Space Complexity Notes

Inthis presentation we take a closer
look at complexity classes in which the
bound is on the amount of memory it
takes to compute the problem.

In particular, we'll look at low
complexity classes, such as

- LOGSPACE
» Explore space complexity - and nor+deterministic LOGSPACE.
* Low space classes: L, NI
Savitch's Theorem
Immerman’'s Theoren
TQBF Among others, we prove three

fundamental theorems regarding
those classes.

A

— | A

Space Complexity
Savitch's Theorem
Immerman's_Theorem
TOBFE

Space Pag#

onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={4674FE1C-AB75-404C-AC58-D9A311E0C841}&16&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote
onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={BF70ECF0-480A-4C3A-A357-F1EA0DFD5525}&C&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote
onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={BF70ECF0-480A-4C3A-A357-F1EA0DFD5525}&17&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote
onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={424542AC-EE8C-4D46-832C-E78AE8FDD34D}&C&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote

Space-Complexity

* Let 1:1N—1\ be a complexity function

Eft(n))= {L| L decided by O(t(n))-space deterministic
CE[t(n)= [L| L decided by O{t(n))- :
the input takes i cells: how can a
' M use only logn space?

Let us recall our definition of space
complexity classes.

Itis quite straightforward, however,
we need to clarify what it mean for an
algorithm to use sub linear space.

Input/ Work/ Output TM

T UG

’

* kead only!

L * Write only! No going back

For that purpose, we change a little
our model of computation to consist
of

- Aninput tape, which is read only,

- An output tape, which is write only,

- And a work tape, which is the only
one counted for purposes of
complexity bounds.

Space Pagg

Configurations

T R e o L e S 3
E ' e 5] e s g

may a T/ with inpin‘-size N
work-tape of size S have?

What about
outpui?

Content:

Content :Heqd
input pgsitien:

1 t

ape TRy

and ()

Let us now figure out how many
configurations such a machine has:

- The location of the heads on the
input tape and on the work tape are
counted.

- Both the content of the output tape
and the location of the head on it
are not considered in counting the
configurations.

- The content of only the work tape is
counted.

Brain Hurts

' . arbingiepte

@ orpngn
‘b
ﬁ A problem in N

{L Not known to
be in L

Try to put the following computational
problems in as small a class as you can.

Try also to come up with a problem
that is in non -deterministic
LOGSPACE, however is not known to
bein LOGSPACE.

Space Paga

[SiP2502 9 Log-space Reductions

A (s log- space reducible ¥®
(clenoted A< B)

|

\@2@051]’5 e i.e., 1 log-space
,....................m. TR ‘\'M"' WS

[S.5. For l | §(w) on input W

@V@W w = WEA . EEWSEB iis a IOQ—SPCCC
i — reduction of A to I
3 “IQOI"QI'I'I- -

<L, NL, P, NP, PSPACE and EXPTIME are closed
under log-space reductions.

We can now define LOGSPACE
reductions: they're the same as Karp
reductions, with the added restriction
that the reduction -function must be
computed using only logarithmic
memory.

L Closed under <,

2 Why not simply
apply | then
solve 4. on the

outcome?

O
&
=

+ f is a LUGSFACE reduction from A4, to A, and
A,el = AjisinL

+ on input x: Simulate M for 4. whenever M
reads the i symbol of its input, run ¥ on x and
wait for the i bit to be outputted

Let us now see that these reductions
can indeed be applied appropriately.

Think of the following scenario: you
have a little chip that can play a DVD
ina given format. You have a DVD
encoded with a different format.

You have another little chip that can
convert the format the DVD is
written in to the format the other
chip can read.

Isit possible to combine the two and
builda machine that can play the
DVD?

The wrong solution would be to store
the output of the first chip and apply
the second chip to that -there is
simply not enough memory for that
solution to work.

The correct solution is to run the
second chip and give it the appropriate
bits of the output of the first chip; if
necessary, restart the first chip, and
letit read the DVD from start.

Space Pagé

Graph Connectivity (CONN)
e
G
+ a directed graph + Is there a path from =
&=(/,, and two tol ine?

vertices ©, =/

o

:

.‘ . ‘..1\

20900
-

|

(I XXX}

| U“dll‘ii* ted

&

(TXXXIX]
(&

|

H 4)
-
“

Let us now formally define the
connectivity problem:;

Given a graph, a start vertex, and a
target vertex, is there a path from
start to target?

Q: Do you think the same problem,
however on an undirected graph, is
easier?

CONNeNL

current position

requir
Let uss | Juires log|V| space

counting to | V|

BeginFori=1,.., |V| requires log|V| space

Let u= a (non-deterministic) neighbor of u

accept if u=t N

End For

reject (did not reach 1)

Let us first see that connectivity isin
non-deterministic LOGSPACE.

A non-deterministic algorithm for
connectivity maintains a pointer to a
vertex of the graph.

Initially it points to the start vertex.

At every stage, the algorithm chooses
an edge going out of the vertex it
points to, and direct its pointer to the
vertex the edge leads to.

Ifitreaches the target, it
If it went too many stages, it

accepts.
rejects .

Space Pagg

NL TM

CONN witness:

apath st @

‘ * lkead only! No going backl!
\

12

An alternative formulation of non -
deterministic space bounded machines
is by introducing the witness tape.

The machine can only read that tape
and moreover must read it bit by bit
and never go back.

Itis enough that there exists one
possible assignment to the content of
the tape that causes the machine to
accept, for the input to be accepted.

Q: What complexity class do we get if
we allow the machine to go back on the
witness tape?

CONN is NL-Complete

» CONN is NL-hard + Given i/, «, construct
in LUGSPALE a
Ui instance

Assume a T M
has 1 accepting
contiguration

Itturns out that connectivity isnon -
deterministic LOGSPACE complete.

We will show how to construct the
connectivity instance given a machine
M and input X, so that the machine
accepts its input if and only if the
instance is in CONN.

—

D e

NL Completeness

Space Pagé

onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={4262E0B3-6963-4247-AA76-F109BF30DB76}&C&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote

Define Configurations Graph: Gy ,

* Fora (M)TH M - All URIES =l
and input « configurations transition u—

vyo?ov‘—

w — Why depend o >
BSmr-‘r N /:cepfing g

configuration

M\/ M. x: M accepts x @ si>T in Gy,
14

For that purpose let us introduce
the configurations' graph:

- vertexes correspond to

configurations,

- edges to transitions,
- the start vertex correspond to the

start configuration,

- and the target vertex corresponds

to the accepting configuration.

An accepting computation of the
machine corresponds to a path from
start to target, while such a path
clearly corresponds to accepting
computation.

 CONN is NL-Complete

Proof (end):

* &, . can be constructed in Log-Space

* NLcP

* CONN <FPm

Given a non-deterministic LOGSPACE
machine, its configuration graph can
be computed with logarithmic memory:

The algorithm simply needs to
compute, given two configurations,
whether there is a transition from one
to the other.

As a corollary we get that non -
deterministic LOGSPACE is contained
inP.

Space Pagé

* that we have a language
-CONN- representing
NL

* better analyze the
complexity of space-

bounded computations

The fact that connectivity isNL -
complete is fundamental in analyzing
space complexity classes:

Itis crucial in the proof of the
following two fundamental theorems
we prove.

Savitch's Theorem

* VS(n) 2 log(n): NSPACE[S(n)] < SPACE[S(n)*]
p

! NPSPACE=PSPACE
Proof:

* First ML < SPACE[log®n] then generalize

* NL < DSPACE[log®n]

+ Suffice to show CONN e DSPACE[log®n]

The first is a theorem by Savitch
concerning the overhead involved in
converting a non -deterministic
computation to a deterministic one.

Itturns out that the overhead in
terms of space is not that large, itis
in fact quadratic.

To prove that theorem, we will start
with the special case of NL, and
proceed to show a general technique
of how to extend such statements for
small classes to larger classes.

Space Pagg

CONNe SPACE[log?n]

Is there a middle vertex
w,st.u>wandwi> v,
hﬂfw s ,.‘Al,:"

if (u, v) € E return TRUE

if d=1 return FALSE

Begin Forw € V

if PATH(u,w, [d/2) and PATH(w,v, Ld/2) return TRUE _

Recursion depth = log d

log|V| space for each level
8 return FALSE .

End For

8

Savitchds
algorithm for connectivity is
recursive:

To decide if there is a path of length
d, itgoes over all possible vertexes
forthe middle of the path, and call
itself to decide whether the
appropriate paths of half the lengths

deter mi ni

exist: one from the start vertex to
the middle vertex, and another from
the middle of vertex to the target

vertex.

The recursion depth is logarithmic in
the length of the path, and at each
level the algorithm maintains a pointer
to one vertex.

Example of Savitch's algorithm

b.d) {
an odge from a to b than

return FALSE

(a.b.c)=Is there a path from a to b, that takes no more
than ¢ steps.

[(1,4,3) TRUE I
5 7
Y

3Log,(d) 19

Here is a simulation of the algorithm
on a simple example.

Space Pagée

O(log®n)-Space DTM for NL

Proof (Lemma, end):

‘ * To solve CONN: call PATH(s,t,|VI|)

B i

|+ NL < SPACE(log?n)

.

SPACE(S4(n))

* vS(n) = log n
NSPACE(S(n)) <

20

To solve connectivity, one can simply
apply the algorithm with the nhumber
of vertexes as the length of the path.

Now that we have proven the Theorem
for NL, we need to extend it to

general classes. Namely, show that for
every space bound, the cost of
translating a non -deterministic
algorithm to a deterministic one is
quadratic.

Scale up

* For any two space constructible

functions s;(n), s,(n) = logn, e(n) = n
‘ * NSPACE(s;(n)] < SPACE[s,(n)]
‘ * NSPACE[s(e(n))] < SPACE[s.(e(n))]

21

We show a more general principle,
that any such relation between models
and bounds can be scaled up with a
super linear extension function. The
extension function scales up both
bounds.

This technique is simple yet tricky and
isreferred to as the padding
argument.

Space Pag#0

Padding argqument
[Proof 3 — i

* For L « NSPACE[s,(e(n))], l T
|e'fLe; 4 #c Ll)=Ix| | ACL][\V

* L* € NSPACE[s;(n)] < DSPACE[s;(n)]
M counts |X| and

m ##'s to ensure
roper form, then
* 3M’ of s,(n)-DSPACE for L® ‘:mz:# as

M simulates M’ and
— cheats* it fo*see*

IM of s (e(n))-DSPACE for L SURD-IX] extra #'s
2

The padding argument goes as follows: —

Given a language L, accepted by a non
deterministic TM, define the language
Lethat comprises all strings in L

padded with the appropriate number

of #.

That padding makes the language L e in
the appropriate non -deterministic

class.

Now, one can apply the containment of
the premise and obtain a determined
TMfor L e.

This deterministic TM verifies that

the number of #0&6s i
respect to the si ze

One can in turn, given only the real

input, simulate this machine

maintaining a counter of the number

of #0s, and | etting
the appropriate nurt
appended to the real input.

i

Padding argument

Space Pag#&l

onenote:Arora-Barak%20Textbook.one#Chapters%201-6§ion-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={88F4106F-3618-42DC-9E34-8127D6779E3B}&16&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote

m Padding arqgument
* For L € NSPACE[s,(e(n))], | o s 2 » e 00 J
let Le = {X #elixli-Ixl | Xel};

* L* € NSPACE[s (n)] < DSPACE[s;(n)]
M counts |x| and

B T

form, then
* 3M’ of s,(n)-DSPACE for L® M

treat # as

M simulates M’ and i
* 3M of s,(e(n))-DSPACE for L UXD-IXI extra #'s

““cheats" it to "see”

The padding argument goes as follows:
given a language L, accepted by a non-
deterministic TM, define the language
Le that comprises all strings in L
padded with the appropriate number

of #. That padding makes the

language Le in the appropriate non -
deterministic class. Now, one can apply
the containment of the premise and
obtain a determined TM for Le. This
deterministic TM verifies that the
number of #06s i s apg
respect to the si ze

e One can in turn, given only the real
input, simulate this machine
maintaining a counter of the number
of #0s, and |l ettingd
the appropriate nun
appended to the real input.

) Here's an illustration of the
Padding construction:

N;;I'A(;l;h‘(t’-(\xn)l ™ iil "

24

We start with a TM
can be converted intoa TMfor L ¢
(checking that the
appropriate can be carried out in
LOGSPACE), which by the assumption
of the premise can be made
deterministic ---t hat 8s t he

Mis a TM for L of appropriate space
that simul ates Md,
off to the # section, it maintains a
pointer (it has enough space to do so)
to where it is and simulates it as if
the #06s are there.

Thi s

compl etes the proof of

Space Pag#&2

+ Simulation of Non-deterministic
space-bounded computation
does not incur very large
overhead

* What about complementation?
NL vs. coNL

We have just seen that enhancing
space-bounded computation with non
determinism does not make it so much
stronger.

Next, we look at another aspect by
which non determinism for space
bounded computations has a limited
effect.

.

NON-CONN
e | ———
Instance:
A directed graph & + Is there no path
and two vertices from = to 1?
s, teV

As CONN is NL-Complete

* NON-CONN is coNL-Complete.

4

What if we prove non-CONN is in NL? /

26

Let us first define the non -
connectivity problem, which is simply
the complement of the connectivity
problem.

Non-connectivity is clearly coNL -
complete, therefore, it represents the
entire coNL class.

It follows, that if we show non -
connectivity is i
NL=coNL.

Space Pag#&3

n

To show that non -connectivity isin NL, we can use the witness formulation of NL, where the TM for L
reads a witness of membership from left to write and verifies it indeed proves the inputisin L.

Space Pag&4

Given G let us define the set of

reachable vertexes, namely those that
can be reached by a directed path
from the start vertex s.

To show there is no path from s to t,
we can show that the size of the
reachable set is the same for G and
for G only where all edges going into t
are removed.

Hence, itis enough to verify a proof
showing what is the number of
reachable vertexes of a given graph
(first have a proof for G, store that
number, then verify a proof for the
altered graph, and compare the two
numbers).

To verify that indeed the number of
reachable vertexes is as claimed, the
witness can be constructed inductively
over the length of the path.

There is obviously exactly one vertex
reachable within 0O steps.

Wed | | next see how
witness, proving the number of
reachable vertexes after | steps isR |,
into a witness for I+ 1, and so that if
the prefix can be verified by a
LOGSPACE TM then so is the entire

witness.

