
Parallel Processing Letters
❢c World Scientific Publishing Company

TRADING REPLICATION FOR COMMUNICATION
IN PARALLEL DISTRIBUTED-MEMORY DENSE SOLVERS∗

DROR IRONY and SIVAN TOLEDO

School of Computer Science, Tel-Aviv University
Tel-Aviv 69978, Israel

Email: irony@tau.ac.il, stoledo@tau.ac.il

Received (received date)
Revised (revised date)

Communicated by (Name of Editor)

ABSTRACT
We present new communication-efficient parallel dense linear solvers: a solver for triangular

linear systems with multiple right-hand sides and an LU factorization algorithm. These solvers are
highly parallel and they perform a factor of 0.4P1/6 less communication than existing algorithms,
where P is number of processors. The new solvers reduce communication at the expense of using
more temporary storage. Previously, algorithms that reduce communication by using more memory
were only known for matrix multiplication. Our algorithms are recursive, elegant, and relatively simple
to implement. We have implemented them using MPI, a message-passing libray, and tested them on a
cluster of workstations.

1 Introduction

We present new distributed-memory parallel algorithms for solving triangular and gen-
eral dense linear systems. The novelty in the new algorithms is that they reduce the amount
of communication by replicating data structures. Our algorithms generalize the notion of
3-dimensional work distributions that was initially developed for matrix multiplication, and
apply this notion to the solution of triangular systems and to LU factorization.

Conventional parallel distributed-memory dense matrix algorithms distribute the input
and output matrices onto a 2-dimensional (2D) grid of processors. They apply the “owner
computes” rule to one of the matrices to assign work to processors and to determine the
communication pattern. This general description applies to most of the existing matrix
multiplication, triangular solution, and triangular factorization algorithms.

So called 3-dimensional (3D) algorithms, on the other hand, arrange the processors in a
3-dimensional grid, and distribute the work, not the matrices, to schedule the computation
and communication. Dense matrix algorithms can be expressed using a triply-nested i j k
loop. Therefore, each scalar operation in the algorithm can be associated with a specific
i j k triplet. 3D algorithms distribute the 3D space of triplets directly onto a 3D grid of pro-
cessors, such that each processor is assigned a rectangular cube of triplets (not necessarily

∗This research was supported by Israel Science Foundation founded by the Israel Academy of Sciences and
Humanities (grant number 572/00 and grant number 9060/99) and by the University Research Fund of Tel-Aviv
University.

2 D. Irony and S. Toledo

contiguous in the i , j , or k dimensions).
Prior to our work, this 3D framework was only applied to matrix multiplication al-

gorithms. Such algorithms were first proposed by Aggarwal, Chandra, and Snir [2] and
independently by Berntsen [3]. Both of these papers were purely theoretical and showed
that the total amount of communication in the 3D algorithms is �(n 2 P1/3), where n is the
dimension of the matrices and P is the number of processors. In comparison, 2D algorithms
transfer a total of �(n2 P1/2) words between processors. Gupta and Kumar [10] and Johns-
son [11] later proposed and analyzed similar 3D algorithms. Agarwal, Balle, Gustavson,
Joshi, and Palkar [1] implemented a 3D algorithm and showed that it can outperform a 2D
algorithm in practice.

The reduction in communication that 3D matrix multiplication algorithms offer has
a price, however: these algorithms replicate the input matrices P 1/3 times. They use
�(n2/P2/3) words of memory per processor, as opposed to �(n 2/P) that 2D algorithms
use.

The question whether similar saving in communication can be obtained for linear solvers
remained open for about a decade and was posed to one of the authors about five years
ago. We answer this question in the affirmative in this paper. We show in this paper
how to apply the 3D framework to parallel distributed-memory triangular solvers and to
parallel distributed-memory triangular factorizations. As in matrix multiplication, our al-
gorithms reduce the total amount of communication from �(n 2 P1/2) in 2D algorithms
to �(n2 P1/3). Like 3D matrix multiplication algorithms, our algorithms use a factor of
�(P1/3) more memory than 2D algorithms.

We achieve this reduction in communication without a significant reduction in paral-
lelism: the critical path (longest chain of dependences) in our algorithms is the same or
almost the same as the theoretical lower bounds for these computations.

The constants hidden in the asymptotic communication estimates, however, are slightly
higher for our algorithms than for 2D algorithms: 2.5 for our algorithms versus 1 for the
2D algorithms. Since the difference in the asymptotic expression is only a factor of P 1/6, it
takes more than 244 processors to reach the break-even point, beyond which 3D algorithms
perform less communication. The constants, therefore, are critical in this context, and we
perform all of our analyses using constants rather than asymptotic notation.

We have also implemented our algorithms and we present the results of numerical ex-
periments. The experiments essentially validate the theoretical analysis, showing that on
tens of processors, 2D algorithm are faster.

Although the high break-even point for 3D linear solvers may seem disappointing, sev-
eral factor contribute to the significance of our results:

• They enhance our understanding of the communication requirements of parallel ma-
trix algorithms.

• They provide an analyzable example of how replication can reduce communication
in distributed computing.

• They lead the way to other 3D algorithms. If researchers discover 3D algorithms with
even slightly smaller constants than ours, they are likely to outperform 2D algorithms
even for modest numbers of processors.

Trading Replication for Communication in Parallel Distributed-Memory Dense Solvers 3

The rest of the paper is organized as follows. Section 2 presents background and defini-
tions. Section 3 presents our 3D triangular solver, and Section 4 presents our LU factoriza-
tion algorithm. Both algorithms are presented initially under some restrictive assumptions
that simplify the presentation and analysis; Section 5 shows how to lift these restrictions.
We compare 2D and 3D solvers in Section 6, and we present our experimental results in
Section 7. We present our conclusions and some open problems in Section 8.

2 Preliminaries

The paper discusses algorithms for two fundamental problems in numerical linear alge-
bra: the solution of multiple linear systems of equations with the same triangular coefficient
matrix but different right-hand sides, and the factorization of a square nonsingular matrix
into two triangular factors. The triangular solver solves L X = B, where X is a matrix of
unknowns, B is a matrix of known constants, and L is a known lower triangular nonsingu-
lar matrix. The matrix factorization algorithm factors A = LU , where L is lower triangular
and U is upper triangular. We assume that all matrices are n-by-n, and we assume that A
has an LU factorization even without pivoting (row and/or column exchanges). For certain
classes of matrices, such as matrices for which AT is strictly diagonally dominant, such a
factorization exists and is stable [8, Theorem 3.4.3]. It is straightforward to apply our ideas
to triangular solvers with rectangular X and B and to other triangular matrix factorizations,
such as L LT , L DM T , and so on. Extending our ideas to triangular factorizations with
pivoting is nontrivial and beyond the scope of this paper.

We assume that the computer has P processors, each with its own local memory. A
communication network links the processors. They can only communicate by sending
messages via the network; there is no shared memory. A processor can send a message to
any other processor. We ignore the physical topology of the network and focus on reducing
the total amount of data that is sent and received by the processors.

In addition to point-to-point messages, our algorithms also utilize so-called collective
communication. We use group broadcasts, in which a processor sends a message to a
specified group of other processors, and group reductions, in which a group of processors
compute the sum of one matrix from each processor. The sum is stored at the end of the
reduction on a specified processor. There are many algorithms for performing these collec-
tive operations efficiently on various topologies. We ignore these details in this paper and
assume that the communication cost of a broadcast is dominated by the cost of receiving
the messages and that the cost of a reduction is dominated by the cost of the single mes-
sage that each processor must send, carrying its contribution to the sum (in some reduction
algorithm the receiver may send no messages, but we ignore this subtlety).

The performance of a parallel distributed-memory algorithm is determined by the amount
of communication but also by dependences. If the next operation processor i is scheduled
to perform depends on the result of an operation that processor j is scheduled to perform
but has not yet performed, then processor i must wait. Processor i waits even if commu-
nication is instantaneous. This waiting lowers the utilization of processor i and hence, the
efficiency of the algorithm. To quantify this potential inefficiency, we use a synchronous
model of parallel computation in which all operations take unit time and in which commu-
nication is indeed instantaneous. In this model, an algorithm is said to be asymptotically
work efficient if it runs in O(φ/P) synchronous steps, where φ is the total number of useful
computational steps that the processors perform (useful as opposed to waiting).

4 D. Irony and S. Toledo

111

333

i

j

k

Fig. 1. A 3-by-3-by-3 processor grid. The figure on the left shows the grid and the labeling of the axes and the
labeling of two processors. The figure on the right illustrates the notion of layers and lines. The 2nd jk layer is
shown in black, and j line number 1, 1 is shown in hatches.

We arrange the processors on a virtual 3D grid, as illustrated in Figure 1. We assume
that P = p3 for some integer p, so the grid is p-by-p-by-p. We name the processors using
i j k index triplets according to their location in this grid, where i , j , and k range from 1 to
p. A line in the grid is a group of p processors whose names differ in only one dimension.
We name a line according to the dimension in which processors vary and according to the
fixed indices of the two other dimensions. For examples, j line number 1, 1 consists of all
the processors for which i = 1 and k = 1. A layer in the grid is a group of p 2 processors
whose names differ in only two dimensions. For example, the 2nd j k layer consists of all
the processors for which i = 2. We will also address the extension of the algorithms to
more general p1-by-p2-by-p3 processor grids.

We never distribute matrices on all the processors of the 3D grid, only on 2D layers.
When we distribute matrices on layers, we use a conventional cyclic distribution, which
stores the i j element of the matrix on the 1 + ((i − 1) mod p), 1 + ((j − 1) mod p)
processor in the layer, where i and j range from 1 to n. We will also comment on the
extension to block-cyclic distributions, in which the matrix is decomposed into blocks,
which are distributed cyclically on the layer as atomic units.

3 A 3D Triangular Solver

This section presents our triangular solver. We describe the algorithm assuming that
P = p3 for an integers p, that L is n-by-n, that X and B are n-by-m, and that n = p · 2 h ,
m = g · p for some integers h, g. These assumptions allows us to specify the algorithm
and analyze it succinctly. These restrictive assumptions can be removed using standard
techniques, as we describe later. Indeed, our code makes none of these assumptions.

The algorithm is recursive, and it maintains the following data-distribution invariants at
all levels of the recursion:

• L is replicated on all the jk layers of the 3D grid. Each layer stores L using a
cyclic distribution, where the j k element of L is stored on processor i, 1 + ((j −
1) mod p), 1 + ((k − 1) mod p) for all i .

Trading Replication for Communication in Parallel Distributed-Memory Dense Solvers 5

j

k

i

L
B

X

j

k

i

L
A

U

Fig. 2. The 3D data layouts that our algorithms use. The figure on the left shows the data layout of the triangular
solver, and the figure on the right the data layout of the factorization algorithm. Single columns of L , X , and B are
shown in light gray in the left figure, to illustrate which way rows and columns are laid out. In the triangular solver,
L is cyclically distributed on each jk layer, X is distributed cyclically on each ki layer, and B is represented as
a sum of p matrices, one on each j i layer. In the factorization algorithm, L and U are replicated and A is
represented as a sum.

• B is is stored as a sum B = B (1) + · · · + B(p) of p matrices, one on each j i layer.
Each B (k) is stored on its layer using a cyclic distribution, where the j i element of
B(k) is stored on processor 1 + ((i − 1) mod p), 1 + ((j − 1) mod p), k.

• When the algorithm terminates, X is cyclically distributed and replicated on all the
ki layers. The ki element of X is stored on processor 1 + ((i − 1) mod p), j, 1 +
((k − 1) mod p) for all j .

Figure 2 illustrates this data layout.
The user is responsible for distributing the input matrices L and B appropriately before

calling the algorithm. Our code can perform part of this task on behalf of the user: the user
can distribute L on only the first j k layer, and B as a single summed matrix on the first
j i layer. Our code can transform this distribution to the algorithm’s invariant distribution
by replicating L to all the other j k layers and by setting B (1) = B, B(2) = B(3) = · · · =
B(p) = 0. The replication of L is performed using p 2 group broadcasts, one along each i
line: for every jk pair, processor 1 jk sends all the elements of L that it stores to processors
i j k for i = 2, . . . , p. The total communication cost of this setup phase is n 2 p words (to
receive the broadcasts).

We now describe the overall recursive algorithm.

1. If n = p, invoke the base case, which is presented in Figure 3, and return.

2. Comment: n is at least 2p. We view L as 2-by-2 block matrix and B and X as 2-by-1
block matrices, where each block of L is (n/2)-by-(n/2),[

L11
L21 L22

] [
X1
X2

]
=

[
B1
B2

]
.

The blocking is simply notational—no data movement occurs.

3. Solve L11 X1 = B1 recursively using the entire processor grid. Since the matrices
are distributed cyclically, these blocks are distributed on the entire processor grid and
their distributions satisfy our invariants. At the end of this step, each i k layer of the
grid contains a replica of X 1.

6 D. Irony and S. Toledo

do in parallel for all j i
the j i th k line sums [bji , b j,i+p , . . . , b j,i+m−p] to processor i j1.

end do
comment: the first j i layer now stores B .
do in parallel for all jk layers

for s = i, i + p, . . . , i + m − p do in a pipelined fashion
for k = 1 to p

processor ikk computes xks = bks/ lkk .
processor ikk broadcasts xks along the ki th j line.
in parallel, processor i jk for j > k updates bjs = b js − l jk xks .
if k < p then

in parallel, processor i jk for j > k sends bjs to processor i j, k + 1.
end if

end for
end pipelined for

end parallel do

Fig. 3. The base case of the 3D triangular solver. We refer to individual matrix element using subscripted lower
case letters, such as xki , b ji , and l jk . The iterations of the outer loop are performed sequentially, only the updates
to the right hand sides are performed in parallel.

4. Update the right-hand side B2 = B2 − L21 X1. We denote the terms of B2 by B2 =
B(1)

2 + · · · + B(p)
2 . Let B(k)

ji denote the submatrix (row and column subset) of B (k)
2

that are stored on processor i jk, let L jk denote the submatrix of L 21 that is stored on
processor i j k, and let X ki the submatrix of X 1 that processor i jk stores. Processor
i jk computes locally B (k)

j i = B(k)
j i − L jk Xki . We shall show later that the dimensions

of the matrices are consistent and that this updates B2 correctly and maintains its
distribution invariant. No communication is performed.

5. Solve L22 X2 = B2 recursively.

Figure 3 shows the code for the base case of the recursion. The subroutine starts by sum-
ming the terms of B to the the first j i layer, and then each jk layer solves m/p linear
systems. In each j k layer, the subroutine pipelines the solution of all m/p linear systems.
The key to pipelining the solution is the fact that a processor in a given j k layer performs
only one operation for each value of s.

We start the analysis of the algorithm by showing that it is, indeed, correct.

Theorem 3.1 The triangular solver is correct. That is, the output X satisfies L X = B and
it is replicated on all the ki layers.

Proof. We prove the theorem by induction.
The base case is a trivial parallel implementation of the substitution algorithm, so it

clearly computes X correctly. At the end of the computation, X is replicated on all the ki
layers since after each element of X is computed, it is broadcast along the ki th j line.

Assume that the algorithm is correct for inputs of order n/2. Given an input of size n,
X1 is computed and replicated correctly by the induction hypothesis.

We now prove the correctness of step 4. B (k)
ji is (n/2p)-by-(m/p), L jk is (n/2p)-by-

(n/2p), and X ki is (n/2p)-by-(m/p), so the dimensions are consistent. Let us consider a
specific element b j ′i ′ of B2 and show that it is updated correctly. Let j ′ > n/2 and i ′ < m.
Let i = 1+ ((i ′ −1) mod p) and let j = 1+ ((j ′ −1) mod p). b j ′i ′ is in B2 and it is stored

Trading Replication for Communication in Parallel Distributed-Memory Dense Solvers 7

unsummed in the ji th k line. The local update that processor i jk computes on the B (k)
j ′i ′ is

b(k)
j ′i ′ = b(k)

j ′i ′ −
∑

k ′
l j ′k ′ xk ′i ′ ,

where the summation ranges over k ′ = k +
p for
 = 0, . . . , (n/2p) − 1, the set of k
indices that map to processor i jk in the cyclic distribution. Summing over all the ji layers
we get

b j ′i ′ = b(1)
j ′i ′ + · · · + b(p)

j ′i ′

=
p∑

k=1

b(k)
j ′i ′

=
p∑

k=1


b(k)

j ′i ′ −
(n/2p)−1∑

=0

l j ′,k+
pxk+
p,i ′




=
p∑

k=1

b(k)
j ′i ′ −

n/2∑
k′=1

l j ′,k′ xk′,i ′

= b j ′i ′ − [L21 X1] j ′i ′ .

This proves that the update to the right-hand side is computed correctly. Since step 5 is
correct by induction, the algorithm as a whole is correct.
We now analyze the effects of dependences (critical path) on the performance of the algo-
rithm.

Theorem 3.2 In a synchronous model of parallel computation, in which a processor can
perform one operation per step and in which communication is instantaneous, the algo-
rithm runs in at most n2m/p3 + 3n time steps.

Proof. We denote the number of steps for matrices of order n with p 3 processors by Tn,m,p .
The number of steps in the base case n = p is T p,m,p = 3p + (m/p) − 1. The first linear
system on each jk is solved after 3p steps, since in each k loop we perform a division,
a parallel multiplication by a scalar, and a parallel subtraction. From step 3p until step
3p + (m/p) − 1, a jk layer finishes the solution of one linear system per step, by virtue of
pipelining. The number of steps to locally multiply an
-by-
 matrix by an
-by-m matrix
and subtract the product from another
-by-m matrix is 2
 2m. Therefore, Tn,p satisfies

Tn,m,p ≤
{

2Tn/2,m,p + 2 · (n/2p)2 · (m/p) when n > p
3p + m/p when n = p .

It is easy to show by induction that Tn ≤ n2m/p3 + 3n.

Theorem 3.3 The algorithm is asymptotically work efficient when P = O(nm).

Proof. The total number of useful computation steps in the algorithm is φ n,m = m(n +
2n(n − 1)/2) = n2m, since there are m independent linear systems, each requiring n
divisions, n(n − 1)/2 scalar multiplications, and n(n − 1)/2 scalar subtraction. We need to
show that

8 D. Irony and S. Toledo

Tn,m,p ≤ n2m/p3 + 3n = O(φn,m/p3) .

When P = p3 ≤ nm/3, we have
n2m

p3
≥ 3n ,

so n2m/p3 is the dominant term in the running-time upper bound, which proves the theo-
rem.
We now analyze the total amount of communication in the algorithm. The next theorem as-
sumes that the data-distribution invariants hold when the algorithm starts. As we explained
above, if the algorithm also needs to replicate L, the amount of communication grows by
n2 p.
Theorem 3.4 The total amount Cn,m,p of communication in the algorithm satisfies Cn,m,p ≤
2.5nmp.
Proof. Step 4 in the recursive algorithm perform no communication and steps 3 and 5 are
recursive calls. Therefore, all the communication occurs at the base case of the recursion.
The base case is invoked exactly n/p times, since there are 2 recursive calls to problems of
size n/2 as long as n > p.

Each base-case invocation starts with one group reduction along each k line. Each
group reduction sums a matrix with dimensions 1-by-m/p, so the total number of messages
that are sent in a reduction is (m/p) · p = m. The total cost over all base-case invocations
and all k lines is (n/p) · p2 · m = nmp.

Each element of x that the algorithm computes is broadcast along some j line, so there
are nm such broadcasts, each costing p words of communication. The total is again nmp.

The number of point-to-point messages per linear system in each base case invocation
is p(p − 1)/2. Therefore, the total number of these single-word messages is (n/p) · m ·
p(p − 1)/2 = nm(p − 1)/2 ≤ nmp/2.

Therefore, the total amount of communication is C n,m,p ≤ nmp + nmp + nmp/2 =
2.5nmp.
The bound on Cn,m,p ignores some imbalance between the communication that different
processors perform. All the point-to-point communication is performed by processors i j k
with j > k. Therefore, 3nmp is likely to predict the communication delay more accurately
than 2.5nmp.
Theorem 3.5 The 3D triangular solver uses at most (1.5n2 + nm + 0.5n)/p2 words of
memory per processor.
Proof. The algorithm distributes L cyclically on each j k layer, so each processor stores
(n(n + 1)/2)/p2 words of L . Each processor also stores nm/p2 elements of B (k) and
n2/p2 elements of X . Therefore, the total is at most (1.5n 2 + nm + 0.5n)/p2 words.
This concludes our analysis of the triangular solver. We will comment in Section 5 on
generalization to general 3D processor grids, general n and m, and block cyclic data distri-
butions.

4 A 3D LU Factorization Algorithm

This section presents our 3D factorization algorithm. We again describe the algorithm
assuming that P = p3 for an integers p, that A is n-by-n, and that n = p · 2 h for some

Trading Replication for Communication in Parallel Distributed-Memory Dense Solvers 9

integer h; Section 5 explains how to lift these restrictions. The factorization algorithm,
too, is recursive, and it uses similar data-distribution invariants, which are illustrated in
Figure 2.

• A is stored as a sum A = A(1) +· · ·+ A(p) of p matrices, one on each ji layer. Each
A(k) is stored on its layer using a cyclic distribution, where the j i element of A (k) is
stored on processor 1 + ((i − 1) mod p), 1 + ((j − 1) mod p), k.

• When the algorithm terminates, L is replicated on all the j k layers using a a cyclic
distribution, where the jk element of L is stored on processor i, 1 + ((j − 1) mod
p), 1 + ((k − 1) mod p) for all i .

• When the algorithm terminates, U is replicated on all the ki layers using a cyclic
distribution, where the ki element of U is stored on processor 1 + ((i − 1) mod
p), j, 1 + ((k − 1) mod p) for all j .

If the user distributes A on only the first j i layer, the algorithm sets A (1) = A, A(2) =
· · · = A(p) = 0. We first describe the overall recursive algorithm and then we describe the
base case of the recursion.

1. If A is p-by-p, invoke the base case of the recursion, which is presented in Figure 4,
and return.

2. Comment: n is at least 2p. We view A as a 2-by-2 block matrix, where each block is
(n/2)-by-(n/2), and factor it into[

A11 A12
A21 A22

]
=

[
L11
L21 L22

] [
U11 U12

U22

]
.

3. Factor A11 = L11U11 recursively using the entire processor grid.

4. Solve L21U11 = A21 for L21 using the 3D triangular solver from Section 3.

5. Solve L11U12 = A12 for U12 using the 3D triangular solver, modified appropriately
to solve an upper triangular linear system.

6. Update A22 = A22−L21U12. Let A(k)
j i denote the submatrix (row and column subset)

of A(k)
22 that are stored on processor i j k, let L jk denote the submatrix of L 21 that is

stored on processor i j k, and let Uki the submatrix of U12 that processor i jk stores.
Processor i jk computes locally A(k)

j i = A(k)
j i − L jkUki . We shall show later that this

updates A22 correctly and maintains its distribution invariant. No communication is
performed.

7. Factor A22 = L22U22 recursively.

Theorem 4.1 When the 3D LU factorization algorithm terminates, L and U are computed
and distributed correctly.

10 D. Irony and S. Toledo

sum A to the first j i layer.
for k = 1 to p

processor kkk factors akk = lkk ukk (e.g., lkk = 1, ukk = akk).
processor kkk broadcasts ukk along the kk th j line.
processor kkk broadcasts lkk along the kkth i line.
in parallel do

processor k jk for j > k computes ljk = a jk/ukk .
processor ikk for i > k computes uki = aki / lkk .

end do
in parallel do

processor k jk for j > k broadcasts ljk to the jkth i line.
processor ikk for i > k broadcasts uki to the ki th j line.

end do
if k < p then

in parallel, processor i jk for i, j > k updates aji = a ji − l jk uki .
in parallel, processor i jk for i, j > k sends aji to processor i j, k + 1.

end if
end for

Fig. 4. The base case of the 3D LU decomposition algorithm. In the code, aji , l jk , and uki stand for individual
matrix elements.

Proof. We prove the theorem by induction. The base case clearly computes L and U
correctly, since it is simply a distributed-memory parallel version of the sequential right-
looking LU decomposition algorithm. The base case produces the correct distribution of
L and U when it terminates since processor k jk computes l jk and broadcasts it along the
i line that it belongs to, and processor ikk computes u ki and broadcasts it along the j line
that it belongs to.

Assume that the algorithm is correct for inputs of order n/2. The blocks L 11 and U11
are computed and distributed correctly by induction.

We now prove the correctness of Step 6. The matrices that we multiply are all square.
Let us consider a specific element of A22 and show that it is updated correctly. Let j ′ > n/2
and i ′ > n/2. Let i = 1+ ((i ′ −1) mod p) and let j = 1+ ((j ′ −1) mod p). The element
a j ′i ′ is in A22 and it is stored unsummed in the j i th k line. The local update to a (k)

j ′i ′ that
processor i j k computes is

a(k)
j ′i ′ = a(k)

j ′i ′ −
∑

k′
l j ′k′ uk′i ′ ,

where the summation ranges over k ′ = k +
p for
 = 0, . . . , (n/2p) − 1, the set of k
indices that map to processor i jk in the cyclic distribution. Summing over all the ji layers
we get

a j ′i ′ = a(1)
j ′i ′ + · · · + a(p)

j ′i ′

=
p∑

k=1

a(k)
j ′i ′

=
p∑

k=1


a(k)

j ′i ′ −
(n/2p)−1∑

=0

l j ′,k+
puk+
p,i ′




Trading Replication for Communication in Parallel Distributed-Memory Dense Solvers 11

=
p∑

k=1

a(k)
j ′i ′ −

n/2∑
k′=1

l j ′,k′uk′,i ′

= a j ′i ′ − [l21u11] j ′i ′ .

This proves that the update to the trailing submatrix is computed correctly. Step 7 is correct
by induction.

Theorem 4.2 In a synchronous model of parallel computation with instantaneous commu-
nication, the algorithm runs in at most 2

3 n3/p3 + 3n log2(2n/p) time steps.

Proof. We denote the number of steps for matrices of order n on p 3 processors by Tn,p .
The cost of the base case of the recursion is T p,p = 3p (parallel scalar division, and
parallel scalar multiply-subtract). The number of steps to perform a local matrix multiply
and subtract on square matrices of order
 is 2
3. The time to perform a 3D triangular solve
with n right hand sides is at most n3/p3 +3n, as shown in Theorem 3.2. We therefore have
the following recurrence for the number of steps:

Tn,p ≤
{

2Tn/2,p + 2
((n

2

)3
/p3 + 3 n

2

)
+ 2

(n
2

)3
/p3 when n > p

3p when n = p ,

≤
{

2Tn/2,p + n3

2p3 + 3n when n > p

3p when n = p .

It is easy to verify by induction that Tn,p ≤ 2
3 n3/p3 + 3n log2(2n/p).

Theorem 4.3 The algorithm is asymptotically work efficient when P = O(n 2/ log n).

Proof. Omitted since it is similar to the proof of Theorem 3.3.

Theorem 4.4 The total amount Cn,p of communication (in words) in the algorithm satisfies
Cn,p ≤ 2.5n2 p + 2.3334np2 + 0.5np + 0.1667n.

Proof. The algorithm performs communication both when it reaches its base case and
during calls to the triangular solver. The calls to the triangular solver are with square right-
hand side matrix. Each base-case invocation starts with p 2 independent single-word group
reduction, one along each k line. In each base-case invocation, the algorithm broadcasts
each element of U and L that it computes along a line. The number of single-word point-
to-point messages in a base-case invocation is (p −1)2 + (p −2)2 +· · ·+12 = (p −1) · p ·
(2(p−1)+1)/6 = (2p3 −3p2 + p)/6. The total amount of communication in a base-case
invocation, therefore, is bounded by p 3 + 2 · (p(p + 1)/2) · p + (2p3 − 3p2 + p)/6 ≤
(7/3)p3 + (1/2)p2 + (1/6)p.

The amount of communication satisfies the recurrence,

Cn,p ≤
{

2Cn/2,p + 2 · 5
2

(n
2

)2
p when n > p

7
3 p3 + 1

2 p2 + 1
6 p when n = p .

The solution of this recurrence satisfies Cn,p ≤ 2.5n2 p + 2.3334np2 + 0.5np + 0.1667n.

Here, too, there is some imbalance in the amount of communication that different proces-
sors perform. A bound of 3n 2 p + 4p3 is likely to predict better the communication delay.

12 D. Irony and S. Toledo

Theorem 4.5 The 3D LU factorization algorithm uses at most 2.5n 2/p2 words of memory
per processor.

Proof. Since the data-distribution invariants of the 3D triangular solver are satisfied when
the LU algorithm calls it, it does not allocate additional memory.

The LU algorithm distributes L cyclically on each jk layer, so each processor stores
(n(n − 1)/2)/p2 words of L . The U factor takes the same amount of memory to store.
Each processor also stores n2/p2 elements of A(k), so the total is at most 2n2/p2 words
per processor.

5 Generalizations and Implementation

We have generalized the algorithms from Sections 3 and 4 and implemented the gener-
alized algorithms. The generalized algorithms are designed to achieve several goals:

• Increase the size of messages without increasing the total amount of data that is
exchanged. This reduces the number of communication startup times and reduces
the total cost of communication.

• Allow the algorithms to work on any p1-by-p2-by-p3 processor grid, as opposed to
perfect p-by-p-by-p cubes.

• Allow the algorithms to solve problems of any order n and any number m of right-
hand sides, regardless of the grid dimensions (as opposed to the n = 2 h p and m = gp
restrictions).

Another generalization, which would improve the algorithms but which we have not im-
plemented, is to

• Implement broadcasts and reductions using a pipelined schedule with only nearest-
neighbor communication in the processor grid.

We generalize the algorithms using standard techniques in distributed-memory numerical
linear-algebra algorithms. We omit the analysis of the generalized algorithms, since the
analysis in Sections 3 and 4 provides sufficient insight and understanding; the analysis of
the generalized algorithms would be cluttered by numerous parameters and would not add
any new insight.

Another simple modification allows both algorithms to deal with general n and m, not
just n = 2h p and m = gp. The modification has two components. First, we pad n and m to
a multiple of p (but not necessarily a power-of-2 multiple), n ′ = p
n/p�, m ′ = p
m/p�.
The padding is done algebraically by adding zero rows and columns, although the code
never refers to them, so there is no need to allocate memory for them. Second, when we
partition matrices into blocks, we allow the blocks to differ in size. The diagonal elements
of coefficient matrices are always square, but their off diagonal blocks need not be square,
since we can deal with rectangular triangular solves. We do the partitioning, however, in
such a way that each block size is a multiple of p, so when the base cases are called, they
are always called on coefficient matrices that are p-by-p.

Block-cyclic data distributions reduce the number of messages in the algorithms with-
out increasing the total communication volume. In a block-cyclic distribution with block

Trading Replication for Communication in Parallel Distributed-Memory Dense Solvers 13

size r , we split the matrices into r -by-r blocks and distribute the blocks cyclically on a
layer of the processor grid. The algorithms are essentially applied to block matrices rather
than matrices of scalars. This reduces the number of messages by about a factor of r 2. Us-
ing a block-cyclic data distribution also reduces the amount of parallelism by about a factor
of r 2. That is, the algorithms are asymptotically work-efficient only with smaller numbers
of processors, P = O(nm/r 2) for the triangular solver and P = O(n 2/(r2 log n)). This
behavior is common to linear-algebra algorithms with long critical paths, such as triangular
solvers by substitution and triangular and orthogonal factorizations (see, e.g., [9]).

The notion of virtual processors allows the algorithms to work on any p 1-by-p2-by-p3
processor grid. Given such a grid, we define p as the least common multiple of p 1, p2, and
p3 and we run the algorithm on a virtual p-by-p-by-p grid. We assign a p

p1
-by- p

p2
-by- p

p3
portion of the virtual grid to each physical processor. The physical processor simulates all
the actions of the virtual processors that we assign to it, except for communication among
them. We stress that the virtual grid and the virtual processors are used only as a conceptual
tool during the implementation: the code itself has no notion of virtual processors. We also
note that in the triangular solver it is sufficient to define p as the least common multiple of
p2 and p3 only.

The code is somewhat more complex than this discussion suggests, since the modifica-
tions are not independent, but the preceding paragraphs do present the essential techniques.

Another standard technique, which we have not used in our code, would allow us to
replace all the collective communication with point-to-point communication. We can re-
place the broadcasts and summations with point-to-point communication that broadcast or
sum along a line in the grid. This requires pipelining the schedule, which lengthens the
critical path (Theorems 3.3 and 4.2) by a constant factor and makes the implementation
more intricate, but it does not have other impacts on the analysis. This standard technique
often improves performance significantly in practice.

We have implemented the generalized algorithms in C using the Message Passing In-
terface (MPI [7,13]). One difference between our code and the algorithms presented in the
paper is that for the sake of simplicity we did not pipeline the solution of multiple linear
systems in the base case of the triangular solver. This affects only the critical path of the
algorithm, not the amount of memory or communication.

The user is responsible for creating the 3D processor grid for our solver using MPI’s
MPI Cart create. The user is also responsible for block-cyclically distributing the
input matrices on the outer layers of the grid (our code performs the replication where
necessary). The user, therefore, decides on the dimensions of the grid and on the block size
of the distribution. MPI decides on the mapping of the virtual 3D processor grid onto the
physical topology; high-quality MPI implementations are expected to perform the mapping
in a way that minimizes the cost of nearest neighbor communication in the virtual 3D grid.
Our interface is similar to that of ScaLAPACK [5,4], in that ScaLAPACK’s user must also
set up a (2D) processor grid and distribute matrices on the grid. As we demonstrate below
in Section 7, the quality of our implementation is at least as good as ScaLAPACK, which
allows us to compare 2D and 3D algorithms fairly using our implementation.

6 Comparing 2D and 3D Solvers

Our new 3D solvers perform 2.5n 2 P1/3 + o(n2) total communication compared with
n2 P1/2 for 2D algorithms, but they use more memory per processor, �(n 2/P2/3) versus

14 D. Irony and S. Toledo

only �(n2/P) for 2D algorithms. This communication-replication tradeoff has little effect
on parallelism: our triangular solver is asymptotically work efficient for P = O(n 2), just
like 2D triangular solvers. Our LU factorization is asymptotically work efficient for P =
O(n2/ log n), a factor of log n worse than 2D factorization algorithms.

The constants in the communication bounds are critical, since the asymptotic amount of
communication differs by only P 1/6. Efficient 2D distributed memory LU factorizations
transfer n2 P1/2 words between processors. (As in our algorithm, we count the number of
words that are received, whether they were sent point-to-point or broadcast; there is no need
for other collective operations.) Consider, for example, a right-looking algorithm with a
cyclic distribution. To factor row and column k, one of the processors factors a kk = lkkukk

and broadcasts lkk in its processor row in the grid and u kk in its processor column. The
processors in the same processor row and column compute row k of U and column k of L.
The processors with elements of L ∗,k broadcast them to their processor row and processors
with element of Uk,∗ broadcast them to their processor column. The total cost of this step,
therefore, is that of broadcasting a row of U and a column of L along lines in the 2D
processor grid. Since the average length of a row of U (column of L) is n/2, the total
number of words that are received is 2 · n · (n/2) · P 1/2 = n2 P1/2.

Since our LU factorization transfers about 2.5n 2 P1/3 words and 2D algorithms trans-
fer n2 P1/2, our algorithm performs less communication only for P ≥ 2.5 6 = 244.14.
(Around P = 244 the 2D and 3D algorithms would perform about the same amount of
communication; unfortunately, P should be larger than 15, 616 for the 3D algorithm to
perform less than half the communication that the 2D algorithm performs.)

It is interesting to contrast this rather high break-even point with the break-even point
for matrix multiplication. Conventional 2D matrix multiplication algorithms [6,10,12,14]
transfer about 2n2 P1/2 words, since they essentially replicate the multiplicands across the
2D grid, but they do not move the product. 3D algorithms transfer about 3n 2 P1/3 words,
since they replicate the two multiplicands and then sum p 1/3 matrix terms to form the
product. Therefore, 3D algorithms perform less communication when P 1/6 ≥ 3/2 or
P ≥ 11.4. The break-even point for matrix multiplication is much lower than for our 3D
solvers.

7 Experimental Results

We have conducted extensive experiments with our implementation of the algorithm.
The results, which are summarized graphically in Figure 5, essentially validate our conclu-
sion from Section 6, namely, that the break-even point for the 3D algorithms is too high to
deliver significant benefit in practice.

The experiments were conducted on a 32-node cluster of 800MHz dual-Pentium-III
computers, interconnected using a 100Mbits/sec fast Ethernet switch. We only used one
processor in each node in our experiment. The compiler that we used was GCC and the MPI
implementation was MPICH, in a configuration that uses internally TCP/IP as the commu-
nication medium. The operating system was Red-Hat Linux version 6.1. The sequential
subroutines that we used (for matrix multiplication, triangular solves, and LU factoriza-
tion) are from ATLAS†, a high-performance public domain implementation of the BLAS
and of part of LAPACK. We ran somewhat less extensive experiments on a 112-processor

†http://www.netlib.org/atlas

Trading Replication for Communication in Parallel Distributed-Memory Dense Solvers 15

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7
x 10

9

1x1x1
2x4x1

2x2x2

3x3x1

6x4x1
3x4x2

5x5x1

3x9x1
3x3x3

2x4x1

2x2x2

3x3x1
6x4x1

5x5x1

3x9x1

3x3x3

2x4x1 3x3x1
6x4x1

2x4x1

3x3x1

6x4x1
5x5x1

3x9x1

F
lo

at
in

gP
oi

nt
 O

pe
ra

tio
ns

 p
er

 S
ec

on
d

Number of Processors

N=1000 3D Code
N=5000 3D Code
N=1000 ScaLAPACK
N=5000 ScaLAPACK

Fig. 5. The results of our experiments. The graph shows the performance, in floating-point operations per second,
of our 3D LU factorization and of ScaLAPACK’s 3D L LT factorization, both of which perform no numerical
pivoting. The results show the performance for 2 matrix sizes and for several grid shapes, which are shown next
to the data points.

SGI Origin 2000 computer, with similar results, which are not shown here.
The results show that when our algorithm runs on a degenerate 3D grid, it outperforms

ScaLAPACK. Our code degenerates gracefully into a 2D algorithm simply by setting one
of the grid dimensions to 1; the code does not handle this as a special case. This level of
performance relative to ScaLAPACK shows that our code is well implemented.

When invoked on a true 3D grid, the code runs slower. This validates our analysis,
which indicates that 3D grids lead to reduction in communication relative to 2D grids only
for hundreds of processors. The fact that our code is at least as fast as ScaLAPACK on
2D grids indicates that the observed behavior mirrors the theoretical results and not a poor
implementation.

8 Conclusions and Open Problems

We draw two main conclusions from this research: that our proposed 3D linear solvers
are asymptotically superior to existing 2D solvers; and that 3D solvers are likely to outper-
form 2D ones only on machines with about 245 nodes or more.

Clearly, the main open question that this research suggests is whether the amount of
communication can be reduced further, even if just by a constant factor. Even a reduction
by a factor of only 1.5 would reduce the break-even point for the algorithm from about 245
down to about 21.

Another interesting open question is whether the log n factor in the critical path of the
LU decomposition algorithm can be removed.

16 D. Irony and S. Toledo

Finally, if the constants can be reduced and the algorithms made practical, are there
communication-efficient 3D algorithms for more complex matrix factorizations, such as
LU with partial pivoting or Q R?

References

[1] R. C. Agarwal, S. M. Balle, F. G. Gustavson, M. Joshi, and P. Palkar. A three-dimensional
approach to parallel matrix multiplication. IBM Journal of Research and Development,
39(5):575–582, 1995. available online at http://www.research.ibm.com/journal/rd39-5.html.

[2] Alok Aggarwal, Ashok Chandra, and Marc Snir. Communication complexity of PRAMs. The-
oretical Computer Science, 71:3–28, 1990.

[3] Jarle Bernsten. Communication efficient matrix multiplication on hypercubes. Parallel Com-
puting, 12:335–342, 1989.

[4] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLA-
PACK Users’ Guide. SIAM, Philadelphia, PA, 1997. Also available online from
http://www.netlib.org.

[5] J. Choi, J. Dongarra, R. Pozo, and D. Walker. ScaLAPACK: A scalable linear algebra for
distributed memory concurrent computers. In Proceedings of the 4th Symposium on the
Frontiers of Massively Parallel Computation, pages 120–127, 1992. Also available as
University of Tennessee Technical Report CS-92-181.

[6] Jaeyoung Choi, Jack J. dongarra, and David W. Walker. PUMMA: Parallel universal matrix mul-
tiplication algorithms on distributed memory concurrent computers. Concurrency: Practice
and Experience, 6:543–570, 1994.

[7] Message Passing Interface Forum. MPI: A message-passing interface standard. International
Journal of Supercomputing Applications, 8(3–4), 1994.

[8] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University
Press, 3rd edition, 1996.

[9] Anshul Gupta, Fred G. Gustavson, Mahesh Joshi, and Sivan Toledo. The design, implementa-
tion, and evaluation of a symmetric banded linear solver for distributed-memory parallel com-
puters. ACM Transactions on Mathematical Software, 24(1):74–101, 1998.

[10] Anshul Gupta and Vipin Kumar. The scalability of matrix multiplication al-
gorithms on parallel computers. Technical Report TR 91-54, Department of
Computer Science, University of Minnesota, 1991. Available online from
ftp://ftp.cs.umn.edu/users/kumar/matrix.ps. A short version ap-
peared in Proceedings of 1993 International Conference on Parallel Processing, pages
III-115–III-119, 1993.

[11] S. Lennart Johnsson. Minimizing the communication time for matrix multiplication on multi-
processors. Parallel Computing, 19:1235–1257, 1993.

[12] Kapil K. Mathur and S. Lennart Johnsson. Multiplication of matrices of arbitrary shapes on a
data-parallel computer. Parallel Computing, 20:919–951, 1994.

[13] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra. MPI: The
Complete Reference, volume 1: The MPI Core. MIT Press, 2nd edition, 1998.

[14] Robert van de Geijn and Jerrell Watts. SUMMA: Scalable universal matrix multiplication algo-
rithm. Concurrency: Practice and Experience, 9:255–274, 1997.

