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A fundamental challenge in Systems Biology is whether a cell-scale metabolic model can predict
patterns of genome evolution by realistically accounting for associated biochemical constraints.
Here, we study the order in which genes are lost in an in silico evolutionary process, leading from the
metabolic network of Eschericia coli to that of the endosymbiont Buchnera aphidicola. We examine
how this order correlates with the order by which the genes were actually lost, as estimated from
a phylogenetic reconstruction. By optimizing this correlation across the space of potential growth
and biomass conditions, we compute an upper bound estimate on the model’s prediction accuracy
(R¼0.54). The model’s network-based predictive ability outperforms predictions obtained using
genomic features of individual genes, reflecting the effect of selection imposed by metabolic
stoichiometric constraints. Thus, while the timing of gene loss might be expected to be a completely
stochastic evolutionary process, remarkably, we find that metabolic considerations, on their own,
make a marked 40% contribution to determining when such losses occur.
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Introduction

Symbiotic relationships include those associations in which
one organism lives within the tissues of the other, either in
the intracellular space or extracellularly (Douglas, 2007).
One classical case of mutualism that has been a focus of
numerous investigations is the symbiosis between Buchnera
aphidicola and its aphid host. Evolutionary studies suggest
that 160–280 million years ago (Moran et al, 1993) this aphid
ancestor was infected with a free-living eubacterium in a
process that led to co-speciation of the host and its symbiont.
The host and the endosymbiont then became interdependent
and unable to survive without each other. It is believed that
Buchnera has evolved from a free-living Gram-negative
ancestor quite similar to Escherichia coli. The Buchnera
genome is considerably reduced compared with that of E. coli,
but it has retained ancestral genes for proteins involved
in DNA replication, transcription and translation, as well as
chaperonins and proteins involved in secretion, energy-
yielding metabolism and amino acid biosynthesis (Baumann
et al, 1995; Shigenobu et al, 2000; Moran and Mira, 2001;

Silva et al, 2001; Gil et al, 2002; Tamas et al, 2002; Moran et al,
2009).

The symbiosis between B. aphidicola and its host is
characterized by a process in which few or no genes have
been acquired as part of the transition to a symbiotic lifestyle;
rather, the gene set of the ancestor has been selectively
reduced so as to retain only those genes and pathways required
for the symbiotic lifestyle (Dale and Moran, 2006). The
symbiosis therefore has a nutritional basis. Specifically,
Buchnera has retained in the genome genes for the biosynth-
eses of amino acids essential for the host while those for non-
essential amino acids are missing, indicating complementarity
and syntrophy between the host and the symbiont (Shigenobu
et al, 2000). Nitrogen recycling, however, is not quantitatively
important to the nutrition of aphid species studied, and there is
strong evidence against bacterial involvement in the lipid and
sterol nutrition of aphids (Lai et al, 1994; Douglas, 1998;
Moran and Baumann, 2000). Moreover, studies have excluded
the hypothesis that genome reduction in Buchnera has been
accompanied by gene transfer to the host nuclear genome
(Nikoh et al, 2010).
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Previous work by Pál et al (2006) has addressed the problem
of inferring gene content of an organism given its lifestyle,
by modeling the evolution of the reduced genomes of endo-
symbiotic bacteria such as B. aphidicola and Wigglesworthia
glossindia (Akman et al, 2002; Pál et al, 2006). Using the E. coli
metabolic network (Reed et al, 2003) as a starting point, these
authors developed a protocol for simulating the gradual loss,
during evolution, of metabolic enzymes. This involved the
random removal of genes, and hence enzymes from the
network, whose contribution to the organism’s growth yield
(computed using a flux balance analysis (FBA) model; Fell and
Small, 1986; Varma and Palsson, 1994; Kauffman et al, 2003)
are vanishingly small. Starting from the E. coli model and
repeating this stochastic gene removal process many times
while aggregating the results, they managed to obtain end
point viable minimal metabolic networks (where no genes
can be further removed) that were B80% similar to the
metabolically annotated genes of B. aphidicola. Although
previous studies have considered metabolic network con-
straints over an evolutionary time scale (van Hoek and
Hogeweg, 2009), and have studied the differential retention
of metabolic genes versus non-metabolic genes following
whole-genome duplication (Gout et al, 2009), Pál et al (2006)
were the first to demonstrate a particular organism’s evolution
in silico. However, it was geared to reconstructing the final
network, i.e., the end point of the evolutionary process.

Here, we aim to go significantly further and investigate
whether it is possible to computationally simulate not only
the network emerging at the end point of the evolutionary
process, but also its dynamics. Specifically, we wish to
examine whether we can predict in silico, the timing of gene
loss events in a consistent manner, and study how well these
predictions correspond with phylogenetic estimates of the
temporal sequence of gene loss. We are interested in
elucidating the relative contributions of chance and necessity
in this elaborate process and learn to what extent metabolic
constraints determine the observed sequence of gene loss
events.

Results

Our in silico gene loss time estimations of B. aphidicola follow
from a procedure similar to the evolutionary reductive
simulation performed by Pál et al (2006). Briefly, the evolution
of the metabolic network undergoing gene reduction is
simulated in an iterative fashion as follows: In each iteration
a gene is randomly chosen to be deleted from the genome. If its
deletion does not reduce growth below a certain threshold, the
resulting strain is considered viable, and the deleted gene is
therefore considered lost and excluded from the network. If the
deletion of gene reduces growth significantly (above the given
threshold, i.e., it is selected against), the pertaining gene is
retained. The contribution of non-essential genes to growth
and their retention in the final network evolved depends on the
presence of other genes backing them in the network
(Deutscher et al, 2006) and on the random sequential order
by which the genes are deleted in a given run. The interplay
between these stochastic events and deterministic network-
based constraints is elucidated via aggregating the results over

many reductive evolution simulations, as described in detail in
the Materials and methods section.

We first turned to search the literature for components
known to exist in Buchnera’s habitat, as the content of the
environment has a significant effect on an organism’s
metabolism and hence on its gene loss time. The components
found were then completed with a minimal number of
metabolites that are essential for growth considering E. coli’s
biomass function (Supplementary Table 1.a) to form a
literature-based viable media. In order to establish the
robustness of this evolutionary process, we applied it on a
more up to date E. coli model (Feist et al, 2007) under this
literature-based viable media. The in silico deletion time of a
gene in a single run of the reductive evolutionary process
denotes the number of genes deleted before its own deletion
occurred. To obtain a robust and consistent estimation of a
gene’s in silico deletion time, its mean deletion time is
computed over 40 000 individual runs of the reductive
evolutionary process (Materials and methods). Reassuringly,
the correlation between the gene’s deletion times across a pair
of simulations to estimate loss times (each composed of 20 000
reductive runs as described above) is very high (Spearman’s
correlation of 0.92, empirical P-value o9.9e�4, Supplemen-
tary Figure 1; we chose to use empirical P-values throughout
the paper as they are more strict than asymptotic P-values).
This implies that, even though the genes are selected as
potential candidates for deletion by chance (i.e., in a
completely random manner), genes are still actually lost in a
consistent and coordinated fashion, reflecting the role of
necessity. Notably, even when excluding from this analysis
those end point genes that are always retained in the final
model, we still obtain a high mean Spearman correlation of
0.84 (empirical P-value o9.9e�4) across different runs. Many
of the genes are always lost in silico and their deletion time in
an individual run is random, but measured over an increasing
number of reductive runs their estimated loss time converges
to a deterministic value representing these genes’ global mean
loss time. Focusing just on the set of 240 genes that are not
always lost or always retained, we find an even higher
Spearman’s correlation of 0.99 between their loss time
estimations obtained across different multiple runs (empirical
P-valueo9.9e�4, Supplementary Figure 2). All together, these
results testify to the robustness and consistency of the in silico
loss time estimations, and to the significant constraints that
the loss of certain genes may impose on the loss times of
others.

To examine how well the gene loss times predicted in silico
coincide with the times these genes were actually lost during
evolution, we additionally performed an ancestral gene
content phylogenetic reconstruction for the sub-tree leading
from several Buchnera strains (from different aphid hosts
(Shigenobu et al, 2000; Tamas et al, 2002; van Ham et al, 2003;
Wu et al, 2006)) to their common ancestor with E. coli
(Figure 1A). Our in silico predictions of loss times (which
reflect the consequences of metabolic considerations per se)
were then compared with the gene loss time inferred via the
phylogenetic reconstruction of all four evolutionary paths
leading to the different B. aphidicola strains (while considering
each path separately), overall including five states (Figure 1A;
and see Figure 1B for a general description of the evolutionary

Endosymbiont genome reduction on a temporal scale
K Yizhak et al

2 Molecular Systems Biology 2011 & 2011 EMBO and Macmillan Publishers Limited



reconstruction process). The latter reconstruction obviously
reflects the consequences of all evolutionary forces determin-
ing gene loss.

First, it should be emphasized that the maximal mean
Spearman’s correlation between in silico and reconstructed
gene loss times that one can possibly obtain in our setup is 0.86
and not 1 (due to numerous ties in the vector representing the
phylogenetic loss time). Simulating the in silico evolutionary
process described above under the literature-based viable
medium and computing the correlation between the resulting
in silico and reconstructed gene loss times for each of the four
B. aphidicola strains, we obtain a mean Spearman’s correlation
of 0.46 (53% of the maximal correlation, empirical P-value
o9.9e�4, see Materials and methods) averaged over these
four strains (Figure 2). Notably, when excluding from the
analysis those end point genes that are always retained in the
pertaining species, we still obtain a significant mean Spear-
man’s correlation of 0.37 (43% of the maximal correlation,
empirical P-value o9.9e�4). Interestingly, repeating this
analysis under the minimal medium (Supplementary Table
2.a) used in Pál et al (2006), we obtain a similar high mean
Spearman’s correlation (Supplementary Material). It should
be emphasized that, in accordance with an earlier report (Pál
et al, 2006), the model accurately predicts that the most
preserved pathways are those involved in essential amino-acid
metabolism and in central metabolism, including the pentose
phosphate pathway, glycolysis and so on, while genes
associated with cell envelope synthesis, lipopolysaccharides
synthesis and membrane lipid metabolism are not fully
retained in the final networks (Supplementary Table 1.f). It is
reassuring to see that these predictions match the reports
known from the literature, where it is known that B. aphidicola
lacks genes for the biosynthesis of cell surface components,
including lipopolysaccharides and phospholipids (Shigenobu
et al, 2000). Furthermore, the extensive loss of transport
capabilities and conservation of essential amino acids biosyn-
thetic pathways are prime characteristics of the aphid
symbiont (van Ham et al, 2003).

As both the content of the environment and the composition
of the biomass effect the in silico gene loss order, we examined
the correlations between in silico time loss predictions

obtained under random control growth/biomass conditions
and the reconstructed loss times. Random media were
generated by randomly selecting media components (Supple-
mentary Material) that together allow the organism to grow
considering E. coli’s biomass function. Similarly, we have
generated random biomass functions by randomly selecting
biomass components and searching for random media that
would together obtain a viable organism. Notably, the
difference in correlation values between these random
condition and those described above is highly significant
(Wilcoxon’s P-valueo1.7e�9). Moreover, Figure 2 shows that
these random conditions result in markedly lower, yet positive
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Figure 1 The phylogenetic tree analyzed here and a schematic overview of the computational process. (A) The phylogenetic tree of the Buchnera aphidicola strains
analyzed here (Materials and methods). (B) A schematic overview of the computational process used for generating and comparing simulated and phylogenetic gene
loss times.

0.45

0.4

0.35

0.3

0.25

C
or

re
la

tio
n 

co
ef

fic
ie

nt

0.2

0.15

0.1

0.05

0

Lit
er

at
ur

e-
ba

se
d

via
ble

 m
ed

ium M
ini

m
al

co
nd

itio
ns

Ran
do

m
 m

ed
ia

an
d 

E. c
oli

 b
iom

as
s

Ran
do

m
 m

ed
ia

an
d 

ra
nd

om
 b

iom
as

s

Buchnera Bp
Buchnera Cc
Buchnera Sg
Buchnera Ap

Figure 2 Correlation results obtained by comparing in silico predicted gene
loss times to the times these genes were estimated to be lost during evolution, for
four different Buchnera strains. This estimation is based on a phylogenetic
reconstruction of the ancestral gene content for the sub-tree, leading from
different Buchnera aphidicola strains to their common ancestor with E. coli
(Figure 1A). The in silico time estimations were simulated in three different
situations: (1) literature-based viable medium and E. coli’s biomass function
(literature-based viable medium), (2) minimal medium and E. coli’s biomass
function as used by Pál et al (2006) (minimal conditions), and two control
conditions: (3) five random media and the E. coli biomass function, and (4) five
random media and random biomass functions (that together yet still form viable
growth conditions, Supplementary Material).

Endosymbiont genome reduction on a temporal scale
K Yizhak et al

& 2011 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2011 3



correlation values (empirical P-value o9.9e�4, Supple-
mentary Material). These results demonstrate that while the
metabolic network topology itself already embeds some
information constraining gene loss order, the model can better
simulate the reductive evolution process when it is emulated
under media and biomass conditions that are sufficiently close
to the biological reality.

What is the upper bound on the correlation between in silico
and phylogenetic gene loss times that can be achieved within
our in silico framework? Estimating the maximum obtainable
correlation would give an upper bound on evolutionary
necessity stemming from metabolic constraints. To answer
this, we next turned to search the space of potential growth
media and biomass functions (Materials and methods), to
study if and to what extent one can further increase the
correlation between in silico and reconstructed loss times in
media and biomass different from those derived from the
literature or the minimal conditions that were simulated up
until now. To this end, we performed the reductive evolu-
tionary process of Pál et al (2006) as an internal kernel within a
simulated annealing (SA) search algorithm, aimed at search-
ing for the environment/biomass function that maximized our
target correlation between in silico and reconstructed loss
times (see Materials and methods section and Figure 3). As the
search space is obviously vast, we limited the size of the media
to several predefined magnitudes and found that media
composed of 50 components achieve significantly higher
correlation values over media of other magnitudes (hyper-
geometric P-value¼3.06e�6 and Materials and methods). The
best combination of biomass and environment found follow-
ing the convergence of the SA process (Supplementary Tables
2.e and 2.f) improved the correlation over the four Buchnera
strains to a mean Spearman’s correlation of 0.54 (63% of the
maximal correlation) considering the end point genes, and to
0.39 (44% of the maximal correlation) without the end point
genes (empirical P-value o9.9e�4, Supplementary Figure 3).

A list of the in silico gene loss time based on the growth
condition found by the SA search process and the gene loss
time based on the phylogenetic reconstruction can be found in
Supplementary Table 2j. Notably, the new evolved end point
network achieves a mean similarity level (area under the
resulting ROC curve, AUC) of about 88% (P-value o1.41e�10)
with the metabolic genes of the different Buchnera strains,
akin to the similarity achieved by Pál et al (2006) (see
Supplementary Figure 4 for the corresponding similarity levels
to the strains that appear in the phylogenetic reconstruction
used here). Interestingly, the components shared by the five
media found in SA solutions obtaining the highest correlation
values are enriched with components from the literature-based
viable medium (hyper geometric P-value¼0.03). Moreover,
the five biomass functions obtaining the highest correlation
values all share essential amino acids and riboflavin known to
be supplied by Buchnera to its host (Douglas, 1998).

Overall, these results testify that an in silico evolutionary
reductive process based on metabolic and stoichiometric
constrains can account for about 40% (0.63^2) of the variation
in the reconstructed time course of endosymbiont gene loss.
The considerable temporal information that is still missed is
probably a result of a combination of the action of other
selection forces not considered here (e.g., regulatory or
physiological constraints) and of potential stochastic compo-
nents of the evolutionary process. As an additional acid test of
this observation, and as the search space is obviously vast, we
performed the reductive simulation in a supervised manner,
strictly imposing the phylogenetic gene loss order as the actual
in silico deletion order as much as possible, under the
conditions obtained by the SA search (Materials and methods).
This results in a mean Spearman’s correlation of 0.78 (91% of
the maximal correlation, empirical P-valueo9.9e�4) between
the in silico and phylogenetically inferred loss times. Thus,
even at this extreme limit case where the simulation artificially
aims to repeat the phylogenetic process exactly, even though
coming close to the maximal possible value, there still remains
a non-negligible unexplained component. As the conditions
obtained by the SA search managed to significantly increase
the correlation, we chose to perform the in-depth analysis
presented in the following under these conditions.

What does the metabolic model reveal about the constraints
that affect the timing of gene loss? To answer this, we
examined the dependency of the predicted loss time of each
gene on its intrinsic network-level properties. We find that the
predicted gene loss time strongly depends on the number of
functional backups that the corresponding reactions of a gene
have in the network under a given medium. The latter is
measured by the k-robustness index introduced in Deutscher
et al (2006), where k¼1 denotes essential genes, k¼2 denotes
genes involved in synthetic lethal pairs, k¼3 involves genes
with at least two other functional backups and so on.
Accordingly, we find a very strong inverse Spearman’s
correlation of �0.84 (empirical P-value o9.9e�4) between
the order of gene loss predicted in silico and the k-robustness
levels of the genes (Figure 4A). Notably, when excluding
essential genes (k¼1) from the analysis, we still obtain a high
inverse Spearman’s correlation of �0.65 (empirical P-value
o9.9e�4). This arises as poorly backed up genes (k¼2) are
more likely to be retained in the final networks evolved than
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function
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function
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medium
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Figure 3 General description of our computational approach. Starting from
E. coli biomass and a minimal medium, we first search through the space of
possible media within a given predetermined size, each time applying the core
reductive algorithm to estimate the obtained similarity level to the Buchnera
model, until no further improvement is achieved. Next, we fix the medium
achieving the highest score and repeat this process while searching through the
space of possible biomass functions. Similarly, when no further improvement is
achieved, we fix the biomass resulting in the highest score for the next iteration.
These two steps are repeated until we converge on a medium and biomass
function where no further improvement in the correlation between in silico and
reconstructed loss times can be achieved.
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genes with k42 (P-value¼2.35e�8), as when their sole
backup gene is lost they then become essential. An analogous
association is found between the gene loss time inferred from
the phylogenetic reconstruction and the k-robustness levels,
with a mean Spearman’s correlation of �0.51 (empirical
P-value o9.9e�4, Figure 4B) over the four Buchnera strains.

In addition, one might expect that the relative loss time of a
gene is influenced by its functional dependencies with other
genes. To examine this, we performed a flux coupling analysis
and identified pairs of reactions whose activities asymmetri-
cally depend on each other, i.e., are directionally coupled
(Burgard et al, 2004). Remarkably, examining these pairs, we
find that genes encoding reactions whose activity is needed
for activating the other reaction (and not vice versa) have
a tendency to be lost later (both in silico and considering
the phylogenetic loss time), as one would expect (binomial
P-value o1e�14, Materials and methods). This finding
complements previous reports that asymmetric coupling
relationships influence the order by which new genes are
acquired by horizontal transfer (i.e., an enzyme whose
function depends on the presence of another enzyme tend to
be acquired later) (Pál et al, 2005) and results in an asymmetric
occurrence of genes across genomes (Notebaart et al, 2009).

We next addressed the question of how well do genomic
features and network properties predict the phylogenetically
reconstructed gene loss times, focusing on the genes’ mRNA
levels, tAI values (tRNA adaptation index (tAI; Sharp and Li,
1987; Covert et al, 2004; Reis et al, 2004; Tuller et al, 2010a),
and on the number of partners the gene products have in a
protein–protein interaction (PPI) network. These variables are
known to be inversely correlated with the propensity of a gene
to be lost, and have previously been shown to correlate with

gene loss rates in Buchnera (Delmotte et al, 2006; Tamames
et al, 2007; Brinza et al, 2009). We find a Spearman’s
correlation of 0.43 (empirical P-value o9.9e�4) between the
phylogenetically reconstructed gene loss times (our ‘gold
standard’) and mRNA levels, Spearman’s correlation of 0.21
(empirical P-value o9.9e�4) with the tAI values and a
Spearman’s correlation of 0.21 (empirical P-value o9.9e�4)
with PPI degree (Supplementary Material). These correlations
remain significant also after excluding the end point genes
(40.1, empirical P-value o9.9e�4). Remarkably, examining
the association between in silico and reconstructed gene loss
times while controlling for these genomic and PPI network
variables, we still obtain a Spearman’s correlation above 0.47
(empirical P-value o9.9e�4) for all four Buchnera strains.
These partial correlations between in silico and reconstructed
gene loss time also remain significant after excluding the end
point genes of all four Buchnera strains (40.38, empirical
P-value o9.9e�4, Supplementary Material). Multiply regres-
sing the loss times from the phylogenetic reconstruction on the
in silico gene loss time predictions and the genomic and
network variables, leads to improved prediction of phylogen-
etically reconstructed gene loss pattern compared with that
obtained with the different variables alone (mean Spearman’s
correlation of 0.6 (empirical P-value o9.9e�4) over all four
strains). Notably, the (normalized) coefficient of the in silico
predictions in the regression is much higher than those of the
genomic features (Supplementary Material), further testifying
to the considerable independent predictive power of the
model-based in silico predictions.

The most common explanation for the mechanism of gene
loss occurring in the evolution of B. aphidicola is the fixation of
single large deletions spanning many genes at the initial stage

Figure 4 Mean in silico and phylogenetically loss time as a function of the k-robustness index. (A) Mean in silico gene loss time as a function of the number of backup
reactions a gene has in the metabolic network (its k-robustness; Deutscher et al, 2006). (B) Phylogenetically reconstructed gene loss time, also as a function of gene
backup number. Error bars in both cases represent the standard deviation.
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of genome reduction followed by single-gene deletions after
the establishment of the last common symbiotic ancestor
(LCSA; Moran and Mira, 2001; van Ham et al, 2003). We
therefore simulated a two-phase block deletions process
similar to that done in Pál et al (2006) (Materials and
methods). Interestingly, we find that after a certain amount
of genes are deleted from the genome, no further block
deletions can occur due to the increasing density of essential
genes. Notably, the maximum amount of genes that can be
deleted in blocks (i.e., until no more blocks can be deleted) is
in correspondence with the number of genes appearing in our
phylogenetic reconstruction from the LCA (last common
ancestor of Buchnera and E. coli) to the LCSA. This number
is in the range of 750–850 (nodes 1–3 in Figure 1A), when q
(where the probability of deleting a block with n genes is
P(n)¼qn, Materials and methods) is in the range of 0.5–0.9.
Under the media conditions described above (minimal
medium, literature-base medium and the conditions obtained
by the single-gene deletion SA search), we find a mean
Spearman’s correlation of about 0.4 in the block deletions
scenario (empirical P-value o9.9e�4). To improve the
obtained correlation, we repeated the SA search under block
deletion simulations. The best combination of biomass
and environment found after the convergence of the SA
search (Supplementary Tables 3.a, 3.b and 3.c) improved the
correlation over the four Buchnera strains to a mean
Spearman’s correlation of 0.45 that is 53% of the maximal
correlation with the end point genes, and to 0.37 (43% of the
maximal correlation) without the end point genes (empirical
P-value o9.9e�4). These correlations are overall lower than
those obtained in the single-gene deletion simulations,
however, they are higher than those obtained under random
conditions and those obtained by genomic features (Supple-
mentary Material). This may be surprising at first, but may be
understood when noting that in reality, in vivo evolutionary
selection process occurs on deleted blocks involving many
non-metabolic genes, which are out of the scope of the
metabolic in silico model studied here. That is, blocks
containing non-essential metabolic genes but essential non-
metabolic genes will not be deleted in vivo while they will be
deleted in silico. Therefore, and although it is most likely that
the evolutionary process occurred first by the loss of large
blocks, we have chosen to perform the main analyses in the
paper by considering only single-gene deletion simulations
that better suite the confines of metabolic constraints
embedded in a metabolic model, and on which we focus upon.

Conclusions

In summary, this study shows for the first time, that it is
possible to go beyond capturing the end point of an
evolutionary process using an in silico model, and obtain a
fine-grained view of the time course of an organism’s
evolution toward symbiosis. A comprehensive search over
numerous growth media and biomass functions reveals that
strict metabolic considerations can explain about 40% of the
variation observed in gene loss times, while the remaining
variation is likely to be determined by other factors. The
network-level functioning of a gene is found to be a stronger

determinant of its time of loss than its individual genomic
features. The number of functional backups the gene
possesses in the network is found to be the most significant
determinant of the timing of its demise.

Our simulations focus on the loss of genes reflecting the act
of purifying selection. Analogous to the earlier observations of
Pál et al (2006) that both necessity and chance have a
significant role in reductive evolution, we find that both are
likely to have part when the processes are re-examined on a
more fine-grained temporal scale. ‘Necessity’ in our context
refers to selection forces acting to conserve metabolic genes
whose contribution to the symbiont’s growth within the host
is significant. However, the weight of ‘necessity’ estimated
by our framework serves as a lower bound on its actual
magnitude, as the true contributions of metabolic genes may
go well beyond those captured in the model due to their
contribution to other, non-metabolic cellular functions (as
many genes may have diverse pleiotropic effects). ‘Chance’,
albeit, reflects the true randomness in order of gene losses
occurring in evolution that may be due to the workings of a
variety of stochastic effects occurring in nature including, e.g.,
randomness in mutational processes driving gene loss and
variations in the host’s environment and so on.

Viewed from a complementary perspective, our results may
have important implications for future attempts to develop
more realistic phylogenetic models for gene loss: given that
metabolic networks are becoming available for a wide variety
of organisms, it would become possible to incorporate
metabolic constraints into such reconstructions and boost
their accuracy, as have been demonstrated recently for co-
evolutionary constraints (Tuller et al, 2010a). In addition, the
optimization approach utilized here to comprehensively
search for growth media that maximize the fit between model
predictions and empirical data may serve in future studies
aimed at inferring the metabolic lifestyles of other, less-
characterized organisms and/or their ancestors.

Materials and methods

Constraint-based modeling of metabolic networks

A metabolic network consisting of n metabolites and m reactions can
be represented by a stoichiometric matrix, denoted by S, where the
entry Sij represents the stoichiometric coefficient of metabolite i in
reaction j (Price et al, 2004). A constraint-based modeling (CBM)
imposes mass balance, directionality and flux capacity constraints on
the space of possible fluxes in the metabolic network’s reactions
through a set of linear equations:

S�n ¼ 0 ð1Þ
�nlbp�np�nub ð2Þ

where �n stands for the flux vector for all of the reactions in the model
(i.e., the flux distribution). The exchange of metabolites with the
environment is represented as a set of exchange reactions, enabling for
a predefined set of metabolites to be either taken up or secreted from
the growth media. The steady-state assumption represented in
Equation (1) constrains the production rate of each metabolite to be
equal to its consumption rate. Enzymatic directionality and flux
capacity constraints define lower and upper bounds on the flux rates
and are embedded in Equation (2). In this study, we used a genome-
scale E. coli metabolic network of Feist et al (2007)as our starting
point of the core reductive evolutionary process, accounting for 1260
metabolic genes, 2382 reactions and 1668 metabolites.

Endosymbiont genome reduction on a temporal scale
K Yizhak et al

6 Molecular Systems Biology 2011 & 2011 EMBO and Macmillan Publishers Limited



Flux balance analysis is a key computational approach within the
CBM modeling framework (Fell and Small, 1986; Varma and Palsson,
1994; Kauffman et al, 2003) and is frequently used to successfully
predict various phenotypes of microorganisms such as their growth
yields, uptake rates (when growth rate is known), by-product secretion
and knockout lethality (Price et al, 2004; Feist et al, 2009; Oberhardt
et al, 2009). The objective of FBA is to maximize a biomass reaction
describing the relative contribution of metabolites to the cellular
biomass, while finding a steady-state flux distribution �n alongside
additional enzymatic directionality and capacity constraints, together
permitting a maximal growth yield.

Reductive evolution simulations

Reductive evolution starting from the E. coli’s metabolic network was
simulated using a random sequential gene deletion as previously
described by Pál et al (2006). Briefly, these simulations proceed in an
iterative fashion. In each iteration, we randomly choose a gene from
the remaining network model and simulate its deletion by setting the
flux through the corresponding reactions it encodes to zero. We next
run FBA to find the maximum growth yield of the organism following
this deletion. Deletions that do not reduce growth below a certain
threshold are considered viable, and the gene is therefore lost and
excluded from the network from here on. Otherwise, the gene is
considered essential for survival and is retained in the network. This
iterative process is repeated until no further genes can be deleted. As
done in Pál et al (2006), the core reductive evolution procedure is
repeated 2000 times, each time resulting in a different and independent
evolutionary outcome. As in Pál et al (2006), an aggregative process is
performed over all the resulting 2000 final-outcome network models to
pick the most representative one, and its similarity to a reference set of
Buchnera metabolic genes is then assessed via a standard evaluation of
the AUC. Following Pál et al (2006), the cut-off for the fitness effect of
simulated gene deletions was set to 0.01, based on population size and
selection estimations (i.e., a gene was classified as having no fitness
effect, if the biomass production rate of the knockout strain was
reduced by less than a given cut-off). This threshold was used also in
the k-robustness and flux coupling analyses.

Inferring in silico gene loss time in the reductive
evolution simulations

The in silico evolutionary reductive model employed here was carried
in a standard manner using a constraint-based metabolic modeling
approach, following Gianchandani et al (2006). Applying the reductive
evolutionary process, we can set each gene a value indicating its loss
time. This value stands for the number of genes that were successfully
deleted before its own deletion occurred. Taking the mean over these
values across 2000 runs of the core evolutionary reduction process in a
given medium/biomass composition provides us with an in silico
estimation of genes loss time under the specified conditions (which
may then be compared with the phylogenetic loss times).

Phylogenetic reconstruction and inference of
Buchnera gene loss

The genomes of the analyzed Buchnera species were downloaded from
NCBI (ftp://ftp.ncbi.nih.gov/genomes/). Genes were mapped to gene
family by the COG classification (Tatusov et al, 2003), and we
additionally used the metabolic network of E. coli (Feist et al, 2007).
The phylogenetic tree (Figure 1A) was reconstructed based on the tree
of life (Ciccarelli et al, 2006); the sub-tree of the B. aphidicola was
based on the distances (Maximum Parsimony (MP) score) between the
genomes of the three Buchnera strains.

We used Neyman’s two state model (Neyman, 1971), a version of
Jukes–Cantor (Jukes and Cantor, 1969) model for inferring the edge
lengths (the probability of gain/loss of a gene family) of the tree by
maximum likelihood; this was done by PAML (Yang, 1997). The edge
lengths correspond to the probabilities that a protein family will
appear/vanish along the corresponding lineage. The ancestral

reconstruction was done using three different approaches: MP,
Maximum likelihood (considering the edge lengths) and Ancestral
Co Evolver (ACE; Tuller et al (2010a), considering the edge lengths and
additional co-evolutionary information). The results reported in the
main text are those obtained using MP, as they exhibit a higher
resolution of loss times, but the overall trends are similar and a detailed
account of all results is provided in the Supplementary Material.

Let Pa,b denote the probability of gain/loss a gene family along the
tree edge (a,b). We assume that genes cannot be gained in the
evolution of endosymbionts and inferred the ancestral gene families
using a generalized MP method (Fitch, 1971; Sankoff, 1975) whose
penalty for the loss of a gene along the tree edge (a,b) is �log(Pa,b).
In addition, our analyses were based on the ACE algorithm (Tuller et al,
2010a) with the co-evolutionary networks that appear in Tuller et al
(2010a). However, similar results were obtained without the ACE or
when we assume that all the edge lengths are identical.

Empirical P-value estimation of in silico gene
deletion times

An empirical P-value was calculated by producing 500 random orders
of gene deletions, calculating the mean loss time over these 500 orders
and setting an infinity loss time (41260) for genes that are always
retained (to examine whether our simulations capture significant
information on gene loss time beyond that of the end point). Next, we
examined the resulting correlation between this random mean loss
time and the actual phylogenetic reconstructed time. This whole
process was repeated 1000 (n) times while counting the number of
times a random mean loss time resulted with a correlation higher or
equal to that achieved by the original vector of in silico deletion
times (r). The empirical P-value is then calculated as (rþ 1)/(nþ 1).
The empirical P-value reported for the correlation between the
k-robustness index and the phylogenetic loss time was calculated in
a similar manner by permuting the vector of k-robustness index and
examining the resulting correlation to the phylogenetic loss time.

Flux-coupling analysis

Flux-coupled genes were identified by applying the previously
developed flux-coupling algorithm (Burgard et al, 2004) on the E. coli
metabolic reconstruction (Feist et al, 2007). Namely, we looked for
directionally coupled genes where a non-zero flux for v1 implies a non-
zero flux for v2, but not necessarily the reverse. In order to test whether
a gene encoding reactions whose activity is needed for activating the
other reaction have a tendency to be lost later, we applied a binomial
test with P¼0.5 testing for the significance of deviation from the
theoretically expected distribution.

Searching for the most likely environment and
biomass compositions via SA

As described above, we aimed to explore to what extent one can
further increase the correlation between in silico and reconstructed
loss times by searching over the space of potential growth media and
biomass functions, to find pairs of these conditions that markedly
improve the correlation between in silico gene loss time estimations to
that inferred via a phylogenetic reconstruction. Our approach is based
on employing SA (Kirkpatrick et al, 1983) for this search, aiming to
find a fair approximation to the optimal solution.

We start our search by extending the minimal growth medium to
media of size 30, 50, 80, 110 and 140 by adding randomly selected
exchange metabolites and using the original biomass function
(Supplementary Table 2.a, 2.b) as embedded in our starting point,
the E. coli metabolic model. Our search is performed iteratively, each
iteration composed of two basic steps: in the first step, we fix the
biomass and search through the environments space to find the
medium maximizing the mean correlation of in silico and phylogenetic
loss time over the four Buchnera strains, found via repeatedly
performing the core reductive evolutionary process under these
conditions for a number of times (we used five repetitions in each
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step, limited by computational considerations due to the vast size of
the search space). In the second step, we fix the resulting environment
found in the previous step and now search through the biomass space,
identifying biomass compositions achieving the highest mean
correlation. We defined these search spaces to be a union of the
uptake reactions represented in the E. coli model and the recently
published metabolic network model of B. aphidicola by Thomas et al
(2009): eight missing uptake reactions were added to the E. coli model
for the growth media space (overall encompassing 307 potential
uptake reactions). Similarly, the union of the metabolites represented
in the E. coli and Buchnera biomass functions was defined as the
biomass search space (overall encompassing 78 potential biomass
metabolites; Supplementary Table 2.c, 2.d). These two steps are
repeatedly simulated where each time the environment/biomass
obtaining the highest correlation in the previous step is being fixed
and a new search begins. This iterative process was carried on until no
further improvement in the fitness score driving the SA process (the
correlation between in silico and phylogenetic loss time) is obtained.

Searching for an upper bound on the correlation
between in silico and reconstructed loss time

To evaluate an upper bound on the correlation between in silico and
reconstructed loss times, we imposed the gene loss order inferred from
the phylogenetic reconstruction, and repeated the evolutionary
reductive simulations under the conditions obtained by the SA search
(Supplementary Table 2.e and 2.f) when the genes are deleted in that
order: namely, we deleted genes according to their phylogenetic loss
time (i.e., genes lost in the first reductive evolution step were deleted
first, then those that are lost in the second step and so on), as long as
their removal did not harm the model’s ability to grow. We then
evaluated the correlation between the resulting in silico loss time and
the reconstructed one, to obtain a bound on the maximal correlation
possible.

Block deletions simulations

Similarly to the process described by Pál et al (2006), we remove a
randomly chosen block of contiguous genes in the genome. Under the
assumption that deletion size follows an exponential distribution, the
probability of deleting a block with n genes is P(n)¼qn, where
q (0oqo1) specifies the exact shape of the distribution. We then
calculate the impact of deleting the metabolic genes included in a
deleted block. Similar to the single-gene deletion simulations, block
deletions that do not reduce growth below a certain threshold are
considered viable and the corresponding genes are therefore lost and
excluded from the network from here on. Otherwise, the genes are
considered essential for survival and are retained in the network in that
specific iteration (i.e., they can still be deleted in another block
deletion trial). When no further contiguous genes can be deleted,
a single-gene deletion process starts until no further genes can
be deleted. The results are then aggregated over 2000 simulations as
in Pál et al (2006).

Various sources of information

The mRNA levels of E. coli were downloaded from Covert et al (2004),
the tAI values of E. coli genes were computed as in Tuller et al (2010b)
and the PPI network was taken from Tuller et al (2010a).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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