Proof complexity and arithmetic circuits

Pavel Hrubeš

Institute of Mathematics, Prague

 \mathbb{F} a fixed underlying field.

Arithmetic circuit: computes a polynomial $f \in \mathbb{F}[x_1, \ldots, x_n]$. It starts from variables and field elements and computes f by means of operations + and \times .

- It is a directed acyclic graph. Leaves labelled with variables or field elements. Inner nodes have in-degree 2 and are labelled with +, ×.
- Size number of operations.
- Depth the length of a longest directed path.
- Formula the underlying graph is a tree.

Class VP: polynomials of polynomial size and degree.

Class VNP: Boolean sums over polynomials in VP.

$$\sum_{z\in\{0,1\}^m}f(z,x_1,\ldots,x_n).$$

I. Polynomial Identity Testing

Polynomial Identity Testing: given an arithmetic circuit F, accept iff F computes the zero polynomial.

- Typically, \mathbb{F} is \mathbb{Q} or a finite field.
- ▶ PIT ∈ coRP. (Schwarz-Zippel lemma)
- Not known to be in P or even NSUBEXP.
- If PIT has non-deterministic subexponential algorithm then we have new circuit lower bounds [Kabanetz & Impagliazzo'04]
- Deterministic poly-time algorithm for non-commutative formulas [Raz & Shpilka'05].
- Deterministic poly-time algorithm for ΣΠΣ-circuits with constant top fan-in [Dvir&Shpilka'05, Kayal& Saxena'07,...
]

Question: is PIT in NP?

We want a polynomial-size witness (or, a proof) that F equals zero.

Question: can we efficiently prove that F = 0 by means of syntactic manipulations?

Example of a syntactic algorithm:

Open all brackets in *F* and see if everything cancels.

The DS algorithm A $\Sigma\Pi\Sigma$ -circuit:

$$F=F_1+\cdots+F_k\,,$$

where $F_i = \prod_{j=1}^d L_{ij}$ and L_{ij} are linear.

- ► *F* is *simple* if no *L_{ij}* divides every *F_i*.
- F is minimal if no proper subset of F_i sums to 0.
- Rank of F:= the rank of L_{ij} 's in F.

Theorem (Dvir & Shpilka'07).

Assume that F computes the zero polynomial and F is simple and minimal. Then rank of F is $\leq 2^{O(k^2)} (\log d)^{k-2}$.

Note: speaker reminded that stronger bounds are nowadays known.

The DS algorithm: find a basis of the L_{ij} 's and then open the brackets.

The PI system [H&Tzameret] called $\mathbb{P}_{f}(\mathbb{F})$

- ► A proof-line is an equation F = G where F, G are arithmetic formulas.
- The inference rules are

$$\frac{F = G}{G = F}, \ \frac{F = G, \ G = H}{F = H}, \ \frac{F_1 = G_1, \ F_2 = G_2}{F_1 \star F_2 = G_1 \star G_2}, \text{ where } \star = +, \cdot$$

► The axioms are

$$F = F$$
 $F + (G + H) = (F + G) + H$
 $F \cdot G = G \cdot F$,
 $F \cdot (G \cdot H) = (F \cdot G) \cdot H$
 $F \cdot G = G \cdot F$,
 $F \cdot (G + H) = F \cdot G + F \cdot H$
 $F + 0 = F$
 $F \cdot 0 = 0$
 $F \cdot 1 = F$
 $a = b + c, a' = b' \cdot c'$, if true in F.

circuit-PI system: work with formulas instead of circuits.

- Both systems are sound and complete: F = G has a proof iff F and G compute the same polynomial.
- PI system is an arithmetic analogy of Frege and circuit-PI of Extended Frege.
- ► Over GF(2), Frege resp. Extended Frege are equivalent to the PI systems with axioms x₁² = x₁,..., x_n² = x_n.
- The PI-system can simulate the DS algorithm.

Open problem: Is the PI or circuit-PI system polynomially bounded?

The PI systems can simulate classical results in arithmetic circuit complexity.

- Strassen's elimination of divisions.
- Homogenization.
- Balancing.

[VSBR'83]: If a polynomial of degree d has circuit of size s then it has circuit of size poly(s, d) and depth $O(\log s(\log s + \log d))$.

Theorem.

Assume that F = 0 has a circuit-PI proof of size s and F has depth k and (syntactic) degree d. Then F = 0 has a proof of size poly(s, d) in which every circuit has depth $O(k + \log s(\log s + \log d)).$

- Hence, PI quasi-polynomially simulates circuit-PI.
- Applied to construct quasi-polynomial PI (and hence Frege) proofs of linear algebra based tautologies.

$$AB = I_n \rightarrow BA = I_n$$
, for $A, B \in M_{n \times n}(\mathbb{F})$.

II. Ideal membership problems

General setting

Let f, f_1, \ldots, f_k be polynomials such that $f \in I(f_1, \ldots, f_k)$. I.e., there exist g_1, \ldots, g_k with

$$f = f_1 g_1 + \ldots f_k g_k \,. \tag{1}$$

What can we say about the complexity of g_1, \ldots, g_k ?

- g_1, \ldots, g_k is a certificate for $f \in I(f_1, \ldots, f_k)$
- define IC(f || f₁,..., f_k) as the smallest s so that there exists g₁,..., g_k satisfying (1) which can be (simultaneously) computed by an arithmetic circuit of size s.

1. Effective nullstellensatz

Nullstellensatz. Let $f_1, \ldots, f_k \in \mathbb{F}[x_1, \ldots, x_n]$. If $f_1 = 0, \ldots, f_k = 0$ have no common solution in $\overline{\mathbb{F}}$ then there exist $g_1, \ldots, g_k \in \mathbb{F}[x_1, \ldots, x_n]$ such that

$$1=f_1g_1+\cdots+f_kg_k.$$

► One can view g₁,..., g_k as a proof that f₁,... f_k = 0 has no solution.

Strong nullstellensatz. If every solution to $f_1, \ldots, f_k = 0$ satisfies f = 0 then there exists $r \in \mathbb{N}$ and polynomials g_1, \ldots, g_k with

$$f^r=f_1g_1+\cdots+f_kg_k.$$

Nullstellensatz. Let $f_1, \ldots, f_k \in \mathbb{F}[x_1, \ldots, x_n]$. If $f_1 = 0, \ldots, f_k = 0$ have no common solution in $\overline{\mathbb{F}}$ then there exist $g_1, \ldots, g_k \in \mathbb{F}[x_1, \ldots, x_n]$ such that

$$1=f_1g_1+\cdots+f_kg_k.$$

► For every *i*,

```
\deg(f_ig_i) \leq \max(d,3)^{\min(n,k)},
```

where *d* is the maximum degree of f_i . [Kollár'88, Brownawell' 87,...]

► This is tight if *d* ≥ 3: there exist *f*₁,...*f_n* of degree *d* such that

 $\max \deg(f_i g_i) \geq d^n$.

[Maser& Philippon]

IC(1 || f_1, \ldots, f_k) is the smallest circuit complexity of g_1, \ldots, g_k with $1 = \sum_{i=1}^k f_i g_i$.

Open question: can we find f_1, \ldots, f_k with $1 \in I(f_1, \ldots, f_k)$ so that IC(1 || f_1, \ldots, f_k) is super-polynomial in the circuit complexity of f_1, \ldots, f_k ?

• Expect "yes", unless $coNP \subseteq NP^{PIT}$.

Observation: If measuring formula size, the answer is "yes".

Proof. Exponential degree. Nullstellensatz as a decision problem: given $f_1, \ldots, f_k \in \mathbb{Z}[x_1, \ldots, x_n]$, decide if $f_1 = 0, \ldots, f_k = 0$ has a solution in \mathbb{C}^n .

- The problem is in PSPACE
- ► Assuming GRH, it is in AM ($\subseteq \Pi_2$) [Koiran'96].

2. Ideal membership

Theorem[Hermann'26]. Assume that $f \in I(f_1, ..., f_k)$ where $f, f_1, ..., f_k \in \mathbb{F}[x_1, ..., x_n]$ and deg $f_1, ..., deg f_k \leq d$. Then there exist $g_1, ..., g_k$ with

$$f=f_1g_1+\cdots+f_kg_k$$

having degree at most $\deg(f) + (kd)^{2^n}$.

- This is asymptotically tight [Mayr& Mayer' 82].
- ► The *Ideal Membership Problem*: given $f, f_1, ..., f_k$, decide if $f \in I(f_1, ..., f_k)$. Is EXPSPACE hard.

Question: can we find f, f_1, \ldots, f_k so that $f \in I(f_1, \ldots, f_k)$ and $IC(f || f_1, \ldots, f_k)$ is exponential in the circuit complexity of f, f_1, \ldots, f_k ?

Answer: yes.

Proof. Doubly-exponential degree.

Open question: Can we prove this if there exist witnesses g_1, \ldots, g_k of degree polynomial in the maximum degree of f, f_1, \ldots, f_k ?

Toy example. $f \in I(f_1)$. $f = f_1g_1$, and hence $g_1 = f/f_1$.

- If a polynomial g of degree d can be computed by a circuit of size s using division gates then it can be computed by circuit of size s · poly(d) without division gates. [Strassen]
- ► Hence, IC(f || f₁) is polynomial in deg(f) deg(f₁) and the circuit size of f, f₁.

Open question: In Strassen's elimination algorithm, can we replace $s \cdot poly(d)$ by $poly(s, \log d)$?

Monomial ideals.

$$f := (x_{11}z_1 + \cdots + x_{1n}z_n)(x_{21}z_1 + \cdots + x_{2n}z_n) \cdots (x_{n1}z_1 + \cdots + x_{nn}z_n).$$

Let *Z* be the set of n + 1 monomials

$$\prod_{i=1}^n z_i, \ z_1^2, \ldots, z_n^2.$$

$$\operatorname{perm}_n = \sum_{\pi \in S_n} (x_{1,\pi(1)} x_{2,\pi(2)} \cdots x_{n,\pi(n)}).$$

Proposition 1.

 $f \in I(Z)$. $IC(f \parallel Z)$ is at least the circuit complexity of perm_n.

$$f = (x_{11}z_1 + \cdots + x_{1n}z_n)(x_{21}z_1 + \cdots + x_{2n}z_n)\cdots (x_{n1}z_1 + \cdots + x_{nn}z_n).$$

$$Z = \{\prod_{i=1}^{n} z_i, \ z_1^2, \dots, z_n^2\}.$$

$$f \in I(Z)$$
: $f - \operatorname{perm}_n \cdot (\prod_{i=1}^n z_i) \in I(z_1^2, \dots, z_n^2)$.

Assume
$$f - g \cdot (\prod_{i=1}^{n} z_i) \in I(z_1^2, \dots, z_n^2)$$
.
Write $g = g_0 + h$ with $g_0 := g(z_1, \dots, z_n/0)$ and
 $h \in I(z_1, \dots, z_n)$.
 $(g_0 + h - \operatorname{perm}_n) \cdot \prod_i z_i \in I(z_1^2, \dots, z_n^2)$,
 $(g_0 - \operatorname{perm}_n) \cdot \prod z_i \in I(z_1^2, \dots, z_n^2)$ and $g_0 = \operatorname{perm}_n$.

3. Polynomial calculus

Nullstellensatz as a proof system View q_1, \ldots, q_k with

$$1 = g_1 f_1 + \cdots + g_1 f_k$$

as a proof of unsatisfiability of $f_1, \ldots, f_k = 0$.

- ▶ f₁,..., f_k include Boolean axioms x₁² x₁,..., x_n² x_n and typically have constant degree. E.g., translation of a 3CNF.
- ► Complexity measured as the degree of g₁,..., g_k or the number of monomials.

Polynomial Calculus [Clegg, Edmonds & Impagliazzo'96] We want to show that $f_1, \ldots, f_k = 0$ has no solution by deriving 1 from f_1, \ldots, f_k . The rules are

$$rac{f}{xf}, x ext{ a variable }, \quad rac{f, \ g}{af+bg} \ a, b \in \mathbb{F}.$$

- Complexity is measured as the maximum degree of a line in the refutation.
- PC is strictly stronger than Nullstellensatz.

The Pigeon Hole Principle $\neg PHP_n^m$: variables x_{ij} , $i \in [m]$, $j \in [n]$

$$\sum_{j \in [n]} x_{ij} - 1, \ i \in [m]$$
$$x_{i_1j}x_{i_2j}, \ i_1 \neq i_2 \in [m], j \in [n],$$
$$x_{i_j_1}x_{i_{j_2}}, \ i \in [m], j_1 \neq j_2 \in [m].$$

Polynomials in ¬PHP^m_n do not have a common zero if m > n.

Theorem (Razborov'98).

Every Polynomial Calculus refutation of $\neg PHP_n^m$ with m > n (including the polynomials $x_{ij}^2 - x_{ij}$) has degree at least n/2 + 1.

- Lower bound on number of monomials in PC [Impagliazzo & al.'99].
 - PHP refutation requires $2^{\Omega(n)}$ monomials.
 - In general, a refutation with few monomials can be converted to a low-degree refutation.
- Random k CNF's require large degree. [Ben-Sasson& Impagliazzo'99, Alekhnovich& Razborov'03]
- Polynomial Calculus with Resolution [Alekhnovich & al.'02]

Proposition 2.

Assume that $f_1 = 0, ..., f_k = 0$ has PC refutation with s lines. Then there exist $g_1, ..., g_k$ with

$$1 = f_1g_1 + \cdots + f_kg_k$$

such that every g_i has circuit of size O(s) and degree $\leq s$.

Hence, without the boolean axioms, there exist n equations of degree 2 which require PC refutation with 2ⁿ lines.

4. The Boolean ideal

Consider the ideal $I(x_1^2 - x_1, \ldots, x_n^2 - x_n)$.

Boolean Nullstellensatz. Assume that $f \in \mathbb{F}[x_1, ..., x_n]$ vanishes on $\{0, 1\}^n$. Then $f \in I(x_1^2 - x_1, ..., x_n^2 - x_n)$. Moreover, there exist $g_1, ..., g_n$ of degree at most deg f - 2 such that $f = \sum_{i=1}^n f_i g_i$.

 Special case of the so-called Combinatorial Nullstellensatz [Alon]. Boolean Nullstellensatz. If f vanishes on $\{0, 1\}^n$ then $f \in I(x_1^2 - x_1, \dots, x_n^2 - x_n)$.

Proof.

Define $\hat{f}_0, \hat{f}_1, \dots, \hat{f}_n, g_1, \dots, g_n$ as follows: $\hat{f}_0 := f$. For $0 \le i < n$, \hat{f}_i and g_i are the polynomials satisfying

$$\hat{f}_{i-1} = g_i \cdot (x_i^2 - x_i) + \hat{f}_i \,, \; \mathsf{deg}_{x_i} \, \hat{f}_i \leq 1$$
 .

Hence,

$$f = (\hat{f}_0 - \hat{f}_1) + (\hat{f}_1 - \hat{f}_2) + \dots + (\hat{f}_{n-1} - \hat{f}_n) + \hat{f}_n =$$

= $g_1 \cdot (x_1^2 - x_1) + g_2 \cdot (x_2^2 - x_2) + \dots + g_n \cdot (x_n^2 - x_n) + \hat{f}_n$

Hence, \hat{f}_n also vanishes on $\{0, 1\}^n$. Since \hat{f}_n is multilinear, it equals zero.

Recall IC($f \mid x_1^2 - x_1, \dots, x_n^2 - x_n$) is the smallest circuit complexity of g_1, \dots, g_n with $f = \sum_i (x_i^2 - x_i)g_i$. Abbreviation: $\mathbf{x}^2 - \mathbf{x} = \{x_1^2 - x_1, \dots, x_n^2 - x_n\}$.

Open problem: Is there an *f* that vanishes on $\{0, 1\}^n$ such that IC($f || \mathbf{x}^2 - \mathbf{x}$) is super-polynomial in the circuit complexity of *f*?

- Think of g_1, \ldots, g_n as a proof that f = 0 over $\{0, 1\}^n$.
- Expected answer is "yes", unless unless coNP ⊆ NP^{PIT}.
- ► Open even assuming VP ≠ VNP

[Grochow & Pitassi'15] show "certain proof complexity lower bounds imply arithmetic circuit lower bounds" **Major open problem:** prove super-polynomial lower bounds on the Frege or Extended Frege proof systems.

- Known for bounded-depth Frege in De Morgan basis [Ajtai'88, Beame & al.'93, ...]
- Open even for bounded-depth Frege with parity gates.

Arithmetic translations of Boolean circuits

Given a Boolean circuit *A*, define the polynomial A^* as follows: replace $u \land v$ by $u \cdot v$, $\neg u$ by 1 - u, $u \lor v$ by $u + v - u \cdot v$ etc.

- A* and A have the same circuit size (up to a constant factor)
- They agree on inputs from the boolean cube.
- $IC(A^{*2} A^* || \mathbf{x}^2 \mathbf{x})$ is linear in the size of A.

- If A = A₁ ∧ A₂ ∧ · · · ∧ A_k then A^{*} is a product of A^{*}₁, . . . , A^{*}_k.
 E.g., A is a 3-CNF, A^{*} is a product of polynomials of degree 3.
- A is unsatisfiable iff $A^* \in I(\mathbf{x}^2 \mathbf{x})$
- ► Alternatively, *A* is unsatisfiable iff $1 \in I(A_1^* 1, ..., A_k^* 1, \mathbf{x}^2 \mathbf{x})$

Claim. IC($\prod_{i=1}^{k} A_i^* || \mathbf{x}^2 - \mathbf{x}$) and IC(1 $|| A_1^* - 1, \dots, A_k^* - 1, \mathbf{x}^2 - \mathbf{x}$) differ by at most an additive factor of O(s), where *s* is the (boolean) complexity of A_1, \dots, A_k .

Proposition 3.

Assume that $\neg A$ has an Extended Frege proof of size *s*. Then $IC(A^* \parallel \mathbf{x}^2 - \mathbf{x})$ is polynomial in *s*.

- Similarly for Frege when counting arithmetic formula size.
- Hence, lower bounds on arithmetic circuits in IC(||) imply proof complexity lower bounds.

Proposition 4.

Assume that VP = VNP. Then for every f vanishing on $\{0, 1\}^n$, $IC(f || \mathbf{x}^2 - \mathbf{x})$ is polynomial in the arithmetic circuit complexity of f.

Hence, such lower bounds are at least as hard as proving VP \ne VNP. **Proof of Proposition 4.** Assume VP = VNP. Show that $f = \sum_{i=1}^{n} (x_i^2 - x_i)g_i$ with g_i having small circuits. First, assume that *f* has a polynomial degree. $\hat{f}_i(x_1, ..., x_n)$ - multilinear in $x_1, ..., x_i$ and

$$\widehat{f}_i(\mathbf{z}, x_{i+1}, \ldots, x_n) = f(\mathbf{z}, x_{i+1}, \ldots, x_n), \forall \mathbf{z} \in \{0, 1\}^i$$

Hence

$$\hat{f}_i = \sum_{\mathbf{z} \in \{0,1\}^i} \left(f(\mathbf{z}, x_{i+1}, \dots, x_n) \alpha(\mathbf{z}, x_1, \dots, x_i) \right) ,$$

where $\alpha(\mathbf{z}, x_1, ..., x_i) = \prod_{j=1}^{i} (z_j x_j + (1 - z_j)(1 - x_j))$. Compute

$$g_i=\frac{\hat{f}_i-\hat{f}_{i-1}}{x_i^2-x_i}$$

Proof of Proposition 3. View Extended Frege as Frege working with Boolean circuits.

By induction on number of lines show: *if A has proof of size s* then $IC(A^* - 1 || \mathbf{x}^2 - \mathbf{x})$ is polynomial in *s*.

Frege axiom: a constant size tautology $B(y_1, ..., y_k)$. Hence, $IC(B^* - 1 || y_1^2 - y_1, ..., y_k^2 - y_k)$ is a constant.

$$B^* - 1 = \sum_{j=1}^k (y_j^2 - y_j)g_j$$

If $D = B(A_1, \ldots, A_k)$ is a substitution instance then

$$D^* - 1 = \sum_{j=1}^k (A_j^{\star 2} - A_j^*) g_j'$$
.

We have $A_{j}^{\star 2} - A_{j}^{\star} = \sum_{i=1}^{n} (x_{i}^{2} - x_{i})g_{ij}$ and so

$$D^* - 1 = \sum_{i=1}^n \left((x_i^2 - x_i) (\sum_{j=1}^k g_{ij} g'_j) \right)$$

Modus ponens

$$rac{A,A
ightarrow B}{B}$$
 .

We have

$$egin{aligned} &\mathcal{A}^{\star}=1+\sum_{i}(x_{i}^{2}-x_{i})h_{i}\ &(\mathcal{B}^{\star}-1)\mathcal{A}^{\star}=\sum_{i}(x_{i}^{2}-x_{i})g_{i} \end{aligned}$$

Hence,

$$(B^{\star}-1)(1+\sum_{i}(x_{i}^{2}-x_{i})h_{i})=\sum_{i}(x_{i}^{2}-x_{i})g_{i}$$
 $B^{\star}-1=\sum_{i}\left((x_{i}^{2}-x_{i})(g_{i}-h_{i}(B^{\star}-1))
ight).$

Theorem.

Assume that Extended Frege is not polynomially bounded. Then, over $\mathbb{F} = GF(2)$,

- **1.** $VP \neq VNP$, or
- there exists A such that the polynomial A* is identically zero but ¬A requires super-polynomial proof in Extended Frege.
 - ► 2. means that A* vanishes on F but EF cannot even efficiently prove that it vanishes on {0, 1}ⁿ.
 - > 2. can be replaced by "circuit-PI is not poly-bounded".
 - Over any field, 2. can be replaced by "EF cannot prove correctness of a PIT algorithm" [Grochow & Pitassi'15].

Theorem.

Assume that Extended Frege is not polynomially bounded. Then, over $\mathbb{F} = GF(2)$,

- **1.** $VP \neq VNP$, or
- there exists A such that the polynomial A* is identically zero but ¬A requires super-polynomial proof in Extended Frege.

Proof.

Want to refute *B*. Guess g_1, \ldots, g_n with small circuits such that $B^* = \sum_i (x_i^2 + x_i)g_i$. Prove the polynomial identity.

More on [Grochow & Pitassi'15]

Theorem.

A super-polynomial lower bound on number of lines of a Polynomial Calculus refutation of a CNF implies that VNP does not have polynomial size skew arithmetic circuits.

- Skew circuit : = in a product gate, at least one product has degree ≤ 1.
- ▶ In PC, one can derive αg from g if α has degree \leq 1.
- Show that if g_1, \ldots, g_k have a skew circuit of size s and $f = \sum_{i=1}^{k} f_i g_i$ then f has a PC proof with O(s) lines.

The IPS system. Let $f_1, \ldots, f_k \in \mathbb{F}[\mathbf{x}]$. An IPS-certificate for unsatisfiability of $f_1 = 0, \ldots, f_k = 0$ is a polynomial $g(\mathbf{x}, y_1, \ldots, y_k)$ such that

- $g(\mathbf{x}, 0, ..., 0) = 0$,
- $g(\mathbf{x}, f_1, \ldots, f_k) = 1.$

An IPS proof for unsatisfiability of $f_1 = 0, ..., f_k = 0$ is an arithmetic circuit computing some such *g*.

- If $1 = f_1g_1 + \cdots + f_kg_k$ then $g = y_1g_1 + \cdots + y_kg_k$ is an IPS certificate.
- ▶ f₁,..., f_k consist of Boolean axioms x_i² x_i and arithmetic translations of clauses from a CNF.

- Super-polynomial lower bounds on IPS-certificates imply VP \ne VNP.
- IPS simulates Extended Frege.
- They are equivalent, if EF can efficiently prove "correctness of a PIT algorithm".
- Similar statements hold for restricted proofs and models of computation: Frege proofs versus formulas, bounded-depth Frege with mod p gates versus bounded-depth circuits over GF(p).

III. Semi-algebraic proof systems

- Systems based on integer linear programming, intended to prove that a set of linear equalities has no integer solution (or no 0, 1-solution).
- A CNF can be represented as a set of linear inequalities. A clause x ∨ y ∨ ¬z as x + y + (1 − z) ≥ 1

Cutting Planes

- ► Manipulates linear inequalities with integer coefficients, $a_1x_1 + \cdots + a_nx_n \ge b$, with $a_1, \ldots, a_n, b \in \mathbb{Z}$
- ► Given a system L of linear inequalities with no 0, 1-solution, CP derives the inequality 0 ≥ 1 from L.

Axioms are inequalities in $\ensuremath{\mathcal{L}}$ and the inequalities

$$x_i \geq 0, \ x_i \leq 1.$$

The rules are:

$$\frac{L \ge b}{cL \ge cb}\,, \ \text{ if } c \ge 0\,, \ \frac{L_1 \ge b_1\,, \ L_2 \ge b_2}{L_1 + L_2 \ge b_1 + b_2}\,,$$

 $\frac{a_1x_1+\ldots a_nx_n\geq b}{(a_1/c)x_1+\ldots (a_n/c)x_n\geq \lceil b/c\rceil}\,, \text{ provided } c>0 \text{ divides every } a_i\,.$

The Lovász-Schrijver system

- Refutes a set of linear inequalities, but the intermediary steps can have degree 2.
- We can add two inequalities and multiply by a positive number. The additional rules are

$$\frac{L \ge 0}{xL \ge 0}$$
, $\frac{L \ge 0}{(1-x)L \ge 0}$, *x* a variable, *L* degree one.

Degree-*d* **semantic systems**

- Intermediate inequalities can have degree $\leq d$.
- Inference rule is any valid inference.

$$\frac{L_1 \ge 0\,, \ L_2 \ge 0}{L \ge 0}\,,$$

provided every 0, 1-assignment which satisfies the assumption satisfies the conclusion.

- Exponential lower bound on Cutting Planes [Pudlák'97]
- Works also for the degree-1 semantic system [Filmus& al.'15]
- A lower bound on Lovász-Schrijver system, assuming certain boolean circuit lower bounds [Pudlák'97].
 - Interpolation technique.
- Exponential lower bounds for tree-like degree-d semantic systems [Beame& al.' 07].
 - Communication lower bounds on randomized multi-party communication complexity of DISJ [Lee& Shraibman'08, Sherstov'12].

Open problem. Prove super-polynomial lower bound on the Lovász-Schrijver system, or the degree-2 semantic system.