Theorem[Immerman/Szelepcsény]: \(\text{NL} = \text{coNL} \)

January 10, 2009

Our aim is to show \((s, t)\)-NON-CONNECTIVITY is in NL, which implies the theorem. Let us start with some definitions.

Definition 1. For any directed graph \(G = (V, E) \) and a vertex \(s \in V \) designated as the start vertex of \(G \), denote

\[
\text{reachable}(G) = \{ v \in V | s \rightarrow v \}
\]

where “\(\rightarrow \)” denotes a directed path in \(G \).

Assume \(t \in V \) is the designated target vertex in \(G \), and define \(G_{-t} = (V, E - V \times \{t\}) \) — namely, the graph that results from removing from \(G \) all edges leading to \(t \). Of course, the above definition applies to it too: \(\text{reachable}(G_{-t}) \) is the set of all vertexes in \(G \) reachable from \(s \) without passing through \(t \).

Now, let \(\text{reachable}_l(G) = \{ v \in V | s \rightarrow_l v \} \) where “\(u \rightarrow_l v \)” denotes there is a path from \(u \) to \(v \) in \(G \) of length \(\leq l \).

Claim 0.1. For any directed graph \(G = (V, E) \) and a designated start vertex \(s \) and target vertex \(t \), \(\text{reachable}(G_{-t}) \subseteq \text{reachable}(G) \).

Proof. For \(v \in \text{reachable}(G_{-t}) \), by definition, there is a path \(s \rightarrow v \) in \(G_{-t} \), which is also a path in \(G \).

Lemma 0.2. For any graph \(G \),

\[
|\text{reachable}(G_{-t})| \neq |\text{reachable}(G)| \text{ iff } s \rightarrow t \text{ in } G
\]

Proof. First, note that by definition of \(G_{-t} \), \(t \notin \text{reachable}(G_{-t}) \).

If \(s \rightarrow t \) then \(t \in \text{reachable}(G) \) and by the claim \(|\text{reachable}(G_{-t})| < |\text{reachable}(G)| \).

If \(|\text{reachable}(G_{-t})| = |\text{reachable}(G)| \) it must be that \(t \notin \text{reachable}(G) \) as well.

Therefore, to demonstrate there is no path \(s \rightarrow t \) in \(G \), it is enough to show that

\[
|\text{reachable}(G_{-t})| = |\text{reachable}(G)|
\]

Hence, to show that our problem is in NL, it is enough to give an NL-witness to this fact. Recall that an NL-witness is one that can be verified by an L TM, which reads the witness bit by bit
(cannot go back on the witness tape). Consequently, it suffices to show how to construct an NL-witness for \(\text{reachable}(G) = r \) for a general \(G \) and for the appropriate \(r \). The NL-witness for the above claim can first attest that \(\text{reachable}(G) = r \) and then that \(\text{reachable}(G_\setminus t) = r \) — for the same \(r \). (An L TM can easily read the graph \(G \) however work as if seeing \(G_\setminus t \)). The L TM can register \(r \) from the first part of the witness, and compare it with the second part of the witness.

Our remaining goal is to exhibit such an NL-witness to the fact that \(\text{reachable}(G) = r \).

Observe that \(\text{reachable}_{|V|}(G) = \text{reachable}(G) \).

The Witness

The NL-witness is constructed inductively: assuming \(W \# r_1 \# \) is an NL-witness that \(\text{reachable}_{l}(G) = r_l \), extend that witness to become an NL-witness attesting that \(\text{reachable}_{l+1}(G) = r_{l+1} \).

Note that throughout, \(W, W_i \) and \(W_j \) are variables for presentation purpose (not to be read as actual letters), each representing a string.

Base case: \#1\# is a trivial proof that \(\text{reachable}_{0}(G) = 1 \).

Induction step: To extend \(W \# r_1 \# \) into an NL-witness for \(l + 1 \), append to it \(|V| \) strings, each of the form

\[b_i \$ W_i \$ \]

where \(b_i = 1 \) is interpreted as \(i \in \text{reachable}_{l+1} \) while \(0 \) that it is not (we assume the set of vertexes is \(\{1, \ldots, |V|\} \)). Each \(W_i \) should be a string representing a witness that \(b_i \) indicates correctly whether \(i \) is or is not reachable by at most \(l + 1 \) steps from \(s \).

In case \(b_i = 1 \): \(W_i \) is simply a path of length \(\leq l + 1 \) from \(s \) to \(i \) (represented according to whichever convention as a 0/1 string).

In case \(b_i = 0 \): \(W_i \) is constructed by appending \(|V| \) strings, each of the form

\[c_j * Z_j * \]

\(c_j \) is a 0/1 bit where \(c_j \) should be 1 iff \(s \rightarrow_l j \) (namely, \(j \in \text{reachable}_{l} \)). \(Z_j \) is then interpreted as a witness that \(c_j \) is the correct indication as to whether \(j \) is reachable from \(s \) within \(l \) steps.

If \(c_j = 1 \): again, \(Z_j \) can simply be a path of length \(\leq l \) from \(s \) to \(j \). Note however that if there is an edge in \(G \) from \(j \) to \(i \), then \(s \rightarrow_l j \) implies \(s \rightarrow_{l+1} i \) and the witness is not well-constructed (recall it is trying to prove \(b_i \) indeed should be 0).

It is however not a good idea to proceed, in case \(c_j = 0 \), recursively, as this would blowup the size of the witness to being exponential in the size of the graph.

Instead, in case \(c_j = 0 \), \(Z_j \) is an empty string.

How can then the L TM verifier make sure all \(b_j \)'s are correct? Here is the crux of the entire construction and proof: It only needs to count the number of \(j \)'s for which \(b_j = 1 \), and verify it is correct. It can do that by comparing that number to \(r_l \)!!

Let us now describe the L TM verifier. Note that read-letter, read-bit, read-number and verify-path are procedure calls that either read a character, a bit, a \(\log(|V|) \)-bit number, or verify a path between \(s \) to a vertex of some given length. They all reject unless their input is well constructed and valid, and read the witness bit-by-bit as necessary.
verify()
rl=1
for (l=1..|V|)
 if (read-letter() <> '#') reject
 if (read-number() <> rl) reject
 if (read-letter() <> '#') reject
r=0
for (i=1..|V|)
 bi = read-bit()
 if (read-letter() <> '$') reject
 if (bi=1)
 verify-path(l+1, i)
 increase r by 1
 else verify-no-path(l, i, rl)
 if (read-letter() <> '$') reject
end
rl=r
end
return(accept)

verify-no-path(l, i, rl)
rl' = 0
for (j=1..|V|)
 cj = read-bit();
 if (read-letter() <> '*') reject
 if (cj=1) then
 if (edge (j, i) in G) reject
 verify-path(l, j);
 increase rl' by 1
 if (read-letter() <> '*') reject
end
if rl' <> rl reject
return(accept)