-
olated constraint p. It follows that this constraint is
violated for all points of [â, b̂], so this constraint to-
gether with either pâ or pb̂ provide proof of emptiness
for P .

3 Extending the Method to Two Di-
mensions

We now describe the parametric maximization al-
gorithm in two dimensions, that is, when F :P → IR
where P ⊆ IR2. Let (x?, y?) be a maximizer of F .
The main idea of the algorithm is to simulate the
one dimensional algorithm on F restricted to a line
x = x?. Since a concave function restricted to a line
(or a hyperplane in higher dimensions) is still con-
cave, the problem of maximizing F restricted to a
line is a one dimensional problem. If we can simu-
late the one-dimensional algorithm on such a line, we
can find a maximizer y? on the line, which is also a
global maximizer, and we are done. The problem of
course is how to make decisions during the simulation.
Let p be a comparison polynomial in the simulated
non-parametric algorithm. We compute a cylindrical
decomposition of IR2 which is invariant for the sign of
p. This decomposition is constructed by computing
the self intersections of the curve p = 0 and the points
of vertical tangency of the curve. Those points are
projected on the x-axis, and the plane is decomposed
into vertical slabs between those points. A vertical
slab (which is a generalized cylinder) may intersect
the curve p = 0, but the roots of p do not intersect
each other inside the slab (see Figure 1).

We execute the one dimensional algorithm on the
vertical lines that decompose the plane into slabs, and
we decide in which slab there is a maximizer (recall
that in Section 2.1 we have shown that if we can max-

x

y

Figure 1: A cylindrical decomposition of IR2 invariant for
the sign of a polynomial. The solid curve is the root of
the polynomial.

imize F on a line, we can also decide on which of its
sides there is a maximizer).

The crucial point now is that in each slab there is
a constant number of roots to the polynomial p(x, y)
as a one dimensional polynomial in y. The location of
those roots depends on x, but the dependency is con-
tinuous. Hence we can simulate the one dimensional
algorithm in a consistent manner. However, the one
dimensional algorithm executes the non-parametric al-
gorithm on the roots of p. We cannot perform this
directly, since the location of the roots depend on x.
However, we can simulate the non-parametric algo-
rithm. When the non-parametric algorithm performs
a comparison involving a polynomial q, we compute a
cylindrical decomposition which is invariant for both
p and q. Again, we determine the slab in this decom-
position that contains a maximizer. We examine the
root of p on which we simulated the non-parametric
algorithm in this slab, and determine the sign of q in
that cell of the decomposition, which is possible since
the decomposition is invariant for the sign of q.

Once all the executions of the non-parametric algo-
rithm terminate, we must compare the returned val-
ues, which are polynomials, to each other in order
to decide which one is highest. To compare a value
r1(x, y) on a root y1(x) of p with a value r2(xy) on
a root y2(x), we compute (again using cylindrical de-
composition) the x-coordinates of the intersections of
{r1(x, y1) = r2(x, y2), p(x, y1) = p(x, y2) = 0}, and

decide in which slab there is a maximizer. Using this
information, we can compare r1 to r2. Using a similar
approach we can also find the maximum of a poly-
nomial in a certain interval, which is required in the
technique of Section 2.1. Finally the simulated one
dimensional algorithm terminates. In fact, two copies
of it terminate, one which is a simulation to the left
of the vertical line l on which the highest value of F
was found, and the other to its right. Each returns a
curve pi(x, y) = 0, i ∈ {L, R} on which the maximum
is obtained, and the two pieces of F above and below
this curve, pi,A and pi,B. We find the maximum of F
to the left of the line L by solving

max pL,A(x, y)
pL,A(x, y) = pL,B(x, y)

using Lagrange multipliers. All the functions involved
are polynomial, so this can be solved using cylindrical
decomposition (since the problem reduces to finding
all the solutions to a system of polynomial equations).
This method establishes the global maximum, and in
addition generates four pieces of F that prove that
the point found is indeed a maximizer. Using Helly’s
theorem, it is easy to show that we can reduce the
number of these pieces to three.

Running time analysis. We first note that the cost
of constructing the cylindrical algebraic decomposition
of a constant number of polynomials of bounded de-
gree in fixed dimension is only a constant (in fact,
the cost is polynomial in the number of polynomi-
als, the degree, and the binary encoding of the co-
efficients, but not in the dimension). Denoting the
running time of the non-parametric algorithm A by
T0 and of the d-dimensional algorithm by Td, the run-
ning time is T2 = O(T0(T1 + T0T1)) = O(T 4

0). If there
exists a parallel non-parametric algorithm that runs in
Tp parallel time and uses P processors, we can again
improve the running time. The total running time is
O(PTp+Tp(log PT1+log2 PT1+log PTp log PT1)) and
since T1 = O(PTp + Tp log PT0), the running time is
T2 = O(T0(Tp log P)3). Due to lack of space we omit
the details of this improvement.

3.1 Finding a Feasible Point

We now extend the technique of section 2.2 to two
dimensions; the same technique works in any dimen-
sion. We use the technique we have just described for
simulating the one dimensional feasibility testing algo-
rithm on a vertical line that intersects P . All we need
to show is how to decide on what side of a given line P

lies, since if P intersects the line, the one dimensional
algorithm will detect this.

Suppose we are given a line in the plane, and must
test on which of its sides P lies. Since the one di-
mensional algorithm determines that the line does not
intersect P , it reports two constraints that are contra-
dictory on that line, p and q. Since we simulate the one
dimensional algorithm and perform its arithmetic on
polynomials, the violated constraints are polynomials
in x and y. Since for any (x, y) ∈ P both p(x, y) ≥ 0
and q(x, y) ≥ 0, we find a point in the intersection of
p(x, y) ≥ 0 and q(x, y) ≥ 0. If there is such a point x0

and P is not empty, then P lies on the same side of
the line as x0, and we maintain p and q as a certificate
for this fact. If p(x, y) ≥ 0 ∩ q(x, y) ≥ 0 = ∅, then P
is empty.

If the simulated algorithm terminates without ei-
ther finding a point in P , or deciding that P is empty,
we have two cases. The answer it gives is valid for
any line x = x0 we might run it on, as long as x0 is
in the interval [xa, xb] which is known to contain P .
When the simulated algorithm terminates, if it returns
a point in P , we are done. Otherwise it declares that
the intersection of P with any vertical line x = x0 in
the vertical slab which is known to contain P is empty,
and supplies a pair of constraints p and q as a certifi-
cate. We compute a point in p(x, y) ≥ 0 ∩ q(x, y) ≥.
If there is no such point, then p and q are a proof that
P is empty. Otherwise, if they intersect above to the
left of the slab for example (i.e. to the left of xa), then
p and q together with the two constraints that assert
that P is to the right of xa, provide a proof that P
is empty. Those four contradictory constraints allow
us to generalize the algorithm to higher dimension, in
the same way we used the one dimensional certificates
of emptiness for constructing the two dimensional al-
gorithm in this section. The number of constraints is
a certificate of emptiness can be brought down to at
most d + 1 in dimension d, by Helly’s Theorem.

4 Higher Dimensions

Before we describe the algorithm and prove its cor-
rectness, we need some definitions and lemmas.

Definition A semi-algebraic cell of IRd is a set of
points satisfying a finite set of polynomial equalities
and inequalities.

Definition A semi-algebraic variety is either a semi-
algebraic cell, or one of the sets A∩B, A∪B and A\B,
where A and B are two semi-algebraic varieties.

Definition A decomposition of IRd is the representa-
tion of IRd as the union of a finite number of disjoint
and connected semi-algebraic varieties.

Definition A decomposition of IRd is invariant for
the signs of a family of polynomials if, over each cell of
the decomposition, each polynomial is always positive,
always negative, or always zero.

Definition A decomposition Dd of IRd, that is IRd =
E1 ∪ · · · ∪ EN is cylindrical if n = 0 (the trivial case)
or if n > 0 and:

1. IRd−1 has a cylindrical decomposition Dd−1 which
can be written IRd−1 = F1 ∪ · · · ∪ FM , and

2. For each cell Ei of Dd there is a cell Fj of Dd−1

such that Ei can be written in one of the following
forms

{(x, y) : x ∈ Fj ∧ y < fk(x)} segment
{(x, y) : x ∈ Fj ∧ y = fk(x)} section
{(x, y) : x ∈ Fj ∧ fk(x) <

y < fl(x)} segment
{(x, y) : x ∈ Fj ∧ y > fk(x)} segment

where the fk’s are the solutions of polynomial
equations (x denotes x1, . . . , xd−1 and y denotes
xd).

Theorem 2 (Collins) There exists an algorithm
that computes a cylindrical decomposition of IRd in-
variant for the sign of a family of n polynomials. If
the polynomials are all of degree δ or less, and the
length of the binary encoding of their coefficients is
bounded by H, the running time of this algorithm is
bounded by

(2δ)2
2d+8

n2d+6
H3.

Lemma 1 Let Dd be a cylindrical decomposition of
IRd invariant under a family P of polynomials, and
let H be a hyperplane in IRd specified by x1 = α for
some real α. Then the intersection of Dd with H is
a cylindrical decomposition of IRd−1 (with the natural
mapping of IRd−1 onto H) invariant under the restric-
tion of the polynomials in P to H.

Proof: The intersection of Dd with H is obviously a
decomposition of IRd−1 and invariant under the signs
of the family of polynomials. We prove that it is also
cylindrical. The proof uses induction on the recursive
structure of the cylindrical decomposition. We assume
that the intersection of Dd−1 with H is cylindrical,
and we prove that the intersection of Dd with H is

cylindrical. The claim is obviously for d = 1, because
D1 is a decomposition of the x1 axis which is invariant
for the sign of some family of polynomials P1. The
intersection of H with the x1-axis is only a point, and
the decomposition of a point is always cylindrical and
invariant for the signs of P1.

We now assume that the claim is true for Dd−1. Let
C′ be a cell of the intersection of Dd with H , which is
the intersection of the cell C with H . Let us assume
that C is of the form

{(x1, x2, . . . , xd) : (x1, x2, . . . , xd−1) ∈ F ∧
xd > fk(x1, x2, . . . , xd−1)}

where F ∈ Dd−1. Let F ′ be the intersection of F with
H . Then C′ can be written as

{(α, x2, . . . , xd) : (α, x2, . . . , xd−1) ∈ F ′ ∧
xd > fk(α, x2, . . . , xd−1)}.

The other cases are similar. We note that the cru-
cial point in the proof is that H is parallel to all the
projection axes.

Lemma 2 Using the same notation, let

D1 = {−∞ = α0, α1, . . . , αk, αk+1 = ∞}
(that is the α’s are the points in the one dimensional
decomposition). Then the intersection of Dd with H
depends continuously on α as long as αi < α < αi+1.

Proof: It is obvious that the intersection of H with
D1 changes continuously. Let us assume that the inter-
section of H with Dd changes continuously but that
the intersection with Dd+1 does not. This can only
happen if for some αi < α < αi+1 two sections of Dd+1

intersect, which contradicts the previous lemma.

Now let us turn our attention to the d-dimensional
algorithm. The algorithm has two phases. In the first
phase, a series of d-dimensional cylindrical decomposi-
tions (CAD’s for short) are constructed, each invariant
for the signs of up to d polynomials. Once a CAD is
constructed, the (d − 1) dimensional algorithm is ex-
ecuted on the hyperplanes x1 = αi, where the α’s are
the points in D1, which we call critical values. When
this phase terminates, the algorithm obtains two val-
ues of F , that are the maximum of F on hyperplanes
x1 = α; one of the values is valid for αa < α < αb,
and the other for αb < α < αc. Each of those values,
which are polynomials, is supplemented by a family of
up to d + 1 pieces of F which serve as a certificate of
optimality. Let us denote those families PL and PR.
The algorithm maintains the property that there is a

maximizer of F , (x?
1, . . . , x

?
d) with αa < x?

1 < αc. Dur-
ing the second phase a global maximizer of F is found
by solving

max pL,1

pL,1 = · · · = pL,k pL,i ∈ PL, k ≤ d + 1

using Lagrange multipliers, and similarly for PR. The
global maximizer is the highest of the two. If one is
higher than the other, the new family P that serves as
a certificate for optimality is either PL or PR. If the
two values are equal, then the new family is a subset
of PL ∪PR. The d + 2 required polynomials are found
by using Helly’s Theorem and examining all subsets
of PL ∪ PR of size d + 2.

The above description is true for the one dimen-
sional algorithm and the two dimensional algorithm
that we have already described, and it was already
established that these are correct. It is obvious that
given a d+1 dimensional problem, we can execute the
d dimensional algorithm on any hyperplane x1 = α
in IRd+1, and the d− 1 dimensional algorithm on any
hyperplane {x1 = α, x2 = β} and so on. Consider an
execution of the d dimensional algorithm on x1 = α.
If we carry the value α as a symbolic value, we ob-
tain the location of the maximizer and the value of
the maximum in terms of α (a value v is implicitly ex-
pressed as p(v, α) = 0 for some polynomial p). Since
the algorithm has only a finite number of execution
paths, there must be discrete values of α in which
the execution of the d dimensional algorithm changes.
The d + 1 dimensional algorithm simulates the d di-
mensional one over two adjacent open intervals, such
that in each of them the execution path of the d di-
mensional algorithm does not change, and such that
the convex hull of them contains a value x?

1 which is a
projection of a maximizer of F , (x?

1, . . . , x
?
d+1).

We use the fact that given a value α0, it is possi-
ble to decide the relation of α0 to x?

1 by executing the
d dimensional algorithm on the hyperplane x1 = α0.
There is always one value with respect to which we
do not know the location of x?

1. This is why we end
up with two open intervals whose convex hull con-
tains x?

1. We simulate the d dimensional algorithm.
When it constructs a CAD, we construct the CAD in
IRd+1, and test which slab of IRd+1 contains a maxi-
mizer. Within this slab, which is induced by the points
in the one dimensional decomposition, the intersec-
tion of the hyperplane x1 = α with the CAD is a d
dimensional CAD that changes continuously, by the
lemmas above. Now the d dimensional algorithm exe-
cutes the d− 1 dimensional one on the x2 critical val-
ues of the CAD (since we associate IRd with the space
(α, x2, . . . , xd+1)). However, in the simulation these

critical values depend on α, in the sense that they are
specific roots of some polynomial p(x1, x2). There-
fore we simulate the d− 1 dimensional algorithm, and
whenever it constructs a CAD invariant for the signs
of some polynomials, we construct a CAD invariant
for their signs and for the sign of p(x1, x2) in IRd+1.
We then test in which slab of IRd+1 there is a maxi-
mizer, and in that slab the d− 1 dimensional CAD on
the root of p changes continuously.

Finally, when the two values of F are obtained, each
with a family of polynomials that serve as a certificate
for optimality, it is easy to find a global maximizer, by
comparing the two values, finding the critical points
of x1 in which they are equal, and deciding in which
slab there is a maximizer. In that slab, one of them
is higher, so we use its value, and we obtain a real
value by maximizing the answer (which is a function
of x1) over the interval of x1 that is known to contain
a maximizer.

Note that it is still true that this algorithm only
constructs CAD’s in IRd+1 and executes the d dimen-
sional algorithm on the critical values of the CAD’s.
This proves the correctness of the algorithm in any
dimension by induction.

The running time. When the d + 1 algorithm ex-
ecutes, it simulates the d dimensional one, then the
d− 1 dimensional one and so on. For each CAD con-
structed by one of the simulated algorithm, a CAD
in IRd+1 is constructed and the d dimensional algo-
rithm is called a constant number of times. There-
fore the number of CAD’s that are constructed is
Cd+1 = CdCd−1 · · ·C1, and the running time is is
Td+1 = TdC

2d−1
1 . The solution of this recurrence is

Cd = C2d−1

0 and Td = T0C
2d−1
0 . Again, the running

time can be improved when there is a parallel algo-
rithm for evaluating F . We thus obtain the following
theorem.

Theorem 3 Let A be a polynomial algorithm in x
with degree δ, where x ∈ IRd. Let F :P → IR be a
concave function, and let P ⊆ IRd be a convex set. As-
sume that for any x ∈ P, A(x) = F (x), and for any
x 6∈ P, A(x) = px where px is a concave polynomial
such that px(x) < 0, but for any y ∈ P, px(y) ≥ 0.
Assume that A runs in time T , and that there is an
equivalent parallel (in Valiant’s model of parallel com-
putation [10]) algorithm Ap that runs in time Tp and
uses P processors. Then there is an algorithm Ad that
runs in time O(T0(Tp log P)2

d−1) and either decides
that P = ∅, or decides that F is unbounded on P, or
finds the maximum of F on P.

5 Approximately Maximizing NP-
Hard functions

Roughly speaking, up to now we have shown that
given a piecewise polynomial concave function, if we
can evaluate it then we can also maximize it. How-
ever, there are many concave functions of this type
that we do not know how to evaluate efficiently, but
that we can approximate efficiently. For example, con-
sider the problem of maximizing the Euclidean TSP
function over an interval [a, b] in which the distances
in the graph satisfy the triangle inequality. The value
of ∆-TSP at a point is induced by the lengths of the
edges in the graph, le: [a, b] → IR for all e ∈ E. In
every point of this interval, it is possible to approxi-
mately evaluate the length of the minimum TSP tour.
In O(V 3) time we can find a tour with a length of at
most 3/2 times the length of the minimum tour, us-
ing Christofides’ algorithm [2]. Since this algorithm is
strongly polynomial, the natural question that arises
is therefore “can one construct an algorithm for ap-
proximating the maximum of ∆-TSP?” (It is obviously
NP-Hard to find the exact maximum.) The following
theorem implies that the answer is yes.

Theorem 4 Let F : [a, b] → IR be the minimum of
some concave polynomial functions {pi}i∈I of some
fixed degree, let M = max[a,b] F (x), and let A be an α-
approximation algorithm of F . That is, A is an algo-
rithm which is polynomial in x, that on input x ∈ [a, b]
returns in time T a polynomial pj, j ∈ I, such that
F (x) ≤ pj(x) ≤ αF (x). Then a point x? ∈ [a, b] can
be found in time O(T 2) such that M ≤ A(x?) ≤ αM .

Proof: We employ Megiddo’s technique, simulating
A, performing the arithmetic on polynomials. When
we encounter a comparison in A involving the sign
of some polynomial p, we find its roots and run A
on the roots that fall inside [a, b], and on a and b.
While running A on the roots, we keep track of the
variables as polynomials, so that we get the results as
polynomials pj . Unfortunately, there is not enough
information in these polynomials to tell us between
which two roots of p we can find a maximizer of F .
However, given a root xj and a concave polynomial
pj that was returned by A when executed on xj , we
behave as if the maximizer of F is on the side of xj

where pj is increasing. If pj is not increasing on either
side, we halt and return pj(xj). We keep track of the
interval where we assume the maximizer is (replacing
perhaps a or b with xj), and continue to the next root.
When the simulated algorithm terminates (in case we
do not halt earlier), we report the highest point we
have encountered, or the maximum of the polynomial

that was returned by the simulated algorithm over the
interval that is assumed to contain a maximizer of F ,
whichever is higher.

The correctness of this procedure follows from the
following case analysis. If the final interval does not
contain a maximizer of F , then we made an error
somewhere. Without loss of generality assume that
we decided that the maximizer is to the left of xj ,
when it is on the right (see Figure 2). Since pj is non-
increasing to the right, F (x) ≤ pj(xj) = A(xj) for
any x to the right of xj . Since the maximizer is to
the right, it is one of these x’s, so M ≤ A(xj) and
therefore A(xj) is the required approximation for M .
Otherwise, the final interval contains a maximizer of
F , denoted x′. But in this case, M = F (x′) ≤ A(x′),
so we obtain a value which is at least M .

Finally, it is obvious that we cannot find any value
A(x) higher than the desired approximation, other-
wise αM < A(x) ≤ αF (x) ≤ αM , a contradiction.

x

y

xj

Figure 2: Making a wrong decision and searching to the
left of xj does no harm since if F is maximized to the
right of xj , then we already have an α-approximation of
maxF .

An important point that should not be overlooked
in this scheme is the problem of consistency. While
in Megiddo’s general framework it is not necessary to
maintain the interval in which the optimum is known
to be located, it is absolutely necessary to do so in
our framework. The reason is that when it is possi-
ble to evaluate F exactly, we are always guaranteed
to make consistent decisions with respect to where we

are simulating the algorithm. But here we might make
inconsistent decisions if we do not maintain this inter-
val.

Remark. As usual, when there is also a parallel ap-
proximation algorithm, the running time can be im-
proved. For example, using a 2-approximation algo-
rithm for ∆-TSP which is based on minimum spanning
trees, it is possible to obtain a 2-approximation for the
parametric ∆-TSP in time O(E log V + V log2 V).

6 Applications

Let G = (V, E) be a graph, let s and t be two ver-
tices of G, and let W be a function mapping edges
of G to real numbers. We use the notation We to
denote W (e). Let S ⊂ 2E (for example, the set
of all spanning trees, all minimum s-t cuts etc.). A
minimization problem on G is the problem of finding
mins∈S

∑
e∈s We, and usually finding a minimizer is

also desirable.
Now assume that W maps edges to concave polyno-

mial functions over some convex set P ⊆ IRd, instead
of to numbers. For every point x ∈ P , we get an
induced minimization problem obtained by mapping
every element e ∈ E to a real number We(x). We
define a function F :P → IR by

F (x) = min
s∈S

∑
e∈s

We(x).

Lemma 3 The function F is a concave function.

Lemma 4 If the edge weights W are all polynomial
of degree at most δ, then F is a piecewise polynomial
functions, and its pieces are of degree at most δ.

Some examples. When S is the collection of all the
edge-cuts separating s from t in G and the weights
We are interpreted as capacities, then the associated
minimization problem is the max flow problem in G,
by the Max-Flow Min-Cut Theorem. The parametric
max flow function is hence a concave function on P =
∩e∈E{x : We(x) ≥ 0}. The definition of P ensures
that all the edge capacities are non-negative. Since
each We is concave, the regions {x : We(x) ≥ 0} are
convex, and therefore their intersection P is convex.

When S is the collection of all paths between s and
t, the minimization problem is the problem of find-
ing the minimum s-t distance. In this case the do-
main of the parametric function is the convex region
P = ∩C{x :

∑
e∈C We(x) ≥ 0} where the intersection

is over all the simple cycles in G. The combinatorial

complexity of P may be super-polynomial, but for-
tunately there is a separation algorithm for P . The
Bellman-Ford algorithm can be modified so that it ei-
ther decides that the graph does not contain a negative
cycle and finds the shortest path, or finds a negative
cycle C (see [6]). Summing the weights of the edges
of the cycle as polynomials, we find a concave violated
constraint p(x) =

∑
e∈C We(x) < 0 which is not vio-

lated for any y ∈ P . Therefore the conditions of The-
orem 3 are satisfied, and we can find the maxi-min s-t
distance in strongly polynomial time.

Many minimization problems on graphs are NP-
hard. For example, when S is the set of all Hamilto-
nian tours in the graph, the corresponding minimiza-
tion problem is the Traveling Salesman Problem. If P
is a convex subset of IRd in which the weights always
satisfy the triangle inequality, it is possible to approx-
imate F up to a factor of 3/2 using Christofides’ algo-
rithm [2]. Again, it is important to observe that this
approximation algorithm is strongly polynomial, and
the only operations on weights in it are additions and
comparisons between sums of weights. Since it always
returns a tour whose length is a polynomial pj , we can
use Theorem 4 to approximate the maximum of the
one dimensional parametric problem in time O(V 6).

7 Conclusions and Open Problems

It is interesting to note that it is not the non-
linearity of F that makes the problem hard, but the
non-linearity of comparison and separation polynomi-
als. We also note that our method of deciding on
which side of a hyperplane there is a maximizer of F
uses its concavity in a very strong way. We conclude
the paper with some open problems that arise from
our research.

• While our algorithms are indeed strongly poly-
nomial in any fixed dimension, it is desirable to
improve the running times, especially the depen-
dency on the dimension.

• Can one obtain an approximation scheme similar
to the one presented in section 5 in higher dimen-
sions?

Acknowledgments

Thanks to Pankaj K. Agarwal for reading and
commenting on a preliminary version of this paper.
Thanks to Esther Jesurum, Mauricio Karchmer, Nim-
rod Megiddo, Boaz Patt-Shamir and Serge Plotkin for
helpful discussions.

References

[1] D.S Arnon, G.E. Collins, S. McCallum, Cylin-
drical algebraic decomposition I: the basic algo-
rithm, SIAM J. Comput. 13 (1984), 865–877.

[2] N. Christofides, Worst-case analysis of a new
heuristic for the Traveling Salesman Problem,
Technical Report, GSIA, Carnegie-Mellon Uni-
versity, 1976.

[3] E. Cohen and N. Megiddo, Strongly polynomial
time and NC algorithms for detecting cycles
in dynamic graphs, Proc. 21st ACM Symp. on
Theory of Computing, 1989, 523–534.

[4] E. Cohen and N. Megiddo, Maximizing concave
functions in fixed dimension, Research Report
RJ 7656 (71103), IBM Almaden Research Cen-
ter, San Jose, 1990.

[5] R. Cole, Parallel merge sort, SIAM J. Comput.
17 (1988), 770–785.

[6] T.H. Cormen, C.E. Leiserson and R.L. Rivest,
Introduction to Algorithms, MIT Press, Cam-
bridge, MA, 1990.

[7] N. Megiddo, Applying parallel computation in
the design of serial algorithms, J. ACM 30
(1983), 852–865.

[8] N. Megiddo, The weighted Euclidean 1-center
problem, Math. of Operations Research, 8
(1983), 498–504.

[9] C.H. Norton, S.A. Plotkin and É. Tardos, Us-
ing separation algorithms in fixed dimension,
J. of Algorithms, 13 (1992), 79–98.

[10] L. Valiant, Parallelism in comparison problems,
SIAM J. Comput. 4 (1975), 345-348.

