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At its most basic, science is about 
models. Natural phenomena that 
were perplexing to ancient humans 

have been systematically illuminated as sci­
entific models have revealed the mathemat­
ical order underlying the natural world. But 
what happens when the models themselves 
become complex enough that they too must 
be interpreted to be understood?

In 2012, Jonathan Karr, Markus Covert 
and colleagues at the University of   Cali­
fornia, San Diego (USA) produced a bold 
new biological model that attempts to sim­
ulate an entire cell: iMg [1]. iMg merges 
28 sub-modules of processes within 
Mycobacterium genitalium, one of the sim­
plest organisms known to man. As a systems 
biology big-data model, iMg is unique in 
its scope and is an undeniable paragon of 
good craft. Because it is probable that this 
landmark paper will soon be followed by 
other whole cell models, we feel it is timely 
to examine this important endeavour, its 
challenges and potential pitfalls.

Building a model requires making many 
decisions, such as which processes to glaze 
over and which to reconstruct in detail, how 
many and what kinds of connections to forge 
between the model’s constituents, and how 
to determine values for the model’s para­
meters. The standard practice has been to 
tune a model’s parameters and its structure 
to a best fit with the available data. But this 
approach breaks down when building a large 
whole cell model because the number of 
decisions inflates with the model’s size, and 
the amount of data required for these deci­
sions to be unequivocal becomes huge. This 
problem is fundamental, not merely techni­
cal, and is rooted in the principle of frugality 
that underlies all science: Occam’s razor.

The problem posed by Occam’s razor 
is that there are vastly more potential large 
models that can successfully predict and 
explain any given body of data than there 
are small ones. As we can tweak increas­
ingly complex models in an increasing 

number of ways, we can produce many 
large models that fit the data perfectly and 
yet do not reflect the cellular reality. Even if 
a model fits all the data well, the chance of 
it happening to be the ‘correct’ model—in 
other words the one that reflects correctly 
the underlying cellular architecture and rel­
evant enzymatic parameters—is inversely 
related to its complexity. A sophisticated 
large model such as iMg, which has been fit­
ted to many available datasets, will certainly 
recapture many behaviours of the real sys­
tem. But it could also recapture many other 
potentially wrong ones.

How do we test a model’s correctness 
in the sense just mentioned? The intuitive 
way is to make and test predictions about 
previously uncharted phenomena. But vali­
dating a large biological model is an inher­
ently different challenge than the common 
practice of “predict, test and validate” cus­
tomary with smaller ones. Validation using 
phenotypic ‘emerging’ predictions would 
require such large amounts of data that it 
would be highly inefficient and costly at this 
scale, especially as many of these predic­
tions will turn out to be false leads, with neg­
ative results yielding little insight. Rather, the 
correctness of a whole-cell model is perhaps 
best validated by using a complementary 
paradigm: direct testing of the basic deci­
sions that went into the model’s construc­
tion. For example, enzymatic rate constants 
that were fitted in order to make the model 
behave properly could be experimentally 
scrutinized for later versions. Performing 
extensive sensitivity analyses and incorpo­
rating known confidence levels of model­
ling decisions, or harnessing more advanced 
methods such as ‘active learning’ should all 
be used in conjunction to determine which 
parameters to focus on in the future. The 
process of validating a large model should 
thus be viewed as an ongoing mission that 
aims to produce more refined and accurate 
drafts by improving low-confidence areas 
or gaps in the model’s construction. Step 

by step, this paradigm should increase a 
model’s reliability and ability to make valid 
new predictions.

An open discussion of the potential pit­
falls and benefits of building complex bio­
logical models could not be timelier, as 
both the EU and the US have just committed 
more than a combined 1.4 billion dollars to 
explicitly model the human brain. Massive 
data collection and big data analysis are 
the new norm in most fields, and big mod­
els are following closely behind. Their cost, 
usefulness and application remain open for 
discussion, but we certainly laud the spirit 
of the effort. For what is certain is this: only 
by building these models will we know 
what usefulness we can attribute to them. 
Paraphrasing Paul Cezzane, these efforts 
might be indeed justified and worthy, so long 
as one is “more or less master of his model”.
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