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F a fixed underlying field.

Arithmetic circuit: computes a polynomial f ∈ F[x1, . . . , xn]. It
starts from variables and field elements and computes f by
means of operations + and ×.

I It is a directed acyclic graph. Leaves labelled with variables
or field elements. Inner nodes have in-degree 2 and are
labelled with +,×.

I Size - number of operations.
I Depth - the length of a longest directed path.
I Formula - the underlying graph is a tree.

Class VP: polynomials of polynomial size and degree.

Class VNP: Boolean sums over polynomials in VP.∑
z∈{0,1}m

f (z, x1, . . . , xn) .



I. Polynomial Identity Testing



Polynomial Identity Testing: given an arithmetic circuit F ,
accept iff F computes the zero polynomial.

I Typically, F is Q or a finite field.
I PIT ∈ coRP. (Schwarz-Zippel lemma)
I Not known to be in P or even NSUBEXP.
I If PIT has non-deterministic subexponential algorithm then

we have new circuit lower bounds [Kabanetz &
Impagliazzo’04]

I Deterministic poly-time algorithm for non-commutative
formulas [Raz & Shpilka’05].

I Deterministic poly-time algorithm for ΣΠΣ-circuits with
constant top fan-in [Dvir&Shpilka’05, Kayal& Saxena’07,...
]



Question: is PIT in NP?

We want a polynomial-size witness (or, a proof) that F equals
zero.

Question: can we efficiently prove that F = 0 by means of
syntactic manipulations?

Example of a syntactic algorithm:
Open all brackets in F and see if everything cancels.



The DS algorithm
A ΣΠΣ-circuit:

F = F1 + · · ·+ Fk ,

where Fi =
∏d

j=1 Lij and Lij are linear.

I F is simple if no Lij divides every Fi .
I F is minimal if no proper subset of Fi sums to 0.
I Rank of F := the rank of Lij ’s in F .

Theorem (Dvir & Shpilka’07).
Assume that F computes the zero polynomial and F is simple
and minimal. Then rank of F is ≤ 2O(k2)(log d)k−2.
Note: speaker reminded that stronger bounds are nowadays
known.

The DS algorithm: find a basis of the Lij ’s and then open the
brackets.



The PI system [H&Tzameret] called Pf (F)

I A proof-line is an equation F = G where F ,G are
arithmetic formulas.

I The inference rules are

F = G
G = F

,
F = G , G = H

F = H
,

F1 = G1 , F2 = G2

F1 ? F2 = G1 ?G2
, where ? = +, ·

I The axioms are
F = F F + G = G + F
F + (G + H) = (F + G) + H F ·G = G · F ,
F · (G · H) = (F ·G) · H F · (G + H) = F ·G + F · H
F + 0 = F F · 0 = 0
F · 1 = F
a = b + c ,a′ = b′ · c′ , if true in F.



circuit-PI system: work with formulas instead of circuits.

I Both systems are sound and complete: F = G has a proof
iff F and G compute the same polynomial.

I PI system is an arithmetic analogy of Frege and circuit-PI
of Extended Frege.

I Over GF(2), Frege resp. Extended Frege are equivalent to
the PI systems with axioms x2

1 = x1, . . . , x2
n = xn.

I The PI-system can simulate the DS algorithm.

Open problem: Is the PI or circuit-PI system polynomially
bounded?



The PI systems can simulate classical results in arithmetic
circuit complexity.

I Strassen’s elimination of divisions.
I Homogenization.
I Balancing.

[VSBR’83]: If a polynomial of degree d has circuit of size s then
it has circuit of size poly(s,d) and depth O(log s(log s + log d)).

Theorem.
Assume that F = 0 has a circuit-PI proof of size s and F has
depth k and (syntactic) degree d. Then F = 0 has a proof of
size poly(s,d) in which every circuit has depth
O(k + log s(log s + log d)).

I Hence, PI quasi-polynomially simulates circuit-PI.
I Applied to construct quasi-polynomial PI (and hence

Frege) proofs of linear algebra based tautologies.

AB = In → BA = In , for A,B ∈ Mn×n(F) .



II. Ideal membership problems



General setting
Let f , f1, . . . , fk be polynomials such that f ∈ I(f1, . . . , fk ). I.e.,
there exist g1, . . . ,gk with

f = f1g1 + . . . fkgk . (1)

What can we say about the complexity of g1, . . . ,gk?

I g1, . . . ,gk is a certificate for f ∈ I(f1, . . . , fk )

I define IC(f || f1, . . . , fk ) as the smallest s so that there
exists g1, . . . ,gk satisfying (1) which can be
(simultaneously) computed by an arithmetic circuit of size
s.



1. Effective nullstellensatz



Nullstellensatz. Let f1, . . . , fk ∈ F[x1, . . . , xn]. If f1 = 0, . . . , fk = 0
have no common solution in F̄ then there exist
g1, . . . ,gk ∈ F[x1, . . . , xn] such that

1 = f1g1 + · · ·+ fkgk .

I One can view g1, . . . ,gk as a proof that f1, . . . fk = 0 has no
solution.

Strong nullstellensatz. If every solution to f1, . . . , fk = 0 satisfies
f = 0 then there exists r ∈ N and polynomials g1, . . . ,gk with

f r = f1g1 + · · ·+ fkgk .



Nullstellensatz. Let f1, . . . , fk ∈ F[x1, . . . , xn]. If f1 = 0, . . . , fk = 0
have no common solution in F̄ then there exist
g1, . . . ,gk ∈ F[x1, . . . , xn] such that

1 = f1g1 + · · ·+ fkgk .

I For every i ,

deg(figi) ≤ max(d ,3)min(n,k) ,

where d is the maximum degree of fi . [Kollár’88,
Brownawell’ 87,...]

I This is tight if d ≥ 3: there exist f1, . . . fn of degree d such
that

max deg(figi) ≥ dn .

[Maser& Philippon]



IC(1 || f1, . . . , fk ) is the smallest circuit complexity of g1, . . . ,gk
with 1 =

∑k
i=1 figi .

Open question: can we find f1, . . . , fk with 1 ∈ I(f1, . . . , fk ) so
that IC(1 || f1, . . . , fk ) is super-polynomial in the circuit
complexity of f1, . . . , fk?

I Expect ”yes", unless coNP ⊆ NPPIT.

Observation: If measuring formula size, the answer is "yes".

Proof.
Exponential degree.



Nullstellensatz as a decision problem: given
f1, . . . , fk ∈ Z[x1, . . . , xn], decide if f1 = 0, . . . , fk = 0 has a
solution in Cn.

I The problem is in PSPACE
I Assuming GRH, it is in AM (⊆ Π2) [Koiran’96].



2. Ideal membership



Theorem[Hermann’26]. Assume that f ∈ I(f1, . . . , fk ) where
f , f1, . . . , fk ∈ F[x1, . . . , xn] and deg f1, . . . ,deg fk ≤ d. Then
there exist g1, . . . ,gk with

f = f1g1 + · · ·+ fkgk

having degree at most deg(f ) + (kd)2n
.

I This is asymptotically tight [Mayr& Mayer’ 82].
I The Ideal Membership Problem: given f , f!, . . . , fk , decide if

f ∈ I(f1, . . . , fk ). Is EXPSPACE hard.



Question: can we find f , f1, . . . , fk so that f ∈ I(f1, . . . , fk ) and
IC(f || f1, . . . , fk ) is exponential in the circuit complexity of
f , f1, . . . , fk?

Answer: yes.

Proof.
Doubly-exponential degree.

Open question: Can we prove this if there exist witnesses
g1, . . . ,gk of degree polynomial in the maximum degree of
f , f1, . . . , fk?



Toy example.
f ∈ I(f1). f = f1g1, and hence g1 = f/f1.

I If a polynomial g of degree d can be computed by a circuit
of size s using division gates then it can be computed by
circuit of size s · poly(d) without division gates. [Strassen]

I Hence, IC(f || f1) is polynomial in deg(f )− deg(f1) and the
circuit size of f , f1.

Open question: In Strassen’s elimination algorithm, can we
replace s · poly(d) by poly(s, log d)?



Monomial ideals.

f := (x11z1+· · ·+x1nzn)(x21z1+· · ·+x2nzn) · · · (xn1z1+· · ·+xnnzn) .

Let Z be the set of n + 1 monomials

n∏
i=1

zi , z2
1 , . . . , z

2
n .

permn =
∑
π∈Sn

(x1,π(1)x2,π(2) · · · xn,π(n)) .

Proposition 1.
f ∈ I(Z ). IC(f || Z ) is at least the circuit complexity of permn.



f = (x11z1+· · ·+x1nzn)(x21z1+· · ·+x2nzn) · · · (xn1z1+· · ·+xnnzn) .

Z = {
n∏

i=1

zi , z2
1 , . . . , z

2
n} .

I

f ∈ I(Z ) : f − permn · (
n∏

i=1

zi) ∈ I(z2
1 , . . . , z

2
n ) .

I

Assume f − g · (
n∏

i=1

zi) ∈ I(z2
1 , . . . , z

2
n ) .

Write g = g0 + h with g0 := g(z1, . . . , zn/0) and
h ∈ I(z1, . . . , zn).

(g0 + h − permn) ·
∏

i

zi ∈ I(z2
1 , . . . , z

2
n ) ,

(g0 − permn) ·
∏

i

zi ∈ I(z2
1 , . . . , z

2
n ) and g0 = permn .



3. Polynomial calculus



Nullstellensatz as a proof system
View g1, . . . ,gk with

1 = g1f1 + · · ·+ g1fk

as a proof of unsatisfiability of f1, . . . , fk = 0.
I f1, . . . , fk include Boolean axioms x2

1 − x1, . . . , x2
n − xn and

typically have constant degree. E.g., translation of a 3CNF.
I Complexity measured as the degree of g1, . . . ,gk or the

number of monomials.

Polynomial Calculus [Clegg, Edmonds & Impagliazzo’96]
We want to show that f1, . . . , fk = 0 has no solution by deriving
1 from f1, . . . , fk . The rules are

f
xf
, x a variable ,

f , g
af + bg

a,b ∈ F .

I Complexity is measured as the maximum degree of a line
in the refutation.

I PC is strictly stronger than Nullstellensatz.



The Pigeon Hole Principle ¬PHPm
n : variables xij , i ∈ [m], j ∈ [n]∑

j∈[n]

xij − 1 , i ∈ [m]

xi1jxi2j , i1 6= i2 ∈ [m], j ∈ [n] ,

xij1xij2 , i ∈ [m], j1 6= j2 ∈ [m] .

I Polynomials in ¬PHPm
n do not have a common zero if

m > n.

Theorem (Razborov’98).
Every Polynomial Calculus refutation of ¬PHPm

n with m > n
(including the polynomials x2

ij − xij ) has degree at least n/2 + 1.



I Lower bound on number of monomials in PC [Impagliazzo
& al.’99].

I PHP refutation requires 2Ω(n) monomials.
I In general, a refutation with few monomials can be

converted to a low-degree refutation.
I Random k − CNF ’s require large degree. [Ben-Sasson&

Impagliazzo’99, Alekhnovich& Razborov’03]
I Polynomial Calculus with Resolution [Alekhnovich & al.’02]
I ...



Proposition 2.
Assume that f1 = 0, . . . , fk = 0 has PC refutation with s lines.
Then there exist g1, . . . ,gk with

1 = f1g1 + · · ·+ fkgk

such that every gi has circuit of size O(s) and degree ≤ s.

I Hence, without the boolean axioms, there exist n equations
of degree 2 which require PC refutation with 2n lines.



4. The Boolean ideal



Consider the ideal I(x2
1 − x1, . . . , x2

n − xn).



Boolean Nullstellensatz. Assume that f ∈ F[x1, . . . , xn] vanishes
on {0,1}n. Then f ∈ I(x2

1 − x1, . . . , x2
n − xn). Moreover, there

exist g1, . . . ,gn of degree at most deg f − 2 such that
f =

∑n
i=1 figi .

I Special case of the so-called Combinatorial Nullstellensatz
[Alon].



Boolean Nullstellensatz. If f vanishes on {0,1}n then
f ∈ I(x2

1 − x1, . . . , x2
n − xn).

Proof.
Define f̂0, f̂1, . . . , f̂n, g1, . . . ,gn as follows:
f̂0 := f . For 0 ≤ i < n, f̂i and gi are the polynomials satisfying

f̂i−1 = gi · (x2
i − xi) + f̂i , degxi

f̂i ≤ 1.

Hence,

f =(f̂0 − f̂1) + (f̂1 − f̂2) + · · ·+ (f̂n−1 − f̂n) + f̂n =

=g1 · (x2
1 − x1) + g2 · (x2

2 − x2) + · · ·+ gn · (x2
n − xn) + f̂n

Hence, f̂n also vanishes on {0,1}n. Since f̂n is multilinear, it
equals zero.



Recall IC(f || x2
1 − x1, . . . , x2

n − xn) is the smallest circuit
complexity of g1, . . . ,gn with f =

∑
i(x

2
i − xi)gi .

Abbreviation: x2 − x = {x2
1 − x1, . . . , x2

n − xn}.

Open problem: Is there an f that vanishes on {0,1}n such
that IC(f || x2 − x) is super-polynomial in the circuit complexity
of f?

I Think of g1, . . . ,gn as a proof that f = 0 over {0,1}n.

I Expected answer is ”yes", unless unless coNP ⊆ NPPIT.
I Open even assuming VP 6= VNP

[Grochow & Pitassi’15] show ”certain proof complexity lower
bounds imply arithmetic circuit lower bounds"



Major open problem: prove super-polynomial lower bounds
on the Frege or Extended Frege proof systems.

I Known for bounded-depth Frege in De Morgan basis
[Ajtai’88, Beame & al.’93, ...]

I Open even for bounded-depth Frege with parity gates.



Arithmetic translations of Boolean circuits
Given a Boolean circuit A, define the polynomial A∗ as follows:
replace u ∧ v by u · v , ¬u by 1− u, u ∨ v by u + v − u · v etc.

I A∗ and A have the same circuit size (up to a constant
factor)

I They agree on inputs from the boolean cube.
I IC(A∗2 − A∗ || x2 − x) is linear in the size of A.



I If A = A1 ∧ A2 ∧ · · · ∧ Ak then A∗ is a product of A∗1, . . . ,A
∗
k .

E.g., A is a 3-CNF, A∗ is a product of polynomials of degree
3.

I A is unsatisfiable iff A∗ ∈ I(x2 − x)

I Alternatively, A is unsatisfiable iff
1 ∈ I(A∗1 − 1, . . . ,A∗k − 1,x2 − x)

Claim. IC(
∏k

i=1 A∗i || x2 − x) and
IC(1 || A∗1 − 1, . . . ,A∗k − 1,x2 − x) differ by at most an additive
factor of O(s), where s is the (boolean) complexity of
A1, . . . ,Ak .



Proposition 3.
Assume that ¬A has an Extended Frege proof of size s. Then
IC(A∗ || x2 − x) is polynomial in s.

I Similarly for Frege when counting arithmetic formula size.
I Hence, lower bounds on arithmetic circuits in IC( || ) imply

proof complexity lower bounds.

Proposition 4.
Assume that VP = VNP. Then for every f vanishing on {0,1}n,
IC(f || x2 − x) is polynomial in the arithmetic circuit complexity
of f .

I Hence, such lower bounds are at least as hard as proving
VP 6= VNP.



Proof of Proposition 4. Assume VP = VNP. Show that
f =

∑n
i=1(x2

i − xi)gi with gi having small circuits.
First, assume that f has a polynomial degree.
f̂i(x1, . . . , xn) - multilinear in x1, . . . , xi and

f̂i(z, xi+1, . . . , xn) = f (z, xi+1, . . . , xn) , ∀z ∈ {0,1}i .

Hence

f̂i =
∑

z∈{0,1}i

(f (z, xi+1, . . . , xn)α(z, x1, . . . , xi)) ,

where α(z, x1, . . . , xi) =
∏i

j=1(zjxj + (1− zj)(1− xj)).
Compute

gi =
f̂i − f̂i−1

x2
i − xi

.



Proof of Proposition 3. View Extended Frege as Frege working
with Boolean circuits.
By induction on number of lines show: if A has proof of size s
then IC(A∗ − 1 || x2 − x) is polynomial in s.

Frege axiom: a constant size tautology B(y1, . . . , yk ). Hence,
IC(B∗ − 1 || y2

1 − y1, . . . , y2
k − yk ) is a constant.

B∗ − 1 =
k∑

j=1

(y2
j − yj)gj

If D = B(A1, . . . ,Ak ) is a substitution instance then

D∗ − 1 =
k∑

j=1

(A?j
2 − A∗j )g′j .

We have A?j
2 − A?j =

∑n
i=1(x2

i − xi)gij and so

D∗ − 1 =
n∑

i=1

(x2
i − xi)(

k∑
j=1

gijg′j )

 .



Modus ponens
A,A→ B

B
.

We have

A? = 1 +
∑

i

(x2
i − xi)hi

(B? − 1)A? =
∑

i

(x2
i − xi)gi

Hence,

(B? − 1)(1 +
∑

i

(x2
i − xi)hi) =

∑
i

(x2
i − xi)gi

B? − 1 =
∑

i

(
(x2

i − xi)(gi − hi(B? − 1))
)
.



Theorem.
Assume that Extended Frege is not polynomially bounded.
Then, over F = GF (2),

1. VP 6= VNP, or

2. there exists A such that the polynomial A∗ is identically
zero but ¬A requires super-polynomial proof in Extended
Frege.

I 2. means that A∗ vanishes on F̄ but EF cannot even
efficiently prove that it vanishes on {0,1}n.

I 2. can be replaced by ”circuit-PI is not poly-bounded".
I Over any field, 2. can be replaced by ”EF cannot prove

correctness of a PIT algorithm" [Grochow & Pitassi’15].



Theorem.
Assume that Extended Frege is not polynomially bounded.
Then, over F = GF (2),

1. VP 6= VNP, or

2. there exists A such that the polynomial A∗ is identically
zero but ¬A requires super-polynomial proof in Extended
Frege.

Proof.
Want to refute B. Guess g1, . . . ,gn with small circuits such that
B? =

∑
i(x

2
i + xi)gi . Prove the polynomial identity.



More on [Grochow & Pitassi’15]

Theorem.
A super-polynomial lower bound on number of lines of a
Polynomial Calculus refutation of a CNF implies that VNP does
not have polynomial size skew arithmetic circuits.

I Skew circuit : = in a product gate, at least one product has
degree ≤ 1.

I In PC, one can derive αg from g if α has degree ≤ 1.
I Show that if g1, . . . ,gk have a skew circuit of size s and

f =
∑k

i=1 figi then f has a PC proof with O(s) lines.



The IPS system. Let f1, . . . , fk ∈ F[x]. An IPS-certificate for
unsatisfiability of f1 = 0, . . . , fk = 0 is a polynomial
g(x, y1, . . . , yk ) such that

I g(x,0, . . . ,0) = 0,
I g(x, f1, . . . , fk ) = 1.

An IPS proof for unsatisfiability of f1 = 0, . . . , fk = 0 is an
arithmetic circuit computing some such g.

I If 1 = f1g1 + · · ·+ fkgk then g = y1g1 + · · ·+ ykgk is an IPS
certificate.

I f1, . . . , fk consist of Boolean axioms x2
i − xi and arithmetic

translations of clauses from a CNF.



I Super-polynomial lower bounds on IPS-certificates imply
VP 6= VNP.

I IPS simulates Extended Frege.
I They are equivalent, if EF can efficiently prove

”correctness of a PIT algorithm".
I Similar statements hold for restricted proofs and models of

computation: Frege proofs versus formulas,
bounded-depth Frege with mod p gates versus
bounded-depth circuits over GF (p).



III. Semi-algebraic proof systems



I Systems based on integer linear programming, intended to
prove that a set of linear equalities has no integer solution
(or no 0,1-solution).

I A CNF can be represented as a set of linear inequalities.
A clause x ∨ y ∨ ¬z as x + y + (1− z) ≥ 1



Cutting Planes

I Manipulates linear inequalities with integer coefficients,
a1x1 + · · ·+ anxn ≥ b, with a1, . . . ,an,b ∈ Z

I Given a system L of linear inequalities with no
0,1-solution, CP derives the inequality 0 ≥ 1 from L.

Axioms are inequalities in L and the inequalities

xi ≥ 0 , xi ≤ 1 .

The rules are:

L ≥ b
cL ≥ cb

, if c ≥ 0 ,
L1 ≥ b1 , L2 ≥ b2

L1 + L2 ≥ b1 + b2
,

a1x1 + . . . anxn ≥ b
(a1/c)x1 + . . . (an/c)xn ≥ db/ce

, provided c > 0 divides every ai .



The Lovász-Schrijver system

I Refutes a set of linear inequalities, but the intermediary
steps can have degree 2.

I We can add two inequalities and multiply by a positive
number. The additional rules are

L ≥ 0
xL ≥ 0

,
L ≥ 0

(1− x)L ≥ 0
, x a variable, L degree one.

Degree-d semantic systems
I Intermediate inequalities can have degree ≤ d .
I Inference rule is any valid inference.

L1 ≥ 0 , L2 ≥ 0
L ≥ 0

,

provided every 0,1-assignment which satisfies the
assumption satisfies the conclusion.



I Exponential lower bound on Cutting Planes [Pudlák’97]
I Works also for the degree-1 semantic system [Filmus&

al.’15]
I A lower bound on Lovász-Schrijver system, assuming

certain boolean circuit lower bounds [Pudlák’97].
I Interpolation technique.

I Exponential lower bounds for tree-like degree-d semantic
systems [Beame& al.’ 07].

I Communication lower bounds on randomized multi-party
communication complexity of DISJ [Lee& Shraibman’08,
Sherstov’12].

Open problem. Prove super-polynomial lower bound on the
Lovász-Schrijver system, or the degree-2 semantic system.


