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6. Click the “Export” button to save the modifi ed background network as an XML fi le. This fi le can be saved anywhere and used in future 
ANAT sessions.

Note: This step is optional. To upload a previously defi ned background network, click the “Import” button and select the 
corresponding XML fi le. An example fi le (ANAT_PCD_bckground.xml) is provided in the Autophagy Input fi les in the Supple-
mentary Materials.

Modifying nodes in a background network

This section describes how to add or remove nodes in a background network, as well as how to assign node confi dence values. These steps 
are optional; they allow the background network to be customized with additional knowledge or allow the user to specify how the algorithm 
computes the inclusion of certain nodes in the network. By setting a node confi dence level, one can encourage the algorithm to use certain 
nodes (associated with confi dence values close to 1) and exclude others (associated with confi dence values near 0). By default, node confi dence 
levels are not assigned. Once a confi dence value is added to any node, this option then becomes enabled for all nodes. Nodes that were not 
assigned confi dence values individually will be assigned a default value, which can be set by the user. Node confi dence levels are ignored in 
the “General networks” algorithm option.

1. To add a new node, click “Add new node” in the “Modify node” panel, enter the node’s name and, if desired, set its confi dence value 
(Fig. 3A, right).

2. To remove an existing node, enter the node name under the “Name” column and select “REMOVE” from the “Action” column.

Note: ANAT uses an auto-complete function for entering node names. Entering the fi rst few letters will present a dropdown list of 
nodes that have the same prefi x. A user cannot enter the name of a node that is not already included in the network (it either is in 
ANAT’s database or was manually added using step 1). This functionality is active in all of ANAT’s menus. The “Remove line” button 
will delete the currently selected entry. This functionality is available in all of ANAT’s menus.

3. To set the confi dence of an existing node, enter the node name under the “Name” column, select “SET” from the “Action” column, and 
enter its confi dence value in the “Confi dence” column.

4. Check the “Use node confi dence” box to enable the use of node confi dence values. Enter the default confi dence value (for any node that 
was not assigned a specifi c confi dence value) using the text box to the right.

Fig. 3. ANAT menus. (A) Background network menu: After select-
ing a base network [organism and interaction type (PPI, PDI)], this 
menu provides an interface for various modifi cations of the base-
line network, which is done before construction of the network 
model. To defi ne the programmed cell death (PCD) background net-
work, we selected the human PPI network from the “Base network 
(Species)” list. We added several PCD proteins that did not have 
any interactions recorded in the public databases used by ANAT in 
the “Modify node” panel and manually assembled and added inter-
actions between PCD proteins and forced directionality of flow 

(denoting one protein as source and the other as target) on a subset 
of the PCD edges that had no directionality information in the pub-
lic databases using the “Modify edge” panel. (B) Anchored network 
menu: The primary inputs for this menu are the target set (left) and an 
anchor set (right); the output is a network that connects each target 
to at least one of the anchors. To construct the autophagy-apoptosis 
crosstalk network, we entered a list of autophagic genes as targets 
and caspase-3, the main apoptosis executioner, as a sole anchor. 
This is where the network parameters are adjusted by choosing the 
“Advanced” button to display the screen shown.
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Note: This step is optional. The box will be automatically checked if step 3 was carried out. Unchecking the box will cause ANAT to 
ignore node confi dence values.

5. To enter additional information on nodes (in free text format), edit the “Info” column.

Note: This step is optional.

Modifying edges in a background network

This section describes how to add a new relation or edge between two nodes, how to remove edges between nodes, and how to set the direction-

ality of relations. These steps are optional. As with nodes, edges can have confi dence values from 0 to 1. The confi dence levels assigned with 

PPI edges that already exist in ANAT are based on the amount of supporting information. The PDI edges are assigned a fi xed confi dence value 

of 0.6. Because of insuffi cient data for some of the organisms, all PPI edges for those organisms are assigned a value of 1. Assigning confi dence 

levels close to 1 will encourage the algorithm to include the respective edge, whereas confi dence levels close to 0 will encourage exclusion.

1. To add a new edge, enter the names of the interacting nodes in the fi rst two columns of the “Modify edge” panel (Fig. 3A, right).

2. Under “Action,” choose “SET DIRECTED” for a directed edge (from the node in the fi rst column to the node in the second column) or 

“SET UNDIRECTED” for undirected edge.

3. Under “Confi dence,” enter a confi dence value. The default value is 0.2.

4. Enter additional information at the “Additional info” fi eld.

5. To modify an existing edge, enter the names of the interacting nodes in the fi rst two columns; then, if desired, choose “SET DIRECTED” 

under “Action” to force directionality on the edge (from the node on the fi rst column to the node in the second) and, if desired, enter a 

confi dence value to override the default confi dence. Optional additional information may also be added.

6. To remove an existing edge, enter the names of the interacting nodes in the fi rst two columns and choose “REMOVE EDGE” under 

“Action.”

Generating a Network Model

The following instructions are for constructing an anchored network. The other three types of network construction tasks (general networks, 

shortest paths, and local search) have a similar workfl ow.

The menus for network construction include all the parameters that apply to the particular task. In the example of anchored networks (Fig. 3B), 

the menu includes the local-global parameter (alpha), the node and edge penalties, and the margin parameter. Additionally, the menu allows 

setting a constant confi dence score to all of the PDI or PPI edges (Fig. 3B, bottom text boxes). These values will override the default confi dence 

scores in ANAT.

1. From the control panel in the ANAT menu (Fig. 2, left), click “New subnetwork”; this will open the New subnetwork screen (Fig. 3A).

2. Enter the title of the analysis in the “Title” text box.

Note: In the example, this is “Autophagy-apoptosis case study.”

3. Select the desired construction algorithm from the “Algorithm” panel (in this case, “Anchored networks”).

4. Select the desired organism and interaction type (PPI, PDI) from the “Base network (Species)” menu (Fig. 3A, bottom left)

5. Click the “Advanced” button at the bottom of the screen to enable the “Modify base network” menu (Fig. 3A, bottom left). Choose the 

modifi ed network from the dropdown list (Fig. 3A, top right) or follow the steps above for importing or creating a modifi ed background 

network.

Note: Skip this last step if no modifi cations to the base network are needed.

6. Click “Next” and enter the respective list of anchor and target genes by either typing in the gene names in the “Terminals” and “Anchor” 

panels or by uploading an XML fi le using the “Import” button (Fig. 3B).

Note: The input can be imported or exported with the XML “Export” or “Import” buttons. An example fi le (input.xml) is provided in 
the Autophagy Input fi les in the Supplementary Materials.

7. Click the “Advanced” button to set the relevant parameters

Note: The “Advanced” button acts as a toggle and once it is selected, the button becomes “Simple” as seen in Fig. 3B. The alpha 
parameter is denoted as “Global-local balance” in the advanced screen.

8. Click “Finish” to send the query to the server, which will load a new screen that displays the generated network.
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Exploring the Network

1. Explore the information about the nodes and edges by clicking the “Node Attribute Browser” or “Edge Attribute Browser” button, 

respectively (Fig. 2, bottom).

Note: To view the information about a specifi c node or edge, left-click the node or edge of interest in the graphical display. Figure 2 
shows the information for the edge connecting caspase-8 (CASP8) to caspase-3 (CASP3).

2. View the HTML reports, which provide information on node centrality and on the different submodels within the network, by clicking 

“Open html report” in the “Modify current subnetwork” panel (Fig. 2, bottom left).

Note: The HTML reports are routinely deleted from the server. To keep these results, save them locally on your computer

3. View all of the immediate interactors of a given node by right-clicking a node and selecting “Expand node.”

Refi ning the Network Model

Modifi cations can be made to nodes and edges or to general parameters of the model, such as margin, edge penalty, and node-degree penalty. 

General parameters are modifi ed from the “Modify parameters” button that is part of the “Modify current subnetwork” panel of the main con-

trol panel. Modifi cations to nodes and edges can be made through contextual menus that are integrated within the graphical display or through 

a separate menu accessed from the “Modify current subnetwork” panel, both of which are described in detail.

Modifying a network using contextual menus

1. Right click the desired node or edge and choose “Modify ANAT subnetwork.”

2. Choose the desired action (“Remove node,” “Remove edge,” or force directionality on edge).

3. Once the insertion of new constraints is complete, click the “Recalculate” button in the “Modify current subnetwork” panel (Fig. 2, 

bottom left) to generate the new model.

Modifying a network using the constraint menu

1. Click the “Add/remove constraints” button (Fig. 2) to open a window that shows the status of all the currently used constraints (any 

removed nodes, removed edges, or directed edges).

Note: The status of a constraint is “active” if the network was recalculated after its addition, and “pending” otherwise.

2. Use the Nodes and Edges panels to add or remove constraints.

Note: This menu also allows the user to save the modifi cations and upload previously saved modifi cations by clicking the “Import” 
or “Export” buttons.

3. Once the insertion of new constraints is complete, click “Close” and then click the “Recalculate” button in the “Modify current subnet-

work” panel (Fig. 2, bottom left) to generate the new model.

Reproducing the Case Study Network

As a case study, we applied ANAT to generate a network that connected apoptotic and autophagic proteins in humans. The following instruc-

tions describe how to reproduce this network. The fi les needed to execute these steps are provided in the Autophagy Input fi les as part of the 

Supplementary Materials.

1. Click the “New subnetwork” button.

2. From the list of networks, select “H. sapiens”; from the list of algorithms, choose “Anchored networks.”

3. Enter the analysis title (“Autophagy-apoptosis case study”) in the title fi eld.

4. Click the “Advanced” button.

5. In the “background network” menu, import the fi le “ANAT_PCD_bckground.xml” and click “Next.”

6. In the Anchored Networks screen, import the fi le “input.xml.”

7. Click “Finish.”

8. To view the analysis of the pathways in the resulting autophagy-apoptosis crosstalk network, click the “Open html report” button.
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Reproducing the Case Study Alternative Models

The following steps assume that the autophagy-apoptosis crosstalk network is the currently active network in ANAT.

1. Click “Modify parameters.”

2. Click “Advanced.”

3. To generate the fi rst alternative model, check the “Enable node penalty” checkbox.

4. To generate the second alternative model, enter “1” in the “Margin” text box.

5. Click “Finish.”

Querying an External Database

ANAT can be employed as an algorithmic engine for querying external databases. This can be done by defi ning a new background network that 

only contains the nodes and edges in the external database:

1. Click “New subnetwork.”

2. From the list of networks, select “E_empty.”

3. Click “Advanced” and then use the background network menu to enter the nodes and edges from the external database.

Note: These data can be entered manually or by importing a user-generated XML fi le. Details for the format of the XML can be found 
in the ANAT User Manual in the Supplementary Materials.

4. Continue with the analysis as described above.

Related Techniques

We compared ANAT to several published resources for network inference: BisoGenet (19), PPISpider (17), STRING (20), FunCoup (16), 

BioPixie (11), and GeneMANIA (25) (Table 1). BisoGenet is a Cytoscape plug-in that performs a neighbor selection procedure, which is 

similar to the local search task in ANAT. The next four tools have a Web-based interface and perform heuristic network expansion, starting 

from an initial query set of proteins. For instance, PPISpider conducts a greedy selection of connected components made of proteins of up to 

two edges away from the original set. The last tool (GeneMANIA) has both Cytoscape and Web interfaces and, given an input node set, it ranks 

the remaining nodes using a global propagation procedure and returns a network composed of the query set and the top ranking genes. An ad-

ditional tool, ToppGene (24), which uses a global propagation operation, could not be applied here because it contains only human PPI data. 

As a benchmark data set, we used the telomere length maintenance (TLM) system in yeast. Briefl y, telomeres are specialized DNA-protein 

structures that protect the ends of eukaryotic chromosomes and get shorter with replicative age (51). Telomeric DNA is synthesized by the 

enzyme telomerase, which, in mammals, is expressed at the early stages of development but not in most somatic cells of the adult (52). Three 

large-scale screens were conducted to evaluate the effect of gene deletion on telomere length in yeast (53–55); 360 genes were identifi ed, of 

which 207 had a short telomere phenotype and 153 had an elongating effect on telomere length. We added to this “TLM set” a group of 23 

additional proteins that were collected from the literature (8). We constructed the TLM network with the anchored network option in ANAT 

using different margins (0%, 1%, and 2%) and default values for the remaining parameters. As the anchor of the TLM system, we used a set of 

10 telomere-binding proteins, defi ned in (8), including subunits of the telomerase and telomerase-interacting proteins. The target nodes were 

the 383 proteins in the TLM set. The benchmark software tools were applied with different bounds on network size (Table 2). All the other 

parameters were left at their default value. 

We previously used a subset of the TLM set (53, 54) to evaluate the different algorithms included in ANAT (8). Here, we used performance 

measures similar to those in (8) to compare the anchored-networks component of ANAT with the benchmark tools (Table 2; see the Supple-

mentary Text for a full description of the performance measures). An important aspect of network construction performance is the ability to 

infer true positives that were not present in the input screen. We tested this function of the tools in a cross-validation setting, hiding one screen 

at a time and using the other two to infer the TLM network. ANAT achieved the best performance in successfully retrieving hidden TLM nodes, 

particularly with the margin parameter set to 1% (Table 2).

A second measure of performance is the functional coherence of the different submodels (paths from terminals to anchor) within the 

network model. We tested two properties: (i) enrichment in GO Biological Process annotation (8, 46) (FE in Table 2), and (ii) enrichment 

in specifi c telomeric phenotype (short or long) (MC in Table 2). We also tested how well one can use the inferred network to predict telo-

meric phenotypes (PP in Table 2). Overall, relative to most benchmark tools, ANAT’s network models exhibited superior performance in 

these tests. The one exception was BioPixie with stringent confi dence cutoff (limited to interactions ranking in the top 25% confi dence 

level), which provided better performance; however, the BioPixie model spanned only ~30% of the TLM genes, whereas ANAT’s model 
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spanned ~88%. Using the default confi dence cutoff of the software, the resulting BioPixie model spans the majority (~95%) of the TLM 

genes but is then outperformed by ANAT.

ANAT has several unique features (Table 1). Unlike the other tools, ANAT offers a range of network inference algorithms, the selection of 

which depends on the specifi c data set. Furthermore, among the tested tools, GeneMANIA and ANAT are the only ones that do not limit the 

search distance and allow the inclusion of user-defi ned background networks. However, ANAT is the only tool that provides the means to inte-

grate expert knowledge into the inference procedure by setting node confi dence levels and to conduct an iterative refi nement by modifying the 

background network and adding node and edge constraints.

The background networks used by GeneMANIA, STRING, FunCoup, and BioPixie include functional links between proteins, inferred 

from heterogeneous data (such as coexpression). In contrast, the database of ANAT includes only physical interactions. Nevertheless, if 

a user is interested in inferring a network of functional interactions, ANAT can be used as an algorithmic engine to query those external 

databases (see Instructions).

Tool Algorithms FE Node 
signifi cance 

Model 
refi nement 

PubMed 
links 

#O

ANAT List all neighbors up to 
a given distance; shortest 
paths; provable approxi-
mation of high-probability 
anchored/ general 
networks; no bound 
on distance 

Yes Yes Yes Yes 10 

STRING List all neighbors up to 
distance 5 

Yes No No Yes 630 

FunCoup List all neighbors up to 
distance 3; several heuristics 
available for fi ltering nodes/
edges and generating 
smaller subnetworks 

Yes Yes No Yes 9 

GeneMANIA Propagation-based node 
ranking; display a selected 
number of top candidates; 
no bound on distance 

Yes Yes No Yes 6 

BioPixie Greedy node selection, 
up to distance 2 

Yes Yes No Yes 1 

BisoGenet List all neighbors up to 
distance 3; shortest paths 
within a computed model 

No No No Yes 8 

PPISpider Greedy node selection, 
up to distance 3 

Yes Yes No No 9 

Greedy node selection, 
up to distance 3 

Yes Yes No No 9

Table 1. Comparison of the features of ANAT and other network construction tools. The features compared for each 
software tool include (i) network inference algorithms; (ii) the presence of absence of the ability of the user to perform 
functional enrichment analysis (FE), node signifi cance estimation, active model refi nement, and inclusion of expert 
knowledge; (iii) whether the software includes links to articles (in PubMed) that reported the interactions in the model; 
and (iv) number of organisms supported (#O). 
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Table 2. Comparison of the performance of ANAT with other network construction tools. The 
different tools were used to construct the TLM network with different bounds on network size. 
All the other parameters were left at their default value. For ANAT, we used three margin 
values (m = 0%, 1%, and 2%); for STRING, we used two distance limits by setting the “net-
work depth” parameter [D = 1: (default) include queried genes, D = 2: include neighbors of 
distance 1]; for FunCoup and BioPixie, we used two quality thresholds (“all,” output network 
with default parameters; “top 75%,” retain only interactions with confi dence score above the 
75th percentile); for GeneMANIA, we examined the top 50 and the top 200 ranked nodes; for 
BisoGenet, we used two distance limits (L = 1: include neighbors of distance 1, L = 2: include 
neighbors of distance 2); and, for PPISpider, we used the three distance limits provided by 
the software (D = 1, 2, and 3). The left part of the table presents the performance on the TLM 
benchmark. Displayed measures include number of nodes and edges in the inferred models 
(N/E); percentage of input TLM genes included in the model (T); the ability to recover unan-
notated TLM proteins (cross-validation score, CV); functional enrichment (fraction of func-
tionally coherent submodels, FE); monochromaticity (mean coherence in telomere length 
phenotype, MC); phenotype prediction accuracy (precision/recall, PP). See the Supplemen-
tary Materials for details on the determination of the performance metrics.  

Tool N/E T CV FE MC PP

ANAT (default) 559 / 594 88.1 7.5 81.2 73.3 72.2 / 11 

ANAT (m = 1%) 620 / 840 88.1 8.2 81.6 75.1 77.1 / 10 

ANAT (m = 2%) 632 / 913 88.4 7.8 80.2 73 73.9 / 9 

STRING* (D = 1) 337 / 2048 88.1 — 82.3 60.7 60.7 / 31 

STRING* (D = 2) 369 / 2369 89.7 4.8 66.6 59.5 59.9 / 25 

FunCoup* (top 75%) 390 / 988 45.4 3.4 68.8 60.9 60.9 / 12 

FunCoup* (all) 459 / 1520 52.4 3.3 64.9 51.3 51.3 / 11 

GeneMANIA* (top 50) 430 / 30,555 99.7 6.1 47.1 76.7 58.9 / 24 

GeneMANIA* (top 200) 580 / 63,115 99.7 7.4 44 67.3 61.5 / 16 

BioPixie* (top 75%) 941 / 2687 34.3 7.7 100 76.5 76.5 / 4 

BioPixie* (all) 5546 / 
50,145 

95.8 5.1 79.7 62.1 62.1 / 5 

BisoGenet (L = 1) 62 / 116 3.9 2 — — —

BisoGenet (L = 2) 2723 / 
29,003 

41.4 3.7 35 72.2 85.7 / 5 

PPISpider (D = 1) 214 / 422 56.1 NA† 53.7 73.4 66.2 / 26 

PPISpider (D = 2) 468 / 794 87.6 3 57.1 71.8 60.6 / 39 

PPISpider (D = 3) 652 / 2777 88.7 5.6 34.1 68 58.8 / 25

*The values shown in the phenotype and functional enrichment fi elds (FE, MC, and PP) were calculated only 
with PPI edges.
†The D = 1 model of PPISpider only includes input proteins and is therefore not applicable for this test.
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Notes and Remarks

Node, Edge, and Submodel Confi dence Levels

ANAT assigns every protein-protein interaction (edge) with a confi dence score 0 ≤ p ≤ 1 based on the available experimental evidence for it, 

using a published logistic regression model (56). Because experimental data are insuffi cient, ANAT does not compute logistic models for rat, 

mouse, H. pylori, or plasmodium and instead assigns a fi xed confi dence level of “1” to all interactions. The inferred confi dence scores (for the 

other six species) can be changed from ANAT’s menus (Fig. 3, A and B). The confi dence of the protein-DNA interactions is set by default to 

0.6 and can be adjusted from ANAT menus (Fig. 3B). To control for the size (number of edges) of the inferred subnetworks, we follow the ap-

proach of Shachar et al. (57) and multiply each edge confi dence by an edge penalty factor, 0 < ep < 1. The edge penalty is assigned by default 

to the probability of an edge at the 25th percentile and can be adjusted by the user.

The proteins (nodes) can be assigned confi dence levels as well (by default, ANAT does not assign node confi dence scores). This can be done 

either directly (providing a confi dence level for every protein in the network using the background network menu) or through the node-degree 

penalty option. Using the latter option, the confi dence of a node is determined as inversely proportional to its degree, penalizing hub proteins. 

Specifi cally, we set the confi dence level of node v with degree deg(v) to 

 where a is the dominance parameter and b is the curvature parameter.

The confi dence scores assigned to an edge e and a node v are denoted by p(e) and p(v), respectively. Assuming independence of edges and 

nodes, the overall confi dence of a submodel H (as presented in the HTML reports) is    

where V(H) and E(H) are the nodes and edges in H, respectively.

To facilitate the optimization algorithms in ANAT, we treat the protein interaction network as a directed weighted graph G = (V, E, w), where 

the weight w of an edge or a node is defi ned as the negative logarithm of its confi dence.

Anchored Networks and the Global-Local Parameter

Given an anchor node r and a set of target proteins X, ANAT attempts to construct a connected subnetwork H that connects the anchor to the 

target set. In the global variant of the problem, the solution is a subnetwork H with minimum overall weight:     

     

In the local variant of the problem, the solution is a collection of all lowest-weight paths from the anchor to each protein in the set X:

 

where PH(x,r) is a shortest path from a node x to the anchor r in H. When the anchor set contains more than 

one member, ANAT adds an additional “pseudonode” and connects it by directed edges of weight zero to all the members of the anchor set. 

This pseudonode serves as the single anchor point r.

Finding a single network that simultaneously optimizes the local and global objectives (up to a constant factor times their optimal value) is 

feasible in undirected graphs (58). However, it can be shown that in directed graphs the two objectives cannot be simultaneously approxi-

mated to within a factor of less than O(k1/2), where k is the number of proteins in the set. Moreover, optimizing only the global objective can 

only guarantee an approximation bound of O(k) with respect to the local one, and vice versa (8). The intermediate algorithm presented in (8) 

and implemented in ANAT provides approximation guarantees of O(k1–
α) and O(k1/2+

α) for the global and local objectives, respectively. The 

parameter 0 ≤ α ≤ 0.5, which controls the tradeoff between the two objectives, can be adjusted by the user. The running time of the inter mediate 

algorithm is  , where E and V are the sets of edges and nodes, respectively, in the background network.

General Networks and the Granularity Parameter

Given a set of proteins, ANAT seeks a minimum-weight subnetwork H that connects the proteins in this set. The general network construction 

in ANAT is done in an undirected setting (ignoring edge directions) and uses only edge weights (ignoring node weights). Finding the best 

network under these settings translates to a Steiner tree problem [see (8) for details of the algorithm].
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To allow greater fl exibility, ANAT does not force H to be connected, but rather allows it to have several connected components. The 

number of components c(H) is controlled by a granularity factor λ, which is combined into the overall subnetwork score as follows:   

.  To this end, ANAT adds one auxiliary node to the network, connecting it to all the other nodes by edges of 

weight λ, and applies the basic Steiner tree approximation algorithm to the resulting network. The value of λ is defi ned as   

 

, where ep is the edge-penalty factor and g is the granularity value that was provided by the user. The running time of the 

algorithm is 

 .

Computing Multiple Solutions

To avoid an arbitrary choice among equally good solutions, ANAT’s implementation records multiple solutions. This is done by randomly 

selecting the order by which the nodes in the background network are processed, and repeating the randomization 50,000 times. The random 

ordering affects the way ties are handled during the run of the algorithms, thus producing different solutions. The returned solution is the union 

of all solutions obtained. The redundancy of a node is computed as the percentage of solutions in which it is included.

By setting the margin parameter, the user can include in the solution networks whose overall weight (sum of log confi dence values of the nodes 

and edges) is up to x% from the weight of the guaranteed solution. We previously described how to compute suboptimal solutions (up to x%) 

for the shortest-path problem (50). In ANAT, this procedure was extended to facilitate margin computation in the general and anchored network 

inference problems by using suboptimal shortest paths and by modifying the respective inference algorithms. Note that ANAT does not guar-

antee to return all x% margin solutions, which may be computationally intractable, but rather samples the solution space.

Statistical Evaluation of Nodes

The output networks produced by ANAT typically contain “new” nodes that are required for connectivity and were not part of the original input 

provided by the user. In all the algorithms used in ANAT, the key factor for the inclusion of a new node by chance (that is, with a random input 

set) is the number of shortest paths that go through it (taking into account all node pairs in the background network). The statistical signifi cance 

of the new nodes in ANAT’s models is based on this attribute.

Shortest paths between members of the input set are the starting point for two of the algorithms: general networks and shortest-path networks. 

The new nodes in the resulting model are the proteins that constitute these shortest paths. To evaluate the probability for inclusion of a node v 

in a model by chance, ANAT computes the following binomial score:  

where m (the number of “trials”) is the number of pairs connected by one or more shortest path(s) in the model, and k (the number of “suc-

cesses”) is the number of pairs in the model whose shortest path goes through v. The resulting score is the probability of obtaining at least k 

successes out of m trials where the probability for success is p = K/M, where K is the overall number of pairs in the background network whose 

shortest linking path goes through v, and M is the overall number of node pairs in the background network.

The algorithm for anchored networks uses a more complex scheme; it is also based on shortest paths, but every target protein u is linked to the 

anchor node r by a pair of shortest paths, going through a middle “pivot” node w [see (8) for details; it is possible that u = w or w = r]. ANAT 

uses a binomial score of a given node v adjusted as follows: m (the number of trials) is the number of target proteins; k (the number of suc-

cesses) is the number of target proteins whose path to the anchor goes through v; and p (the background probability for success) is 2(K/M) + 

[1/(N – 2)], taking an upper bound on the probability for v to appear in either of the two pathways (from u to w or from w to r) or being selected 

as a pivot (v = w). The variable N is the overall number of nodes in the background network. The variables M and K are defi ned as before.

Because the computation of the overall number of pairs whose shortest path goes through a given node is time-consuming, ANAT uses pre-com-

puted probabilities, obtained from the original background networks, with the default parameters of ANAT. ANAT also maintains access to pre-

computed probabilities, considering various levels of the margin parameter (from 2% to 40%). This is required because higher margin values result 

in more paths (which can be suboptimal) that go through each node (that is, K increases). Note that the node signifi cance values are based on the 

original background networks. In future releases, ANAT will support node signifi cance computation with modifi ed background networks as well.
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Analysis of Submodels

The main resource for assigning functional annotations and enrichment scores to the submodels is the Gene Ontology (GO) database (46); 

additional data sources include KEGG (47) (for yeast and human) and MSigDB (26) (for human). The enrichment of a submodel with each 

functional category is computed by a hypergeometric P value as in (8). These P values are compared to 100 P values computed for random 

sets of proteins of the same size, yielding empirical P values. In all cases, ANAT reports the annotation with the highest signifi cance, using a 

cutoff of 5% for the empirical P values.

The submodels are also assigned a confi dence score as defi ned in “Node, Edge, and Submodel Confi dence Levels.”

Case Study: Constructing the Autophagy-Apoptosis Crosstalk Network

Programmed cell death (PCD) is a genetically controlled cell death that plays a major role in different biological processes. Defective regula-

tion of PCD is widely recognized as the basis for a spectrum of diseases, including degenerative disorders and cancer (59). Two forms of PCD 

are caspase-dependent apoptotic cell death (apoptosis) and caspase-independent autophagic cell death. These pathways are activated by differ-

ent signals and lead to distinct death morphologies (60). Much effort has been made to elucidate the functional interplay that exists between 

these two cell death modalities, and several autophagic proteins have been implicated in apoptosis (61); however, the molecular pathways 

underlying these observations are still poorly characterized.

Previously, we used a shortest-path computation to infer a single crosstalk pathway connecting caspase-3, a central effector caspase in the apop-

totic cascade that is not connected by any known PPI to the autophagic network, and Atg5, an autophagic protein (50). We used the anchored 

network algorithm of ANAT to extend this work and explore a larger portion of the pathways that connect autophagy with apoptosis in humans. 

As targets, we used a set of 17 proteins that participate in autophagy, and as an anchor point we used caspase-3. The 17 target proteins were 

chosen because they participate in autophagy as central regulators or effectors (or both), without making any prior assumptions about their role 

in apoptosis. We were interested in examining the pathways identifi ed with ANAT that connect the target set with the anchor point, as well as 

dissecting the way in which some of the targets may arrange into clusters that share one or more common pathways.

Following the ANAT workfl ow (Fig. 1), we chose the human PPI network as the analysis starting point (Fig. 3A, bottom left) and then defi ned 

a PCD background network by adding 167 interactions that were either undirected or absent (Fig. 3A, right). Where possible, we assigned the 

directions of these interactions by the order of the respective elements in the PCD signaling cascades (for example, directing an edge from an 

enzyme to its substrate). After obtaining a preliminary model linking the autophagic targets to caspase-3, we continued with an iterative pro-

cess of model analysis and refi nement by manu-

ally investigating the literature on each interac-

tion and adding edge or node constraints where 

needed; for example, an interaction between 

beclin-1 and the nuclear transcription repres-

sor GFI1B (growth factor–independent protein 

1B) was manually removed because these pro-

teins reside in different subcellular locations and 

the interaction is therefore unlikely to occur in 

vivo. In another case, the undirected inter action 

between caspase-3 and its substrate paxillin was 

directed from the former to the latter, subse-

quently eliminating pathways that do not follow 

this directionality (see table S2 for the complete 

list of refi nements made).

The fi nal network obtained following the it-

erative refi nement process contained nine pro-

teins in addition to the target and anchor sets 

(Fig. 2). Information on the additional nodes 

can be viewed from within the Cytoscape 

environment by clicking the “Node attribute 

browser” tab (Fig. 2). The submodel-level 

analysis showed that the majority of the target-

anchor paths are enriched with relevant func-

tions such as autophagic vesicle formation and 

caspase activation. These data can be viewed in HTML 

reports. The autophagy-apoptosis Cytoscape session (Autoph-

agy-apoptosis.cys) and HTML reports (Autophagy Network Reports) 

are provided as Supplementary Materials.

BECN1 ATG16L1 ATG10 ATG3 MAP1LC3B ATG9A PIK3C3 ATG4B DAPK1 RB1CC1 MTOR

BCL2 ATG12

ATG5 ATG7 ULK1

SRCAP PIK3R4 GABARAPL2 FADO STAT1

DDX58 SIRT1

UBC HEY2

XIAP NCOR1

AR

MAPT

BIRC5 CAMK2A

CREBBP MAPRE1 CASP8 PTK2

AURKB SYNGAP1 DCC

CASP3

Fig. 4. The autophagy-apoptosis crosstalk network with the default background. 
The resulting network model when ANAT is applied directly on the human PPI network 
instead of the PCD background network (which contains additional cell death–specifi c 
information such as missing nodes and edge directions).
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Comparing the resulting model to the one ob-

tained without augmenting the background 

network (Fig. 4) highlights the importance of 

incorporating expert knowledge in the process 

of network inference. Specifi cally, the public 

databases used for the background network 

of human PPI only partially described what is 

currently known about the relatively new and 

constantly developing study of autophagy. 

Consequently, the resulting model (Fig. 4) 

missed some relevant nodes (such as ATG13 

and AMBRA-1) and interactions (such as the 

ones from DAPK1 to BECN1 and MTOR to 

ULK1) that are included in the model produced 

from the augmented network (Fig. 2). 

The genes associated with autophagy con-

verged through three major pathways to cas-

pase-3 (Fig. 2). Some of the intermediate 

proteins had not been previously associated 

with cell death signaling, such as YWHAG (a 

phosphoserine- and phosphothreonine-binding 

protein) and KIF23 (a kinesin-like protein), 

and others such as TRAF2 [a tumor necrosis 

factor (TNF) receptor–associated factor] and 

RIPK1 (a kinase) were identifi ed in some set-

tings of cell death but had not been associated 

with autophagy. Two of the three pathways end 

with a member of the inhibitor of apoptosis 

(IAP) family (BIRC3, also known as c-IAP2, 

or BIRC6, also known as Bruce), which func-

tions as an inhibitor of caspase-3 (62). This suggests that signals that control autophagy may also regulate apoptosis through modulation of 

IAP proteins. Of particular interest is the pathway connecting the autophagic protein MAP1LC3B (LC3B) to caspase-3 through SQSTM1 

(also known as P62) (Fig. 2). SQSTM1 participates in autophagic degradation of ubiquitinated or aggregated proteins through direct binding 

to MAP1LC3B; thus, unlike the 17 selected autophagic proteins that participate in the formation of autophagosomes (the main organelles that 

execute the process), the role of SQSTM1 is to deliver the ubiquitinated or aggregated proteins to the autophagosomes (63). According to the 

proposed network, SQSTM1 emerges as a potentially important mediator targeting BIRC3 through RIPK1 and TRAF2 (Fig. 2). To further 

extend the basis role of SQSTM1 as a link between autophagy and apoptosis, we explored alternatives to this pathway by either enabling the 

node penalty option (using the default penalty settings; Fig. 5A) or increasing the margin to 1% (Fig. 5B). Both options resulted in networks in 

which SQSTM1 was connected to caspase-3 through TRAF6, which (like TRAF2) is a TNF receptor–associated factor that mediates a variety 

of signal transduction pathways. Together, the networks produced with ANAT (Figs. 2 and 5) indicate that SQSTM1 is a mediator of crosstalk 

between autophagy and apoptosis and acts through pathways involving members of the IAP family, which is supported by functional evidence 

linking SQSTM1 to both autophagy and apoptosis (49). 

In summary, by following the ANAT workfl ow and using expert knowledge to refi ne the results, we constructed a protein subnetwork connect-

ing autophagy with apoptosis. The pathways suggested by the model serve as practical scientifi c leads.

Supplementary Materials

Supplementary Text: Performance evaluation of the TLM network.

Table S1: Network sizes, data sources, and gene identifi er types.

Table S2: Constraints used for the autophagy-apoptosis crosstalk network.

ANAT Plugin File (AnatPlugin.jar).

ANAT User Manual (ANAT_manual.pdf).

Gene Identifi ers: A compressed archive of text fi les containing all the gene identifi ers used in ANAT’s database (Gene_identifi ers.zip).

Autophagy Input Files: A compressed archive of the fi les for creating the autophagy-apoptosis crosstalk network (Autophagy_input.zip).

A B

ATG4B

ATG3ATG7

MAP1LC3B

MAP1LC3B

SQSTM1

SQSTM1 RIPK1
TRAF6

TRAF6

UBC

MAP3K7IP1

CRADD

BIRC2

XIAPXIAP CASP2
CASP10CASP8BIRC3

TRAF2 CFLAR TNFRSF1A

CASP3
CASP3

ATG4B ATG3 ATG7

Fig. 5. Alternative pathways linking SQSTM1 to caspase-3 constructed by adjusting 
the network parameters. (A) Adding a node degree penalty results in a pathway con-
necting SQSTM1 to caspase-3 (CASP3) through TRAF6 and the IAP protein XIAP. (B) 
Using a margin of 1% instead of the default 0% revealed an expanded pathway in which 
SQSTM1 was connected to TRAF6 in addition to the connection to TRAF2 through RIPK1. 
Three additional pathways connecting RIPK1 to CASP3 (in addition to the original TRAF2-
BIRC3 connection) converged into the upstream regulatory caspases—CASP8 (CASP8), 
CASP10, and CASP2—that process or activate CASP3.
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Autophagy Network Reports: A compressed archive of the HTML reports for the autophagy-apoptosis crosstalk network (Autophagy-

NetworkReports.zip).

Autophagy-Apoptosis File: A Cytoscape session fi le for the autophagy-apoptosis crosstalk networks (Autophagy-apoptosis.cys).
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