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IF a fixed underlying field.

Arithmetic circuit: computes a polynomial f € F[xq, ..., X5]. It
starts from variables and field elements and computes f by
means of operations + and x.

» |tis a directed acyclic graph. Leaves labelled with variables
or field elements. Inner nodes have in-degree 2 and are
labelled with +, x.

» Size - number of operations.
» Depth - the length of a longest directed path.
» Formula - the underlying graph is a tree.

Class VP: polynomials of polynomial size and degree.

Class VNP: Boolean sums over polynomials in VP.

Z f(z, X1, .., Xn).

ze{0,1}m



[. Polynomial Identity Testing



Polynomial Identity Testing: given an arithmetic circuit F,
accept iff F computes the zero polynomial.

>

>

>

Typically, F is Q or a finite field.
PIT € coRP. (Schwarz-Zippel lemma)
Not known to be in P or even NSUBEXP.

If PIT has non-deterministic subexponential algorithm then
we have new circuit lower bounds [Kabanetz &
Impagliazzo’'04]

Deterministic poly-time algorithm for non-commutative
formulas [Raz & Shpilka’05].

Deterministic poly-time algorithm for XM -circuits with
constant top fan-in [Dvir&Shpilka’05, Kayal& Saxena’07,...
]



Question: is PIT in NP?

We want a polynomial-size witness (or, a proof) that F equals
Zero.

Question: can we efficiently prove that F = 0 by means of

syntactic manipulations?

Example of a syntactic algorithm:
Open all brackets in F and see if everything cancels.



The DS algorithm

A XMX-circuit:

where F; = [[, L; and L; are linear.
» F is simpleif no L; divides every F;.
» Fis minimal if no proper subset of F; sums to 0.
» Rank of F:=the rank of L;’'s in F.

Theorem (Dvir & Shpilka’07).

Assume that F computes the zero polynomial and F is simple
and minimal. Then rank of F is < 20(*)(log d)k—2.

Note: speaker reminded that stronger bounds are nowadays
known.

The DS algorithm: find a basis of the L;'s and then open the
brackets.



The Pl system [H&Tzameret] called P¢(F)

» A proof-line is an equation F = G where F, G are

arithmetic formulas.
» The inference rules are

F=G F=G,G=H Fi =Gy, Fo=0G>

G=F  F=H

» The axioms are
F=F

F+(G+H)=(F+G)+H

F-(G-H)=(F-G)-H
F+0=F

FA1=F
a=b+c,d=b-c,

F1*F2:G1*Gz,where*:+,-
F+G=G+F
F-G=G-F,
F-(G+H)=F-G+F-H
F-0=0

if true in .



circuit-Pl system: work with formulas instead of circuits.
» Both systems are sound and complete: F = G has a proof
iff F and G compute the same polynomial.

» Pl system is an arithmetic analogy of Frege and circuit-PI
of Extended Frege.

» Over GF(2), Frege resp. Extended Frege are equivalent to
the Pl systems with axioms x2 = x1,..., X2 = X,.

» The Pl-system can simulate the DS algorithm.

Open problem: Is the PI or circuit-Pl system polynomially
bounded?



The Pl systems can simulate classical results in arithmetic
circuit complexity.

» Strassen’s elimination of divisions.

» Homogenization.

» Balancing.
[VSBR'83]: If a polynomial of degree d has circuit of size s then
it has circuit of size poly(s, d) and depth O(log s(log s + log d)).
Theorem.
Assume that F = 0 has a circuit-Pl proof of size s and F has
depth k and (syntactic) degree d. Then F = 0 has a proof of
size poly(s, d) in which every circuit has depth
O(k + log s(log s + log d)).

» Hence, Pl quasi-polynomially simulates circuit-PI.
» Applied to construct quasi-polynomial Pl (and hence
Frege) proofs of linear algebra based tautologies.

AB: /n*) BA: ln, fOFA,BE Mnxn(]F).



Il. Ideal membership problems



General setting
Let f, fy,..., fx be polynomials such that f € I(fy, ..., f). lL.e.,
there exist g4, . . ., gk with

f=hHor+.. f0k. (1)

What can we say about the complexity of g4, ..., gk?

> 01,...,0k is a certificate for f € I(fy, ..., fx)

» define IC(f || f1,...,fx) as the smallest s so that there
exists g1, ..., gk satisfying (1) which can be
(simultaneously) computed by an arithmetic circuit of size
S.



1. Effective nullstellensatz



Nullstellensatz. Letf, ... fx € Flx1,...,Xp]. Ifff=0,...,f =0
have no common solution in F then there exist
91,.-.,9k € Fxq, ..., Xn] such that

1=Hhog + + fk-

» One canview gi,...,9k as a proofthat f;,... fx = 0 has no
solution.
Strong nullstellensatz. If every solution to fy, ..., fy = 0 satisfies
f = 0 then there exists r € N and polynomials g1, . . ., gx with

fl="fon+- + fgk-



Nullstellensatz. Letfy,..., f € Flx1,...,xp]. ffy =0,..., /=0
have no common solution inF then there exist
91,---,9k € Flxq, ..., Xn] such that

1=Hhogr+-+ Kk

» For every i,
deg(figi) < max(d,3)™"("k)

where d is the maximum degree of f;. [Kollar'88,
Brownawell’ 87,...]
» This is tight if d > 3: there exist fi, ... f, of degree d such
that
max deg(fig;) > d".

[Maser& Philippon]



IC(1 || fi,...,fx) is the smallest circuit complexity of g1, ..., gk
with 1 = YK . fg;.

Open question: canwefind fi,..., fy with 1 € I(fy,..., f) so
that IC(1 || fi, ..., fx) is super-polynomial in the circuit
complexity of fy, ..., f?

» Expect "yes", unless coNP C NpPPIT,

Observation: If measuring formula size, the answer is "yes".

Proof.
Exponential degree. [



Nullstellensatz as a decision problem: given
fi,.. ., K eZ[x1,...,x,,],decide ifi=0,....,k=0has a
solution in C".

» The problem is in PSPACE

» Assuming GRH, itis in AM (C I5,) [Koiran’96].



2. |deal membership



Theorem[Hermann’26]. Assume that f € I(fy,..., fx) where

fof,. ... €F[xq,...,xp] anddegfy,...,degfx < d. Then
there exist g1, ..., gk with

f="hor+- -+ gk
having degree at most deg(f) + (kd)?".

» This is asymptotically tight [Mayr& Mayer’ 82].
» The Ideal Membership Problem: given f, f;,

..., fx, decide if
fellfy,..., f). Is EXPSPACE hard.



Question: canwefind f, f;,..., fy sothat f € I(fy,..., fx) and
IC(f || f1,..., fx) is exponential in the circuit complexity of
fofy,. .. f?

Answer: yes.

Proof.
Doubly-exponential degree.

Open question: Can we prove this if there exist withesses
91, ..., gk of degree polynomial in the maximum degree of
fofy,... f?

OJ



Toy example.
fel(fy). f=figy, and hence g = f/f;.

» If a polynomial g of degree d can be computed by a circuit
of size s using division gates then it can be computed by
circuit of size s - poly(d) without division gates. [Strassen]

» Hence, IC(f || f;) is polynomial in deg(f) — deg(f;) and the
circuit size of £, f;.

Open question: In Strassen’s elimination algorithm, can we
replace s - poly(d) by poly(s,logd)?



Monomial ideals.
f=(X1121+ - +X1n2Zn) (X1 21+ - +Xa2nZn) - - (Xm1 Z1+ - ~+XnnZn) -

Let Z be the set of n 4+ 1 monomials

n

2 2
1z, #.....2.
i—1

perm, = Y (X1 x(1)Xem(2) ** Xnon(n)) -
TESH

Proposition 1.
fel(Z). IC(f || Z) is at least the circuit complexity of perm,,.



f= X121+ - +X1nZn)(X21 21+ - ~+X2nZn) - - - (Xp1 Z1++ - ~+XnnZn) -

n
z=A{]lz. #.....25}.
i—1

n
fel2): f—perm, ([[2)elZ.....25).
=1

n
Assume f—g-([[z)el(2.....20).
i=1

Write g = go + h with go := g(z4,...,2,/0) and
hel(z,...,zn).

(9o +h—perm,)-[[zielz,....25),
i

(g0 —perm,) - [[zi € I(22,...,23) and go = perm,,.



3. Polynomial calculus



Nullstellensatz as a proof system
View g4, ..., gk with

1T=gifi +--+ ok

as a proof of unsatisfiability of f;,..., fx = 0.
» fi,..., f include Boolean axioms xZ — x1,..., X2 — x, and
typically have constant degree. E.g., translation of a 3CNF.
» Complexity measured as the degree of g4, ..., gk orthe

number of monomials.
Polynomial Calculus [Clegg, Edmonds & Impagliazzo’96]

We want to show that fi, ..., fx = 0 has no solution by deriving
1 fromf,..., fx. The rules are
. f, g
o ,X avariable , af 1 bg abelF.

» Complexity is measured as the maximum degree of a line
in the refutation.
» PC is strictly stronger than Nullstellensatz.



The Pigeon Hole Principle =PHP}: variables x;;, i € [m], j € [n]

> xj—1,ie[m]

Jeln]
Xi\jXipj > 1t # b € [m],j € [N],
Xij, X, » 1 € [M], jy # jo € [m].

» Polynomials in =PHP}' do not have a common zero if
m>n.

Theorem (Razborov’98).

Every Polynomial Calculus refutation of ~PHP]! with m > n
(including the polynomials x,-jz- — Xxj) has degree at least n/2 + 1.



v

v

v

Lower bound on number of monomials in PC [Impagliazzo
& al’99].
» PHP refutation requires 2" monomials.
» In general, a refutation with few monomials can be
converted to a low-degree refutation.
Random k — CNF’s require large degree. [Ben-Sasson&
Impagliazzo’99, Alekhnovich& Razborov’03]

Polynomial Calculus with Resolution [Alekhnovich & al.’02]



Proposition 2.
Assume thatfy = 0,..., fx = 0 has PC refutation with s lines.
Then there exist g1, . .., gx With

1=Hhor +-- + fgk
such that every g; has circuit of size O(s) and degree < s.

» Hence, without the boolean axioms, there exist n equations
of degree 2 which require PC refutation with 2" lines.



4. The Boolean ideal



Consider the ideal /(x? — xy,..., X2 — Xp).



Boolean Nullstellensatz. Assume that f € F[x4, ..., Xn] vanishes
on {0,1}". Then f € I(x? — xi,...,X2 — Xn). Moreover, there
exist g, ..., Qgn of degree at mostdeg f — 2 such that
f= 27:1 figi-
» Special case of the so-called Combinatorial Nullstellensatz
[Alon].



Boolean Nullstellensatz. If f vanishes on {0,1}" then
fel(x2—xy,...,x2 — Xn).

Proof.
Define fy, f1, .. fn, 91, --,gn as follows:
fy:=f. For 0 < i < n, f, and g; are the polynomials satisfying

f/ 1 =g (X —x,)+f,,degxf<1
Hence,
f=(fo—f)+(f—B)+ -+ (ot — )+ To =
=01 (¢ —x1) + g2 (X8 — X2) + ot Gn (B —xa)+

Hence, 7, also vanishes on {0, 1}". Since f, is multilinear, it
equals zero. O



Recall IC(f || x2 — Xy,..., X2 — Xp) is the smallest circuit
complexity of gy, ..., gn with f = > ;(x2 — x)g;.
Abbreviation: X2 — X = {x2 — Xy,..., X2 — Xp}.

Open problem: Is there an f that vanishes on {0, 1}" such
that IG(f || x2 — x) is super-polynomial in the circuit complexity
of f?

» Think of g4, ..., gn as a proof that f = 0 over {0,1}".

» Expected answer is "yes", unless unless coNP C NpPPIT.

» Open even assuming VP % VNP

[Grochow & Pitassi’15] show “certain proof complexity lower
bounds imply arithmetic circuit lower bounds”



Major open problem: prove super-polynomial lower bounds
on the Frege or Extended Frege proof systems.

» Known for bounded-depth Frege in De Morgan basis
[Ajtai’88, Beame & al.93, ...]

» Open even for bounded-depth Frege with parity gates.



Arithmetic translations of Boolean circuits
Given a Boolean circuit A, define the polynomial A* as follows:
replace unvbyu-v,-uby1—-u,uvvbyu+v—u-vetc.
» A* and A have the same circuit size (up to a constant
factor)
» They agree on inputs from the boolean cube.

» IC(A*2 — A* || x2 — x) is linear in the size of A.



» If A= Ai ANAx A--- A Ag then A* is a product of A7, ..., A;.
E.g., Ais a 3-CNF, A* is a product of polynomials of degree
3.
» Ais unsatisfiable iff A* € /(x® — x)
» Alternatively, A is unsatisfiable iff
1el(A;—1,... Ar —1,x2 —X)
Claim. IC([Tf4 Ar || X2 — x) and
IC(1 || Ay —1,...,A; — 1,x2 — x) differ by at most an additive
factor of O(s), where s is the (boolean) complexity of
Aq, .. Ax.



Proposition 3.

Assume that —A has an Extended Frege proof of size s. Then
IC(A* || X2 — Xx) is polynomial in s.

» Similarly for Frege when counting arithmetic formula size.

» Hence, lower bounds on arithmetic circuits in IC( || ) imply
proof complexity lower bounds.

Proposition 4.

Assume that VP = VNP. Then for every f vanishing on {0,1}",
IC(f || X2 — x) is polynomial in the arithmetic circuit complexity
of f.

» Hence, such lower bounds are at least as hard as proving
VP # VNP.



Proof of Proposition 4. Assume VP = VNP. Show that
f=>",(x? - x;)g; with g; having small circuits.
First, assume that f has a polynomial degree.

~

fi(x1,...,Xn) - multilinear in xq, ..., x; and

A

(2, Xit1s - -, Xn) = £(Z, X1, -, Xn),VZ € {0, 1}

Hence

>

= Y (f(Z X1, Xn)a(Z, Xe, X))

ze{0,1}

where a(z, x1,...,%) = [T_1(zx; + (1 — Z)(1 — x;)).
Compute




Proof of Proposition 3. View Extended Frege as Frege working
with Boolean circuits.

By induction on number of lines show: if A has proof of size s
then IC(A* — 1 || X2 — X) is polynomial in s.

Frege axiom: a constant size tautology B(ys, ..., yx). Hence,
IC(B* — 11| ¥2 = y1,...,¥2 — yx) is a constant.
k

B —1=2 (¥ -¥)g
j=1
If D= B(A4,...,Ax) is a substitution instance then
K

D*—1=> (A% Ag.
j=1

We have A% — Ax = 377 (x? — x;)gj and s0

n k
D*—1=>" ((x,-2 - x)(> g,-,-g,‘)) -

i=1 j=1



Modus ponens

AA— B

— 5
We have

A* =14 (xF = x)h;
i
(B* = DA =D (xF - x)gi
i

Hence,

(B* =11+ _(xF—x)h) =D _(xF — x)gi

B —1=>" ((Xi2 — x;)(gi — hi(B* — 1))) -



Theorem.
Assume that Extended Frege is not polynomially bounded.
Then, over F = GF(2),
1. VP # VNP, or
2. there exists A such that the polynomial A* is identically
zero but —A requires super-polynomial proof in Extended
Frege.

» 2. means that A* vanishes on F but EF cannot even
efficiently prove that it vanishes on {0, 1}".

» 2. can be replaced by "circuit-Pl is not poly-bounded".

» Over any field, 2. can be replaced by "EF cannot prove
correctness of a PIT algorithm" [Grochow & Pitassi’15].



Theorem.
Assume that Extended Frege is not polynomially bounded.
Then, over F = GF(2),

1. VP £ VNP, or

2. there exists A such that the polynomial A* is identically
zero but —A requires super-polynomial proof in Extended
Frege.

Proof.
Want to refute B. Guess gy, . . ., gn With small circuits such that
B* = Y",(x? + x;)g;. Prove the polynomial identity. O



More on [Grochow & Pitassi’15]

Theorem.

A super-polynomial lower bound on number of lines of a
Polynomial Calculus refutation of a CNF implies that VNP does
not have polynomial size skew arithmetic circuits.

» Skew circuit : = in a product gate, at least one product has
degree < 1.

» In PC, one can derive ag from g if a has degree < 1.

» Show that if g4, ..., gk have a skew circuit of size s and
f= ZL figi then f has a PC proof with O(s) lines.



The IPS system. Let fi, ..., fx € F[x]. An IPS-certificate for
unsatisfiability of f =0, ..., fy = 0 is a polynomial
g(x, y1,...,yk) such that

» 9(x,0,...,0) =0,

» g(x, fr,..., fx) = 1.
An IPS proof for unsatisfiability of ff = 0,...,fx = 0is an
arithmetic circuit computing some such g.

» If1=Ffg1+ -+ gk theng = y191 + - - - + Yk gk is an IPS
certificate.

» fi,...,f consist of Boolean axioms x,? — X; and arithmetic
translations of clauses from a CNF.



Super-polynomial lower bounds on IPS-certificates imply
VP # VNP.

IPS simulates Extended Frege.

They are equivalent, if EF can efficiently prove
"correctness of a PIT algorithm".

Similar statements hold for restricted proofs and models of
computation: Frege proofs versus formulas,
bounded-depth Frege with mod p gates versus
bounded-depth circuits over GF(p).



[ll. Semi-algebraic proof systems



» Systems based on integer linear programming, intended to
prove that a set of linear equalities has no integer solution
(or no 0, 1-solution).

» A CNF can be represented as a set of linear inequalities.
Aclause xVyVv-zasx+y+(1—-2z)>1



Cutting Planes

» Manipulates linear inequalities with integer coefficients,
axXy+---+anxp>b,withay,...,an,beZ

» Given a system L of linear inequalities with no
0, 1-solution, CP derives the inequality 0 > 1 from L.

Axioms are inequalities in £ and the inequalities

xi>0, x;<1.

The rules are:

L
cL

v

b ife>0, Ly > by, L22b27
cb Ly + Lo > by + b

Y

a1X1+aan2b

, provided ¢ > 0 divides every a; .
(a1/0)%1 + .. (an/O)xn > [b/c] P ya




The Lovasz-Schrijver system

» Refutes a set of linear inequalities, but the intermediary
steps can have degree 2.

» We can add two inequalities and multiply by a positive
number. The additional rules are

L>0 L>0

x>0 (T-—x)L>0’ x avariable, L degree one.

Degree-d semantic systems
» Intermediate inequalities can have degree < d.
» Inference rule is any valid inference.
L1 >0, >0
L>0 ’

provided every 0, 1-assignment which satisfies the
assumption satisfies the conclusion.



» Exponential lower bound on Cutting Planes [Pudlak’97]

» Works also for the degree-1 semantic system [Filmus&
al’15]
» A lower bound on Lovasz-Schrijver system, assuming
certain boolean circuit lower bounds [Pudlak’97].
» Interpolation technique.
» Exponential lower bounds for tree-like degree-d semantic
systems [Beame& al.’ 07].

» Communication lower bounds on randomized multi-party
communication complexity of DISJ [Lee& Shraibman’08,
Sherstov’'12].

Open problem. Prove super-polynomial lower bound on the
Lovasz-Schrijver system, or the degree-2 semantic system.



