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Hippocampus neuronal metabolic gene expression outperforms whole
tissue data in accurately predicting Alzheimer’s disease progression
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Abstract

Numerous metabolic alterations are associated with the impairment of brain cells in Alzheimer’s disease (AD). Here we use gene
expression microarrays of both whole hippocampus tissue and hippocampal neurons of AD patients to investigate the ability of metabolic
gene expression to predict AD progression and its cognitive decline. We find that the prediction accuracy of different AD stages is markedly
higher when using neuronal expression data (0.9) than when using whole tissue expression (0.76). Furthermore, the metabolic genes’
expression is shown to be as effective in predicting AD severity as the entire gene list. Remarkably, a regression model from hippocampal
metabolic gene expression leads to a marked correlation of 0.57 with the Mini-Mental State Examination cognitive score. Notably, the
expression of top predictive neuronal genes in AD is significantly higher than that of other metabolic genes in the brains of healthy subjects.
All together, the analyses point to a subset of metabolic genes that is strongly associated with normal brain functioning and whose disruption
plays a major role in AD.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease
that is characterized by cognitive decline and is the most
common cause of dementia (www.alz.org). Because the
incidence and prevalence of AD and other dementias in-
crease with age, the number of patients is expected to grow
rapidly as the population ages. Pathological hallmark ab-
normalities of AD are the extracellular deposits of �-amy-
oid peptide (plaques) and intracellular twisted strands of
au protein (tangles) in the brain (Johnson and Bailey, 2002;

asters et al., 1985). Current treatment is mainly symptom-
tic, and there is no treatment available to stop the deteri-
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ration of brain cells in AD. Definitive diagnosis of AD
equires postmortem examination of the brain, which must
ontain sufficient numbers of plaques and tangles to qualify
s affected by AD (Mattson, 2004). Plaques and tangles are
resent mainly in brain regions involved in learning, mem-
ry, and emotional behaviors, such as the entorhinal cortex,
ippocampus, basal forebrain, and amygdala. Unraveling
he mechanisms underlying AD and impaired brain function
as been difficult because of the complexity of the cellular
etworks that drive these changes. At present, the only gene
hat has been consistently associated with sporadic cases of
D is apolipoprotein E (APOE) (Mihaescu et al., 2010).

However, APOE genotyping is not considered clinically
useful for screening, testing, or diagnosis of AD.

Until a definite diagnosis is confirmed neuropathologi-
cally, the diagnosis of AD is based on clinical examination
and neuropsychological testing. The cognitive performance
in AD subjects is assessed via the Mini-Mental State Ex-

amination (MMSE) (Folstein et al., 1975). In addition to its
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value as a screening test for dementia, the MMSE is often
used to document cognitive changes over time in individual
patients. This is an important clinical measurement because
progressive cognitive loss is a characteristic of neurodegen-
erative dementing illnesses (Clark et al., 1999). Information
n the rate of change over time is also valuable for assessing
he results of therapeutic interventions, predicting the se-
erity of cognitive decline, and planning for long-term
ealth care.

Several gene expression studies of AD individuals have
een reported so far. Blalock et al. (2004) analyzed hip-
ocampal gene expression microarrays of control subjects
nd AD patients of varying severity. They tested the corre-
ation of each gene’s expression with MMSE and neurofi-
rillary tangle (NFT) scores. Their work revealed upregu-
ation of many transcription factor signaling genes
egulating proliferation and differentiation during AD pro-
ression, including tumor suppressors, oligodendrocyte
rowth factors, and protein kinase A modulators. In addi-
ion, upregulation of adhesion, apoptosis, lipid metabolism,
nd initial inflammation processes was reported along with
ownregulation of protein folding/metabolism transport as
ell as several energy metabolism and signaling pathways.
ay and Zhang (2009) used the aforementioned microarrays
f AD patients to develop a multiple linear regression
MLR) method to find the strength of the association of each
ubject’s NFT score (dependent variable) with the gene
xpression profile and the MMSE. Using MLR, they se-
ected 500 genes that can distinguish subjects with incipient
D from healthy control subjects in two different brain

egions—the hippocampus and the entorhinal cortex. Liang
t al. (2008, 2010) profiled the gene expression in non-
angle-bearing neurons in six postmortem brain regions that
re differentially affected in the brains of healthy elderly
ontrol subjects, nondemented individuals with intermedi-
te AD neuropathology (NDAD), and AD patients. They
ompared the expression of 80 nuclear genes encoding
itochondrial electron transport chain subunits in the dif-

erent brain regions. In a second study, they focused on
enes that participate in mechanisms that have been previ-
usly implicated as being associated with AD, to assess
hether these pathogenic pathways may be enacted in
DAD brains (Liang et al., 2010). These mechanisms in-

lude pathways leading to the formation of NFTs and am-
loid plaques, ubiquitin–proteasomal pathways, and path-
ays surrounding synaptic degeneration. Indeed, significant
verlapping expression changes were identified in the brains
f both NDAD and AD patients compared with those of
ontrol subjects.

Following on these important analyses of gene expres-
ion in AD, we present here a microarray-based study that
ocuses specifically on the role of metabolic genes in the
ognitive decline of this disease. Our focus has been
trongly motivated by cumulative evidence demonstrating

hat numerous metabolic alterations may cause the impair- fi
ent of brain cells’ function and viability in AD. Decreases
n cerebral metabolic rate (CMR) characteristically occur in
D and other dementias (Blass, 2001). Reduced CMRs for
lucose and O2 are reported in many studies (Blass, 2001).

Decreased activities of key enzymes in energy metabolism
in brains of AD patients have also been reported in many
studies. Examples for such enzymes are the cytochrome c
oxidase, pyruvate dehydrogenase complex, and �-ketoglu-
arate dehydrogenase complex (Chandrasekaran et al., 1994;
lass, 2001). Mitochondrial function is specifically altered

n AD (Wang et al., 2009). Electron microscope studies
ave demonstrated the accumulation of abnormal mitochon-
ria in senile plaques in AD (Terry et al., 1964). Damage to
oth the components and the structure of mitochondria, as
ell as increased oxidative stress, has been extensively

eported in AD (Zhu et al., 2006). The mitochondrial respi-
atory chain is one of the main sources of reactive oxygen
pecies (ROS) (Gibson et al., 2008), resulting in oxidative
amage to varied molecules (Ferrer, 2009). The overall
ffect assumed is a positive feedback cycle where ROS
roduce oxidative stress that eventually produces more ROS
Bonda et al., 2010). The nervous system is particularly
usceptible to oxidative stress (Barnham et al., 2004), as
eurons are extremely energy dependent and therefore par-
icularly sensitive to changes in mitochondrial function (Su
t al., 2010). Additionally, several proteins linked with
etabolic reactions have been shown to be targets of oxi-

ative damage in AD (Butterfield et al., 2010; Reed et al.,
008; Sultana et al., 2006). Finally, other neurodegenerative
iseases such as Parkinson’s disease (PD) and amyotrophic
ateral sclerosis (ALS) also share these common features of
xtensive oxidative stress (Su et al., 2010), mitochondrial
amage, and apoptosis processes (Reed et al., 2008). The
revalence of neurological diseases associated with muta-
ions in mitochondrial genes underscores the important
unctional role of mitochondria in neuronal metabolism
Barnham et al., 2004; Butterfield et al., 2010). Finally, our
ork has been further inspired by the recent work of Khai-

ovich et al. (2008), who studied the role of metabolic genes
n another major brain disease—schizophrenia. They found
hat genes associated with schizophrenia are heavily in-
olved in energy metabolism of the brain. Remarkably, the
xpression of many of these genes has also changed rapidly
uring recent human evolution, leading them to suggest that
he evolution of human cognitive abilities was accompanied
y important adaptive changes in brain metabolism.

In light of the accumulating evidence briefly reviewed
arlier in the article, the aim of the current study is to focus
n metabolic dimension to identify the metabolic genes and
athways that strongly correlate with AD progression and
ognitive decline in the hippocampus, specifically in hip-
ocampal neurons. Although some prime metabolic deter-
inants of these observables may have previously surfaced

uring whole-genome mRNA analysis, many important

ndings would have most likely been lost because of the
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masking effects of nonmetabolic genes and the large feature
space, hence leading us to a study focused on metabolism
per se. For this purpose, we trained random forest models
(Breiman, 2001) for the classification of AD severity using
metabolic genes solely. Additionally, we generated regres-
sion models for the prediction of the MMSE score from
metabolic genes’ expression. We compared the selected
genes obtained from the models of the two data sets (i.e.,
whole hippocampus tissue vs. hippocampal neurons) to
study the unique processes that occur in different cell types.
Finally, we analyzed the selection forces acting on these
genes in human and primate evolution to highlight mecha-
nisms involved in the evolution of cognitive abilities.

2. Methods

2.1. Data sets

The microarray data used in this study were obtained from
the Gene Expression Omnibus (GEO) site (www.ncbi.nlm.
nih.gov). The first data set, containing expression data of hip-
pocampus field CA1 neuronal genes, was taken from studies of
six regions from postmortem brains (GSE5281) (Liang et al.,
2008, 2010). The data set contains expression profiles of laser-
capture microdissected non-tangle-bearing neurons from 29
subjects categorized into three groups termed: “Control,”
“NDAD,” and “diagnosed AD”. Because this data set does
not contain associated MMSE scores, for the analysis of this
database, we use classification models for these three dis-
ease-state classes.

For the hippocampus tissue analysis, we used gene
expression data of hippocampal (CA1 field) specimens
from 31 individuals (GSE1297) (Blalock et al., 2004). In
addition, this data set contained the MMSE scores of the
subjects, ranging from 2 to 30. Blalock et al. (2004)
categorized the samples into four groups of AD severity,
termed “Control” (MMSE � 25), “Incipient AD”
(MMSE 20 –26), “Moderate AD” (MMSE 14 –19), and
“Severe AD” (MMSE � 14), based on the MMSE scores.
Statistical regression models that link the expression data
of the metabolic genes and the MMSE scores are used to
quantify and study the information content of gene ex-
pression with regard to the cognitive test outcome.

In both cases, the data were filtered for metabolic genes
(Duarte et al., 2007). A list of these metabolic genes is
available in the supplementary data (Table S1).

To study the variation in gene expression among differ-
ent tissues, a third data set was taken from Su et al. (2004)
(GDS596). A subset of 30 different nonredundant healthy
adult tissues (Waldman et al., 2010) was used to perform a
tissue-specific expression analysis of the genes selected by
the classification and regression models, in comparison with
the expression of the other metabolic genes.

For gene expression variation analysis between human
and primates, we used an additional gene expression data set

from the prefrontal cortex of humans, chimpanzees, and
rhesus monkeys (Khaitovich et al., 2006). This data set was
taken from the ArrayExpress Archive, experiment
E-TABM-84 (Parkinson et al., 2011).

2.2. Building the regression and classification models

The total samples of each of the two data sets were
randomly divided into training and test sets, consisting of
2/3 and 1/3 of the samples, respectively. This process was
repeated 20 times to obtain 20 random partitions for each
data set in a standard cross-validation procedure. Each of
the training and test sets was sampled such that they con-
tained similar ratios of severity classes across the entire data
set, where for the hippocampus neuronal genes, we used the
three classes mentioned earlier in the text, and for the
hippocampus tissue, we used the four MMSE categories
(Blalock et al., 2004).

Random forest classification and regression algorithms
were used for generating the classification and regression
models, respectively (Breiman, 2001). The Matlab imple-
mentation of Random Forest was trained on the metabolic
gene expression data training sets (code.google.com/p/
randomforest-matlab/). Default parameters were used (500
trees were grown). Conforming to standard procedure, train-
ing was performed on the training sets and performance
evaluation on distinct test sets.

2.3. Obtaining lists of genes that are informative for
AD progression

Performing feature (gene) selection, the genes with the
highest importance values obtained from the models in each
of the different random partitions were selected. Different
cutoffs were chosen, and the same training data were used
to retrain a model using the genes that were above the cutoff
point. The cutoff that obtained the highest prediction accu-
racy or correlation for the classification and regression mod-
els was chosen to obtain the list of selected genes in each
experiment. For the classification models, the accuracy is
defined as the number of true predictions divided by the
number of samples in the test set.

2.4. Determining the statistical significance of the models

To assess the significance of the regression/classification
error rates, a permutation test was applied (Radmacher et
al., 2002). In the permutation test, outcome MMSE/class
labels were randomly assigned to each patient, and the
entire model discovery process was repeated. For each of
the 20 partitions, 1000 such permuted data sets were pro-
duced, and the permutation p value was computed. This test
was repeated for each of the models that was generated.

An additional test for assessing the significance of the
models’ results was carried out by selecting 1000 random
sets of genes of the same size as the optimal cutoff that was
chosen for each data set (i.e., 100 genes for the neuronal
model and 50 genes for the whole tissue model). These

genes were selected from the genes available on each of the

http://www.ncbi.nlm.nih.gov
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http://code.google.com/p/randomforest-matlab/
http://code.google.com/p/randomforest-matlab/
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two microarrays. We then used these gene sets to generate
1000 independent random forest models (with 20 cross-
validation models for each) and for calculating an empirical
p value.

2.5. Determining the tissue specificity of gene expression

To evaluate the functional importance of the genes se-
lected by the models in terms of their expression in the
brain, a third data set was used. These data contain gene
expression of 30 adult human tissues, among which the
entire brain tissue is also included (Su et al., 2004). Expres-
sion rate and breadth are defined as the mean expression
across all tissues and the number of tissues in which a gene
is expressed, respectively. A gene was defined as expressed
in a tissue if its expression level was above 200 standard
Affymetrix average-difference units (Su et al., 2004). We
then compared, using Wilcoxon test, the expression rate and
breadth of the list of the selected genes from the feature
selection models with that of other metabolic genes.

2.6. Evolution patterns in primates

Expression profiles from the prefrontal cortex of 10 hu-
mans, 6 chimpanzees, and 6 rhesus monkeys were used for
inter- and intraspecies gene expression variation analysis
(Khaitovich et al., 2006). For interspecies variation (diver-
ence) analysis, we measured for each gene, its squared
ifference from the mean expression, for each of two spe-
ies. For intraspecies variation (diversity) analysis, we mea-
ured the standard deviation (SD) of each of the metabolic
enes across the different samples for each of the species
nd divided it by its average. In both cases (inter- and

Fig. 1. Prediction accuracy of 20 random forest classification models built
using cross-validation (Methods). The figure shows the mean prediction
accuracy results (SD is shown as error bars) for the models that were
generated based on all 1436 metabolic genes, and for the models based on
different cutoffs of genes selected for their highest importance scores (top
150 genes, top 100 genes, etc.)
ntraspecies analysis), we compared the mean variation
core of the model genes with that of 100,000 equal-size
andom sets of other metabolic genes, to obtain an empirical
value.

. Results and discussion

.1. Neuronal metabolic genes in the hippocampus
redict AD severity more accurately than the whole tissue
etabolic genes

To compare the influence of the disease-altered metabo-
ism of neurons with that of the whole tissue, we decided to
uild classification models of neuronal gene expression
rom the hippocampus and of gene expression of a whole
ippocampus tissue, for the prediction of AD progression.
or this purpose, we first used the data set of Liang et al.
2008, 2010). It includes gene expression from hippocampal
eurons of patients with three levels of disease severity:
ontrol, NDAD, and AD. The data set was preprocessed as
etailed in the Methods section, focusing on metabolic
enes. Classification models were generated using random
orest implemented in Matlab, for the prediction of AD
everity (Methods). The accuracy of the classification pre-
ictions obtained was remarkably high—0.872 (� 0.1), p �
.001 (Fig. 1). Notably, these prediction accuracy levels,
btained by analyzing the metabolic genes, were similar to
hose obtained when using all the genes on the chip.

For feature selection, we generated models based on
ifferent cutoffs on the number of genes selected (Fig. 1).
he same training data were used to retrain a model using

he selected genes that were above the cutoff point, and the
rediction accuracy was evaluated on unseen test data. The
esults of the 20 cross-validation models containing the top
00 genes were most accurate, compared with other sizes of
op selected gene sets (see Fig. 1 and Methods). The 100-
ene models (of each of the 20 cross-validation variants)
ield an accuracy of 0.9 (� 0.07) in predicting AD severity
Fig. 2) (random sets of 100 genes each generated signifi-
antly lower results [empirical p value of 0.038, Methods]).

Fig. 2. Mean prediction accuracy of the various AD progression stages
obtained across 20 random forest classification models built using cross-
validation (Methods). SD is shown as error bar. The results of the models
that were generated based on all 1436 metabolic genes and of the feature

selection models (based on top 100 genes) are shown.
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The data set of Blalock et al. (2004) of whole hippocam-
pus tissue genes was used as our second data set and was
preprocessed as described in the Methods section. These
samples were categorized into four groups of AD severity:
control, incipient, moderate, and severe (see Methods). For
generating the classification models for predicting AD se-
verity stages, the moderate and severe subjects were
grouped into one class of advanced AD to allow for a direct
comparison with the classification results obtained with
neuronal data (see supplementary data). The classification
models’ prediction accuracy was lower than that obtained
via the neuronal gene models (0.76) (these tissue-based
classification models are described in the supplementary
data).

Several reported works have focused on and emphasized
the advantage of using gene expression from single cells.
Hinkle and Eberwine (2003) indicated that single-cell mo-
lecular biology technology can help in the identification of
fundamental disease mechanisms and in the diagnosis and
treatment of neurologic disorders. An additional example is
a recent work that compared gene expression from CA1
pyramidal neurons and regional hippocampal dissections in
AD—highlighting a dilution effect that is likely to occur in
regional microarray (Ginsberg et al., 2012). Furthermore,
Kamme et al. (2003) have shown that even a single cell type
is not homogeneous at the gene expression level. All the
studies support our results, which show higher prediction
accuracy when relying on single cell data (neuronal data).
Furthermore, we show here that the information that is
embedded in the metabolic genes in the neuronal cells is
sufficient for predicting AD, highlighting the role of neu-
ronal metabolic processes in the disease.

To further validate our findings and compare the role of
metabolic genes in whole tissue data with that of neuronal
data, we built additional classification models, generated
based on two additional gene expression data sets: (1) whole
tissue data of the cortex (mainly temporal cortex) (Webster
et al., 2009), and (2) neuronal data from a temporal lobe
subregion—the entorhinal cortex (Liang et al., 2008). The
analysis of these independent data sets further corroborates
the results of the hippocampus models in which the neuro-
nal metabolic genes can predict the AD stage more accu-
rately than whole tissue gene expression (see Fig. S1).

3.2. Hippocampus metabolic genes can predict the
MMSE score of AD patients

Importantly for our goals, the hippocampus tissue data
contain the MMSE scores of the subjects as well (which are
regrettably lacking from the neuronal-specific data). To
study the correlation between the metabolic genes and the
cognitive decline in AD, we generated regression models
for the prediction of the MMSE score, using random forest
regression (see Methods). The correlation coefficient of the
MMSE regression model test set prediction was marked—

0.57 (� 0.19) with root mean square error (RMSE) of 6.36 p
(� 0.6). The significance of the results was computed with
permutation tests (p � 0.001, Methods). Remarkably, this
correlation is higher than the correlations between the
MMSE and other sources of biological measurements that
were reported in the past in the literature (Ho et al., 2005;
Kennedy et al., 2004). Blalock et al. (2004) reported MMSE
correlations with NFT levels in the hippocampus (r � 0.45)
nd with amyloid plaque levels (r � 0.19). Thus, metabolic
ene expression is more strongly associated with MMSE
ognitive function score in the AD hippocampus than the
lassical pathological markers of AD. As in the previous
ection, these prediction levels (obtained with the metabolic
enes) are similar to those obtained from regression models
enerated from all the genes on the chip.

The random forest gene selection importance score was
sed for the selection of the most important metabolic genes
ssociated with MMSE decline in AD (Fig. S2). Models
enerated from the top 50 genes were the smallest models
ielding high correlations and were selected for further gene
election analysis (obtaining RMSE of 6.28 [� 0.9] and a
orrelation coefficient of 0.57 [� 0.18] [Fig. 3]). As in the

case without gene selection, a permutation test on the
MMSE score yielded p � 0.001 (Methods).

3.3. Analysis of the genes selected in the neuronal
analysis

Beginning with a gene-level analysis, we note that three
metabolic genes appeared in all of the 20 different neuronal
cross-validation models: NDUFA10, which belongs to the
electron transport chain; ME3, a mitochondrial enzyme that
catalyzes the oxidative decarboxylation of malate to pyru-
vate and is downregulated in PD (Bossers et al., 2009); and

PN1, an essential subunit of N-oligosaccharyl transferase
nzyme. It is part of the regulatory subunit of the 26S

Fig. 3. Predicted MMSE scores vs. actual MMSE scores using feature
selection-based regression models (SD of predicted MMSE scores is
shown as error bar).
roteasome and may mediate binding of ubiquitin-like do-
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mains to this proteasome (Vernace et al., 2007). Disruption
of the ubiquitin/proteasome pathway is relevant to patho-
physiological conditions that provoke the accumulation of
aberrant proteins, such as in a variety of neurodegenerative
disorders, including AD and PD (Vernace et al., 2007).
Indeed, as one would expect, these three genes are all
underexpressed in AD.

For further analysis, we selected a group of top 50
metabolic genes that were most frequent in the different
100-gene models (Table S2). These 50 genes appeared in at
least 10 models (of the total 20 cross-validation models) and
hence were considered the most important for the prediction
of AD severity. Of the 50 genes, 34 genes were underex-
pressed as the disease progressed and 16 genes were over-
expressed. According to Alzgene (www.alzgene.org), three

etabolic genes were found to be significantly associated
ith AD in genome-wide association studies (GWAS) (Ber-

ram et al., 2007). Of these genes, one gene is also found in
he 50 genes selected by the model (p value � 0.13). This
ene is MTHFR, a member of the folate metabolism path-
ay. Recent studies have revealed association between this
ene and the susceptibility to develop late-onset Alzhei-
er’s disease (LOAD) (Kim et al., 2008; Li et al., 2009;
ang et al., 2005). Several other genes (among the 50
etabolic genes) were found to be related to AD in various

xperimental studies, and they are listed in the supplemen-
ary Table S2. The top AD predictive genes of the whole
ippocampus model as well as the unique pathways which
ppear in each of the models are detailed in Tables S3 and
4.

To better understand the significance of the 50 genes
elected from the neuronal classification model, with re-
pect to brain tissue-specific activity, we compared the ex-
ression pattern of these genes with that of other metabolic
enes: First, we wanted to see whether the activity of these
enes is higher in the brain as compared with other tissues.
ecause energy demands for brain activity are relatively
igh, it is indeed expected that we find that overall
etabolic genes show, on average, a 1.34-fold increase in

heir expression levels in the brain as compared with
ther tissues (Fig. 4). Nevertheless, we found that the
ncrease in expression in the normal brain of the 50
D-predictive genes is significantly higher, with a 2-fold

ncrease (p value � 4.71 � 10�5; Wilcoxon test; Fig. 4).
oreover, although these genes are expressed at higher

evels across all tissues as compared with other metabolic
enes (p value � 6.83 � 10�4 and p value � 4.97 �
0�5 for expression rate and breadth, respectively; see

Methods and Table S5), their increase in expression in
the brain is higher as compared with other metabolic
genes, further strengthening their functional importance
in the brain. Two additional tissues that showed high
expression levels of these 50 metabolic genes were the

liver and the heart, which also have high metabolic de-
mands (2.74- and 2.15-fold increase with p values of
1.25 � 10�5 and 3.46 � 10�7, respectively).

Next, we set out to analyze the evolution patterns of
the neuronal-selected genes in primates. It was already
suggested that the evolution of human cognitive abilities
was accompanied by changes in metabolism and that
neurological disorders are a costly by-product of such
evolution (Crow, 1995; Fu et al., 2011). Indeed, Khai-
tovich et al. (2008) showed that metabolic alterations
found in schizophrenia were under positive selection in
the human lineage. Hence, we set out to analyze the
evolution of the expression of these genes as compared
with that of other metabolic genes in primates. For that
purpose, we compared the expression of metabolic genes
in the human brain with those of two different primates:
chimpanzees and rhesus monkeys (see Methods). Com-
parison between humans and chimpanzees did not reveal
significant differences in expression of the selected met-
abolic genes (p value � 0.187, Fig. S3A). Nevertheless,
human–rhesus comparison revealed significant differ-
ences in expression of the selected genes as compared
with other metabolic genes (p value � 2.94 � 10�3, Fig.

A). Similar results were also obtained for chimpanzees
nd rhesus monkeys (p-value � 7.29 � 10�3, Fig. S3B).

These high interspecies differences suggest that the ex-
ression of these genes has undergone positive selection
ince the last common ancestor of humans, chimpanzees,
nd rhesus monkeys. This may be a result of either func-
ional specialization of these genes or evolution of the entire
rain between the species. Previous studies have shown that
D-like neuropathologies increase during aging in most
rimates, and that chimpanzees show more deposits of

�-amyloid as compared with rhesus monkeys (Finch and
Sapolsky, 1999). This may hint to the difference in the

Fig. 4. Expression profile of all metabolic genes and the genes selected by
the neuron classification model. For each group (metabolic genes and
model genes), we calculated the mean expression in the brain and the mean
expression rate across all 30 adult human tissues (Methods). Although
highly expressed across all tissues, model genes show stronger increase in
brain expression as compared with all metabolic genes, testifying to their
importance in neuronal functioning.
results obtained in our study from those found previously in

http://www.alzgene.org


7S. Stempler et al. / Neurobiology of Aging xx (2012) xxx
a study on schizophrenia (Khaitovich et al., 2008), where
significant differences were found between humans and
chimpanzees in the latter but not in our study. These in-
triguing preliminary findings warrant a further and deeper
exploration, which is beyond the scope of the current study.

This brain gene expression data also allowed us to look
into the intraspecies variance of these genes (Fig. 5B).
Interestingly, we find that AD-related genes show lower
intraspecies variability (diversity) in all three primates as
compared with other metabolic genes (empirical p values of
1.0 � 10�4, 6.9 � 10�4, and 1.72 � 10�2 for humans,

Fig. 5. Distribution of (A) divergence and (B) diversity of gene expressi
(Methods). We compared these values with the mean divergence of the mo
the diversity in each of the three primates (black square, circle, and triangle
show significantly higher divergence levels in their expression between hu
species.
chimpanzees, and rhesus monkeys, respectively). The low
diversity suggests that these genes are under stronger reg-
ulatory regime in normal condition in all three primates,
presumably owing to their functional importance. Neverthe-
less, because they were selected by the classification model,
they show more variability between normal and AD cases
(see Table S6). Hence, these findings give rise to the pos-
sibility that this regulatory regime is compromised as AD
progresses.

Taken together, the analysis of the expression pattern of
these neuronal genes across human tissues and between and
within primates marks their importance in neuronal activity

andomly selected 100,000 random equal-size groups of metabolic genes
cted genes between humans and rhesus monkeys (black square in [A]) and
or humans, chimpanzees, and rhesus monkeys, respectively). Model genes
nd rhesus monkeys, whereas they show lower diversity within each of the
on for r
del-sele
in [B] f
mans a
and hence suggests why alterations in the expression of
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these genes are associated with AD. A parallel analysis of
top-ranked genes in the whole tissue analysis reveals that, as
for the neuronal model genes, the expression of these genes
was significantly higher in the brain than the other meta-
bolic genes (1.77-fold increase and 1.34-fold increase for
the 50 genes and the other metabolic genes, respectively, p
value � 2.35 � 10�2; Wilcoxon test). However, the diver-
ence and diversity expression variation analyses did not
ield significant results for these genes.

. Conclusions

The role of metabolism in the progression of AD is
tudied by inspecting the gene expression of metabolic
enes. These genes are shown to be as effective in predict-
ng the severity of AD as the entire gene list. Furthermore,
he higher prediction accuracy obtained with neuronal ex-
ression per se (vs. whole tissue expression) points to the
mportance of metabolic processes in this specific cell type.
n addition, metabolic whole tissue gene expression can
redict the MMSE score better than conventional AD path-
logical markers that have been reported. Moreover, a se-
ected group of metabolic genes that is chosen based on its
D-predictive ability is shown to be both associated with
ormal brain functioning and to have similar expression
atterns in humans and chimpanzees and a different one in
hesus monkeys.
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