
A Quick Introduction to C++

Tom Anderson

\If programming in Pascal is like being put in a straightjacket, then program-

ming in C is like playing with knives, and programming in C++ is like juggling

chainsaws."

Anonymous.

1 Introduction

This note introduces some simple C++ concepts and outlines a subset of C++ that is easier

to learn and use than the full language. Although we originally wrote this note for explaining

the C++ used in the Nachos project, I believe it is useful to anyone learning C++. I assume

that you are already somewhat familiar with C concepts like procedures, for loops, and

pointers; these are pretty easy to pick up from reading Kernighan and Ritchie's \The C

Programming Language."

I should admit up front that I am quite opinionated about C++, if that isn't obvious

already. I know several C++ purists (an oxymoron perhaps?) who violently disagree with

some of the prescriptions contained here; most of the objections are of the form, \How could

you have possibly left out feature X?" However, I've found from teaching C++ to nearly

1000 undergrads over the past several years that the subset of C++ described here is pretty

easy to learn, taking only a day or so for most students to get started.

The basic premise of this note is that while object-oriented programming is a useful way

to simplify programs, C++ is a wildly over-complicated language, with a host of features

that only very, very rarely �nd a legitimate use. It's not too far o� the mark to say that

C++ includes every programming language feature ever imagined, and more. The natural

tendency when faced with a new language feature is to try to use it, but in C++ this

approach leads to disaster.

Thus, we need to carefully distinguish between (i) those concepts that are fundamental

(e.g., classes, member functions, constructors) { ones that everyone should know and use,

(ii) those that are sometimes but rarely useful (e.g., single inheritance, templates) { ones

that beginner programmers should be able to recognize (in case they run across them) but

avoid using in their own programs, at least for a while, and (iii) those that are just a bad idea

and should be avoided like the plague (e.g., multiple inheritance, exceptions, overloading,

references, etc).

Of course, all the items in this last category have their proponents, and I will admit that,

like the hated goto, it is possible to construct cases when the program would be simpler

This article is based on an earlier version written by Wayne Christopher.

1



using a goto or multiple inheritance. However, it is my belief that most programmers will

never encounter such cases, and even if you do, you will be much more likely to misuse the

feature than properly apply it. For example, I seriously doubt an undergraduate would need

any of the features listed under (iii) for any course project (at least at Berkeley this is true).

And if you �nd yourself wanting to use a feature like multiple inheritance, then, my advice is

to fully implement your program both with and without the feature, and choose whichever

is simpler. Sure, this takes more e�ort, but pretty soon you'll know from experience when a

feature is useful and when it isn't, and you'll be able to skip the dual implementation.

A really good way to learn a language is to read clear programs in that language. I have

tried to make the Nachos code as readable as possible; it is written in the subset of C++

described in this note. It is a good idea to look over the �rst assignment as you read this

introduction. Of course, your TA's will answer any questions you may have.

You should not need a book on C++ to do the Nachos assignments, but if you are curious,

there is a large selection of C++ books at Cody's and other technical bookstores. (My wife

quips that C++ was invented to make researchers at Bell Labs rich from writing \How to

Program in C++" books.) Most new software development these days is being done in

C++, so it is a pretty good bet you'll run across it in the future. I use Stroustrup's "The

C++ Programming Language" as a reference manual, although other books may be more

readable. I would also recommend Scott Meyer's \E�ective C++" for people just beginning

to learn the language, and Coplien's \Advanced C++" once you've been programming in

C++ for a couple years and are familiar with the language basics. Also, C++ is continually

evolving, so be careful to buy books that describe the latest version (currently 3.0, I think!).

2 C in C++

To a large extent, C++ is a superset of C, and most carefully written ANSI C will compile

as C++. There are a few major caveats though:

1. All functions must be declared before they are used, rather than defaulting to type

int.

2. All function declarations and de�nition headers must use new-style declarations, e.g.,

extern int foo(int a, char* b);

The form extern int foo(); means that foo takes no arguments, rather than argu-

ments of an unspeci�ed type and number. In fact, some advise using a C++ compiler

even on normal C code, because it will catch errors like misused functions that a normal

C compiler will let slide.

3. If you need to link C object �les together with C++, when you declare the C functions

for the C++ �les, they must be done like this:

2



extern "C" int foo(int a, char* b);

Otherwise the C++ compiler will alter the name in a strange manner.

4. There are a number of new keywords, which you may not use as identi�ers | some

common ones are new, delete, const, and class.

3 Basic Concepts

Before giving examples of C++ features, I will �rst go over some of the basic concepts of

object-oriented languages. If this discussion at �rst seems a bit obscure, it will become

clearer when we get to some examples.

1. Classes and objects. A class is similar to a C structure, except that the de�nition

of the data structure, and all of the functions that operate on the data structure are

grouped together in one place. An object is an instance of a class (an instance of the

data structure); objects share the same functions with other objects of the same class,

but each object (each instance) has its own copy of the data structure. A class thus

de�nes two aspects of the objects: the data they contain, and the behavior they have.

2. Member functions. These are functions which are considered part of the object and

are declared in the class de�nition. They are often referred to as methods of the class.

In addition to member functions, a class's behavior is also de�ned by:

(a) What to do when you create a new object (the constructor for that object) { in

other words, initialize the object's data.

(b) What to do when you delete an object (the destructor for that object).

3. Private vs. public members. A public member of a class is one that can be read

or written by anybody, in the case of a data member, or called by anybody, in the

case of a member function. A private member can only be read, written, or called by

a member function of that class.

Classes are used for two main reasons: (1) it makes it much easier to organize your

programs if you can group together data with the functions that manipulate that data, and

(2) the use of private members makes it possible to do information hiding, so that you can

be more con�dent about the way information 
ows in your programs.

3.1 Classes

C++ classes are similar to C structures in many ways. In fact, a C++ struct is really a

class that has only public data members. In the following explanation of how classes work,

we will use a stack class as an example.

3



1. Member functions. Here is a (partial) example of a class with a member function

and some data members:

class Stack {

public:

void Push(int value); // Push an integer, checking for overflow.

int top; // Index of the top of the stack.

int stack[10]; // The elements of the stack.

};

void

Stack::Push(int value) {

ASSERT(top < 10); // stack should never overflow

stack[top++] = value;

}

This class has two data members, top and stack, and one member function, Push.

The notation class::function denotes the function member of the class class. (In the

style we use, most function names are capitalized.) The function is de�ned beneath it.

As an aside, note that we use a call to ASSERT to check that the stack hasn't over
owed;

ASSERT drops into the debugger if the condition is false. It is an extremely good

idea for you to use ASSERT statements liberally throughout your code to document

assumptions made by your implementation. Better to catch errors automatically via

ASSERTs than to let them go by and have your program overwrite random locations.

In actual usage, the de�nition of class Stack would typically go in the �le stack.h

and the de�nitions of the member functions, like Stack::Push, would go in the �le

stack.cc.

If we have a pointer to a Stack object called s, we can access the top element as

s->top, just as in C. However, in C++ we can also call the member function using the

following syntax:

s->Push(17);

Of course, as in C, s must point to a valid Stack object.

Inside a member function, one may refer to the members of the class by their names

alone. In other words, the class de�nition creates a scope that includes the member

(function and data) de�nitions.

Note that if you are inside a member function, you can get a pointer to the object you

were called on by using the variable this. If you want to call another member function

on the same object, you do not need to use the this pointer, however. Let's extend

the Stack example to illustrate this by adding a Full() function.

4



class Stack {

public:

void Push(int value); // Push an integer, checking for overflow.

bool Full(); // Returns TRUE if the stack is full, FALSE otherwise.

int top; // Index of the lowest unused position.

int stack[10]; // A pointer to an array that holds the contents.

};

5



bool

Stack::Full() {

return (top == 10);

}

Now we can rewrite Push this way:

void

Stack::Push(int value) {

ASSERT(!Full());

stack[top++] = value;

}

We could have also written the ASSERT:

ASSERT(!(this->Full());

but in a member function, the this-> is implicit.

The purpose of member functions is to encapsulate the functionality of a type of object

along with the data that the object contains. A member function does not take up

space in an object of the class.

2. Private members. One can declare some members of a class to be private, which are

hidden to all but the member functions of that class, and some to be public, which are

visible and accessible to everybody. Both data and function members can be either

public or private.

In our stack example, note that once we have the Full() function, we really don't

need to look at the top or stack members outside of the class { in fact, we'd rather

that users of the Stack abstraction not know about its internal implementation, in case

we change it. Thus we can rewrite the class as follows:

class Stack {

public:

void Push(int value); // Push an integer, checking for overflow.

bool Full(); // Returns TRUE if the stack is full, FALSE otherwise.

private:

int top; // Index of the top of the stack.

int stack[10]; // The elements of the stack.

};

6



Before, given a pointer to a Stack object, say s, any part of the program could access

s->top, in potentially bad ways. Now, since the top member is private, only a member

function, such as Full(), can access it. If any other part of the program attempts to

use s->top the compiler will report an error.

You can have alternating public: and private: sections in a class. Before you specify

either of these, class members are private, thus the above example could have been

written:

class Stack {

int top; // Index of the top of the stack.

int stack[10]; // The elements of the stack.

public:

void Push(int value); // Push an integer, checking for overflow.

bool Full(); // Returns TRUE if the stack is full, FALSE otherwise.

};

Which form you prefer is a matter of style, but it's usually best to be explicit, so that

it is obvious what is intended. In Nachos, we make everything explicit.

What is not a matter of style: all data members of a class should be private. All

operations on data should be via that class' member functions. Keeping data private

adds to the modularity of the system, since you can rede�ne how the data members

are stored without changing how you access them.

3. Constructors and the operator new. In C, in order to create a new object of type

Stack, one might write:

struct Stack *s = (struct Stack *) malloc(sizeof (struct Stack));

InitStack(s, 17);

The InitStack() function might take the second argument as the size of the stack to

create, and use malloc() again to get an array of 17 integers.

The way this is done in C++ is as follows:

Stack *s = new Stack(17);

The new function takes the place of malloc(). To specify how the object should be

initialized, one declares a constructor function as a member of the class, with the name

of the function being the same as the class name:

7



class Stack {

public:

Stack(int sz); // Constructor: initialize variables, allocate space.

void Push(int value); // Push an integer, checking for overflow.

bool Full(); // Returns TRUE if the stack is full, FALSE otherwise.

private:

int size; // The maximum capacity of the stack.

int top; // Index of the lowest unused position.

int* stack; // A pointer to an array that holds the contents.

};

Stack::Stack(int sz) {

size = sz;

top = 0;

stack = new int[size]; // Let's get an array of integers.

}

There are a few things going on here, so we will describe them one at a time.

The new operator automatically creates (i.e. allocates) the object and then calls the

constructor function for the new object. This same sequence happens even if, for

instance, you declare an object as an automatic variable inside a function or block

{ the compiler allocates space for the object on the stack, and calls the constructor

function on it.

In this example, we create two stacks of di�erent sizes, one by declaring it as an

automatic variable, and one by using new.

void

test() {

Stack s1(17);

Stack* s2 = new Stack(23);

}

Note there are two ways of providing arguments to constructors: with new, you put

the argument list after the class name, and with automatic or global variables, you put

them after the variable name.

It is crucial that you always de�ne a constructor for every class you de�ne, and that

the constructor initialize every data member of the class. If you don't de�ne your

own constructor, the compiler will automatically de�ne one for you, and believe me,

it won't do what you want (\the unhelpful compiler"). The data members will be

initialized to random, unrepeatable values, and while your program may work anyway,

it might not the next time you recompile (or vice versa!).

8



As with normal C variables, variables declared inside a function are deallocated auto-

matically when the function returns; for example, the s1 object is deallocated when

test returns. Data allocated with new (such as s2) is stored on the heap, however,

and remains after the function returns; heap data must be explicitly disposed of using

delete, described below.

The new operator can also be used to allocate arrays, illustrated above in allocating

an array of ints, of dimension size:

stack = new int[size];

Note that you can use new and delete (described below) with built-in types like int

and char as well as with class objects like Stack.

4. Destructors and the operator delete. Just as new is the replacement for malloc(),

the replacement for free() is delete. To get rid of the Stack object we allocated above

with new, one can do:

delete s2;

This will deallocate the object, but �rst it will call the destructor for the Stack class,

if there is one. This destructor is a member function of Stack called ~Stack():

class Stack {

public:

Stack(int sz); // Constructor: initialize variables, allocate space.

~Stack(); // Destructor: deallocate space allocated above.

void Push(int value); // Push an integer, checking for overflow.

bool Full(); // Returns TRUE if the stack is full, FALSE otherwise.

private:

int size; // The maximum capacity of the stack.

int top; // Index of the lowest unused position.

int* stack; // A pointer to an array that holds the contents.

};

Stack::~Stack() {

delete [] stack; // delete an array of integers

}

The destructor has the job of deallocating the data the constructor allocated. Many

classes won't need destructors, and some will use them to close �les and otherwise

clean up after themselves.

9



The destructor for an object is called when the object is deallocated. If the object

was created with new, then you must call delete on the object, or else the object will

continue to occupy space until the program is over { this is called \a memory leak."

Memory leaks are bad things { although virtual memory is supposed to be unlimited,

you can in fact run out of it { and so you should be careful to always delete what

you allocate. Of course, it is even worse to call delete too early { delete calls the

destructor and puts the space back on the heap for later re-use. If you are still using

the object, you will get random and non-repeatable results that will be very di�cult

to debug. In my experience, using data that has already been deleted is major source

of hard-to-locate bugs in student (and professional) programs, so hey, be careful out

there!

If the object is an automatic, allocated on the execution stack of a function, the

destructor will be called and the space deallocated when the function returns; in the

test() example above, s1 will be deallocated when test() returns, without you having

to do anything.

In Nachos, we always explicitly allocate and deallocate objects with new and delete,

to make it clear when the constructor and destructor is being called. For example,

if an object contains another object as a member variable, we use new to explicitly

allocated and initialize the member variable, instead of implicitly allocating it as part

of the containing object. C++ has strange, non-intuitive rules for the order in which

the constructors and destructors are called when you implicitly allocate and deallocate

objects. In practice, although simpler, explicit allocation is slightly slower and it makes

it more likely that you will forget to deallocate an object (a bad thing!), and so some

would disagree with this approach.

When you deallocate an array, you have to tell the compiler that you are deallocating

an array, as opposed to a single element in the array. Hence to delete the array of

integers in Stack::~Stack:

delete [] stack;

3.2 Other Basic C++ Features

Here are a few other C++ features that are useful to know.

1. When you de�ne a class Stack, the name Stack becomes usable as a type name as

if created with typedef. The same is true for enums.

2. You can de�ne functions inside of a class de�nition, whereupon they become inline

functions, which are expanded in the body of the function where they are used. The

rule of thumb to follow is to only consider inlining one-line functions, and even then

do so rarely.

As an example, we could make the Full routine an inline.

10



class Stack {

...

bool Full() { return (top == size); };

...

};

There are two motivations for inlines: convenience and performance. If overused,

inlines can make your code more confusing, because the implementation for an object

is no longer in one place, but spread between the .h and .c �les. Inlines can sometimes

speed up your code (by avoiding the overhead of a procedure call), but that shouldn't

be your principal concern as a student (rather, at least to begin with, you should be

most concerned with writing code that is simple and bug free). Not to mention that

inlining sometimes slows down a program, since the object code for the function is

duplicated wherever the function is called, potentially hurting cache performance.

3. Inside a function body, you can declare some variables, execute some statements, and

then declare more variables. This can make code a lot more readable. In fact, you can

even write things like:

for (int i = 0; i < 10; i++) ;

Depending on your compiler, however, the variable i may still visible after the end of

the for loop, however, which is not what one might expect or desire.

4. Comments can begin with the characters // and extend to the end of the line. These

are usually more handy than the /* */ style of comments.

5. C++ provides some new opportunities to use the const keyword from ANSI C. The

basic idea of const is to provide extra information to the compiler about how a variable

or function is used, to allow it to 
ag an error if it is being used improperly. You should

always look for ways to get the compiler to catch bugs for you. After all, which takes

less time? Fixing a compiler-
agged error, or chasing down the same bug using gdb?

For example, you can declare that a member function only reads the member data,

and never modi�es the object:

class Stack {

...

bool Full() const; // Full() never modifies member data

...

};

As in C, you can use const to declare that a variable is never modi�ed:

11



const int InitialHashTableSize = 8;

This is much better than using #define for constants, since the above is type-checked.

6. Input/output in C++ can be done with the >> and << operators and the objects cin

and cout. For example, to write to stdout:

cout << "Hello world! This is section " << 3 << "!";

This is equivalent to the normal C code

fprintf(stdout, "Hello world! This is section %d!\n", 3);

except that the C++ version is type-safe; with printf, the compiler won't complain if

you try to print a 
oating point number as an integer. In fact, you can use traditional

printf in a C++ program, but you will get bizarre behavior if you try to use both

printf and << on the same stream. Reading from stdin works the same way as writing

to stdout, except using the shift right operator instead of shift left. In order to read

two integers from stdin:

int field1, field2;

cin >> field1 >> field2;

// equivalent to fscanf(stdin, "%d %d", &field1, &field2);

// note that field1 and field2 are implicitly modified

In fact, cin and cout are implemented as normal C++ objects, using operator over-

loading and reference parameters, but (fortunately!) you don't need to understand

either of those to be able to do I/O in C++.

4 Advanced Concepts in C++: Dangerous but Occa-

sionally Useful

There are a few C++ features, namely (single) inheritance and templates, which are easily

abused, but can dramatically simplify an implementation if used properly. I describe the

basic idea behind these \dangerous but useful" features here, in case you run across them.

Feel free to skip this section { it's long, complex, and you can understand 99% of the code

in Nachos without reading this section.

Up to this point, there really hasn't been any fundamental di�erence between program-

ming in C and in C++. In fact, most experienced C programmers organize their func-

tions into modules that relate to a single data structure (a "class"), and often even use

12



a naming convention which mimics C++, for example, naming routines StackFull() and

StackPush(). However, the features I'm about to describe do require a paradigm shift {

there is no simple translation from them into a normal C program. The bene�t will be that,

in some circumstances, you will be able to write generic code that works with multiple kinds

of objects.

Nevertheless, I would advise a beginning C++ programmer against trying to use these

features, because you will almost certainly misuse them. It's possible (even easy!) to write

completely inscrutable code using inheritance and/or templates. Although you might �nd it

amusing to write code that is impossible for your graders to understand, I assure you they

won't �nd it amusing at all, and will return the favor when they assign grades. In industry,

a high premium is placed on keeping code simple and readable. It's easy to write new code,

but the real cost comes when you try to keep it working, even as you add new features to it.

Nachos contains a few examples of the correct use of inheritance and templates, but

realize that Nachos does not use them everywhere. In fact, if you get confused by this

section, don't worry, you don't need to use any of these features in order to do the Nachos

assignments. I omit a whole bunch of details; if you �nd yourself making widespread use

of inheritance or templates, you should consult a C++ reference manual for the real scoop.

This is meant to be just enough to get you started, and to help you identify when it would

be appropriate to use these features and thus learn more about them!

4.1 Inheritance

Inheritance captures the idea that certain classes of objects are related to each other in useful

ways. For example, lists and sorted lists have quite similar behavior { they both allow the

user to insert, delete, and �nd elements that are on the list. There are two bene�ts to using

inheritance:

1. You can write generic code that doesn't care exactly which kind of object it is manip-

ulating. For example, inheritance is widely used in windowing systems. Everything on

the screen (windows, scroll bars, titles, icons) is its own object, but they all share a set

of member functions in common, such as a routine Repaint to redraw the object onto

the screen. This way, the code to repaint the entire screen can simply call the Repaint

function on every object on the screen. The code that calls Repaint doesn't need to

know which kinds of objects are on the screen, as long as each implements Repaint.

2. You can share pieces of an implementation between two objects. For example, if

you were to implement both lists and sorted lists in C, you'd probably �nd yourself

repeating code in both places { in fact, you might be really tempted to only implement

sorted lists, so that you only had to debug one version. Inheritance provides a way

to re-use code between nearly similar classes. For example, given an implementation

of a list class, in C++ you can implement sorted lists by replacing the insert member

function { the other functions, delete, isFull, print, all remain the same.

13



4.1.1 Shared Behavior

Let me use our Stack example to illustrate the �rst of these. Our Stack implementation above

could have been implemented with linked lists, instead of an array. Any code using a Stack

shouldn't care which implementation is being used, except that the linked list implementation

can't over
ow. (In fact, we could also change the array implementation to handle over
ow

by automatically resizing the array as items are pushed on the stack.)

To allow the two implementations to coexist, we �rst de�ne an abstract Stack, containing

just the public member functions, but no data.

class Stack {

public:

Stack();

virtual ~Stack(); // deallocate the stack

virtual void Push(int value) = 0;

// Push an integer, checking for overflow.

virtual bool Full() = 0; // Is the stack is full?

};

// For g++, need these even though no data to initialize.

Stack::Stack {}

Stack::~Stack() {}

The Stack de�nition is called a base class or sometimes a superclass. We can then de�ne

two di�erent derived classes, sometimes called subclasses which inherit behavior from the

base class. (Of course, inheritance is recursive { a derived class can in turn be a base class

for yet another derived class, and so on.) Note that I have prepended the functions in the

base class is prepended with the keyword virtual, to signify that they can be rede�ned

by each of the two derived classes. The virtual functions are initialized to zero, to tell the

compiler that those functions must be de�ned by the derived classes.

Here's how we could declare the array-based and list-based implementations of Stack.

The syntax : public Stack signi�es that both ArrayStack and ListStack are kinds of

Stacks, and share the same behavior as the base class.

class ArrayStack : public Stack { // the same as in Section 2

public:

ArrayStack(int sz); // Constructor: initialize variables, allocate space.

~ArrayStack(); // Destructor: deallocate space allocated above.

void Push(int value); // Push an integer, checking for overflow.

bool Full(); // Returns TRUE if the stack is full, FALSE otherwise.

private:

int size; // The maximum capacity of the stack.

int top; // Index of the lowest unused position.

14



int *stack; // A pointer to an array that holds the contents.

};

class ListStack : public Stack {

public:

ListStack();

~ListStack();

void Push(int value);

bool Full();

private:

List *list; // list of items pushed on the stack

};

ListStack::ListStack() {

list = new List;

}

ListStack::~ListStack() {

delete list;

}

15



void ListStack::Push(int value) {

list->Prepend(value);

}

bool ListStack::Full() {

return FALSE; // this stack never overflows!

}

The neat concept here is that I can assign pointers to instances of ListStack or ArrayStack

to a variable of type Stack, and then use them as if they were of the base type.

Stack *s1 = new ListStack;

Stack *s2 = new ArrayStack(17);

if (!stack->Full())

s1->Push(5);

if (!s2->Full())

s2->Push(6);

delete s1;

delete s2;

The compiler automatically invokes ListStack operations for s1, and ArrayStack op-

erations for s2; this is done by creating a procedure table for each object, where derived

objects override the default entries in the table de�ned by the base class. To the code above,

it invokes the operations Full, Push, and delete by indirection through the procedure table,

so that the code doesn't need to know which kind of object it is.

In this example, since I never create an instance of the abstract class Stack, I do not need

to implement its functions. This might seem a bit strange, but remember that the derived

classes are the various implementations of Stack, and Stack serves only to re
ect the shared

behavior between the di�erent implementations.

Also note that the destructor for Stack is a virtual function but the constructor is

not. Clearly, when I create an object, I have to know which kind of object it is, whether

ArrayStack or ListStack. The compiler makes sure that no one creates an instance of the

abstract Stack by mistake { you cannot instantiate any class whose virtual functions are

not completely de�ned (in other words, if any of its functions are set to zero in the class

de�nition).

But when I deallocate an object, I may no longer know its exact type. In the above code,

I want to call the destructor for the derived object, even though the code only knows that I

am deleting an object of class Stack. If the destructor were not virtual, then the compiler

would invoke Stack's destructor, which is not at all what I want. This is an easy mistake to

make (I made it in the �rst draft of this article!) { if you don't de�ne a destructor for the

abstract class, the compiler will de�ne one for you implicitly (and by the way, it won't be

16



virtual, since you have a really unhelpful compiler). The result for the above code would be

a memory leak, and who knows how you would �gure that out!

4.1.2 Shared Implementation

What about sharing code, the other reason for inheritance? In C++, it is possible to use

member functions of a base class in its derived class. (You can also share data between a

base class and derived classes, but this is a bad idea for reasons I'll discuss later.)

Suppose that I wanted to add a new member function, NumberPushed(), to both imple-

mentations of Stack. The ArrayStack class already keeps count of the number of items on

the stack, so I could duplicate that code in ListStack. Ideally, I'd like to be able to use the

same code in both places. With inheritance, we can move the counter into the Stack class,

and then invoke the base class operations from the derived class to update the counter.

class Stack {

public:

virtual ~Stack(); // deallocate data

virtual void Push(int value); // Push an integer, checking for overflow.

virtual bool Full() = 0; // return TRUE if full

int NumPushed(); // how many are currently on the stack?

protected:

Stack(); // initialize data

private:

int numPushed;

};

Stack::Stack() {

numPushed = 0;

}

void Stack::Push(int value) {

numPushed++;

}

int Stack::NumPushed() {

return numPushed;

}

We can then modify both ArrayStack and ListStack to make use the new behavior of

Stack. I'll only list one of them here:

class ArrayStack : public Stack {

public:

17



ArrayStack(int sz);

~ArrayStack();

void Push(int value);

bool Full();

private:

int size; // The maximum capacity of the stack.

int *stack; // A pointer to an array that holds the contents.

};

ArrayStack::ArrayStack(int sz) : Stack() {

size = sz;

stack = new int[size]; // Let's get an array of integers.

}

void

ArrayStack::Push(int value) {

ASSERT(!Full());

stack[NumPushed()] = value;

Stack::Push(); // invoke base class to increment numPushed

}

There are a few things to note:

1. The constructor for ArrayStack needs to invoke the constructor for Stack, in order

to initialize numPushed. It does that by adding : Stack() to the �rst line in the

constructor:

ArrayStack::ArrayStack(int sz) : Stack()

The same thing applies to destructors. There are special rules for which get called �rst

{ the constructor/destructor for the base class or the constructor/destructor for the

derived class. All I should say is, it's a bad idea to rely on whatever the rule is { more

generally, it is a bad idea to write code which requires the reader to consult a manual

to tell whether or not the code works!

2. I introduced a new keyword, protected, in the new de�nition of Stack. For a base

class, protected signi�es that those member data and functions are accessible to

classes derived (recursively) from this class, but inaccessible to other classes. In other

words, protected data is public to derived classes, and private to everyone else. For

example, we need Stack's constructor to be callable by ArrayStack and ListStack,

but we don't want anyone else to create instances of Stack. Hence, we make Stack's

constructor a protected function. In this case, this is not strictly necessary since the

compiler will complain if anyone tries to create an instance of Stack because Stack still

18



has an unde�ned virtual functions, Push. By de�ning Stack::Stack as protected,

you are safe even if someone comes along later and de�nes Stack::Push.

Note however that I made Stack's data member private, not protected. Although

there is some debate on this point, as a rule of thumb you should never allow one

class to see directly access the data in another, even among classes related by inher-

itance. Otherwise, if you ever change the implementation of the base class, you will

have to examine and change all the implementations of the derived classes, violating

modularity.

3. The interface for a derived class automatically includes all functions de�ned for its base

class, without having to explicitly list them in the derived class. Although we didn't

de�ne NumPushed() in ArrayStack, we can still call it for those objects:

ArrayStack *s = new ArrayStack(17);

ASSERT(s->NumPushed() == 0); // should be initialized to 0

4. Conversely, even though we have de�ned a routine Stack::Push(), because it is

declared as virtual, if we invoke Push() on an ArrayStack object, we will get

ArrayStack's version of Push:

Stack *s = new ArrayStack(17);

if (!s->Full()) // ArrayStack::Full

s->Push(5); // ArrayStack::Push

5. Stack::NumPushed() is not virtual. That means that it cannot be re-de�ned by

Stack's derived classes. Some people believe that you should mark all functions in a

base class as virtual; that way, if you later want to implement a derived class that

rede�nes a function, you don't have to modify the base class to do so.

6. Member functions in a derived class can explicitly invoke public or protected functions

in the base class, by the full name of the function, Base::Function(), as in:

void ArrayStack::Push(int value)

{

...

Stack::Push(); // invoke base class to increment numPushed

}

Of course, if we just called Push() here (without prepending Stack::, the compiler

would think we were referring to ArrayStack's Push(), and so that would recurse,

which is not exactly what we had in mind here.

19



Whew! Inheritance in C++ involves lots and lots of details. But it's real downside is

that it tends to spread implementation details across multiple �les { if you have a deep

inheritance tree, it can take some serious digging to �gure out what code actually executes

when a member function is invoked.

So the question to ask yourself before using inheritance is: what's your goal? Is it to

write your programs with the fewest number of characters possible? If so, inheritance is

really useful, but so is changing all of your function and variable names to be one letter long

{ "a", "b", "c" { and once you run out of lower case ones, start using upper case, then two

character variable names: "XX XY XZ Ya ..." (I'm joking here.) Needless to say, it is really

easy to write unreadable code using inheritance.

So when is it a good idea to use inheritance and when should it be avoided? My rule

of thumb is to only use it for representing shared behavior between objects, and to never

use it for representing shared implementation. With C++, you can use inheritance for both

concepts, but only the �rst will lead to truly simpler implementations.

To illustrate the di�erence between shared behavior and shared implementation, suppose

you had a whole bunch of di�erent kinds of objects that you needed to put on lists. For

example, almost everything in an operating system goes on a list of some sort: bu�ers,

threads, users, terminals, etc.

A very common approach to this problem (particularly among people new to object-

oriented programming) is to make every object inherit from a single base class Object, which

contains the forward and backward pointers for the list. But what if some object needs

to go on multiple lists? The whole scheme breaks down, and it's because we tried to use

inheritance to share implementation (the code for the forward and backward pointers) instead

of to share behavior. A much cleaner (although slightly slower) approach would be to de�ne

a list implementation that allocated forward/backward pointers for each object that gets put

on a list.

In sum, if two classes share at least some of the same member function signatures { that

is, the same behavior, and if there's code that only relies on the shared behavior, then there

may be a bene�t to using inheritance. In Nachos, locks don't inherit from semaphores, even

though locks are implemented using semaphores. The operations on semaphores and locks

are di�erent. Instead, inheritance is only used for various kinds of lists (sorted, keyed, etc.),

and for di�erent implementations of the physical disk abstraction, to re
ect whether the disk

has a track bu�er, etc. A disk is used the same way whether or not it has a track bu�er; the

only di�erence is in its performance characteristics.

4.2 Templates

Templates are another useful but dangerous concept in C++. With templates, you can

parameterize a class de�nition with a type, to allow you to write generic type-independent

code. For example, our Stack implementation above only worked for pushing and popping

integers; what if we wanted a stack of characters, or 
oats, or pointers, or some arbitrary

data structure?

20



In C++, this is pretty easy to do using templates:

template <class T>

class Stack {

public:

Stack(int sz); // Constructor: initialize variables, allocate space.

~Stack(); // Destructor: deallocate space allocated above.

void Push(T value); // Push an integer, checking for overflow.

bool Full(); // Returns TRUE if the stack is full, FALSE otherwise.

private:

int size; // The maximum capacity of the stack.

int top; // Index of the lowest unused position.

T *stack; // A pointer to an array that holds the contents.

};

To de�ne a template, we prepend the keyword template to the class de�nition, and we

put the parameterized type for the template in angle brackets. If we need to parameterize

the implementation with two or more types, it works just like an argument list: template

<class T, class S>. We can use the type parameters elsewhere in the de�nition, just like

they were normal types.

When we provide the implementation for each of the member functions in the class, we

also have to declare them as templates, and again, once we do that, we can use the type

parameters just like normal types:

// template version of Stack::Stack

template <class T>

Stack<T>::Stack(int sz) {

size = sz;

top = 0;

stack = new T[size]; // Let's get an array of type T

}

// template version of Stack::Push

template <class T>

void

Stack<T>::Push(T value) {

ASSERT(!Full());

stack[top++] = value;

}

Creating an object of a template class is similar to creating a normal object:

void

21



test() {

Stack<int> s1(17);

Stack<char> *s2 = new Stack<char>(23);

s1.Push(5);

s2->Push('z');

delete s2;

}

Everything operates as if we de�ned two classes, one called Stack<int> { a stack of

integers, and one called Stack<char> { a stack of characters. s1 behaves just like an instance

of the �rst; s2 behaves just like an instance of the second. In fact, that is exactly how

templates are typically implemented { you get a complete copy of the code for the template

for each di�erent instantiated type. In the above example, we'd get one copy of the code for

ints and one copy for chars.

So what's wrong with templates? You've all been taught to make your code modular so

that it can be re-usable, so everything should be a template, right? Wrong.

The principal problem with templates is that they can be very di�cult to debug { tem-

plates are easy to use if they work, but �nding a bug in them can be di�cult. In part this

is because current generation C++ debuggers don't really understand templates very well.

Nevertheless, it is easier to debug a template than two nearly identical implementations that

di�er only in their types.

So the best advice is { don't make a class into a template unless there really is a near

term use for the template. And if you do need to implement a template, implement and

debug a non-template version �rst. Once that is working, it won't be hard to convert it to

a template. Then all you have to worry about code explosion { e.g., your program's object

code is now megabytes because of the 15 copies of the hash table/list/... routines, one for

each kind of thing you want to put in a hash table/list/... (Remember, you have an unhelpful

compiler!)

5 Features To Avoid Like the Plague

Despite the length of this note, there are numerous features in C++ that I haven't explained.

I'm sure each feature has its advocates, but despite programming in C and C++ for over 15

years, I haven't found a compelling reason to use them in any code that I've written (outside

of a programming language class!)

Indeed, there is a compelling reason to avoid using these features { they are easy to misuse,

resulting in programs that are harder to read and understand instead of easier to understand.

In most cases, the features are also redundant { there are other ways of accomplishing the

same end. Why have two ways of doing the same thing? Why not stick with the simpler

one?

I do not use any of the following features in Nachos. If you use them, caveat hacker.

22



1. Multiple inheritance. It is possible in C++ to de�ne a class as inheriting behavior

from multiple classes (for instance, a dog is both an animal and a furry thing). But if

programs using single inheritance can be di�cult to untangle, programs with multiple

inheritance can get really confusing.

2. References. Reference variables are rather hard to understand in general; they play

the same role as pointers, with slightly di�erent syntax (unfortunately, I'm not jok-

ing!) Their most common use is to declare some parameters to a function as reference

parameters, as in Pascal. A call-by-reference parameter can be modi�ed by the calling

function, without the callee having to pass a pointer. The e�ect is that parameters

look (to the caller) like they are called by value (and therefore can't change), but in

fact can be transparently modi�ed by the called function. Obviously, this can be a

source of obscure bugs, not to mention that the semantics of references in C++ are in

general not obvious.

3. Operator overloading. C++ lets you rede�ne the meanings of the operators (such as

+ and >>) for class objects. This is dangerous at best ("exactly which implementation

of '+' does this refer to?"), and when used in non-intuitive ways, a source of great

confusion, made worse by the fact that C++ does implicit type conversion, which can

a�ect which operator is invoked. Unfortunately, C++'s I/O facilities make heavy use

of operator overloading and references, so you can't completely escape them, but think

twice before you rede�ne '+' to mean \concatenate these two strings".

4. Function overloading. You can also de�ne di�erent functions in a class with the

same name but di�erent argument types. This is also dangerous (since it's easy to

slip up and get the unintended version), and we never use it. We will also avoid using

default arguments (for the same reason). Note that it can be a good idea to use the

same name for functions in di�erent classes, provided they use the same arguments

and behave the same way { a good example of this is that most Nachos objects have

a Print() method.

5. Standard template library. An ANSI standard has emerged for a library of rou-

tines implementing such things as lists, hash tables, etc., called the standard template

library. Using such a library should make programming much simpler if the data struc-

ture you need is already provided in the library. Alas, the standard template library

pushes the envelope of legal C++, and so virtually no compilers (including g++) can

support it today. Not to mention that it uses (big surprise!) references, operator

overloading, and function overloading.

6. Exceptions. There are two ways to return an error from a procedure. One is simple

{ just de�ne the procedure to return an error code if it isn't able to do it's job. For

example, the standard library routine malloc returns NULL if there is no available

memory. However, lots of programmers are lazy and don't check error codes. So

what's the solution? You might think it would be to get programmers who aren't lazy,

23



but no, the C++ solution is to add a programming language construct! A procedure

can return an error by \raising an exception" which e�ectively causes a goto back up

the execution stack to the last place the programmer put an exception handler. You

would think this is too bizarre to be true, but unfortunately, I'm not making this up.

While I'm at it, there are a number of features of C that you also should avoid, because

they lead to bugs and make your code less easy to understand. See Maguire's "Writing Solid

Code" for a more complete discussion of this issue. All of these features are legal C; what's

legal isn't necessarily good.

1. Pointer arithmetic. Runaway pointers are a principal source of hard-to-�nd bugs in C

programs, because the symptom of this happening can be mangled data structures in

a completely di�erent part of the program. Depending on exactly which objects are

allocated on the heap in which order, pointer bugs can appear and disappear, seemingly

at random. For example, printf sometimes allocates memory on the heap, which can

change the addresses returned by all future calls to new. Thus, adding a printf can

change things so that a pointer which used to (by happenstance) mangle a critical data

structure (such as the middle of a thread's execution stack), now overwrites memory

that may not even be used.

The best way to avoid runaway pointers is (no surprise) to be very careful when using

pointers. Instead of iterating through an array with pointer arithmetic, use a separate

index variable, and assert that the index is never larger than the size of the array.

Optimizing compilers have gotten very good, so that the generated machine code is

likely to be the same in either case.

Even if you don't use pointer arithmetic, it's still easy (easy is bad in this context!) to

have an o�-by-one errror that causes your program to step beyond the end of an array.

How do you �x this? De�ne a class to contain the array and its length; before allowing

any access to the array, you can then check whether the access is legal or in error.

2. Casts from integers to pointers and back. Another source of runaway pointers is that

C and C++ allow you to convert integers to pointers, and back again. Needless to say,

using a random integer value as a pointer is likely to result in unpredictable symptoms

that will be very hard to track down.

In addition, on some 64 bit machines, such as the Alpha, it is no longer the case that

the size of an integer is the same as the the size of a pointer. If you cast between

pointers and integers, you are also writing highly non-portable code.

3. Using bit shift in place of a multiply or divide. This is a clarity issue. If you are doing

arithmetic, use arithmetic operators; if you are doing bit manipulation, use bitwise

operators. If I am trying to multiply by 8, which is easier to understand, x << 3

or x * 8? In the 70's, when C was being developed, the former would yield more

e�cient machine code, but today's compilers generate the same code in both cases, so

readability should be your primary concern.

24



4. Assignment inside conditional. Many programmers have the attitude that simplicity

equals saving as many keystrokes as possible. The result can be to hide bugs that

would otherwise be obvious. For example:

if (x = y) {

...

Was the intent really x == y? After all, it's pretty easy to mistakenly leave o� the

extra equals sign. By never using assignment within a conditional, you can tell by code

inspection whether you've made a mistake.

5. Using #define when you could use enum. When a variable can hold one of a small

number of values, the original C practice was to use #define to set up symbolic names

for each of the values. enum does this in a type-safe way { it allows the compiler to

verify that the variable is only assigned one of the enumerated values, and none other.

Again, the advantage is to eliminate a class of errors from your program, making it

quicker to debug.

25



6 Style Guidelines

Even if you follow the approach I've outlined above, it is still as easy to write unreadable and

undebuggable code in C++ as it is in C, and perhaps easier, given the more powerful features

the language provides. For the Nachos project, and in general, we suggest you adhere to the

following guidelines (and tell us if you catch us breaking them):

1. Words in a name are separated SmallTalk-style (i.e., capital letters at the start of each

new word). All class names and member function names begin with a capital letter,

except for member functions of the form getSomething() and setSomething(), where

Something is a data element of the class (i.e., accessor functions). Note that you would

want to provide such functions only when the data should be visible to the outside

world, but you want to force all accesses to go through one function. This is often a

good idea, since you might at some later time decide to compute the data instead of

storing it, for example.

2. All global functions should be capitalized, except for main and library functions, which

are kept lower-case for historical reasons.

3. Minimize the use of global variables. If you �nd yourself using a lot of them, try and

group some together in a class in a natural way or pass them as arguments to the

functions that need them if you can.

4. Minimize the use of global functions (as opposed to member functions). If you write a

function that operates on some object, consider making it a member function of that

object.

5. For every class or set of related classes, create a separate .h �le and .cc �le. The .h �le

acts as the interface to the class, and the .cc �le acts as the implementation (a given

.cc �le should include it's respective .h �le). If using a particular .h �le requires

another .h �le to be included (e.g., synch.h needs class de�nitions from thread.h)

you should include the dependency in the .h �le, so that the user of your class doesn't

have to track down all the dependencies himself. To protect against multiple inclusion,

bracket each .h �le with something like:

#ifndef STACK_H

#define STACK_H

class Stack { ... };

#endif

Sometimes this will not be enough, and you will have a circular dependency. For

example, you might have a .h �le that uses a de�nition from one .h �le, but also

26



de�nes something needed by that .h �le. In this case, you will have to do something

ad-hoc. One thing to realize is that you don't always have to completely de�ne a class

before it is used. If you only use a pointer to class Stack and do not access any member

functions or data from the class, you can write, in lieu of including stack.h:

class Stack;

This will tell the compiler all it needs to know to deal with the pointer. In a few cases

this won't work, and you will have to move stu� around or alter your de�nitions.

6. Use ASSERT statements liberally to check that your program is behaving properly. An

assertion is a condition that if FALSE signi�es that there is a bug in the program;

ASSERT tests an expression and aborts if the condition is false. We used ASSERT above

in Stack::Push() to check that the stack wasn't full. The idea is to catch errors

as early as possible, when they are easier to locate, instead of waiting until there is

a user-visible symptom of the error (such as a segmentation fault, after memory has

been trashed by a rogue pointer).

Assertions are particularly useful at the beginnings and ends of procedures, to check

that the procedure was called with the right arguments, and that the procedure did

what it is supposed to. For example, at the beginning of List::Insert, you could assert

that the item being inserted isn't already on the list, and at the end of the procedure,

you could assert that the item is now on the list.

If speed is a concern, ASSERTs can be de�ned to make the check in the debug version

of your program, and to be a no-op in the production version. But many people run

with ASSERTs enabled even in production.

7. Write a module test for every module in your program. Many programmers have the

notion that testing code means running the entire program on some sample input; if

it doesn't crash, that means it's working, right? Wrong. You have no way of knowing

how much code was exercised for the test. Let me urge you to be methodical about

testing. Before you put a new module into a bigger system, make sure the module

works as advertised by testing it standalone. If you do this for every module, then

when you put the modules together, instead of hoping that everything will work, you

will know it will work.

Perhaps more importantly, module tests provide an opportunity to �nd as many bugs

as possible in a localized context. Which is easier: �nding a bug in a 100 line program,

or in a 10000 line program?

7 Compiling and Debugging

The Make�les we will give you works only with the GNU version of make, called \gmake".

You may want to put \alias make gmake" in your .cshrc �le.

27



You should use gdb to debug your program rather than dbx. Dbx doesn't know how to

decipher C++ names, so you will see function names like Run__9SchedulerP6Thread.

On the other hand, in GDB (but not DBX) when you do a stack backtrace when in a

forked thread (in homework 1), after printing out the correct frames at the top of the stack,

the debugger will sometimes go into a loop printing the lower-most frame (ThreadRoot), and

you have to type control-C when it says \more?". If you understand assembly language and

can �x this, please let me know.

8 Example: A Stack of Integers

We've provided the complete, working code for the stack example. You should read through

it and play around with it to make sure you understand the features of C++ described in

this paper.

To compile the simple stack test, type make all { this will compile the simple stack test

(stack.cc), the inherited stack test (inheritstack.cc), and the template version of stacks

(templatestack.cc).

9 Epilogue

I've argued in this note that you should avoid using certain C++ and C features. But you're

probably thinking I must be leaving something out { if someone put the feature in the

language, there must be a good reason, right? I believe that every programmer should strive

to write code whose behavior would be immediately obvious to a reader; if you �nd yourself

writing code that would require someone reading the code to thumb through a manual in

order to understand it, you are almost certainly being way too subtle. There's probably a

much simpler and more obvious way to accomplish the same end. Maybe the code will be a

little longer that way, but in the real world, it's whether the code works and how simple it

is for someone else to modify, that matters a whole lot more than how many characters you

had to type.

A �nal thought to remember:

\There are two ways of constructing a software design: one way is to make it so

simple that there are obviously no de�ciencies and the other way is to make it so

complicated that there are no obvious de�ciencies."

C. A. R. Hoare, \The Emperor's Old Clothes", CACM Feb. 1981

10 Further Reading

James Coplien, \Advanced C++", Addison-Wesley. This book is only for experts, but

it has some good ideas in it, so keep it in mind once you've been programming in C++

for a few years.

28



James Gosling. \The Java Language." Online at \http://java.sun.com/" Java is a safe

subset of C++. It's main application is the safe extension of Web browsers by allowing

you to download Java code as part of clicking on a link to interpret and display the

document. Safety is key here, since after all, you don't want to click on a Web link and

have it download code that will crash your browser. Java was de�ned independently

of this document, but interestingly, it enforces a very similar style (for example, no

multiple inheritance and no operator overloading).

C.A.R. Hoare, \The Emperor's Old Clothes." Communications of the ACM, Vol. 24,

No. 2, February 1981, pp. 75-83. Tony Hoare's Turing Award lecture. How do you

build software that really works? Attitude is everything { you need a healthy respect

for how hard it is to build working software. It might seem that addding this whiz-bang

feature is only \a small matter of code", but that's the path to late, buggy products

that don't work.

Brian Kernighan and Dennis Ritchie, \The C Programming Language", Prentice-Hall.

The original C book { a very easy read. But the language has evolved since it was �rst

designed, and this book doesn't describe all of C's newest features. But still the best

place for a beginner to start, even when learning C++.

Steve Maguire, \Writing Solid Code", Microsoft Press. How to write bug-free software;

I think this should be required reading for all software engineers. This really will change

your life { if you don't follow the recommendations in this book, you'll probably never

write code that completely works, and you'll spend your entire life struggling with hard

to �nd bugs. There is a better way! Contrary to the programming language types,

this doesn't involve proving the correctness of your programs, whatever that means.

Instead, Maguire has a set of practical engineering solutions to writing solid code.

Steve Maguire, \Debugging the Development Process", Microsoft Press. Maguire's

follow up book on how to lead an e�ective team, and by the way, how to be an e�ective

engineer. Maguire's background is that he is a turnaround artist for Microsoft { he

gets assigned to 
oundering teams, and �gures out how to make them e�ective. After

you've pulled a few all-nighters to get that last bug out of your course project, you're

probably wondering why in heck you're studying computer science anyway. This book

will explain how to write programs that work, and still have a life!

Scott Meyers, \E�ective C++". This book describes how 50 easy ways to make mis-

takes C++; if you avoid these, you will be a lot more likely to write C++ code that

works.

Bjarne Stroustrup, \The C++ Programming Language", Addison-Wesley. This should

be the de�nite reference manual, but it isn't. You probably thought I was joking when

I said the C++ language was continually evolving. I bought the second edition of this

book three years ago, and it is already out of date. Fortunately, it's still OK for the

subset of C++ that I use.

29


