Rafael Oliveira
Princeton University

Factors of
Low Individual Degree Polynomials

Outline

Introduction \& Background

Arithmetic Circuits and Factoring

Factoring in Real Life

Basic routine in many tasks:

Fast decoding of Reed Solomon Codes

Used to compute:

- Primary Decompositions of Ideals
- Gröbner Bases, etc.

Can be done efficiently in (randomized) poly time!

In theory, interested in:

- Derandomization
- Parallel complexity
- Structure of factors

Arithmetic Circuits

Definition by picture

Main measures:

Size = \# edges

Depth = length of longest path from root to leaf

Model captures our notion of algebraic computation

Many interesting polynomials have succinct rep. in this model, such as $\operatorname{Det}_{n}(X), \sigma_{k}\left(x_{1}, \ldots, x_{n}\right)$.
It is a major open question whether Perm_{n} has a succinct rep. in this model.

Polynomial Factorization

Problem: Given a circuit for $P(\mathbf{x})$, where

$$
P(\mathbf{x})=g_{1}(\mathbf{x}) g_{2}(\mathbf{x}) \ldots g_{k}(\mathbf{x})
$$

output circuits for $g_{1}(\mathbf{x}), g_{2}(\mathbf{x}), \ldots, g_{k}(\mathbf{x})$

- [LLL '82, Kal '89]: if $P(\mathbf{x})$ is computed by a small circuit, then so are the factors $g_{1}(\mathbf{x}), g_{2}(\mathbf{x}), \ldots, g_{k}(\mathbf{x})$. Moreover Kaltofen gives a randomized algorithm to compute factors
- Fundamental consequences to:
- Circuit Complexity \& Pseudorandomness: [KI '04, DSY '09]
- Coding Theory: [Sud '97, GS'06]
- Geometric Complexity Theory: [Mul'13]

What About Depth?

[Kaltofen '89]: factorization behaves nicely w.r.t. size.
What about depth?

More generally:

Structure: given polynomial $P(\mathbf{x})$ in circuit class \mathcal{C}, which classes \mathcal{C}^{*} efficiently compute the factors of $P(\mathbf{x})$?

- If $P(\mathbf{x})$ has a small depth circuit, do its factors have small depth circuits?
- If $P(\mathbf{x})$ has a small formula, do its factors have small formula?

Gap of Understanding

If $P(\mathbf{x})$ is a polynomial with s monomials and degree d

Kaltofen \& depth reduction

> Factors of $P(\mathbf{x})$ computed by formulas of depth 4 and

$$
\text { size } \exp (\tilde{O}(\sqrt{d}))
$$

General depth reductions [AV'08, Koi'12, GKKS'13, Tav'13] give subexponential gap.

Can this be improved?

Why Bound Individual Degrees?

Polynomials with bounded ind. deg. form a very rich class, which generalizes multilinear polynomials.
Well studied, works of [Raz '06, RSY '08, Raz'09, SV '10, SV '11, KS '15², KCS'15, KCS'16].

Step towards understanding general case

This Work

Theorem: If $P(\mathbf{x})$ is a polynomial which:

- has individual degrees bounded by r,
- is computed by a circuit (formula) of size $S \&$ depth d Then any factor $f(\mathbf{x})$ of $P(\mathbf{x})$ is computed by a circuit (formula) of size

$$
\operatorname{poly}\left(n^{r}, s\right)
$$

\& depth

$$
d+5
$$

Furthermore, result provides a randomized algorithm for computing all factors of $P(\mathbf{x})$ in time poly $\left(n^{r}, s\right)$

Prior Work

[DSY '09]: if $P(\mathbf{x}, y)$ is computed by a circuit of size S, depth d

- $\operatorname{deg}_{y}(P)$ is bounded by r

Then its factors of the form $y-g(\mathbf{x})$ have circuits of depth $d+3$ and size $\operatorname{poly}\left(n^{r}, s\right)$

Extend Hardness vs Randomness approach of [KI '04] to bounded depth circuits.
[DSY '09] noticed that only factors of the form $y-g(\mathbf{x})$ are important to extend [KI '04] to bounded depth.

Main Ideas of this Work

Lifting
Root Approximation
Reversal
Outline

Lifting

Suppose input is:

$$
P(\mathbf{x}, y)=\left(y-g_{1}(\mathbf{x})\right)\left(y-g_{2}(\mathbf{x})\right)
$$

Where

$$
\mu_{1}=g_{1}(\mathbf{0}), \mu_{2}=g_{2}(\mathbf{0}) \text { and } \mu_{1} \neq \mu_{2}
$$

How do we factor in this case?
Can try to build the homogeneous parts of $g_{i}(\mathbf{x})$ one at a time.

Lifting

Note that:

$$
P(\mathbf{0}, y)=\left(y-\mu_{1}\right)\left(y-\mu_{2}\right)
$$

Which we know how to factor.

Hence, found the constant terms of the roots.

How to find the linear terms of the roots?

Lifting

Setting $y=\mu_{1}$ in the input polynomial:

$$
P\left(\mathbf{x}, \mu_{1}\right)=\left(\mu_{1}-g_{1}(\mathbf{x})\right)\left(\mu_{1}-g_{2}(\mathbf{x})\right)
$$

Since $\mu_{1} \neq \mu_{2}$, the constant term of

$$
\mu_{1}-g_{2}(\mathbf{x})
$$

is nonzero, whereas the constant term of

$$
\mu_{1}-g_{1}(\mathbf{x})
$$

is zero! Hence, linear term of $P\left(\mathbf{x}, \mu_{1}\right)$ equals the linear term of $g_{1}(\mathbf{x})$, up to a constant factor.

Lifting

Continuing this way, we can recover the roots and factor the input polynomial.

Hensel Lifting/Newton Iteration.
 Pervasive in factoring algorithms, such as
 [Zas '69, Kal '89, DSY '09], and many others.

[DSY '09]: if $P(\mathbf{x}, y)$ is computed by a circuit of size S, depth d

- $\operatorname{deg}_{y}(P)$ is bounded by r

Then its factors of the form $y-g(\mathbf{x})$ have circuits of depth $d+3$ and size $\operatorname{poly}\left(n^{r}, s\right)$

Lifting

Two main issues

- What if $P(\mathbf{x}, y)$ does not factor into linear factors in y ?

Approximate roots in algebraic closure of $\mathbb{F}(\mathbf{x})$ by low degree polynomials in $\mathbb{F}[\mathbf{x}]$.

- What if $P(\mathbf{x}, y)$ is not monic in y ? Use reversal to reduce the number of variables

Main Ideas of this Work

Lifting
Root Approximation
Reversal
Outline

Approximation Polynomials

Suppose input is:

$$
P(\mathbf{x}, y)=y^{r}+\sum_{i=0}^{r-1} P_{i}(\mathbf{x}) y^{i}
$$

Which does not factor into linear factors. Let

$$
P(\mathbf{x}, y)=f(\mathbf{x}, y) Q(\mathbf{x}, y)
$$

where

$$
f(\mathbf{x}, y)=y^{k}+\sum_{i=0}^{k-1} f_{i}(\mathbf{x}) y^{i}
$$

Is irreducible and does not divide the other factor.

Approximation Polynomials

Any polynomial factors completely in the algebraic closure of $\mathbb{F}(\mathbf{x})$!

$$
\begin{aligned}
P(\mathbf{x}, y) & =\prod_{i=1}^{r}\left(y-\varphi_{i}(\mathbf{x})\right) \\
f(\mathbf{x}, y) & =\prod_{i=1}^{k}\left(y-\varphi_{i}(\mathbf{x})\right)
\end{aligned}
$$

Where each $\varphi_{i}(\mathbf{x})$ is a "function" on the variables \mathbf{X}

Approximation Polynomials

Since $P(\mathbf{x}, y)$ and $f(\mathbf{x}, y)$ share roots $\varphi_{i}(\mathbf{x})$, can try to approximate these roots by polynomials $g_{i, t}(\mathbf{x})$ of degree t such that

$$
f\left(\mathbf{x}, g_{i, t}(\mathbf{x})\right)
$$

only has terms of degree higher than t.

Definition: we say that

$$
f(\mathbf{x})={ }_{t} g(\mathbf{x})
$$

if the polynomial $f(\mathbf{x})-g(\mathbf{x})$ only has terms of degree higher than t.

Approximation Polynomials

Definition: we say that

$$
f(\mathbf{x})={ }_{t} g(\mathbf{x})
$$

if the polynomial $f(\mathbf{x})-g(\mathbf{x})$ only has terms of degree higher than t.

This definition gives us a topology:

- Two polynomials are close if they agree on low degree parts
- Can use this topology to derive analogs of Taylor series for elements of $\overline{\mathbb{F}(\mathbb{X})}$.

Can "approximate" elements of $\overline{\mathbb{F}(\mathbb{X})}$ by polynomials!

Approximation Polynomials

If we can find $g_{i, t}(\mathbf{x})$ for each root $\varphi_{i}(\mathbf{x})$ of $f(\mathbf{x}, y)$ such that

$$
f\left(\mathbf{x}, g_{i, t}(\mathbf{x})\right)={ }_{t} 0
$$

Then we can prove the following:
Lemma: the polynomials $g_{i, t}(\mathbf{x})$ are such that

$$
f(\mathbf{x}, y)={ }_{t} \prod_{i=1}^{k}\left(y-g_{i, t}(\mathbf{x})\right)
$$

Can convert approximations to the roots into approximations to the factors!

Approximation Polynomials

How do we obtain these polynomials $g_{i, t}(\mathbf{x})$?
Since each $\varphi_{i}(\mathbf{x})$ is also a root of $P(\mathbf{x}, y)$, can obtain $g_{i, t}(\mathbf{x})$ from $P(\mathbf{x}, y)$ via lifting!

Looking at our parameters:

$$
f(\mathbf{x}, y)={ }_{t} \prod_{i=1}^{k}\left(y-g_{i, t}(\mathbf{x})\right)
$$

Depth $d+4$ size $\operatorname{poly}\left(n^{r}, s\right)$
With standard techniques, can recover $f(\mathbf{x}, y)$
f_{l} Observation: for the general case, need to keep the product top fan in!

$$
\overline{i=1}
$$

Main Ideas of this Work

Lifting
Root Approximation
Reversal

Outline

Set Up

Suppose input now is:

$$
P(\mathbf{x}, y)=\sum_{i=0}^{r} P_{i}(\mathbf{x}) y^{i}, P_{0}(\mathbf{x}) P_{r}(\mathbf{x}) \neq 0
$$

Let

$$
P(\mathbf{x}, y)=f(\mathbf{x}, y) Q(\mathbf{x}, y)
$$

where

$$
f(\mathbf{x}, y)=\sum_{i=0}^{k} f_{i}(\mathbf{x}) y^{i}
$$

is irreducible and does not divide the other factor.

The Game Plan

Reduce to the monic case:

$$
\begin{array}{r}
P(\mathbf{x}, y)=P_{r}(\mathbf{x}) \cdot\left(y^{r}+\sum_{i=0}^{r-1} \frac{P_{i}(\mathbf{x})}{P_{r}(\mathbf{x})} y^{i}\right) \\
f(\mathbf{x}, y)=f_{k}(\mathbf{x}) \cdot\left(y^{k}+\sum_{i=0}^{k-1} \frac{f_{i}(\mathbf{x})}{f_{k}(\mathbf{x})} y^{i}\right)
\end{array}
$$

1. Recover $f_{k}(\mathbf{x})$ from $P_{r}(\mathbf{x})$ by some kind of induction
2. Recover the part of $f(\mathbf{x}, y)$ that depends on y

Naïve Recursion

Let $P(\mathbf{x}, y)$ have individual degrees r, n variables and computed by circuit of size S and depth d Let $T(s, n)$ be such that:

$$
f(\mathbf{x}, y) \mid P(\mathbf{x}, y)
$$

There exists $\Phi(\mathbf{x}, y)$ with

$$
\Phi(\mathbf{x}, y)={ }_{t} f(\mathbf{x}, y)
$$

- depth $d+4$
- size $\leq T(s, n)$
- top fan in product gate

Naïve Recursion

Our recurrence becomes:

$$
T(s, n) \leq \underbrace{T(3 r s, n-1)}_{\text {Recover } f_{k}(\mathbf{x}) \text { fro } \text { Size of part depending on } y}+\underbrace{\operatorname{poly}\left(n^{r}, s\right)}
$$

After t steps, our recursion would become

$$
T(s, n) \leq T\left((3 r)^{t} s, n-t\right)+\Omega\left(n^{t r} s\right)
$$

Exponential when $t \sim n!$

Dealing with Exp. Growth

How do we avoid exponential growth?

It is hard to get $P_{r}(\mathbf{x})$ from $P(\mathbf{x}, y)$, but it is easy to get $P_{0}(\mathbf{x})$ from $P(\mathbf{x}, y)$

$$
P_{0}(\mathbf{x})=P(\mathbf{x}, 0)
$$

$P_{0}(\mathbf{x})$ has smaller circuit size than $P(\mathbf{x}, y)$!

What if we could make $P_{0}(\mathbf{x})$ the leading coefficient of $P(\mathbf{x}, y)$?

Reversal

Definition by example: If

$$
P(x, y)=P_{5}(x) y^{5}+P_{4}(x) y^{4}+P_{0}(x)
$$

Then its reversal is defined as

$$
\tilde{P}(x, y)=P_{0}(x) y^{5}+P_{4}(x) y+P_{5}(x)
$$

The reversal can be efficiently computed from circuit computing original polynomial.

Recursion with Reversal

If we take the reversal to compute the factors, our recurrence for $T(s, n)$ becomes

$$
T(s, n) \leq \underbrace{T(s, n-1)}+\underbrace{\operatorname{poly}\left(n^{r}, 9 r^{2} s\right.})
$$

After t steps, our Recover $f_{0}(\mathbf{x})$ from $P_{0, k}(\mathbf{x})$ rt depending on y

$$
T(s, n) \leq T(s, n-t)+\operatorname{poly}\left(n^{r}, 9 r^{2} s\right)
$$

No exponential growth!

Main Ideas of this Work

Lifting
Root Approximation
Reversal

Outline

Outline

$$
P(\mathbf{x}, y)=f(\mathbf{x}, y) Q(\mathbf{x}, y) \Rightarrow \tilde{P}(\mathbf{x}, y)=\tilde{f}(\mathbf{x}, y) \tilde{Q}(\mathbf{x}, y)
$$

Size becomes $9 r^{2} s$ Depth remains d

$$
\tilde{P}(\mathbf{x}, y)={ }_{t} P_{0}(\mathbf{x}) \cdot G(\mathbf{x}, y)
$$

Conic in y

$$
\tilde{f}(\mathbf{x}, y)=t_{t} f_{0}(\mathbf{x}) \cdot g(\mathbf{x}, y)
$$

Conic in y

Outline

Each approximate root of $g(\mathbf{x}, y)$ is also approx. root of

$$
G(\mathbf{x}, y)
$$

$$
g(\mathbf{x}, y)=t \prod^{k}\left(y-g_{i, t}(\mathbf{x})\right)
$$

$$
i=1
$$

By induction, $f_{0}(\mathbf{x})=t h(\mathbf{x})$ Size $\operatorname{poly}\left(s, n^{r}\right)$ Depth $d+4$
Top gate: product gate

Outline

$$
\tilde{f}(\mathbf{x}, y)={ }_{t} h(\mathbf{x}) \cdot g(\mathbf{x}, y)
$$

Size $\operatorname{poly}\left(s, n^{r}\right)$
Depth $d+4$
Top gate: product gate
$\tilde{f}(\mathbf{x}, y) \quad$ computed by circuit of

>	Size \quad poly $\left(s, n^{r}\right)$
Depth $\quad d+5$	
Top gate: addition gate	

Conclusions and Open Problems

This Work - Recap

We showed: If $P(\mathbf{x})$ is a polynomial with individual degrees bounded by r, and has a small low-depth circuit (formula), then any factor $f(\mathbf{x})$ of $P(\mathbf{x})$ is computed by a small lowdepth circuit (formula).

Furthermore, result provides a randomized algorithm for computing all factors of $P(\mathbf{x})$ in time poly $\left(n^{r}, s\right)$

General Framework

In [SY '10], it is asked whether factors of low depth circuits have poly size circuits of low depth, without the bounded degree restriction.

Question open even for factors of the form $y-g(\mathbf{x})$

Theorem: If $P(\mathbf{x}, y)$ is a polynomial computed by a low depth circuit, and all its approximate roots are computed by small low depth circuits, then any factor of $P(\mathbf{x}, y)$ is computed by small low depth circuits.

Corollary:To settle above conjecture, it is enough to solve question above for approximate roots, instead of factors of the form $y-g(\mathbf{x})$.

Open Questions

- Remove exponential dependence on the degree for factors of the form $y-g(\mathbf{x})$
- Reduce the depth bounds in the work of [DSY '09]
- Can we show that factors of sparse have small depth 4 circuits?
- Derandomize polynomial factorization, even for bounded individual degree polynomials.
- Question is open even for sparse polynomials
- Will require stronger PITs than current techniques

Thank you!

