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Gene suppression and overexpression are both fundamental tools
in linking genotype to phenotype in model organisms. Computa-
tional methods have proven invaluable in studying and predicting
the deleterious effects of gene deletions, and yet parallel compu-
tational methods for overexpression are still lacking. Here, we
present Expression-Dependent Gene Effects (EDGE), an in silico
method that can predict the deleterious effects resulting from
overexpression of either native or foreign metabolic genes. We
first test and validate EDGE’s predictive power in bacteria through
a combination of small-scale growth experiments that we per-
formed and analysis of extant large-scale datasets. Second, a broad
cross-species analysis, ranging from microorganisms to multiple
plant and human tissues, shows that genes that EDGE predicts
to be deleterious when overexpressed are indeed typically down-
regulated. This reflects a universal selection force keeping the
expression of potentially deleterious genes in check. Third, EDGE-
based analysis shows that cancer genetic reprogramming specifi-
cally suppresses genes whose overexpression impedes prolifera-
tion. The magnitude of this suppression is large enough to enable
an almost perfect distinction between normal and cancerous tissues
based solely on EDGE results. We expect EDGE to advance our un-
derstanding of human pathologies associated with up-regulation of
particular transcripts and to facilitate the utilization of gene over-
expression in metabolic engineering.

systems metabolic engineering | metabolic modeling | constraint-based
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Deducing phenotype from genotype is a fundamental goal of
modern biology. Traditionally, experimentalists delete or

suppress genes to annotate them and to detect phenotypes of
interest (1), and such studies are routinely conducted in model
organisms. However, it has long been recognized that gene
overexpression is a complementary tool for linking genotype to
phenotype and usually provides phenotypes that are different
from those observed in loss-of-function studies (2).
Beyond basic science, complex human disease is often asso-

ciated with abnormally up-regulated transcripts (3–5). Studies in
murines and in Drosophila have shown that gene overexpression
can induce disease on the one hand (6–8) and serve therapeutic
purposes on the other (9–11). In addition, phenotypes arising
due to overexpression are of prime interest in metabolic engi-
neering, where selected native or heterologous genes are over-
expressed to produce novel metabolic pathways in industrial
microorganisms (12–16). Metabolic engineers particularly seek
to foresee cases in which the up-regulation of a specific gene
results in severely reduced fitness (17, 18). Such genes are often
referred to as “toxic genes” (19–22).
Nonetheless, there have been only a handful of genome-wide

studies addressing gene overexpression to date (2, 23, 24), and
this stands in sharp contrast to the wealth of data available from
numerous genome-wide KO or knock-down studies (1, 25). For
these reasons, in silico approaches to model gene overexpression
and studies that apply them genome-wide are highly desirable.

Here, we conduct a genome-scale study of the deleterious con-
sequences of inducing metabolic gene overexpression through an
in silico algorithm for predicting Expression-Dependent Gene
Effects (EDGE). First, we show that EDGE successfully predicts
growth retardation phenotypes arising due to inappropriate gene
activation in microorganisms, which are a prime concern for
metabolic engineers. Second, we show EDGE’s universal appli-
cability by demonstrating across multiple organisms that genes
predicted to be nondeleterious when highly expressed are indeed
the ones with the highest expression levels. Third, we show
EDGE’s applicability to the study of human disease by demon-
strating that some aspects of genetic reprogramming in cancer can
be explained as an attempt to silence genes whose expression is
detrimental toward cancer proliferation.
Our study is conducted within the realm of cellular metabo-

lism, which is particularly amenable to in silico modeling on
a genome scale. Genome-scale metabolic models (GSMMs)
translate the capabilities of a metabolic network, dictated by an
organism’s genome, into a set of mathematical equations (26,
27). They offer a powerful tool for predicting the outcomes of
genetic perturbations through testable mechanistic explanations.
Notably, GSMMs have been quite successful in predicting phe-
notypes of loss-of-function mutants (28–30), and therefore hold
considerable promise to successfully predict the outcomes of
induced gene overexpression as well. A GSMM typically includes
a stoichiometric matrix, which represents the network’s topology,
constraints (e.g., thermodynamic or environmental constraints)
applied to it, and gene–protein associations. EDGE takes a GSMM
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as its input and quantifies the benefits or losses that a cell incurs
by activating a certain metabolic gene in a given environment
(Fig. 1, where blue boxes represent EDGE’s inputs and purple
boxes represent computation outputs; Materials and Methods).
For this, it relies on a hypothesized cellular objective [in this
study, we always took the objective to be the commonly assumed
maximization of biomass production (31, 32)]. Genes are then
classified as (i) beneficial, i.e., contributing toward the realization
of the objective (positive score); (ii) detrimental to the objective
(negative score); or (iii) neutral with respect to the objective (zero
score; SI Appendix).

Results
EDGE Algorithm. A complete description of EDGE is given in
Materials and Methods. In short, the EDGE score of a gene, g,
quantifies the utility of transcribing the gene in small levels
compared with not using g at all. This notion is strongly related
to analyzing the sensitivity of a mathematical program to a per-
turbation of its constraints [sometimes called “shadow pricing”
(33)]. Such analyses are fundamental to mathematical programming
in general and have previously been applied to GSMMs (27, 34–
36). EDGE is an adaptation of these analyses to the special
setting of flux balance analysis (FBA) (32). EDGE measures the
sensitivity of the optimal objective value to the simultaneous per-
turbation of multiple constraints that are associated with a particu-
lar gene. EDGE scores are not dependent on a particular optimum,
which is desirable in the case of GSMMs, whose solution space
typically contains multiple optima (37).
EDGE simulates the expression of a given gene by enforcing

a flux through reactions associated with it; reversible reactions
are constrained to carry a flux through either direction. When

a gene is associated with more than one reaction, EDGE finds
the bottleneck reaction whose limitation has the greatest effect
and determines the EDGE score by its utility with regard to the
a priori objective function. In each test in this study, we excluded
genes whose proteins catalyze blocked reactions (i.e., reactions
that cannot carry a flux in steady state in the medium relevant to
the test; SI Appendix, Supplementary Methods).

EDGE Predicts Reduced Fitness Due to Overexpression of Native
Genes. We used EDGE to predict which metabolic Escherichia
coli genes will prove toxic when overexpressed during growth on
glucose-supplemented M9 minimal medium and ranked them by
the confidence level of the prediction (SI Appendix). Twenty-six
high-ranking genes were chosen for subsequent growth experi-
ments: 12 that were confidently predicted to be toxic and 14 that
were confidently predicted not to be toxic (Dataset S1, Table S1).
Plasmids (23) containing Isopropyl-β-D-thiogalactoside (IPTG)–
inducible constructs of these genes were transformed into a WT
K-12 MG1655 E. coli strain, and clones were grown in a minimal
(M9) medium supplemented with glucose and 0–1 mM IPTG
(Materials and Methods). The growth inhibition resulting from
the genes’ experimental overexpression was found to be highly
correlated with the genes’ EDGE scores (Spearman ρ = 0.74,
P < 7.56e-6; Fig. 2 and SI Appendix, Supplementary Notes and
Fig. S1; all P values reported in this paper are against one-sided
alternatives unless noted otherwise). These results affirm EDGE’s
capability to flag potentially toxic genes, and thus facilitate the
design of novel metabolic pathways.
We then turned to conducting a large-scale validation through

two existing genome-scale overexpression libraries: the ASKA
library for E. coli (23) and the yeast GST-tagged collection for
Saccharomyces cerevisiae (24). Both studies carried out system-
atic, large-scale overexpression of ORFs and listed genes that
were toxic (i.e., caused severe growth inhibition when overex-
pressed) (SI Appendix, Supplementary Notes). The predicted
EDGE scores of experimentally toxic genes proved to be sig-
nificantly lower than those of nontoxic genes (P < 6.1e-4 and P <
7.8e-5 for ASKA and yeast Gal-GST, respectively, for a rank sum
test; SI Appendix, Fig. S2). In both datasets, experimentally toxic
genes were significantly enriched among the in silico detrimental
genes (hypergeometric P < 1.5e-4 and P < 0.018, respectively).

EDGE Predicts Reduced Fitness Due to Overexpression of Foreign
Genes Within E. coli. So far, we were concerned with the over-
expression of genes within their native host. Can EDGE predict
in a similar manner the consequences of expressing foreign genes
within an organism? It was previously observed that gaps in
Sanger-based genome sequencing are often caused by toxic
genes that cannot be expressed in an E. coli host (20). To study
EDGE’s ability to predict failed gene transfer between organisms
due to toxic effects, we used the recently published PanDaTox
dataset (21) of genes found to be unclonable into E. coli. We
simulated in silico the process of gene transfer from 50 different
Gammaproteobacteria into E. coli, and then used EDGE to
predict which of the heterologous genes should be toxic to the
E. coli host (SI Appendix). Comparing the results with Pan-
DaTox’s experimental data, we found that EDGE scores were
highly predictive of the experimental outcome, with a median
area under the ROC curve (AUC) of 0.71 when distinguishing
unclonable genes from clonable genes based on their EDGE
scores (median P < 0.00048; the result is significant for 42 of
the Gammaproteobacteria using a 5% false discovery rate level;
Dataset S1, Table S2). The focus on Gammaproteobacteria
(the class to which E. coli belongs) was due to the nature of the
PanDaTox data. When the source organism’s gene promoters
are not recognized by the E. coli transcription machinery, little
or no gene product is produced; therefore, no toxicity (i.e.,
“inclonability”) can be observed (20). EDGE, on the other
hand, assumes by definition that the gene in question is suc-
cessfully transcribed. Indeed, a clear inverse correlation was
observed between EDGE’s success rate and the phylogenetic

Fig. 1. Schematic workflow of EDGE analysis. Blue boxes represent inputs
to the computation, and purple boxes represent computation outputs. EDGE
relies on a GSMM, constraints applied to it, an objective function, and an in
silico growth medium; all these define a space of feasible metabolic phe-
notypes. EDGE is formulated as a mixed integer linear program that quan-
tifies the positive or negative effect that small changes in the expression
level of a particular gene have on the cellular objective due to the flux
rerouting that they induce. The image of the network under the box enti-
tled Metabolic Network was adapted from the work of Montagud et al. (62).
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distance of the source organism from E. coli (Fig. 3; Spearman
ρ = −0.32, P < 9e-5), which reflects transcriptional compati-
bility. Nonetheless, even when considering all 138 bacteria in the
PanDaTox dataset for which data were available (SI Appendix),
EDGE’s predictive power remained highly significant (com-
bined Fisher P < 5.5e-203, median AUC = 0.67, median P value
<0.0085; median AUC is larger than expected by chance with
P < 1e-308; Dataset S1, Table S2). In conclusion, these results
support the hypothesis that the transfer of metabolic genes (both
by natural horizontal gene transfer and in metabolic engineering
efforts) can be hindered by deleterious effects of transcribing
them in the recipient organism, and that many of these events
can be successfully predicted by EDGE.

Genes Whose Expression Impedes Growth (According to EDGE) Are
Lowly Expressed Across a Wide Variety of Species and Tissues. Next,
we expected genes that EDGE predicts to be disadvantageous in
a given environment to be lowly expressed in vivo when the or-
ganism grows in that environment. We tested this hypothesis by
comparing extensive microarray data for E. coli and S. cerevisiae,
spanning multiple growth conditions whose medium composition
was recreated in silico, with EDGE predictions. In all cases,
EDGE-predicted detrimental genes were significantly lowly ex-
pressed compared with genes predicted to be beneficial (Fig. 4A;
rank sum test, P < 8.8e-18 for all 20 E. colimicroarrays except for
growth on LB with P < 1.6e-5 and P < 0.0027 for all seven yeast
arrays except for one with P < 0.0165; SI Appendix, Supplementary
Notes and Dataset S1, Table S3). We believe that the relatively
weaker result for E. coli growth on LB medium stems from the
incomplete characterization of its chemical contents (leading to
its inexact definition in silico) in comparison to the synthetic
M9 medium that was used as the basis for all other E. coli arrays.
Similarly, the yeast data were obtained on YP medium whose exact
chemical composition is unknown.
The availability of transcriptomic data for human and plant

cells allowed us to test EDGE’s applicability in these cases as
well. Whereas in the case of microorganisms biomass yield is
a common approximation of the cellular objective, the objective
of human or plant cells is far more complex and tissue-specific.
Nonetheless, even when using biomass yield as a proxy cellular
objective (reflecting the need to replenish metabolites contin-
uously due to ongoing metabolic turnover), EDGE-predicted
detrimental genes were significantly lowly expressed in com-
parison to genes predicted to be beneficial across 79 different
human tissues, 6 of them cancerous and the rest healthy (38)
(rank sum P < 1.4e-5 in all arrays except for superior cervical
ganglion, with P = 0.141; Dataset S1, Table S4), and across all

the NCI60 cancer cell lines (39) (rank sum P < 8.6e-9 in all
cases; Dataset S1, Table S5). We then analyzed in a similar
manner transcriptomic data of Arabidopsis thaliana measured
in 79 biological contexts and spanning multiple organs and
developmental phases of the plant (40), and found a similar
trend (rank sum P < 0.05 for 72 of 79 microarrays, median P <
3e-5 across all 79 arrays; SI Appendix, Supplementary Notes and
Dataset S1, Table S6). Remarkably, the magnitude of this effect
in human and plant transcriptomes is on the order of that we
had previously observed in microorganisms (Fig. 4B). We con-
clude that genes that EDGE predicts to be detrimental toward
proliferation are lowly expressed in diverse organisms, both in
microbes and in multicellular species. The activation of these
genes is thus likely to be highly undesirable and results in re-
duced fitness that EDGE successfully predicts. Taken together,

Fig. 2. EDGE predicts deleterious effects due to gene overexpression in E. coli. We conducted growth experiments in which we measured the growth in-
hibition resulting from the overexpression of 26 genes in glucose-supplemented M9 minimal medium. The genes were selected by the confidence level
assigned by EDGE to the predicted outcome. Twelve genes were confidently predicted to be toxic, and 14 were confidently predicted to be nontoxic. (A)
Magnitude of growth inhibition resulting from a gene’s overexpression is strongly correlated with its EDGE-predicted toxicity score (Spearman ρ = 0.74, P <
7.56e-6). (B) Histogram of the growth inhibitions resulting from overexpression of each of the 26 genes. Growth inhibition was quantified as the ratio of the
fitness following IPTG-induced overexpression to the fitness with no induced overexpression (SI Appendix). Therefore, 0 denotes growth arrest and 1 denotes
no inhibition compared with the WT. Three genes (trpB, ynfJ, and icd) obtained an “inhibition ratio” that was higher than 1.0, which means that the IPTG
induction did not inhibit growth but rather contributed to it.

Fig. 3. EDGE predicts whether the transfer of foreign genes into E. coli
would be successful. Each point represents one bacterial species. For each of
its metabolic genes, EDGE predicted whether its transfer to E. coli would be
successful, and the results were compared with previously published experi-
mental data (20, 21). The predictor’s quality was quantified by the area under
the ROC curve (AUC) (y axis). A random predictor achieves AUC = 0.5. Filled
circles and empty squares represent significant and nonsignificant results,
respectively, following correction for multiple hypotheses using a 5% false
discovery rate level. Color codes denote the phylogenetic relatedness of the
bacterium in question to E. coli according to the National Center for Bio-
technology Information’s taxonomy tree (i.e., most recent common ancestor
node of the bacterium and E. coli in that tree). Clearly, EDGE’s predictive
power is inversely correlated with the bacterium’s phylogenetic distance (63)
from E. coli (x axis; Spearman ρ = −0.32, P < 9e-5; eight bacteria that are not
part of this phylogenetic tree are omitted from the figure). This is to be
expected, because if the transferred genes cannot be transcribed by the host
cell due to promoter dissimilarity, they would be clonable even if they are toxic.
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these findings reflect a universal selection force keeping the
expression of potentially deleterious genes in check.

Genetic Reprogramming in Cancer Suppresses the Expression of
Proliferation-Inhibiting Genes. We next turned to study the abil-
ity of EDGE to predict genes whose activation impedes pro-
liferation in cancer cells. We first analyzed a dataset of DNA
somatic copy number alterations in cancer (41) and found that
the set of genes reported to be deleted in at least one of the
cancer types in that dataset is significantly enriched with genes
that EDGE identifies as detrimental with respect to biomass
yield (hypergeometric P < 0.0013), whereas genes that are
beneficial with respect to that objective are underrepresented
(hypergeometric P < 2.5e-4). We then analyzed three studies
that compared mRNA levels of cancer cells and their healthy
counterparts. We found that in all three cases, the genes that
were down-regulated in the cancerous cells were enriched with
genes that EDGE classified as detrimental toward proliferation
(SI Appendix and datasets 1–3 in Dataset S1, Table S7). Intriguingly,
EDGE was also able to reveal the down-regulation of genes that
impede proliferation in histologically normal breast epithelia taken
from women held to be at high risk for developing breast cancer
(dataset 4 in Dataset S1, Table S7).
Finally, we returned to the aforementioned dataset of gene

expression of 79 healthy and cancerous human tissues. In light of
the better adherence of cancer cells to the proliferation cellular
objective, it was not surprising that the effect we have previously
observed (namely, down-regulation of EDGE-predicted toxic
genes compared with genes predicted to be nontoxic) was par-
ticularly pronounced in cancer tissues. This yields a remarkable
ability to separate between cancer and benign tissues in that data
based only on the correlation between the gene expression mea-
sured in each tissue and EDGE scores (AUC = 0.96, P < 1.64e-22;
SI Appendix). Furthermore, when ranking the samples by the
magnitude of that effect, we found that the highest ranking
healthy tissues were lymphoblasts, adipocytes, and bronchial epi-
thelial cells, all of which are known to be proliferative. In contrast,
three of the four lowest ranking tissues (including the only case
in which the effect was not statistically significant) were non-
proliferative neuronal ganglia cells, with the fourth being another

nonproliferative source of rhythmic cells in the cardiac atrioven-
tricular node (SI Appendix, Fig. S3 and Dataset S1, Table S4). We
conclude that EDGE has a clear predictive power in identify-
ing genes whose expression potentially impedes proliferation of
human cells.

Discussion
Our results that concern gene expression patterns in E. coli are in
line with the findings of Lewis et al. (42), who reported that
inefficient metabolic pathways are down-expressed in two strains
of evolved E. coli. Here, we show that this phenomenon is uni-
versal across multiple growth conditions and holds not only in
bacteria but also in eukaryotes, including humans. In addition,
Lewis et al. (42) showed that the evolution of those E. coli strains
was facilitated by up-regulation of optimal genes and, in many
cases, by down-regulation of suboptimal genes. We extend these
observations and show that the genetic reprogramming in cancer
can be partially explained in a similar manner, as alterations
intended to down-regulate genes that are detrimental to prolif-
eration. The magnitude of this down-regulation is large enough
to enable an almost perfect separation between normal and can-
cerous microarray samples based solely on EDGE results. Although
such separation can be achieved through various computational
methods (43), the fact that it can be achieved while relying only
on EDGE-based analysis shows that EDGE successfully cap-
tures a distinct proliferative signature in the transcriptome of
human cells.
Beyond its contribution to obtaining better mechanistic insights

into the way gene expression levels are controlled by their po-
tential toxicity, EDGE bears considerable applicative value for
biotechnologists: Genome-scale metabolic modeling has al-
ready been successfully applied to devise novel pathways for
rational strain design (12, 44–51), and gene overexpression has
been considered in this framework as a means to produce a
desired chemical (52, 53). EDGE complements the existing com-
putational methods by addressing a prime concern of metabolic
engineers, who seek to foresee and mitigate the deleterious
effects that often accompany the introduction of a foreign met-
abolic pathway into a host organism, or the overexpression of one
of its native genes (17, 18). Because EDGE provides a mechanistic

Fig. 4. (A) E. coli genes predicted by EDGE to be toxic when
overexpressed are significantly down-regulated compared
with genes predicted to be nontoxic. Results are presented for
13 different growth conditions (64), as detailed in Dataset S1,
Table S3A. (B) Magnitude by which EDGE-predicted toxic
genes are lowly expressed compared with EDGE-predicted
nontoxic genes in the case of human and plant cells (Upper
two rows) resembles that observed in microorganisms (Lower
two rows). The magnitude of this effect is quantified by the
statistic of the Wilcoxon rank sum test, normalized to a stan-
dard normal variable (Lower x axis). The P values that match
those test statistics, when considering a one-sided alternative,
are given as well (Upper x axis), along with a standard normal
curve for a sense of scale. Each of the four rows in the y axis
represents one organism for which we tested the aforemen-
tioned effect using transcriptome data and denotes the mean
value and SD of the corresponding test statistics. In the case of
microorganisms, we separate experiments conducted in rich
and poor, defined media because the former’s composition is
uncertain, leading to inexact representation in silico, and thus
to less accurate predictions.
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insight for its predicted deleterious effects, it could be used to
suggest further perturbations that can mitigate the expected
deleterious effects of gene overexpression within an organism, or
of gene transfer between organisms. These perturbations may in-
clude either media supplements, i.e., nutrients, that can abolish the
rerouted fluxes and reinstate normal biomass production, or genetic
perturbations (e.g., gene KOs) that may serve the same purpose.
EDGE operates on a GSMM (26, 27) (Fig. 1). As such, EDGE

scores are computed only for genes that take part in the meta-
bolic model, and their predictive power is dependent on the
model’s quality. Manually curated GSMMs, which have dem-
onstrated their predictive power, exist for many model organ-
isms, including industrial microorganisms (28, 54) and human
(55), and undergo constant improvement; plant models have
been recently published as well (56). The Model SEED platform
was the first to generate GSMMs automatically (57). Although
these models do not outperform manually curated models at the
present time (57), the Model SEED platform enables studies
that require metabolic reconstructions of multiple species, for
which no manually curated GSMMs are available, and it was
used in this study for testing EDGE against the PanDaTox data.
WT internal flux levels are generally unavailable and cannot

be computed to a sufficient precision without additional inputs
beyond a GSMM (28, 58, 59). For this reason, EDGE quantifies
the difference (with respect to the objective function) between
having the relevant fluxes carry epsilontic and zero fluxes, rather
than the difference between the WT plus epsilon and WT fluxes.
However, EDGE scores are highly predictive of overexpression
phenotypes even for genes that are expressed in the WT, as we
demonstrate in this paper.
We expect future work to further improve EDGE’s predictive

capability on three levels: first, by detecting and removing dele-
terious futile metabolic cycles (60); second, by taking into account
the promiscuous enzymatic functions that are not normally
manifested in the metabolic network but could be catalyzed by
an overexpressed protein (2); and, third, by incorporating bet-
ter-tuned, tissue-specific objective functions for human and plant
cells. EDGE could actually facilitate the identification of such
functions on account of its proven ability to detect correspon-
dence between empirical transcriptome data and a hypothesized
cellular objective.

Materials and Methods
Strain Construction. The ASKA background strain AG1 [recA1 endA1 gyrA96
thi-1 hsdR17(rK

−mK
+) supE44 relA1] (23) is a thiamine auxotroph, which is

unable to grow in M9 medium. We therefore transformed the plasmids into
the MG1655 WT strain, enabling work in minimal M9 medium. This was also
desirable because the E. coli metabolic model used in this study is based on
the latter strain (28).

The ASKA GFP-tagged E. coli strain library (23) was obtained from the
National Bioresource Project at the National Institute of Genetics, Japan.
Plasmid DNA was isolated from strains overexpressing the required genes,
and the GFP tag sequence was removed by NotI restriction followed by
self-ligation. The plasmids were then transformed by electroporation to
WT E. coli strain MG1655. Correct sequence of the plasmid was verified by
amplifying the insert using pCA24N (ASKA backbone)-specific primers (for-
ward: 5′-ATC ACC ATC ACC ATA CGG AT; reverse: 5′-CTG AGG TCA TTA CTG
GAT CTA) and sequencing the product using the pCA24N reverse primer.

Growth Experiments. E. coli MG1655 clones harboring plasmids of choice
were picked into LB medium supplemented with chloramphenicol (34 μg/mL)
and grown to OD595 = 0.5. Cells were washed once in saline and resuspended
at a dilution of 1:100 into M9-glucose-chloramphenicol minimal media (1× M9
salts, 2 mM MgSO4, 0.1 mM CaCl, 0.4% glucose, 34 μg/mL chloramphenicol)
supplemented with 0–1 mM IPTG. Growth measurements were performed in
a 96-well plate incubated for 19–24 h at 37 °C in a temperature-controlled
plate reader with continuous shaking (ELX808IU-PC; Biotek), and OD595 was
monitored every 15 min. Each strain/medium combination was loaded into
2 duplicate wells. The entire growth experiment was repeated two to five
times for each strain.

EDGE Algorithm. The EDGE score of a gene, g, quantifies the utility in tran-
scribing the gene in epsilontic levels compared with not using g at all. This
notion is strongly related to analyzing the sensitivity of a mathematical
program to a perturbation of its constraints [sometimes called shadow
pricing (33)]. Such analyses are fundamental to mathematical programming
in general and have previously been applied to GSMMs (27, 34–36). EDGE is
an adaptation of these analyses to the special setting of FBA (32). EDGE
measures the sensitivity of the optimal objective value to epsilontic pertur-
bations in a particular gene’s expression, with each gene potentially af-
fecting multiple reactions in the network, and thus multiple constraints. For
this, EDGE relies on the gene–protein-reaction mapping embedded in the
model. A gene’s EDGE score is uniquely determined and is not dependent on
a particular optimum, which is desirable in the case of GSMMs, whose so-
lution space typically contains multiple optima (37).

EDGE simulates the expression of a given gene by enforcing minimal flux
through reactions associated with it; reversible reactions are constrained to
carry a minimal flux through either direction. When a gene is associated with
more than one reaction, we find the bottleneck reaction, whose limitation
has the greatest effect, and determine the EDGE score by its utility with
regard to the a priori objective function.

We now present EDGE’s full formulation. Given a gene g, let Tg =
fvi1 , . . . ,viK g denote the set of reactions in the network that are associated
with g. We define:

EDGEðgÞd min
j∈f1,...,Kg

fUP
�
Tg, j

�
− fKO

�
Tg

�
,

where fKO is the optimal objective subject to silencing g. The minuend
min

j∈f1,...,Kg
fUPðTg, jÞ is the optimal objective subject to the most restrictive bottle-

neck. The difference can be further divided by epsilon for the purpose of nor-
malization, but it was unnecessary in our study because all comparisons reported
always involve the same epsilon. We note that this subtraction is prone to nu-
merical “loss of significance” errors; for that reason, we round the result to 10
decimal places.

Let S∈Rm×n be the stoichiometric matrix of a metabolic network (where
m and n are the number of metabolites and reactions in the network, re-
spectively). Let α,β∈Rn denote the lower and upper bounds, respectively, for
reaction fluxes stemming from nutrient availability, thermodynamic con-
straints, etc. αi ,βi can also be set to ±∞ for some i ’s to denote “no bound.” Let
f denote a linear cellular objective function to maximize subject to the envi-
ronmental constraints. In our study, f was always the biomass production.

Define fKOðTgÞ to be the optimal objective value of the following linear
program:

fKO
�
Tg

�
dmax

v∈Rn
fðvÞ,

subject to (i) S · v =0, (ii) ∀i= 1, . . . ,n:  αi ≤ vi ≤ βi , and (iii) ∀vi ∈ Tg :  vi = 0.
Define fUPðTg, jÞ to be the optimal objective value of the following mixed

integer linear program:

fUP
�
Tg, j

�
d max

v∈Rn ,a∈f0,1gK
fðvÞ

subject to (i) S · v = 0, (ii) ∀i= 1, . . . ,n:  αi ≤ vi ≤ βi , (iii) ∀vik ∈ Tgnfvij g : ak = 1→
vik ≥ «, ak = 0→ vik ≤ − «, (iv) aj = 1→ vij = «, and (v) aj = 0→ vij = − «, where « is
an infinitesimal constant chosen to reflect the smallest nonnegligible flux
possible. However, « cannot be arbitrarily small due to the finite precision
of the floating-point representation. ak variables are binary variables whose
purpose is to ensure that the reversible reactions associated with g carry
a flux in either direction. They participate in logical constraints that can
be transformed into regular integer linear constraints via routine trans-
formations (61). Commercial solvers are sometimes able to branch explicitly
on these constraints. We note that we described the algorithm as adding
an ak variable for each reaction for the sake of simplicity. In practice, it is
unnecessary to introduce an ak variable for irreversible reactions because
the respective constraints for those can be simply added as linear con-
straints. Further implementation considerations are discussed in SI Appendix,
Supplementary Methods.

Genes were classified as toxic if they had a negative EDGE score and as
nontoxic if they had a positive EDGE score. For the purpose of conducting
growth experiments (Results), we used the absolute value of the score as the
prediction’s confidence, with higher absolute values denoting the more
confident predictions. Genes that were associated with a blocked reaction
were excluded from the analysis (SI Appendix, Supplementary Methods).
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