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Abstract

To determine the signaling pathways leading from Met activation to metastasis and poor prognosis, we measured the
kinetic gene alterations in breast cancer cell lines in response to HGF/SF. Using a network inference tool we analyzed the
putative protein-protein interaction pathways leading from Met to these genes and studied their specificity to Met and
prognostic potential. We identified a Met kinetic signature consisting of 131 genes. The signature correlates with Met
activation and with response to anti-Met therapy (p,0.005) in in-vitro models. It also identifies breast cancer patients who
are at high risk to develop an aggressive disease in six large published breast cancer patient cohorts (p,0.01, N.1000).
Moreover, we have identified novel putative Met pathways, which correlate with Met activity and patient prognosis. This
signature may facilitate personalized therapy by identifying patients who will respond to anti-Met therapy. Moreover, this
novel approach may be applied for other tyrosine kinases and other malignancies.
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Introduction

Met is the tyrosine kinase receptor (TKR) for Hepatocyte

Growth Factor/Scatter Factor (HGF/SF). Met-HGF/SF signaling

is crucial for normal development [1–5]. Activated Met mutation

or Met and/or HGF/SF overexpression are associated with

increased angiogenesis, tumorigenesis, invasiveness and metastasis

in numerous human solid tumors (www.vai.org/metandcancer)

[6,7]. Overexpression of HGF/SF and Met in breast carcinoma

[8–10] correlates with triple-negative and basal type tumors

[11,12], and are strong independent predictors of decreased

survival [9,13–15], including stage-I patients [16–19]. Met

overexpression is found in approximately 20% of breast cancer

patients [9,14].

Targeting HGF/SF-Met pathway is becoming an attractive

approach for developing anti-cancer agents [20]. The effects of

several anti-Met drugs are currently investigated in phase-II and

III clinical trials [21]. A crosstalk between Met and other tyrosine

kinase signaling have been demonstrated [22]. Only a fraction of

the patients respond to targeted therapy and some of those patients

ultimately develop resistance, it is therefore necessary to tailor

patient specific treatments [23]. Only a handful of cDNA array

based Met signatures were published [24–26], one of which, a

signature based on Met +/2 mouse hepatocytes [24], correlates

with metastasis and prognosis, but was never validated against

large breast cancer patient data sets.

In this work, we generated a distinct Met signature based on

kinetic mRNA expression alteration following treatment with

HGF/SF on a cellular model. We used Met activation and

inhibition cellular and animal models to demonstrate the

signatures specificity to Met. Moreover, we have shown the

signature’s ability to predict survival in over 1,000 breast cancer

patients. Using a protein-protein interaction network analysis tool,

we demonstrated the association between Met and its signature

genes and identified novel putative Met signaling pathways, which

correlate with Met activity as well as with breast cancer patient

prognosis.

Our main contributions are: (i) using data derived from a

cellular model of TKR activation we identify novel signaling

pathways that are specific to the TKR (Met) and correlate with

patient survival (ii) we demonstrate the utility of the kinetic

signature in determining tyrosine kinase activity in vivo and in

predicting response to anti-Met therapy in cellular models,

potentially serving to personalize anti-Met therapy.

Results

To characterize the effects of Met induction on breast cancer,

we studied a cellular model consisting of five human breast cancer
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cell lines and one normal breast epithelium cell line (MCF10).

Three of the cell lines (MDA231, Hs578T and BT549), designated

as high-Met, had significantly higher Met levels than the other cell

lines (MCF10, MCF7 and T47D) designated as low-Met, as shown

by their HGF/SF binding capacity (methods) (p,1e-4, Figure 1A).

To model the kinetic effect of Met activation in low (MCF10,

MCF7 and T47D) and high-Met (MDA231, Hs578T and BT549)

cell lines, we measured the relative mRNA levels using cDNA

array at four different time points (0 min, 10 min, 30 min, and 24

hours following treatment with HGF/SF). These time points

represent immediate and late responses to HGF/SF (microarray

deposited in ArrayExpress, accession ID: E-MTAB-762, http://

www.ebi.ac.uk/arrayexpress/).

Comparing the relative expression of Met canonical pathway

genes, Met canonical expression score was found to be significantly

higher in the high-Met cell lines as compared to the low-Met cell

lines (p,1e-4, Figure 1B). Moreover, hierarchical clustering

according to Met canonical pathway genes, perfectly segmented

the cell array samples into low and high-Met samples (p,1e-4,

Figure S1 A and Text S1). These results demonstrate the Met

cellular model specificity to Met.

A Met-related kinetic signature was then constructed by

searching for genes that responded to the treatment with HGF/

SF and can also differentiate between samples from the high and

low-Met cell lines. The genes whose mRNA levels were

significantly altered upon HGF/SF treatment (p,1e-4 after

FDR correction) were partitioned into six groups according to

the time and direction of their initial response (Text S1). The only

gene group that gave a perfect separation (p,1e-4) between high

and low Met cell lines consisted of 131 genes down regulated after

10 minutes; this group is henceforth referred to as the ‘‘Met kinetic

signature’’ (Figure 1 C and Table S1).

Enriched gene ontology (GO) terms and KEGG pathways of

Met kinetic signature genes are listed in the Supplementary

Results (Text S2).

We further assessed whether the immediate (10 min.) changes in

gene expression in response to HGF/SF treatment can be

explained by the mRNA half-life of Met kinetic signature genes

(Text S1) [27]. We found that indeed Met kinetic signature genes

had a significantly shorter mRNA half-life than the rest of the

genes in the database (6.9963.3 vs. 8.966.1 hours, p = 0.001). Of

note is that the mRNA half life of Met canonical genes did not

significantly differ from the rest of the genes in the database

(7.763.5 vs. 8.966.1 hours, p = NS). These results may indicate

that the immediate response to HGF/SF on the mRNA level may

play an important role in tumorigenicity.

Met Specificity of Met Kinetic Signature
The ability of the Met kinetic signature to differentiate Met

activation/inhibition was assessed in several cellular and animal

models. We first used mRNA levels from a transgenic mouse

model, expressing an oncogenic variant of Met (Metmt), described

by Ponzo et al. [12], which spontaneously develops mammary

tumors. This analysis demonstrated that hierarchical clustering

significantly segmented the samples into a ‘‘normal’’ and ‘‘tumor’’

groups (p,1e-4), thus showing the signatures specificity to Met

activation.

Next, we used the Met inhibition cellular model described by

Bertotti et al. [26]. In this model, Met-addicted cells were treated

with Met inhibitors vs. control. Using hierarchical clustering, Met

kinetic signature perfectly separated Met inhibited from the non-

inhibited cells (p,0.005).

To demonstrate that the signature does not merely identify high

proliferation rates associated with Met activity, we removed all

cell-cycle related genes (selected by their GO annotation) from

Met kinetic signature and demonstrated that the truncated

signature differentiates between: 1) normal and tumor samples in

the Metmt transgenic mice [12] and 2) Met inhibited vs. un-

inhibited samples [26] (Text S2 and Figure S2).

Figure 1. Met signature segmentation of cell line model and
human breast cancer patients’ data sets. (A) Cells from six human
breast cancer cell lines (MDA231, Hs578T, BT549, MCF10, MCF7 and
T47D) were incubated with purified HGF/SF labeled with biotin by a
protein biotinylation kit and allowed to bind for 30 min. Cells were then
fixed with 4% Paraformaldehyde, permeablized, and stained with
Streptavidin-coupled QDot585. Fluorescence levels calculated by image
analysis using MICA image analysis software, p,0.0001. (B) Met
canonical pathway score calculated by measuring the average mRNA
levels of all Met canonical pathway genes (after normalization to
average = 0, stdev = 1 per-gene) in high-Met (MDA231, Hs578T and
BT549) as compared to the low-Met (MCF10, MCF7 and T47D) samples,
p,0.0001. A gray box denotes high Met cell line samples and a black
box denotes low Met cell line samples. (C) Hierarchical clustering
division of breast cancer cell lines samples using Met kinetic signature
genes.
doi:10.1371/journal.pone.0045969.g001

Met Signature Predicts Breast Cancer Survival
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Taken together, these results may indicate that Met signature

may be able to identify Met activation and inhibition in cellular

and animal models (Figures S3, S4).

Molecular Validation of the Met Kinetic Signature
To validate the cDNA array data expression levels, reverse

transcription polymerase chain reaction (qRT-PCR) was per-

formed on selected genes from the Met kinetic signature: Survivin,

Pbk, Cyclin E1 and Ki67 (The primers used for the quantification

of gene expression are listed in Table S2). The results demonstrate

that the selected genes analyzed, (except Cyclin E1) are expressed

at a higher level in MDA-231 (high Met) as compared to MCF-7

(low Met) cells, in both cDNA microarray and qRT-PCR (Figure 2

A). WB analysis of Met and its phosphorylated form (pMet) and a

pivotal Met canonical signaling protein ERK and its phosphor-

ylated form (pERK) demonstrate that Met is expressed at higher

levels in MDA231 as compared to MCF7 (1.56 fold) and that Met

and ERK are constitutively activated in MDA231 cell line. MCF7

breast cancer cell line expresses low levels of Met and although

HGF/SF induced a 1.86 fold increase in Met phosphorylation, its

levels are significantly lower than in MDA231 cells, by a factor of

6.4. (Figure 2B, Figure S5). As previously shown E-Cadherin is

expressed only in MCF-7 and not in MDA-231 [28]. Survivin

levels are 1.9 fold higher in MDA231 as compared to MCF7

(Figure 2 C). Subcellular localization of survivin was detected using

immuno-fluorescence (IF) staining. Analysis of IF staining dem-

onstrated that in MDA-231 cells, Survivin is localized in the

nucleus as compared to MCF-7 cells, in which Survivin is localized

mainly in the cytoplasm (Figure 2 D, F). IF analysis of temporal

kinetics of Survivin protein expression following treatment with

HGF/SF shows that in MCF-7 cells, Survivin levels are not

significantly altered by HGF/SF. However, in MDA-231 cells,

Survivin levels are significantly reduced 10 minutes following

treatment with HGF/SF (p = 0.03) and then slowly recovered.

These results are in accordance with the cDNA array (Figure 2 E

and Figure S6).

These results validate the expression levels and activation of

Met in the cellular model and the microarray based expression of

several Met kinetic signature genes.

Identifying Novel Met Signaling Pathways
Next, we aimed at uncovering the signaling pathways leading

from Met to the signature genes using ANAT (Advanced Network

Analysis Tool) [29,30]. The inference is based on projecting Met

and the signature genes onto a network of protein-protein

Figure 2. Molecular analysis of Met kinetic signature- mRNA
and protein levels of selected genes in high and low Met
expressing cells. (A) Total cellular RNA, was isolated from low (MCF7)
and high Met (MDA231) cell cultures and mRNA expression of Met,
Survivin, Pbk, Cyclin E1 and Ki67 was evaluated by quantitative real time

PCR and compared mRNA levels of the housekeeping GAPDH gene. The
primers used for the quantification of gene expression are listed in
Table S2. A gray box denotes MCF7 cell line samples and a black box
denotes MDA231 cell line samples (B) Samples from low (MCF7) and
high Met (MDA231) cells were subjected to western blot (WB) analysis,
before and 15 min and 60 min after treatment with HGF/SF, using
antibodies against Met and activated Met (p-Met) and (C) antibodies
against ERK K-23, p-ERK E-4, E-Cadherin, Survivin and Actin C4. (D, E)
Subcellular localization of survivin in fluorescence (IF) analysis of Low
(MCF7) and high Met (MDA231) cells after treatment with HGF/SF at
0 min, 10 min, 30 min and 24 h. The cells were Immunostained using
anti-Survivin antibody. Immunofluorescence was examined using a 510
Meta Zeiss confocal laser scanning microscope (CLSM). Survivin
quantification was performed on at least five confocal images per
slide. Cell outline was defined based on Nomarski images; nuclei were
defined based on the DAPI staining. Average pixel intensity was
calculated separately for the nucleus and cytoplasm areas. (F) IF analysis
of temporal kinetics of Survivin protein expression following treatment
with HGF/SF.
doi:10.1371/journal.pone.0045969.g002
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interactions (PPI), and searching for a putative compact sub-

network that connects them. Overall, ANAT generated 104

pathways, using 95 of the 131 signature genes (36 genes were left

out due to insufficient data) (Figure 3). The network model and the

list of pathways are provided as Table S3.

Seven of the 32 genes included in the Met canonical pathway

are included in the ANAT-derived Met pathways. Moreover, the

most common GO annotation is HGF/SF receptor signaling

pathway (23%). Other significantly enriched GO annotations are

detailed in Text S2.

To validate the ANAT network, we examined if genes that were

found to be a part of a specific Met pathway by ANAT are

significantly co-regulated (Appendix Methods). We found that the

gene-pair correlation distribution comparison of ANAT derived

Met network based on Met cellular model is significantly higher

than that of all the interacting genes in the ANAT database (p,1e-

3) (Figure S7).

To validate the specificity of ANAT’s pathways to Met, we

measured the capability of each pathway to differentiate between

high and low-Met cell-line samples. We compared the results to a

large set of network models derived with randomized data

(Methods). The expression score of 38 out of the 104 calculated

pathways (36.5%) significantly differentiated high vs. low Met cell

lines as compared to a random expectation of 5% (p,1e-4, 30

highly expressed and 8 low/poorly expressed) (Figure S8).

Prognostic Properties of ANAT Derived Met Network
To assess the prognostic ability of ANAT’s pathways, we

measured the capability of each pathway to predict patient

survival in three breast cancer patient cohorts (Chang, Miller and

van ‘t Veer data sets). We compared the results to a large set of

network models derived with randomized data (Methods).

The expression score of 18 (17.3%) pathways correlated with

patient survival in all three data sets (p,1e-4). The expression

score of 11 of these pathways was significantly higher in high-Met

as compared to low-Met samples in the cellular model as well as

correlated with poor prognosis in three large breast cancer cohorts

(Chang, van ‘t Veer and Miller, Table 2). Interestingly, the

expression of pathways whose genes have similar kinetic response

to HGF/SF (pathway with high coherency ranking) in the cellular

model, correlate with poor patient outcome (spearman rank

correlation was -0.316 with p = 0.001). These results indicate that

the coherent pathways play a critical role in Met signaling,

affecting tumorigenesis and metastasis.

To further validate the specificity of ANAT network to Met, we

used ANAT to compute the pathways leading from four

alternative different tyrosine kinases serving as anchors (EGFR,

ERbB2, INSR and PDGFRA) to the 131 genes composing the

Met kinetic signature. Met and ERbB2 ANAT derived network

showed similar number of prognostic pathways (17.3% and

16.6%, respectively, p = NS). However, significantly more Met

Figure 3. ANAT derived Met anchored network. We used the network inference tool ANAT, to construct the putative protein-protein
interaction pathways leading from Met to its kinetic signature genes. ANAT derived Met anchored network is depicted: green nodes– anchor, red
nodes - Met kinetic signature genes, pink nodes - nodes selected by ANAT.
doi:10.1371/journal.pone.0045969.g003
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pathways (17.3%) correlated with patient prognosis, as compared

to the EGFR, ERbB2, INSR and PDGFRA derived ANAT

pathways respectively (7.1%, 6.4% and 5.4%, respectively,

p,0.01).

These results demonstrate the prognostic value of the Met

anchored ANAT derived pathways, the similarity between Met

and ERbB2 signaling pathways and it’s specificity as compared to

the other pathways.

Prognostic Properties of Met Kinetic Signature
mRNA levels and clinical data from three large human breast

cancer patient data sets (Materials and Methods) [31–33] were

used to evaluate the prognostic ability of Met mRNA levels, of its

canonical pathway levels and of the Met kinetic signature. In

contrast to Met protein levels [8,9], the mRNA levels of Met alone

and those of the Met canonical pathway genes did not correlate

with patient survival in all three data sets (Figure S1 B, C).

Turning next to test the Met kinetic signature as differentiator

criteria between different patient characteristics, we used the

signatures genes to cluster the patients in each of six large human

breast cancer patient data sets [31–36] into two groups. The

average Met canonical expression levels in each of the resulting

groups revealed a classification into either ‘‘High Met kinetic

signature’’ or ‘‘Low Met kinetic signature’’ (Table S4). We found

that the High Met kinetic signature is significantly associated with

basal tumors (p,1e-3), and that the low Met kinetic signature is

significantly associated with normal-like and luminal-like tumors

(p,1e-3) in the Chang, GSE3165 and GSE1456 data sets

(Figure 4). Additionally, the high Met kinetic signature correlated

with low estrogen and progesterone receptors, p53 mutations, high

histological grade, BRCA1 mutations, triple-negative tumors and

metastasis (Table 1). Finally, a Kaplan Meier analysis showed that

patients in the high Met kinetic signature groups have significantly

reduced metastasis-free and overall long term survival in all six

cohorts (n = 1145 p,0.01). Moreover, the high Met kinetic

signature levels correlated with reduced metastasis-free and overall

survival in patients with stage I disease (Chang data set) (p,0.01)

(Figure 5).

Comparing the prognostic value of the signature in predicting

patient survival to 100 random signatures, the original signature

outperformed all the randomly chosen ones, testifying to its

validity (Methods).

We also found that Met kinetic signature correlated with patient

survival independent of Basal-like classification (in 3 of 3 cohorts,

p,0.05), estrogen receptor (ER) status (in 2 of 4 cohorts, p,0.05)

and histological grade (in 3 of 6 cohorts, p,0.05). Moreover, the

Met kinetic signature correlated with patient survival even after

removal of cell-cycle genes (in 5 of 6 cohorts, p,0.05) and is

comparable to the 70 gene signature [37] (Text S2 and Table S5

and Figure S9).

Thus Met kinetic signature is associated with triple negative

basal like tumors, and identifies patients with reduced metastasis-

free, disease-related and overall survival.

These results suggest that Met kinetic signature may serve to

identify breast cancer patients with activated Met pathways and

high risk of an aggressive disease, who would benefit from

personalized anti-Met therapy.

Discussion

In the past decade, several microarray-based prognostic

signatures were developed, that combined with other traditional

clinical factors, facilitate management of cancer. Currently,

however, cDNA based signatures do not predict response to

targeted therapies. In this work we lay the grounds for the

identification of breast cancer patients most likely to benefit from

anti-Met therapy.

We have used, a cellular model which simulates a specific TKR

activation to generate a molecular signature which is then applied

on other cellular and animal models combined with several large

scale patient cohorts, strongly supporting its validity. Moreover,

the signature relation to the TKR was validated by activation and

inhibition models as well as by protein-protein interaction network

analysis. We postulate that this methodology may be used to reveal

new signaling pathways and predict response for other oncogenes.

Careful design of the cellular model is critical for its ability to

best differentiate between tumors with low and high Met activity.

Table 1. Met Kinetic Signature correlation with clinical and histopathological data.

Miller Van ‘t Veer Chang GSE3165 GSE1456 GSE11121

Young age NS 0.006 NS 0.04

Size 0.001 0.02 0.003 NS 0.05

Node status NS NS NS

Metastasis 0.006 0.003

BRCA1 mutation ,0.0001

p53 mutation ,0.0001

Estrogen receptor (2) 0.02 ,0.0001 ,0.0001 ,0.0001

Progesterone receptor (2) 0.007 ,0.0001 ,0.0001

High histological Grade ,0.0001 ,0.0001 ,0.0001 0.0007 ,0.0001 ,0.0001

Lymphocytic Infiltrate ,0.0001

Basal-like tumors ,0.0001 ,0.0001 0.004

Triple negative tumors ,0.0001

Reduced metastasis-Free Survival 0.0018 0.0008

Reduced overall Survival 0.001 ,0.0001 0.003 0.0001 0.01

Reduced stage I - Survival 0.0001

doi:10.1371/journal.pone.0045969.t001
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To this aim we: 1) used breast cancer cell lines with low and high

Met expression and activation; 2) used several cell lines in each

group to highlight Met activation features which are not cell line

specific; 3) measured short and intermediate temporal changes in

gene expression following Met activation by HGF/SF and 4) used

multiple replications to ensure data integrity. Taken together,

these measures ensured our cellular model identifies differences in

Met activation between low and high Met samples with high

specificity.

Although the cells were selected only based on their Met

expression levels and their response to HGF/SF treatment, the

high-Met cell lines were assigned to the Claudin-low subtype by

the Perou group while the low-Met cell lines are either of the

luminal cancer subtype or normal cells (MCF10) [38]. The

association between Met activation and basal-like tumors is well

documented [11,12,39,40] and it is therefore understandable that

high-Met expressing cell lines are assigned to the Claudin-low

subtype group while the Met-low cell lines are either of the luminal

cancer subtype or normal cells.

We started by generating Met kinetic signature, based on the

kinetic response to HGF/SF of cell lines with high or low Met

expression. The fact that Met kinetic signature classified the cell

lines to Met-level groups indicates that these genes play a major

role in regulating the biological activities induced by Met.

We do not fully understand why genes which expression is down

regulated shortly after HGF/SF treatment, on one hand

differentiate between High and Low Met samples in the cellular

model, and on the other hand high expression of these genes

correlate with poor prognosis. One possible explanation relates to

the role of many of these gene products in cell cycle regulation and

DNA replication and repair. Such genes’ expression is tightly

regulated with regard to the cell cycle phase. In the cellular mode,

the kinetics measured hint towards short-term HGF/SF induced

cell cycle synchronization as opposed to the altered expression in

the unsynchronized tumor cells. These immediate changes in the

expression of Met kinetic signature genes may also relate to the

relatively short half life of Met kinetic signature genes. Moreover,

the immediate response might be more specific to Met while the

long term response may represent the similarity in all TKR

signaling pathways.

The classification between High and Low Met kinetic signature

correlates with histopathological and clinical features. Thus, most

of the tumors in the ‘‘High Met kinetic signature’’ group were

basal-like tumors and the patients had reduced disease free

intervals and poor prognosis independent of its Claudin classifi-

cation (Table S5). These results are in accordance with the results

published recently, which show that Met-related tumors are basal-

like and are associated with poor outcome [11,12].

To assess the relation between Met and its kinetic signature

genes, we used ANAT, a new interactive software tool for

elucidating functional networks of proteins [29], to map the

pathways leading from Met to its signature genes. We have shown

that the ANAT derived Met network is specific to Met by showing

that: 1) the proportion of ANAT derived pathways who are

enriched with HGF/SF receptor signaling pathway is significantly

high; 2) the gene-pair correlation distribution comparison of

ANAT derived Met network based on Met cellular model is

significantly higher than that of all the interacting genes in the

ANAT database and 3) the proportion of ANAT derived pathways

which differentiate between high vs. low Met cell lines samples is

significantly high.

We have then showed that the ANAT derived Met network is

enriched with pathways whose gene values correlate with patient

prognosis. Moreover, networks recalculated the after replacing

Met with EGFR, ERbB2, INSR and PDGFRA, yielded far less

prognostic pathways, indicating the signatures specificity to Met

and patient prognosis.

The ANAT derived network linking Met and its kinetic

signature genes revealed eleven novel putative pathways which

correlate with Met activity and breast cancer patient prognosis.

These pathways contain genes that are involved in cell migration,

invasion, proliferation, cell cycle and some correlate with anti-

estrogen resistance and p53 deactivation. Genes from all eleven

pathways were found to be associated with Met and with cancer

progression (Table 2). Detailed analysis on 5 of these pathways and

their relation to Met activity and breast cancer can be found in

Text S2.

Importantly, we found a correlation between the coherencies of

the ANAT derived Met pathways in the cellular model and their

prognostic value in breast cancer patients, indicating biological co-

regulation of prognosis-associated Met pathway genes.

Multiple analyses were used to demonstrate the signature’s

specificity to Met and its robustness as prognostic marker for

breast cancer. Specifically, by demonstrating its prognostic

Figure 4. Analysis of the association between High Met kinetic
signature and basal-like tumors. Hierarchical clustering was used
to divide three large breast cancer patient cohorts (Chang (A), GSE3165
(B) and GSE1456 (C)), according to Met kinetic signature genes. The
resultant patient groups were analyzed for association with tumor
molecular classification. A gray box denotes patients in the low Met
activity group and a black box denotes patients in the high Met activity
group.
doi:10.1371/journal.pone.0045969.g004
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capabilities on more than 1000 patients in six different breast

cancer patient cohorts.

To establish its role in identifying breast cancer patients who

will most benefit from anti-Met therapy, we showed that Met

kinetic signature: 1) identifies high Met activity in a cellular model

as well as Met-specific tumors in a Metmt animal model; 2)

differentiates Met inhibited cells from control in a Met-addicted

cellular model and 3) predicts long term prognosis on a large

cohort of patients. Met pathway signature was found to be

comparable to other classification methodologies (i.e. the 70 gene

signature [37] see Text S2). In contrast to the 21-gene signature,

Oncotype DX [41], which predicts prognosis only in ER-positive,

node-negative disease, our signature predict outcome in ER

negative and positive patients in different stages of the disease.

Met kinetic signature may also open a new spectrum of therapy

targets, through understanding of the molecular mechanism of

Met activity in the tumor. We hypothesize that this signature will

enable personalized therapy by identifying patients in which anti-

Met therapy will suppress Met downstream signaling and delay

tumor progression. Clinical trials are needed to study Met pathway

signature’s role as a clinical tool to identify breast cancer patients

most likely to benefit from personalized anti-Met therapy.

Methods

Details regarding the preparation and characterization of the

cellular model, generation of the cDNA arrays its validation by

qRT-PCR, immunofluorescence and Western blot, as well as

description of Met kinetic signature generation are listed in Text

S1.

Cell Culture
Human breast cancer cell lines expressing low Met (T47D,

MCF7),or high constitutively activated Met (Hs578T, BT549,

MDA231) and a human cell line derived from normal breast

epithelium (MCF10 [42]) (obtained from American Type Culture

Collection, Bethesda, MD), were cultured in 1640 RPMI medium

containing 5% FBS, and PSN (Biological Industries, Israel).

Hs578T, BT549, MDA231 and MCF10 are estrogen receptor

(ER) negative while T47D and MCF7 are ER positive [43,44].

HGF/SF Binding
Breast carcinoma cells were grown on glass bottom plates

(MatTek, MA, USA). Cells were incubated with purified HGF/SF

[45] labeled with biotin by a protein biotinylation kit (Amersham

Biosciences) and allowed to bind for 30 min. Cells were then fixed

with 4% Paraformaldehyde, permeablized, and stained with

Streptavidin-coupled QDot585 (Quantum Dot Corporation,

Carlsbad California USA). Fluorescence levels were analyzed

using MICA (CytoView Ltd, Petah-Tikva, Israel).

Published Human Breast Cancer Microarray Data Sets
We used six published large data sets of genome-wide

expression measurements taken from breast cancer patients: (i)

The Miller data [32] consists of 251 primary breast tumors,

clinical indices include overall patient survival. (ii) The Van’t veer

data [31] set is based on biopsies from 117 young, node-negative

breast cancer patients. Clinical indices include BRCA1 mutation

status and metastasis-free survival. (iii) The Chang data [33] is

based on a consecutive series of 295 early breast cancer patients

which was used to validate a ‘‘wound-response’’ signature.

Notably, there is an overlap of 31 patients between Van’t veer

Figure 5. Kaplan Meier survival analysis of Met kinetic signature’s segmentation of human breast cancer patient cohorts. Hierarchical
clustering was used to divide six large breast cancer patient cohorts into high vs. low Met kinetic signature. Kaplan Meier analysis of overall survival
(A,B,C,D,E) and metastasis-free survival (F,G) of the Chang (A, F, H, I), Miller (B), GSE1456 (C), GSE3165 (D), GSE11121 (E) and van ‘t veer (G) data sets.
Kaplan Meier analysis of overall survival (H) and metastasis-free survival (I) of stage-I patients in the Chang data set. A red line denotes patients with
high Met kinetic signature and a blue line denotes patients with low Met kinetic signature. In Chang data set, Met kinetic signature has a positive
predictive value (PPV) and negative predictive value (NPV) of 41% and 82%, respectively.
doi:10.1371/journal.pone.0045969.g005

Table 2. ANAT derived pathways that correlate with Met activity and prognosis.

ANAT Derived Pathways
p-value (Met
cellular model)

p-value (prognosis on
3 BC cohorts) Association with Met Association with cancer

MET - CASP3 - CDKN1A - DTL 0.0012 0.0067 [48,49] [48,50]

MET - CASP3 - PARP1 - POLA2 0.0013 0.0038 [48,49] [48]

MET - CBL - LYN - CDC2 - Survivin ,0.0001 0.0022 [40,51–54] [40,55–58]

MET - CBL - LYN - CDC2 - CCNE1 0.0090 0.0052 [40,51,52,54] [40,57–59]

MET - CBL - LYN - CDC2 - MKI67 ,0.0001 0.0220 [17,40,51,52,54] [40,57,58]

MET - CBL - LYN - CDC2 - PBK ,0.0001 0.0072 [40,51,52,54] [40,57,58,60,61]

MET - CDH1 - RRM2 0.0003 0.0052 [62,63] [63,64]

MET - GRB2 - BCAR1 - YWHAZ - MLF1 -
MLF1IP

0.0070 ,0.0001 [65] [66–68]

MET - GRB2 - JAK2 - STAM - STAMBP -
CTNNBL1

0.0002 0.0390 [69,70] [71,72]

MET - GRB2 - PTK2 - TP53 - NP - TFAM 0.0079 0.0318 [19,73,74] [73–75]

MET - GRB2 - PTK2 - TP53 - RRM2 - RRM1 0.0003 0.0148 [19,73,74] [73,74,76]

p-values for differentiation between high and low Met samples in the cellular model and for differentiation between patients with good and poor prognosis in three
large BC patient cohorts (Chang, Miller and van ‘t Veer) are provided. Reference for the association between the pathway genes, Met acivity and cancer progression are
also provided.
doi:10.1371/journal.pone.0045969.t002
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and Chang data sets. Clinical indices include metastasis-free and

overall patient survival. (iv) GSE3165 data [34] is based on 232

human breast tumor and normal tissue arrays, which was used to

validate a Metmut mammary tumor model, described by Graveel et

al [11]. (v) GSE1456 data [35] is based on 159 breast cancer

samples. (vi) GSE11121 data set [36] is based on 200 tumors of

breast cancer patients who were not treated by systemic therapy

after surgery.

Calculating a Whole-pathway Expression Level
To assess the expression level of a given pathway in a given

sample, we calculated the average z-score of all the genes in the

pathway. We used this procedure to define the expression of the

Met canonical pathway (the Met canonical expression score), including

a list of Met canonical pathway genes according to published

literature (Text S1) [6].

We calculated the expression score of pathways derived from

the protein-protein interaction (PPI) network (described below) in

the same manner.

Evaluating the Prognostic Value of Met Kinetic Signature
on Human Breast Cancer Patients

We evaluated the predictive power of the signature with respect

to several phenotypes (i.e., high vs. low Met cell-lines, patient

survival, lymph-node status, tumor classification etc.) by clustering

the patients into two groups using hierarchical clustering as

previously described.

Met canonical expression score was then calculated for patients

in each group. The group with the higher score average was

designated ‘‘High Met kinetic signature’’ and the other group was

designated ‘‘Low Met kinetic signature’’ (the differences between

the group are depicted in Table S4). We then tested the

concordance between the two groups and several clinical

phenotypes. For the survival phenotypes we used a Kaplan-Meier

analysis. For discrete phenotypes such as BRCA1 mutation status,

we used a Chi-square test. For continuous phenotypes (age, and

tumor size), we used two-tailed t-test, comparing the distribution of

phenotype levels in the two groups.

To study the specificity of the prognosis obtained using the

kinetic signature, we compared the p-values obtained from the

Kaplan-Meier analysis to those obtained with 100 random

signatures (of similar size as the signature) sampled from the

cDNA array. We evaluated the prognostic value of each signature

by taking a lower bound on its performance across all three

(Chang, Miller and Van’t Veer) data sets (i.e., taking the

maximum p-value). To further validate Met kinetic signature,

we evaluated its association with classical (TNS-tumor grade,

number nodes, stage) tumor characteristics and patient prognosis,

on additional three human breast cancer data sets [34–36].

Constructing a Protein-protein Interaction Network
Model

ANAT (Advanced Network Analysis Tool) is a new interactive

software tool for elucidating functional networks of proteins [29].

It encompasses a number of state-of-the-art network inference

algorithms and provides access to up to date networks of

experimentally validated PPIs in several organisms (including

human). Every interaction in the database is assigned with a

confidence score based on the number and type of experiments in

which it was observed. In difference from existing software tools,

ANAT is uniquely capable of inferring network models that

connect hundreds of proteins to each other or to a given set of

‘‘anchor’’ proteins.

We used ANAT to construct the most likely network that

connects the proteins encoded by the newly found signature to

Met (acting as an anchor). After an initial construction of the

network, we performed minor adjustments by forcing direction-

ality on several of the edges (from HGF/SF to Met, from GRB2 to

EGFR and from CBL to EGFR), and by removing FGFR1 and

FGF3 (as they are in parallel to Met pathway and not part of it). If

a specific pathway was found to be included in another, the longer

pathway was excluded from the network.

Evaluating the Specificity of the ANAT Derived Met
Pathways and their Prognostic Value

The specificity of the ANAT predicted Met pathways’ was

assessed by comparing each pathway’s expression score in high

versus low-Met cell lines. To evaluate its prognostic value in breast

cancer patients, we compared the expression score of each

pathway between patients with good prognosis (at least 5 year

follow-up, who did not die from the disease or developed

metastasis during follow-up) and patients with bad prognosis

(those who died from the disease or developed metastasis at any

time during follow-up). On both tests, significance is estimated

using a two-tailed t-test.

To evaluate the specificity of the results, we performed two

analyses using (i) another tyrosine kinase growth factor receptor as

an anchor to the Met signature genes and (ii) using ANAT to

construct 100 Met anchored networks using 100 random

signatures of the same size as the Met kinetic signature. We

compared the significance levels obtained for the pathways of the

original network to those of the random pathways, determining a

pathway as significant if its level scored higher than 95% of the

random pathways. To evaluate the significance of the Gene

Ontology (GO) [46] annotation enrichment of the Met-signature

pathway genes, we compared to random pathways genes GO

annotation using a hypergeometric test.

To further validate the ANAT network, we examined if genes

that were found to be a part of a specific Met pathway by ANAT

are significantly co-regulated. Indeed, it was recently shown that

two proteins that share the same pathway and are co-regulated by

specific factors/elements are also co-expressed and their expres-

sion levels are correlated [47]. To perform this test, we calculated

the correlations of mRNA levels (in the 6 cell-lines data) between

genes that are connected by an edge in the ANAT derived

network. As a background control we computed the correlations

between all the interacting genes in the ANAT database (over

40,000 pairs). Comparison of the two distributions was performed

using Wilcoxon-Mann–Whitney test and t-test.

Cellular Model Derived Met Pathway Coherency and its
Relation to Patient Survival

The coherency ranking of a pathway is defined as the average

correlation of consecutive pairs of genes along the pathway. For

each pathway we calculated: 1) the coherency ranking of the

ANAT derived pathways based on the cellular model (after

normalization to average = 0, stdev = 1 per-gene, per-cell line), 2)

pathway expression score for each patient in the breast cancer

patient data sets. We calculated each pathway’s predictive value by

comparing the pathway expression score between good and bad

prognosis patients using student’s t-test on each data set. The

log10() of the worst p-value between all data sets was designated as

the pathway’s prognosis ranking. The relation between the

coherency and the prognosis ranking of ANAT derived pathways

was determined using Spearman’s rank correlation.
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Supporting Information

Figure S1 Hierarchical clustering of the cell line model
according to Met canonical pathway genes. Hierarchical

clustering of the breast cancer cell line model according to Met

canonical pathway genes, perfectly segmented the cell array

samples into low and high-Met samples (p,1e-4) (A). Met

canonical pathway score correlates with patient survival in only

one of three breast cancer patient data sets (B). Met mRNA levels

did not correlate with patient survival in all three breast cancer

patient data sets (C).

(PDF)

Figure S2 Met kinetic signature after removal of cell
cycle genes, identifies Met activity and predicts survival.
Cell cycle genes (according to their GO annotation) were removed

from the Met kinetic signature, resulting in a 96 gene signature.

The reduced signature significantly correlated with Met activation

animal model (A) and Met inhibition cellular model (B) and

predicted survival in five of six large breast cancer patient cohorts:

van ‘t Veer (C), Miller (D), Chang (E), GSE3165 (F), GSE1456 (G)

and GSE11121 (H).

(PDF)

Figure S3 Hierarchical clustering of mutationally acti-
vated Met mouse model according to Met kinetic
signature genes. We used mRNA levels from a mutationally

activated Met mouse model and found that using Met kinetic

signature, hierarchical clustering significantly segmented the

samples into a ‘‘normal’’ and ‘‘tumor’’ groups (p,1e-4).

(PDF)

Figure S4 Hierarchical clustering of Met inhibition
cellular model according to Met kinetic signature genes.
Using the Met inhibition cellular model described by Bertotti

et al., we found that Met kinetic signature perfectly separated Met

inhibited samples in the high-Met cell line and also the EGFR

inhibited samples in the EGFR-addicted samples (p,0.005).

(PDF)

Figure S5 Quantification of Western blot analysis. Basal

levels of Met are 1.56 times higher in MDA231 as compared to

MCF7 cells and treatment with HGF/SF did not significantly

change Met basal levels in either both cell lines (A). Levels of pMet

are 6.4 times higher in MDA231 as compared to MCF7 cells.

Sixty minutes following treatment with HGF/SF, pMet levels are

1.86 higher in MCF7 as compared to base line, but are still

significantly lower than in MDA231, whose pMet levels did not

significantly change following treatment with HGF/SF (B). Levels

of ERK in MCF7 and MDA231 are similar (C). Levels of pERK

are 15 times higher in MDA231 as compared to MCF7 cells.

Levels of pERK did not significantly change following treatment

with HGF/SF (D). As expected, E-cadherin levels are almost

undetected in MCF7 cells and in MDA231, its levels are elevated

following treatment with HGF/SF (E). Survivin levels are 1.9

higher in MDA231 as compared to MCF7 cells and do not

significantly change following treatment with HGF/SF (F).

(PDF)

Figure S6 Survivin immuno-fluorescence in MCF7 and
MDA231 cells. MCF7 and MDA231 cells were incubated with

the primary antibody anti-Survivin (Santa Cruz, 1:50). Slides were

analyzed using a 510 Meta Zeiss confocal laser scanning

microscope (CLSM). When comparing fluorescence intensities,

identical CLSM parameters (e.g. pin hole, scanning line, laser

light, contrast and brightness) were used. To compare the relative

levels of protein expression, we used the average area intensity

(AAI) image analysis procedure for cells immunostaining. The

image analysis calculations were performed on five to ten

microscopic fields. Cell outline was drawn based on DIC images;

nuclei were defined based on the DAPI staining. Average pixel

intensity was calculated separately for the nucleus and cytoplasm

areas. (MICA software; Cytoview, Petach Tikva, Israel). Variance

was analyzed by student’s T-test.

(PDF)

Figure S7 Gene-pair correlation distribution compari-
son of ANAT derived Met network. The gene-pair

correlation distribution comparison of ANAT derived Met

network is significantly higher then that of all the interacting

genes in the ANAT database (p = 0.0006).

(PDF)

Figure S8 Expression score of ANAT-derived pathways.
The expression score of 38 out of the 104 calculated pathways

(36.5%) significantly differentiated High vs. Low Met cell lines as

compared to a random expectation of 5% (p,1e-4, 30 highly

expressed and 8 low/poorly expressed).

(PDF)

Figure S9 Subgroup analysis of Met kinetic signature by
ER status. Subgroup analysis of Met kinetic signature by ER

status in van ‘t Veer, Miller, Chang and GSE3165 data sets

showed that high-Met kinetic signature correlated with poor

prognosis in ER+ patients, but not in ER- patients.

(PDF)

Table S1 Met Kinetic Signature genes.

(PDF)

Table S2 Primers for qRT-PCR. The following primers
are used for the quantification of gene expression.

(PDF)

Table S3 ANAT derived pathways originating from Met
to the kinetic signature genes.

(PDF)

Table S4 Differences in Met canonical pathway expres-
sion score between patient groups segmented by Met
kinetic signature.

(PDF)

Table S5 Cox proportional hazards regression survival
analysis using Met kinetic signature and basal-like
classification on three breast cancer patient cohorts.

(PDF)

Text S1 Supplemental Methods.

(DOC)

Text S2 Supplemental Results.

(DOC)
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