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Abstract

Accumulating evidence links numerous abnormalities in cerebral metabolism with the progression of Alzheimer’s disease
(AD), beginning in its early stages. Here, we integrate transcriptomic data from AD patients with a genome-scale
computational human metabolic model to characterize the altered metabolism in AD, and employ state-of-the-art
metabolic modelling methods to predict metabolic biomarkers and drug targets in AD. The metabolic descriptions derived
are first tested and validated on a large scale versus existing AD proteomics and metabolomics data. Our analysis shows a
significant decrease in the activity of several key metabolic pathways, including the carnitine shuttle, folate metabolism and
mitochondrial transport. We predict several metabolic biomarkers of AD progression in the blood and the CSF, including
succinate and prostaglandin D2. Vitamin D and steroid metabolism pathways are enriched with predicted drug targets that
could mitigate the metabolic alterations observed. Taken together, this study provides the first network wide view of the
metabolic alterations associated with AD progression. Most importantly, it offers a cohort of new metabolic leads for the
diagnosis of AD and its treatment.
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Introduction

Alzheimer’s disease (AD) is the most common form of dementia.

It is estimated that AD affects more than 35 million patients

worldwide and its incidence is expected to increase with the aging

of the population. Although extensive investigations of AD have

taken place over the past few decades, its pathogenesis has yet to

be elucidated. Currently no treatment is available to prevent or

halt the progression of AD. Moreover, the clinical diagnosis of AD

is not possible until a patient reaches the dementia phase of the

disease [1]. A more accurate and earlier diagnosis of AD could

enable the use of potential disease-modifying drugs and thus, there

is a need for biological markers for the early stages of AD [2].

Metabolic alterations have been proposed to be involved in AD

from the early stages of the disease [3]. Increasing evidence

indicates an antecedent and potentially causal role of brain

hypometabolism in AD pathogenesis [4]. Perturbations in

mitochondrial function have long been observed in AD patients,

including decreased activity of key mitochondrial enzymes [4,5].

Consequently, ATP production and oxygen consumption become

impaired [6]. Impaired glucose transport has also been reported in

AD brains. Moreover, there is a link between cholesterol turnover

and neurodegenerative diseases and hypercholesterolemia has

been proposed as a risk factor for AD [7]. However, the

relationship between cholesterol levels and the clinical manifesta-

tion of dementia remains unclear [8]. There is also a debate

regarding the role of certain vitamins such as vitamin D and folic

acid in the pathogenesis of AD [9,10]_ENREF_14. Clearly from

all of this mounting evidence, multiple metabolic pathways may

play a key role in AD’s progression.

Recent studies of gene expression from brains of AD patients

further point to the strong association between metabolic

alterations and AD, already from the early stages of the disease

[11,12]. However, such gene expression analyses have been

limited to transcriptional alterations and therefore cannot encom-

pass the effects of putative post-transcriptional modifications that

are known to play an important role in metabolism [13].

Furthermore, they do not allow the identification of biomarkers

and drug targets in any direct manner. Our aim here is to go

beyond these gene expression results and to elucidate the

metabolic changes in AD by employing the increasingly prevalent

toolkit of analysis methods provided by the emerging field of

Genome-Scale Metabolic Modeling (GSMM).

GSMMs have become trusted tools in the study of metabolic

networks [14], and provide a platform for interpreting omics data

in a biochemically meaningful manner [15]. GSMM analysis
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mostly relies on constraint-based modeling (CBM), in which

constraints are systematically imposed on the GSMM solution

space, and the outcomes of the model are limited to physically

realizable phenotypes. GSMMs have been extensively used for the

study of metabolism in microorganisms and in humans both in

health and disease, enabling the prediction of various metabolic

phenotypes such as enzyme activities and metabolite uptake and

secretion fluxes, as well as interpretation of various types of high

throughput data, often yielding clinically relevant results [16–21].

In a recent GSMM paper studying brain metabolism, three

different neuronal sub-types were reconstructed in a GSMM of

brain energy metabolism [22]. Focused on the core of cerebral

energy metabolism, this reconstruction has suggested that gluta-

mate decarboxylase provides a neuroprotective effect which is

correlated with the brain regional specificity of AD [22].

Our investigation begins with an effort to harness GSMM to

systematically describe the metabolic state in AD on a global,

network level. We do this by employing a method termed

integrative Metabolic Analysis Tool (iMAT), which incorporates

gene expression into a GSMM to predict metabolic flux activity

[18]. This method has already been shown to successfully

predict tissue specific metabolic activity in several healthy

human tissues, including the brain [18]. iMAT incorporates

gene expression to predict global metabolic flux activity that is

the most consistent with known constraints across the entire

metabolic network, and reflects post transcriptional modifica-

tions that are not evident in the raw expression data (Figure 1).

We utilized a relatively large dataset of gene expression

microarrays from the cortex of AD patients and elderly controls

[23] (including 363 samples), which we integrated with the

human metabolic model to study the metabolic changes in AD.

This model-based genome-scale view of AD metabolism leads to

the identification of various pathways whose activities are

altered significantly in AD, and importantly, are not revealed by

standard pathway enrichment analysis of the raw gene

expression solely, in a model-free manner. We next predict

novel biomarkers for AD by comparing predicted uptake and

secretion fluxes of various metabolites as the disease progresses.

Finally, we predict perturbations in the metabolic network that

can transform the metabolic state of AD back closer to a healthy

state, highlighting new potential metabolic drug targets for AD

that may work on a global, network level.

Methods

Datasets
The microarrays data used in this study were obtained from the

Gene Expression Omnibus (GEO) site (www.ncbi.nlm.nih.gov).

The first dataset contains expression data from 363 cortical

samples of controls and AD patients’ post-mortem brains

(GSE15222) [23]. We additionally analyzed blood leukocytes gene

expression that includes 3 controls, 3 AD and 3 MCI samples

(GSE18309) [24]. All datasets were filtered for metabolic genes

included in the human metabolic model [16].

iMAT analysis
We first employed a discrete representation of significantly high

or low enzyme-expression levels across tissues. Gene expression

levels from the microarray analysis were discretized to highly (1),

lowly (21), or moderately (0) expressed, for each sample. This

discretization was based on a threshold of the mean expression +
0.3 SD for highly expressed genes, the mean 20.3 SD for lowly

expressed genes. Genes between these thresholds were defined as

0, and the entire process is applied for each sample separately. As

iMAT requires only a single such discrete representation, the final

input includes only those reactions that were classified as highly/

lowly expressed in at least 2/3 of the samples. The list of genes that

were defined as highly and lowly expressed as input for iMAT is

detailed in Table S1. In the iMAT [18] analysis, the discretized

gene expression levels were incorporated into the metabolic model

to predict a set of high and low activity reactions. Network

integration is done by mapping the genes to the reactions

according to the metabolic model, and by solving a constraint-

based modeling optimization problem to find a steady-state

metabolic flux distribution, following [18]. By using this CBM

approach we assign permissible flux ranges to all the reactions in

the network, in a way that satisfies the stoichiometric and

thermodynamic constraints embedded in the model and maxi-

mizes the number of reactions whose activity is consistent with

their expression state. The simulation conditions that were used

were the default ones, i.e. the boundaries of the model reaction

fluxes are between 21000 to 1000.

Enrichment of metabolic pathways (gene expression and
iMAT)

Based on iMAT results, which predict the activity of the

reactions in the metabolic model, a hypergeometric p-value was

computed for each pathway in the model for being enriched with

active or inactive reactions in AD. Subsequently, for comparison

of the iMAT results to the gene expression, gene expression

measurements were forst translated to the reaction level using the

model’s gene-protein-reactions mapping, and subsequently the list

of altered reactions was again analyzed for pathway enrichment in

a standard manner as above. In both analyses, a correction for

multiple hypotheses was done using false discovery rate (FDR)

method of 0.05.

Flux Variability Analysis (FVA)_ENREF_26 [25]
Metabolic biomarkers are predicted based on a comparison of

exchange reaction intervals between the healthy case and each of

the disease states. For exchange intervals A = [minA, maxA] and

B = [minB, maxB] (where A and B represent the flux intervals in

the control and AD stages), we define: A,B if ((minA , minB) &

(maxA # maxB)) | ((minA # minB) & (maxA , maxB)). To

consider only significant changes between exchange intervals, a

difference in flux, denoted A,B, is considered only when A is at

least 90% lower than B.

Metabolic Transformation Algorithm (MTA)
The MTA algorithm gets as input gene expression levels of two

metabolic states, termed source and targets states. Next, the MTA

approach works to: (1) infer the most likely distribution of fluxes

in the source state using iMAT; (2) identify the set of genes that

their expression have significantly changed between the source

and targets states, and the set of genes that their expression

remain constant. Following, the algorithm searches for perturba-

tions that can globally shift all the fluxes of the changed reactions

in the right direction, while keeping the fluxes of the unchanged

reaction as close as possible to their predicted source state.

Finally, MTA outputs a ranked list of candidate perturbations

according to their ability to result with a successful transforma-

tion, from the source to the target metabolic state44. The top 10%

of the highest scoring reactions were used for calculation of the

pathways that are enriched with predicted drug targets, as in

[26].
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Results

Network-based description of metabolic alterations in
AD and their large-scale validation

Our first goal in this study was to uncover the major metabolic

alterations that differentiate AD-afflicted brains from healthy ones.

As transcriptional regulation plays a major role in controlling

metabolic functions [13], and there is a large body of

transcriptome data available for study, we approached this

problem using iMAT, a computational method to systematically

predict metabolic behavior by incorporating gene expression data

into a GSMM [18]. We started by integrating an expression

dataset of metabolic genes from the cortex of both healthy and AD

elderly subjects [23] into the human metabolic model (see

Methods, Figure 1). To account for metabolic flux activity that

is not reflected in the mRNA expression data, iMAT considers the

mRNA levels as cues for the likelihood that the enzyme in question

carries a metabolic flux in its associated reaction(s), and then

leverages the GSMM to accumulate these cues into a global flux

behavior that is stochiometrically consistent and maintains mass

balance across the entire network [27]. Hence, iMAT predicts a

feasible flux distribution that best agrees with the gene expression

data.

Following the iMAT analysis, we examined which pathways

had altered activity in AD versus the control (Table 1, Methods).

This step was performed by employing flux variability analysis

(FVA) [25] on the metabolic states inferred by iMAT for each of

the AD vs. healthy states examined. The FVA analysis computes

permissible flux intervals for each reaction, i.e., the minimal and

maximal flux for each reaction that is yet consistent with the

output of iMAT (Table S2). Then, by comparing the flux intervals

of each reaction in its normal state and in AD, one can detect

reactions whose activity is likely to be altered, and predict altered

metabolic pathways. A number of pathways that were not

manifested in a standard gene set enrichment analysis based on

the gene expression alone were uncovered by our model-

Figure 1. The workflow of iMAT analysis. A. First, we discretize the expression of each metabolic gene measured into 3 levels: high, moderate
and low. Next, iMAT integrates these expression levels into the human metabolic model by maximizing the number of enzymes whose predicted flux
activity is consistent with their expression level, yielding a prediction of the overall network flux distribution that is most consistent with the model’s
constraints under steady state. This analysis is done separately for the control and the AD states. B. A Toy example of the integration of the metabolic
network and gene-expression by iMAT and the prediction of enzyme flux-activities (taken and modified from [18]). Circular nodes represent
metabolites, solid edges represent reactions, and diamond nodes represent enzymes associated by arrows to the reactions they catalyze. Grey, red
and green represent moderate, significantly low and significantly high expression of the enzyme-encoding genes, respectively. The predicted flux
involving the activation of reactions is shown as green edges. Enzymes E4 and E7 are predicted to be post-transcriptionally up-regulated and down-
regulated respectively.
doi:10.1371/journal.pone.0105383.g001
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augmented analysis (Table 1, Figure 2). To bolster confidence in

our results, we examined three sets of thresholds for determining

when a given reaction is altered – that is, marking a ‘difference’

between its control and AD flux states. The pathways of carnitine

shuttle, folate metabolism, and mitochondrial transport emerged

robustly as the most over represented pathways with reduced flux

activity in AD in all three cases (see Table S3). As expected, most

of the fluxes across the network decrease in the disease, in

accordance with the accepted notion of increased hypometabolism

associated with AD.

As mentioned earlier, differences between gene expression levels

and enzyme flux activities as predicted by iMAT can indicate

whether enzyme activity is post-transcriptionally increased or

decreased compared to the original mRNA levels [18] (Figure 1).

To test the metabolic descriptions we have obtained, we compared

the predicted alterations in enzyme activities to the measured

protein levels of these enzymes, according to proteomic data from

temporal cortex of AD patients [28]. Reassuringly, we find

significant overlap between predicted and experimentally deter-

mined differences in the levels of these proteins (hypergeometric p-

value of 0.002). When focusing on reactions that are predicted by

the AD model to be post-transcriptionally regulated, the calculated

overlap p-value with the alterations reported in the proteomics

data is 9.16e212. Tryptophan metabolism was enriched among

these reactions (p-value 2.5e24, Table S4).

As a further testing of the metabolic descriptions obtained with

the iMAT analysis, we identified the predicted alterations in

metabolites exchange (secretion and uptake) between the cortex

and biofluids in AD and normal patients, and compared our

findings to experimentally determined metabolomic profiles in two

patient sets in the CSF and the blood (Table S5). Our predicted

alterations showed highly significant overlap with reported

metabolomic alterations in both fluids (p-values: 8.4e226 and

1.06e215 in CSF and blood, respectively).

Finally, several key central metabolism enzymes whose flux has

been predicted to decrease indeed have been reported to decrease

their activity in AD [29–31]. These enzymes include PDH,

AKGDH and cytochrome c oxidase (COX). All enzymes fluxes in

this set are significantly decreased in the AD vs control predicted

flux states, with p-values of 5e24, 5e23 and 2e27, respectively.

The pathway predicted to decrease most significantly in AD is

the carnitine shuttle, which, quite surprisingly, does not emerge in

Figure 2. Key flux alterations in central metabolism predicted by iMAT for AD versus control states. The figure depicts the changes in
energy metabolism in both cytosol (c) and mitochondrion (m). Several key enzymes whose activity was reported to decrease in AD patients are
detailed in blue: pyruvate dehydrogenase (PDH), a-ketoglutarate dehydrogenase (AKGDH) and carnitine acetyltransferase (CAT). * Reactions whose
activity changed significantly already at the transcription level.
doi:10.1371/journal.pone.0105383.g002
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a standard gene expression enrichment test (Table 1). Carnitine

shuttle is a carnitine dependent transport of fatty acids into the

mitochondria for the production of energy via b-oxidation. Brain

acyl-carnitines can function in synthesizing lipids, altering and

stabilizing membrane composition, improving mitochondrial

function, increasing antioxidant activity, and enhancing choliner-

gic neurotransmission [32]. A decreased activity of CAT has been

measured in temporal cortex of AD patients [33] (and in our

analysis as well - Figure 2), and it has been demonstrated that

acetyl-carnitine administration can improve the cognitive perfor-

mance in patients with mild AD [34].

Another pathway whose activity is predicted to decrease in AD

is folate metabolism and the uptake of folate into the cell is also

predicted to decrease (Figure 2 and Table S6). Experimental

reports indicate a decrease of folate in the CSF of patients with AD

[35]. Beyond the folate pathway itself, we find an overall dramatic

decrease in the predicted activity of all reactions that have

substrates of folate, dihydrofolate (DHF), or tetrahydrofolate

(THF) (Figure S1).

Remarkably, the activity of reactions participating in metabo-

lism of various neurotransmitters also decreased significantly in

AD. This includes decreased uptake of acetylcholine and

decreased activity of acetylcholinesterase, in accordance with

reported decreases in levels and activity (respectively) in AD [36];

decreased secretion of norepinephrin, consistent with a previous

metabolomic study showing its significant depletion in AD [37];

and decreased transport of 4-aminobutanoate (GABA) into the

mitochondria.

Prediction of metabolic biomarkers of AD
A major need in AD is the development of better biomarkers

which can be read from accessible fluids, such as the blood [38].

As a first step in identifying potential biomarkers, we focus on

predicting changes in extracellular transport reactions in the

model (Methods, Table 2). A full list of metabolites with predicted

secretion or uptake altered in disease is provided in Tables S6 and

S7, respectively. As expected, most of the secretion and uptake

fluxes of these biomarkers are predicted to decrease in AD.

Among the biomarkers predicted here, succinate has been

previously reported to significantly decrease in the CSF of AD

patients [39]. Prostaglandin D2 (PGD2), whose secretion we

predict to decrease as well (Table 2), is the most abundant

prostaglandin in the brain and plays a role in regulation of sleep

[40]. PGD2 mean level was found to slightly decrease in the CSF

in AD patients; however, this change was not significant [41].

To predict plasma biomarkers in AD, we integrated recently

reported gene expression data from blood leukocytes of AD and

Mild Cognitive Impairment (MCI) patients [24] with the human

metabolic model in a manner similar to that described previously

with the cortical gene expression data (i.e. iMAT, see Methods),

thus generating a metabolic description of these blood cells in AD.

Next, we repeated the analyses detailed above and identified

pathways that are enriched with altered reactions in blood

leukocytes in AD and MCI (Figure S2). As evident, flux alterations

in MCI and AD are quite similar. We found a significant overlap

in metabolites we predicted to change in the blood (versus controls)

with those reported in literature (P-value 1.15e218, [42–44]).

Table S8 lists our highest confidence blood biomarkers. Notably,

we predict cholesterol to increase in the blood of AD patients as its

secretion flux is predicted to increase. Altered cholesterol

metabolism was suggested before in plasma of AD patients

compared to MCI patients [45].

Intriguingly, several pathways whose activity is predicted to

change in blood leukocytes of AD patients are also altered in the

AD cortex. Among them, IMP biosynthesis was the only pathway

that did not change in MCI blood leukocytes. Notably, the

activities of IMP biosynthesis and fatty acid oxidation pathways

increase in AD blood leukocytes but decrease in the cortex.

Biomarkers predicted by both the cortical and the blood

leukocytes analyses in AD are detailed in Table 3.

Prediction of drug targets by Metabolic Transformation
Algorithm

Metabolic changes occur from the very earliest stages of AD.

Although it is not known whether metabolism is the primary cause

of the disease, these changes are extensive and may cause further

feedback and exacerbation of neuronal death and disease

Table 1. iMAT’s predictions of metabolic pathways whose activity is significantly decreased in AD.

Pathway p-value

Carnitine shuttle 3.53E-18

Folate metabolism* 3.78E-13

Transport, Mitochondrial* 4.77E-11

Fatty acid oxidation, peroxisome* 1.16E-08

Transport, Lysosomal 2.31E-06

Biotin metabolism 2.56E-06

N-glycan degradation 7.52E-06

IMP biosynthesis 2.21E-05

Valine, Leucine, and Isoleucine metabolism* 6.31E-05

Pyrimidine catabolism 1.13E-03

Arginine and Proline metabolism 1.17E-03

Phenylalanine metabolism 1.62E-03

Fatty acid metabolism* 4.76E-03

The table lists the pathways that are significantly decreased in AD according to iMAT predictions, as compared with the activity of control reactions. * Metabolic
pathways that were significantly altered both in gene expression itself and in the model. All the results presented pass FDR of 0.05.
doi:10.1371/journal.pone.0105383.t001
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progression [4]. Therefore, a drug that could reverse metabolic

damage might have important therapeutic benefits. To predict

candidate drug targets for AD we analyzed here the effects of

metabolic gene knockouts using the human model. Our analysis is

based on an algorithm termed Metabolic Transformation Algo-

rithm (MTA) [26], which aims to identify gene perturbations that

can transform metabolism from a given disease state back to a

healthy one. This approach has already obtained promising results

by identifying novel lifespan extending genes in yeast, which were

then experimentally validated [26]. Here, we perform a systematic

knockout of each gene in the human metabolic network (using the

cortical gene expression data) and predict which knockouts will

most likely transform the AD metabolic state back closer to the

healthy one (Figure 3). The pathways enriched with reactions

whose knockout is predicted by MTA to reverse AD’s key

metabolic alterations back closer to the healthy state are Vitamin

D, nucleotides and Steroid metabolism (p-values 1.63e28, 2.83e25,

2.16e24, respectively).

Vitamin D has been studied in recent years for its relation to

cognitive performance and AD [9,46], but its associations remain

uncertain. Nevertheless, it has been increasingly recognized to play

an active role in the nervous system [47], and a genome-wide

association study of late-onset AD found evidence for involvement

of the vitamin D receptor [47]. Steroid metabolism is another

pathway we found enriched with predicted drug targets for AD.

Intriguingly, the reaction that received the highest score within this

pathway is 11-beta-hydroxysteroid dehydrogenase type 1 (11b-

HSD1), an enzyme that catalyzes the intracellular regeneration of

active glucocorticoids (i.e., cortisol and corticosterone). 11b-HSD1

knock-out mice have shown improved cognition, and 11b-HSD1

inhibitors improved memory in elderly men [48]. In general,

steroids offer interesting therapeutic opportunities because of their

varying roles in the nervous system: they regulate neurotransmitter

systems, they promote the viability of neurons, and they influence

cognitive processes [49].

Finally, a recent study by Searcy et al. showed that long-term

Pioglitazone (PIO) treatment improved learning and decreased Ab
and tau deposits in a mouse model of AD [50]. Gene expression

from the brains of these mice before and after the PIO treatment

was also measured. For validation of the MTA predictions, we

examined whether our set of top 10% knock-out predictions in

humans is enriched with mouse orthologous genes whose

expression was significantly decreased in the PIO treated mice

with the improved phenotype. Encouragingly, we find such a

significant overlap p-value of 0.025.

Discussion

In the current study, we used genome scale metabolic modeling

approaches to integrate gene expression measurements in the

cortex of AD patients to address three key research questions: (1)

what are the main metabolic alterations occurring in AD? (2)

Which metabolites may serve as candidates for metabolic

biomarkers of AD in the CSF and in the blood? And finally, (3)

which metabolic genes may be silenced to most efficiently reverse

the metabolic alterations observed in AD to a state of healthy aged

matched controls?

We described the metabolic alterations in AD in both the cortex

and blood leukocytes. The cortical analysis was based on a very

large dataset of AD and control patients. However, for the analysis

of the blood leukocyte we used a small dataset of gene expression

that is publicly available (Methods) for comparison to the cortical

predictions and between MCI and AD patients. A further analysis

in the future utilizing richer gene expression datasets from blood

cells of AD and MCI patients will aid to support this study’s

findings. Both analyses shared several pathways whose activity

significantly increased in the blood and decreased in the brain,

Table 2. Metabolites whose secretion or uptake is markedly decreased in AD.

Metabolite Decreased secretion/uptake

Succinate secretion

Prostaglandin D2 secretion

D-Mannose secretion

Sphingosylphosphorylcholine uptake

Pentadecanoate uptake

Heptadecanoate uptake

D-Glucosamine uptake

doi:10.1371/journal.pone.0105383.t002

Table 3. Biomarkers predicted by both analyses of the cortex and the blood leukocytes in AD.

Metabolite name Cortex Blood

diacylglycerol** secretion decrease secretion increase

triacylglycerol** uptake decrease uptake increase

hyaluronan** uptake decrease secretion decrease*

prostaglandin D2** secretion decrease* secretion decrease

metanephrine secretion decrease secretion decrease

* Highly confident biomarkers (no overlap between flux intervals that is predicted for the control and AD).
** Biomarkers that are altered only in AD blood leukocytes and not in MCI.
doi:10.1371/journal.pone.0105383.t003
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implying a possible compensation mechanism. Moreover, we

predict biomarkers that are common to both analyses (i.e, cortex

and blood), strengthening the potential of these metabolites as

candidates for early diagnosis of AD. The MTA analysis yielded

predictions of drug targets that may reverse the metabolic state of

the disease back to the healthy one. Vitamin D and steroid

metabolism appear in our analysis to be important in reversing the

metabolic state in the disease. Furthermore, although it did not

pass the FDR cutoff, our findings may hint to the importance of

cholesterol in the pathogenesis of AD (P-value 0.015) and the

potential value of keeping its levels in check [7]. The use of MTA

for finding potential drug targets holds an advantage for finding

drug candidates that act globally to reverse the entire metabolic

network state to the healthy state, and thus may have lesser side

effects.

Our analysis is in line with the common view that metabolism is

overall decreased in AD. Several transport pathways appear

throughout our analyses, further emphasizing the importance of

metabolite transport in the disease. The predicted candidate

biomarkers and drug targets that were discovered in this analysis

may offer new metabolic leads for advancing the diagnosis of AD

and its treatment. Hopefully, this work will motivate and guide

future experimental studies geared at studying some of these leads.
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