Proof complexity and arithmetic circuits

Pavel Hrubeš

Institute of Mathematics, Prague
\mathbb{F} a fixed underlying field.
Arithmetic circuit: computes a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. It starts from variables and field elements and computes f by means of operations + and \times.

- It is a directed acyclic graph. Leaves labelled with variables or field elements. Inner nodes have in-degree 2 and are labelled with,$+ \times$.
- Size - number of operations.
- Depth - the length of a longest directed path.
- Formula - the underlying graph is a tree.

Class VP: polynomials of polynomial size and degree.
Class VNP: Boolean sums over polynomials in VP.

$$
\sum_{z \in\{0,1\}^{m}} f\left(z, x_{1}, \ldots, x_{n}\right)
$$

I. Polynomial Identity Testing

Polynomial Identity Testing: given an arithmetic circuit F, accept iff F computes the zero polynomial.

- Typically, \mathbb{F} is \mathbb{Q} or a finite field.
- PIT \in coRP. (Schwarz-Zippel lemma)
- Not known to be in P or even NSUBEXP.
- If PIT has non-deterministic subexponential algorithm then we have new circuit lower bounds [Kabanetz \& Impagliazzo'04]
- Deterministic poly-time algorithm for non-commutative formulas [Raz \& Shpilka'05].
- Deterministic poly-time algorithm for $\Sigma \Pi \Sigma$-circuits with constant top fan-in [Dvir\&Shpilka'05, Kayal\& Saxena'07,...]

Question: is PIT in NP?

We want a polynomial-size witness (or, a proof) that F equals zero.

Question: can we efficiently prove that $F=0$ by means of syntactic manipulations?

Example of a syntactic algorithm:
Open all brackets in F and see if everything cancels.

The DS algorithm
A $\Sigma \Pi \Sigma$-circuit:

$$
F=F_{1}+\cdots+F_{k},
$$

where $F_{i}=\prod_{j=1}^{d} L_{i j}$ and $L_{i j}$ are linear.

- F is simple if no $L_{i j}$ divides every F_{i}.
- F is minimal if no proper subset of F_{i} sums to 0 .
- Rank of $F:=$ the rank of $L_{i j}$'s in F.

Theorem (Dvir \& Shpilka'07).

Assume that F computes the zero polynomial and F is simple and minimal. Then rank of F is $\leq 2^{O\left(k^{2}\right)}(\log d)^{k-2}$.
Note: speaker reminded that stronger bounds are nowadays known.

The $D S$ algorithm: find a basis of the $L_{i j}$'s and then open the brackets.

The PI system [H\&Tzameret] called $\mathbb{P}_{f}(\mathbb{F})$

- A proof-line is an equation $F=G$ where F, G are arithmetic formulas.
- The inference rules are

$$
\frac{F=G}{G=F}, \frac{F=G, G=H}{F=H}, \frac{F_{1}=G_{1}, F_{2}=G_{2}}{F_{1} \star F_{2}=G_{1} \star G_{2}}, \text { where } \star=+, .
$$

- The axioms are

$$
\begin{array}{ll}
F=F & F+G=G+F \\
F+(G+H)=(F+G)+H & F \cdot G=G \cdot F, \\
F \cdot(G \cdot H)=(F \cdot G) \cdot H & F \cdot(G+H)=F \cdot G+F \cdot H \\
F+0=F & F \cdot 0=0
\end{array}
$$

$$
F \cdot 1=F
$$

$$
a=b+c, a^{\prime}=b^{\prime} \cdot c^{\prime}, \quad \text { if true in } \mathbb{F}
$$

circuit-PI system: work with formulas instead of circuits.

- Both systems are sound and complete: $F=G$ has a proof iff F and G compute the same polynomial.
- PI system is an arithmetic analogy of Frege and circuit-PI of Extended Frege.
- Over GF(2), Frege resp. Extended Frege are equivalent to the PI systems with axioms $x_{1}^{2}=x_{1}, \ldots, x_{n}^{2}=x_{n}$.
- The PI-system can simulate the DS algorithm.

Open problem: Is the PI or circuit-PI system polynomially bounded?

The PI systems can simulate classical results in arithmetic circuit complexity.

- Strassen's elimination of divisions.
- Homogenization.
- Balancing.
[VSBR'83]: If a polynomial of degree d has circuit of size s then it has circuit of size poly (s, d) and depth $O(\log s(\log s+\log d))$.
Theorem.
Assume that $F=0$ has a circuit-Pl proof of size s and F has depth k and (syntactic) degree d. Then $F=0$ has a proof of size poly(s, d) in which every circuit has depth
$O(k+\log s(\log s+\log d))$.
- Hence, PI quasi-polynomially simulates circuit-PI.
- Applied to construct quasi-polynomial PI (and hence Frege) proofs of linear algebra based tautologies.

$$
A B=I_{n} \rightarrow B A=I_{n}, \text { for } A, B \in M_{n \times n}(\mathbb{F})
$$

II. Ideal membership problems

General setting

Let f, f_{1}, \ldots, f_{k} be polynomials such that $f \in I\left(f_{1}, \ldots, f_{k}\right)$. I.e., there exist g_{1}, \ldots, g_{k} with

$$
\begin{equation*}
f=f_{1} g_{1}+\ldots f_{k} g_{k} \tag{1}
\end{equation*}
$$

What can we say about the complexity of g_{1}, \ldots, g_{k} ?

- g_{1}, \ldots, g_{k} is a certificate for $f \in I\left(f_{1}, \ldots, f_{k}\right)$
- define $\operatorname{IC}\left(f \| f_{1}, \ldots, f_{k}\right)$ as the smallest s so that there exists g_{1}, \ldots, g_{k} satisfying (1) which can be (simultaneously) computed by an arithmetic circuit of size s.

1. Effective nullstellensatz

Nullstellensatz. Let $f_{1}, \ldots, f_{k} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. If $f_{1}=0, \ldots, f_{k}=0$ have no common solution in $\overline{\mathbb{F}}$ then there exist
$g_{1}, \ldots, g_{k} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
1=f_{1} g_{1}+\cdots+f_{k} g_{k}
$$

- One can view g_{1}, \ldots, g_{k} as a proof that $f_{1}, \ldots f_{k}=0$ has no solution.

Strong nullstellensatz. If every solution to $f_{1}, \ldots, f_{k}=0$ satisfies $f=0$ then there exists $r \in \mathbb{N}$ and polynomials g_{1}, \ldots, g_{k} with

$$
f^{r}=f_{1} g_{1}+\cdots+f_{k} g_{k}
$$

Nullstellensatz. Let $f_{1}, \ldots, f_{k} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. If $f_{1}=0, \ldots, f_{k}=0$ have no common solution in $\overline{\mathbb{F}}$ then there exist $g_{1}, \ldots, g_{k} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
1=f_{1} g_{1}+\cdots+f_{k} g_{k}
$$

- For every i,

$$
\operatorname{deg}\left(f_{i} g_{i}\right) \leq \max (d, 3)^{\min (n, k)}
$$

where d is the maximum degree of f_{i}. [Kollár'88, Brownawell' 87,...]

- This is tight if $d \geq 3$: there exist $f_{1}, \ldots f_{n}$ of degree d such that

$$
\max \operatorname{deg}\left(f_{i} g_{i}\right) \geq d^{n}
$$

[Maser\& Philippon]
$\operatorname{IC}\left(1 \| f_{1}, \ldots, f_{k}\right)$ is the smallest circuit complexity of g_{1}, \ldots, g_{k} with $1=\sum_{i=1}^{k} f_{i} g_{i}$.

Open question: can we find f_{1}, \ldots, f_{k} with $1 \in I\left(f_{1}, \ldots, f_{k}\right)$ so that $\operatorname{IC}\left(1 \| f_{1}, \ldots, f_{k}\right)$ is super-polynomial in the circuit complexity of f_{1}, \ldots, f_{k} ?

- Expect "yes", unless coNP \subseteq NP ${ }^{\text {PIT }}$.

Observation: If measuring formula size, the answer is "yes".

Proof.

Exponential degree.

Nullstellensatz as a decision problem: given
$f_{1}, \ldots, f_{k} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, decide if $f_{1}=0, \ldots, f_{k}=0$ has a solution in \mathbb{C}^{n}.

- The problem is in PSPACE
- Assuming GRH, it is in AM $\left(\subseteq \Pi_{2}\right)$ [Koiran'96].

2. Ideal membership

Theorem[Hermann'26]. Assume that $f \in I\left(f_{1}, \ldots, f_{k}\right)$ where $f, f_{1}, \ldots, f_{k} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and $\operatorname{deg} f_{1}, \ldots, \operatorname{deg} f_{k} \leq d$. Then there exist g_{1}, \ldots, g_{k} with

$$
f=f_{1} g_{1}+\cdots+f_{k} g_{k}
$$

having degree at most $\operatorname{deg}(f)+(k d)^{2^{n}}$.

- This is asymptotically tight [Mayr\& Mayer' 82].
- The Ideal Membership Problem: given f, f_{1}, \ldots, f_{k}, decide if $f \in I\left(f_{1}, \ldots, f_{k}\right)$. Is EXPSPACE hard.

Question: can we find f, f_{1}, \ldots, f_{k} so that $f \in I\left(f_{1}, \ldots, f_{k}\right)$ and $\operatorname{IC}\left(f \| f_{1}, \ldots, f_{k}\right)$ is exponential in the circuit complexity of f, f_{1}, \ldots, f_{k} ?

Answer: yes.
Proof.
Doubly-exponential degree.

Open question: Can we prove this if there exist witnesses g_{1}, \ldots, g_{k} of degree polynomial in the maximum degree of f, f_{1}, \ldots, f_{k} ?

Toy example.
$f \in I\left(f_{1}\right) . f=f_{1} g_{1}$, and hence $g_{1}=f / f_{1}$.

- If a polynomial g of degree d can be computed by a circuit of size s using division gates then it can be computed by circuit of size $s \cdot \operatorname{poly}(d)$ without division gates. [Strassen]
- Hence, $\operatorname{IC}\left(f \| f_{1}\right)$ is polynomial in $\operatorname{deg}(f)-\operatorname{deg}\left(f_{1}\right)$ and the circuit size of f, f_{1}.

Open question: In Strassen's elimination algorithm, can we replace $s \cdot \operatorname{poly}(d)$ by $\operatorname{poly}(s, \log d)$?

Monomial ideals.
$f:=\left(x_{11} z_{1}+\cdots+x_{1 n} z_{n}\right)\left(x_{21} z_{1}+\cdots+x_{2 n} z_{n}\right) \cdots\left(x_{n 1} z_{1}+\cdots+x_{n n} z_{n}\right)$.
Let Z be the set of $n+1$ monomials

$$
\prod_{i=1}^{n} z_{i}, z_{1}^{2}, \ldots, z_{n}^{2}
$$

$$
\operatorname{perm}_{n}=\sum_{\pi \in S_{n}}\left(x_{1, \pi(1)} x_{2, \pi(2)} \cdots x_{n, \pi(n)}\right)
$$

Proposition 1.

$f \in I(Z) . I C(f \| Z)$ is at least the circuit complexity of perm n.

$$
f=\left(x_{11} z_{1}+\cdots+x_{1 n} z_{n}\right)\left(x_{21} z_{1}+\cdots+x_{2 n} z_{n}\right) \cdots\left(x_{n 1} z_{1}+\cdots+x_{n n} z_{n}\right)
$$

$$
Z=\left\{\prod_{i=1}^{n} z_{i}, z_{1}^{2}, \ldots, z_{n}^{2}\right\}
$$

$$
f \in I(Z): \quad f-\operatorname{perm}_{n} \cdot\left(\prod_{i=1}^{n} z_{i}\right) \in I\left(z_{1}^{2}, \ldots, z_{n}^{2}\right) .
$$

$$
\text { Assume } \quad f-g \cdot\left(\prod_{i=1}^{n} z_{i}\right) \in I\left(z_{1}^{2}, \ldots, z_{n}^{2}\right)
$$

Write $g=g_{0}+h$ with $g_{0}:=g\left(z_{1}, \ldots, z_{n} / 0\right)$ and $h \in I\left(z_{1}, \ldots, z_{n}\right)$.

$$
\left(g_{0}+h-\operatorname{perm}_{n}\right) \cdot \prod z_{i} \in I\left(z_{1}^{2}, \ldots, z_{n}^{2}\right)
$$

$$
\left(g_{0}-\operatorname{perm}_{n}\right) \cdot \prod z_{i} \in I\left(z_{1}^{2}, \ldots, z_{n}^{2}\right) \text { and } g_{0}=\operatorname{perm}_{n}
$$

3. Polynomial calculus

Nullstellensatz as a proof system
View g_{1}, \ldots, g_{k} with

$$
1=g_{1} f_{1}+\cdots+g_{1} f_{k}
$$

as a proof of unsatisfiability of $f_{1}, \ldots, f_{k}=0$.

- f_{1}, \ldots, f_{k} include Boolean axioms $x_{1}^{2}-x_{1}, \ldots, x_{n}^{2}-x_{n}$ and typically have constant degree. E.g., translation of a 3CNF.
- Complexity measured as the degree of g_{1}, \ldots, g_{k} or the number of monomials.
Polynomial Calculus [Clegg, Edmonds \& Impagliazzo'96]
We want to show that $f_{1}, \ldots, f_{k}=0$ has no solution by deriving
1 from f_{1}, \ldots, f_{k}. The rules are

$$
\frac{f}{x f}, x \text { a variable }, \frac{f, g}{a f+b g} a, b \in \mathbb{F}
$$

- Complexity is measured as the maximum degree of a line in the refutation.
- PC is strictly stronger than Nullstellensatz.

The Pigeon Hole Principle $\neg \mathrm{PHP}_{n}^{m}$: variables $x_{i j}, i \in[m], j \in[n]$

$$
\begin{array}{r}
\sum_{j \in[n]} x_{i j}-1, i \in[m] \\
x_{i_{1} j} x_{i_{2} j}, \\
i_{i j_{1}} \neq i_{2} \in[m], j \in[n], \\
i_{j_{2}}, \\
, i \in[m], j_{1} \neq j_{2} \in[m] .
\end{array}
$$

- Polynomials in $\neg \mathrm{PHP}_{n}^{m}$ do not have a common zero if $m>n$.

Theorem (Razborov'98).

Every Polynomial Calculus refutation of $\neg P H P_{n}^{m}$ with $m>n$ (including the polynomials $x_{i j}^{2}-x_{i j}$) has degree at least $n / 2+1$.

- Lower bound on number of monomials in PC [Impagliazzo \& al.'99].
- PHP refutation requires $2^{\Omega(n)}$ monomials.
- In general, a refutation with few monomials can be converted to a low-degree refutation.
- Random k - CNF's require large degree. [Ben-Sasson\& Impagliazzo'99, Alekhnovich\& Razborov'03]
- Polynomial Calculus with Resolution [Alekhnovich \& al.'02]
- ...

Proposition 2.

Assume that $f_{1}=0, \ldots, f_{k}=0$ has $P C$ refutation with s lines.
Then there exist g_{1}, \ldots, g_{k} with

$$
1=f_{1} g_{1}+\cdots+f_{k} g_{k}
$$

such that every g_{i} has circuit of size $O(s)$ and degree $\leq s$.

- Hence, without the boolean axioms, there exist n equations of degree 2 which require PC refutation with 2^{n} lines.

4. The Boolean ideal

Consider the ideal $I\left(x_{1}^{2}-x_{1}, \ldots, x_{n}^{2}-x_{n}\right)$.

Boolean Nullstellensatz. Assume that $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ vanishes on $\{0,1\}^{n}$. Then $f \in I\left(x_{1}^{2}-x_{1}, \ldots, x_{n}^{2}-x_{n}\right)$. Moreover, there exist g_{1}, \ldots, g_{n} of degree at most $\operatorname{deg} f-2$ such that $f=\sum_{i=1}^{n} f_{i} g_{i}$.

- Special case of the so-called Combinatorial Nullstellensatz [Alon].

Boolean Nullstellensatz. If f vanishes on $\{0,1\}^{n}$ then
$f \in I\left(x_{1}^{2}-x_{1}, \ldots, x_{n}^{2}-x_{n}\right)$.

Proof.

Define $\hat{f}_{0}, \hat{f}_{1}, \ldots, \hat{f}_{n}, g_{1}, \ldots, g_{n}$ as follows:
$\hat{f}_{0}:=f$. For $0 \leq i<n, \hat{f}_{i}$ and g_{i} are the polynomials satisfying

$$
\hat{f}_{i-1}=g_{i} \cdot\left(x_{i}^{2}-x_{i}\right)+\hat{f}_{i}, \operatorname{deg}_{x_{i}} \hat{f}_{i} \leq 1 .
$$

Hence,

$$
\begin{aligned}
f & =\left(\hat{f}_{0}-\hat{f}_{1}\right)+\left(\hat{f}_{1}-\hat{f}_{2}\right)+\cdots+\left(\hat{f}_{n-1}-\hat{f}_{n}\right)+\hat{f}_{n}= \\
& =g_{1} \cdot\left(x_{1}^{2}-x_{1}\right)+g_{2} \cdot\left(x_{2}^{2}-x_{2}\right)+\cdots+g_{n} \cdot\left(x_{n}^{2}-x_{n}\right)+\hat{f}_{n}
\end{aligned}
$$

Hence, \hat{f}_{n} also vanishes on $\{0,1\}^{n}$. Since \hat{f}_{n} is multilinear, it equals zero.

Recall $\operatorname{IC}\left(f \| x_{1}^{2}-x_{1}, \ldots, x_{n}^{2}-x_{n}\right)$ is the smallest circuit complexity of g_{1}, \ldots, g_{n} with $f=\sum_{i}\left(x_{i}^{2}-x_{i}\right) g_{i}$.
Abbreviation: $\mathbf{x}^{2}-\mathbf{x}=\left\{x_{1}^{2}-x_{1}, \ldots, x_{n}^{2}-x_{n}\right\}$.
Open problem: Is there an f that vanishes on $\{0,1\}^{n}$ such that IC $\left(f \| \mathbf{x}^{2}-\mathbf{x}\right)$ is super-polynomial in the circuit complexity of f ?

- Think of g_{1}, \ldots, g_{n} as a proof that $f=0$ over $\{0,1\}^{n}$.
- Expected answer is "yes", unless unless coNP \subseteq NPPIT.
- Open even assuming VP \neq VNP
[Grochow \& Pitassi'15] show "certain proof complexity lower bounds imply arithmetic circuit lower bounds"

Major open problem: prove super-polynomial lower bounds on the Frege or Extended Frege proof systems.

- Known for bounded-depth Frege in De Morgan basis [Ajtai'88, Beame \& al.'93, ...]
- Open even for bounded-depth Frege with parity gates.

Arithmetic translations of Boolean circuits

Given a Boolean circuit A, define the polynomial A^{*} as follows: replace $u \wedge v$ by $u \cdot v, \neg u$ by $1-u, u \vee v$ by $u+v-u \cdot v$ etc.

- A^{*} and A have the same circuit size (up to a constant factor)
- They agree on inputs from the boolean cube.
- IC $\left(A^{* 2}-A^{*} \| \mathbf{x}^{2}-\mathbf{x}\right)$ is linear in the size of A.
- If $A=A_{1} \wedge A_{2} \wedge \cdots \wedge A_{k}$ then A^{*} is a product of $A_{1}^{*}, \ldots, A_{k}^{*}$. E.g., A is a $3-$ CNF, A^{*} is a product of polynomials of degree 3.
- A is unsatisfiable iff $A^{*} \in I\left(\mathbf{x}^{2}-\mathbf{x}\right)$
- Alternatively, A is unsatisfiable iff

$$
1 \in I\left(A_{1}^{*}-1, \ldots, A_{k}^{*}-1, \mathbf{x}^{2}-\mathbf{x}\right)
$$

Claim. IC $\left(\prod_{i=1}^{k} A_{i}^{*} \| \mathbf{x}^{2}-\mathbf{x}\right)$ and
$\mathrm{IC}\left(1 \| A_{1}^{*}-1, \ldots, A_{k}^{*}-1, \mathbf{x}^{2}-\mathbf{x}\right)$ differ by at most an additive factor of $O(s)$, where s is the (boolean) complexity of A_{1}, \ldots, A_{k}.

Proposition 3.

Assume that $\neg A$ has an Extended Frege proof of size s. Then $I C\left(A^{*} \| \mathbf{x}^{2}-\mathbf{x}\right)$ is polynomial in s.

- Similarly for Frege when counting arithmetic formula size.
- Hence, lower bounds on arithmetic circuits in IC(||) imply proof complexity lower bounds.

Proposition 4.

Assume that $V P=V N P$. Then for every f vanishing on $\{0,1\}^{n}$, $I C\left(f \| \mathbf{x}^{2}-\mathbf{x}\right)$ is polynomial in the arithmetic circuit complexity of f.

- Hence, such lower bounds are at least as hard as proving $\mathrm{VP} \neq \mathrm{VNP}$.

Proof of Proposition 4. Assume VP $=$ VNP. Show that $f=\sum_{i=1}^{n}\left(x_{i}^{2}-x_{i}\right) g_{i}$ with g_{i} having small circuits.
First, assume that f has a polynomial degree.
$\hat{f}_{i}\left(x_{1}, \ldots, x_{n}\right)$ - multilinear in x_{1}, \ldots, x_{i} and

$$
\hat{f}_{i}\left(\mathbf{z}, x_{i+1}, \ldots, x_{n}\right)=f\left(\mathbf{z}, x_{i+1}, \ldots, x_{n}\right), \forall \mathbf{z} \in\{0,1\}^{i}
$$

Hence

$$
\hat{f}_{i}=\sum_{\mathbf{z} \in\{0,1\}^{i}}\left(f\left(\mathbf{z}, x_{i+1}, \ldots, x_{n}\right) \alpha\left(\mathbf{z}, x_{1}, \ldots, x_{i}\right)\right)
$$

where $\alpha\left(\mathbf{z}, x_{1}, \ldots, x_{i}\right)=\prod_{j=1}^{i}\left(z_{j} x_{j}+\left(1-z_{j}\right)\left(1-x_{j}\right)\right)$.
Compute

$$
g_{i}=\frac{\hat{f}_{i}-\hat{f}_{i-1}}{x_{i}^{2}-x_{i}}
$$

Proof of Proposition 3. View Extended Frege as Frege working with Boolean circuits.
By induction on number of lines show: if A has proof of size s then IC($\left.A^{*}-1 \| \mathbf{x}^{2}-\mathbf{x}\right)$ is polynomial in s.

Frege axiom: a constant size tautology $B\left(y_{1}, \ldots, y_{k}\right)$. Hence, $\operatorname{IC}\left(B^{*}-1 \| y_{1}^{2}-y_{1}, \ldots, y_{k}^{2}-y_{k}\right)$ is a constant.

$$
B^{*}-1=\sum_{j=1}^{k}\left(y_{j}^{2}-y_{j}\right) g_{j}
$$

If $D=B\left(A_{1}, \ldots, A_{k}\right)$ is a substitution instance then

$$
D^{*}-1=\sum_{j=1}^{k}\left(A_{j}^{\star 2}-A_{j}^{*}\right) g_{j}^{\prime} .
$$

We have $A_{j}^{\star 2}-A_{j}^{\star}=\sum_{i=1}^{n}\left(x_{i}^{2}-x_{i}\right) g_{i j}$ and so

$$
D^{*}-1=\sum_{i=1}^{n}\left(\left(x_{i}^{2}-x_{i}\right)\left(\sum_{j=1}^{k} g_{i j} g_{j}^{\prime}\right)\right) .
$$

Modus ponens

$$
\frac{A, A \rightarrow B}{B} .
$$

We have

$$
\begin{aligned}
A^{\star} & =1+\sum_{i}\left(x_{i}^{2}-x_{i}\right) h_{i} \\
\left(B^{\star}-1\right) A^{\star} & =\sum_{i}\left(x_{i}^{2}-x_{i}\right) g_{i}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \left(B^{\star}-1\right)\left(1+\sum_{i}\left(x_{i}^{2}-x_{i}\right) h_{i}\right)=\sum_{i}\left(x_{i}^{2}-x_{i}\right) g_{i} \\
& B^{\star}-1=\sum_{i}\left(\left(x_{i}^{2}-x_{i}\right)\left(g_{i}-h_{i}\left(B^{\star}-1\right)\right)\right)
\end{aligned}
$$

Theorem.

Assume that Extended Frege is not polynomially bounded.
Then, over $\mathbb{F}=G F(2)$,

1. $V P \neq V N P$, or
2. there exists A such that the polynomial A^{*} is identically zero but \neg A requires super-polynomial proof in Extended Frege.

- 2. means that A^{*} vanishes on $\overline{\mathbb{F}}$ but EF cannot even efficiently prove that it vanishes on $\{0,1\}^{n}$.
- 2. can be replaced by "circuit-PI is not poly-bounded".
- Over any field, 2. can be replaced by "EF cannot prove correctness of a PIT algorithm" [Grochow \& Pitassi'15].

Theorem.

Assume that Extended Frege is not polynomially bounded.
Then, over $\mathbb{F}=G F(2)$,

1. $V P \neq V N P$, or
2. there exists A such that the polynomial A^{*} is identically zero but $\neg A$ requires super-polynomial proof in Extended Frege.

Proof.

Want to refute B. Guess g_{1}, \ldots, g_{n} with small circuits such that $B^{\star}=\sum_{i}\left(x_{i}^{2}+x_{i}\right) g_{i}$. Prove the polynomial identity.

More on [Grochow \& Pitassi'15]

Theorem.
A super-polynomial lower bound on number of lines of a Polynomial Calculus refutation of a CNF implies that VNP does not have polynomial size skew arithmetic circuits.

- Skew circuit : = in a product gate, at least one product has degree ≤ 1.
- In PC, one can derive αg from g if α has degree ≤ 1.
- Show that if g_{1}, \ldots, g_{k} have a skew circuit of size s and $f=\sum_{i=1}^{k} f_{i} g_{i}$ then f has a PC proof with $O(s)$ lines.

The IPS system. Let $f_{1}, \ldots, f_{k} \in \mathbb{F}[\mathbf{x}]$. An IPS-certificate for unsatisfiability of $f_{1}=0, \ldots, f_{k}=0$ is a polynomial $g\left(\mathbf{x}, y_{1}, \ldots, y_{k}\right)$ such that

- $g(\mathbf{x}, 0, \ldots, 0)=0$,
- $g\left(\mathbf{x}, f_{1}, \ldots, f_{k}\right)=1$.

An IPS proof for unsatisfiability of $f_{1}=0, \ldots, f_{k}=0$ is an arithmetic circuit computing some such g.

- If $1=f_{1} g_{1}+\cdots+f_{k} g_{k}$ then $g=y_{1} g_{1}+\cdots+y_{k} g_{k}$ is an IPS certificate.
- f_{1}, \ldots, f_{k} consist of Boolean axioms $x_{i}^{2}-x_{i}$ and arithmetic translations of clauses from a CNF.
- Super-polynomial lower bounds on IPS-certificates imply VP $\neq \mathrm{VNP}$.
- IPS simulates Extended Frege.
- They are equivalent, if EF can efficiently prove "correctness of a PIT algorithm".
- Similar statements hold for restricted proofs and models of computation: Frege proofs versus formulas, bounded-depth Frege with $\bmod p$ gates versus bounded-depth circuits over $G F(p)$.
III. Semi-algebraic proof systems
- Systems based on integer linear programming, intended to prove that a set of linear equalities has no integer solution (or no 0, 1-solution).
- A CNF can be represented as a set of linear inequalities. A clause $x \vee y \vee \neg z$ as $x+y+(1-z) \geq 1$

Cutting Planes

- Manipulates linear inequalities with integer coefficients, $a_{1} x_{1}+\cdots+a_{n} x_{n} \geq b$, with $a_{1}, \ldots, a_{n}, b \in \mathbb{Z}$
- Given a system \mathcal{L} of linear inequalities with no 0,1 -solution, $C P$ derives the inequality $0 \geq 1$ from \mathcal{L}.

Axioms are inequalities in \mathcal{L} and the inequalities

$$
x_{i} \geq 0, \quad x_{i} \leq 1
$$

The rules are:

$$
\frac{L \geq b}{c L \geq c b}, \text { if } c \geq 0, \frac{L_{1} \geq b_{1}, L_{2} \geq b_{2}}{L_{1}+L_{2} \geq b_{1}+b_{2}}
$$

$\frac{a_{1} x_{1}+\ldots a_{n} x_{n} \geq b}{\left(a_{1} / c\right) x_{1}+\ldots\left(a_{n} / c\right) x_{n} \geq\lceil b / c\rceil}$, provided $c>0$ divides every a_{i}.

The Lovász-Schrijver system

- Refutes a set of linear inequalities, but the intermediary steps can have degree 2.
- We can add two inequalities and multiply by a positive number. The additional rules are

$$
\frac{L \geq 0}{x L \geq 0}, \frac{L \geq 0}{(1-x) L \geq 0}, x \text { a variable, } L \text { degree one. }
$$

Degree-d semantic systems

- Intermediate inequalities can have degree $\leq d$.
- Inference rule is any valid inference.

$$
\frac{L_{1} \geq 0, \quad L_{2} \geq 0}{L \geq 0}
$$

provided every 0,1 -assignment which satisfies the assumption satisfies the conclusion.

- Exponential lower bound on Cutting Planes [Pudlák'97]
- Works also for the degree-1 semantic system [Filmus\& al.'15]
- A lower bound on Lovász-Schrijver system, assuming certain boolean circuit lower bounds [Pudlák'97].
- Interpolation technique.
- Exponential lower bounds for tree-like degree-d semantic systems [Beame\& al.' 07].
- Communication lower bounds on randomized multi-party communication complexity of DISJ [Lee\& Shraibman'08, Sherstov'12].

Open problem. Prove super-polynomial lower bound on the Lovász-Schrijver system, or the degree-2 semantic system.

