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1 Introduction

We would like to estimate the average degree of graph G = (V,E), defined as d̄ =
∑

u∈V d(u)

n . Our

estimation d̃ will hold d̄ ≤ d̃ ≤ (1 + ε)d̄.

Assumptions

1. G is a simple graph, no self-loops.

2. G isn’t super-sparse, i.e. |E| = m = Ω(n).

3. ∀v ∈ V we have two sorts of queries:

• degree query: getting v’s degree d(v)

• neighbour query: getting v’s ith neighbour (from the neighbour array)

Reminder In the previous lesson we had two observations

• The plug-in estimation using Chernoff fails because the variance is too large

• We have a lower bound of Ω(
√
n) queries

To counter the variance issue we’ll use Bucketing

Buckets

Set β = ε
c and t = O( logn

ε ), where t is the number of buckets we’ll use.
We define a set of buckets: Bi = {v | (1 + β)i−1 < d(v) ≤ (1 + β)i} for i ∈ {0, ..., t− 1}. The buckets

therefore contain vertices with similar degrees. Notice that vertices of degree 0 are not counted as the
final algorithm does not use them.

The total degree of nodes in Bi is

(1 + β)i−1 | Bi |≤ dBi
≤ (1 + β)i | Bi | (1)

and the total degree of the graph is∑
i

(1 + β)i−1 | Bi |≤ dtotal ≤
∑
i

(1 + β)i | Bi | (2)

Notice that we estimated dtotal to a multiplicative factor of 1 + β.
Our plan is therefore to estimate

∑
i(1 + β)i−1 | Bi | and divide by n to get d̄.

1.1 First idea

1. Sample vertices into S (size to be determined)

2. Set ∀i, Si ← S ∩Bi

3. Estimate |Bi|
n for all i by ρi ← |si|

|S|

4. Output
∑
i ρi(1 + β)i−1
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Example

The vertices in the above graph can be divided to 3 groups: f, g and h. The algorithm will place
these vertices in three buckets: Bf , Bg, Bh.

bucket f g h
degree n-8 5 4

size 3 n-8 5

The graph, therefore, has an average degree d̄ = 1
n · [(n− 8) · 3 + 5 · (n− 8) + 4 · 5] ≈ 8.

However, the algorithm presented above will (with high probability) only sample vertices from g.
This means we’ll have an estimation of 5 instead.

1.2 Second idea

1. Take sample S, |S| = Θ(
√
n · polylog(n)poly( 1

ε ))

2. ∀i, Si ← S ∩Bi

3. Estimate |Bi|
n :

(a) if |Si| ≥
√

ε
n
|S|
c·t , use ρi = |Si|

|S|

(b) else, ρi ← 0

4. Output
∑
ρi(1 + β)i−1

Remark |S| ≥
√

n
ε
log(n)
ε , otherwise the condition is trivially false

Definition i is heavy if |Si| ≥
√

ε
n
|S|
c·t , otherwise i is light
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Analysis

Claim (with high probability) Output is not too large

(ideal case) Suppose ∀i, ρi = |Bi|
n . then

∑
ρi(1 + β)i−1 =

∑ |Bi|
n (1 + β)i−1 ≤ d̄

(reality) Suppose ∀i, ρi ≤ |Bi|
n (1 + γ). then

∑
ρi(1 + β)i−1 ≤ d̄(1 + γ)

• if i is light: ρi = 0 ≤ |Bi|
n

• if i is heavy: ρi ≤ |Bi|
n (1 + γ) (with high probability) by Chernoff/Hoeffding

So our assumption holds, and so does our claim.

Can the output be too small?

for heavy i: ρi ≥ |Bi|
n (1− γ)

for light i: good question!

Definition We classify the types of edges in G:

1. heavy-heavy : both u,v in heavy bucket. those edges are counted twice.

2. heavy-light : one of u,v in heavy bucket, one in light bucket. those edges are counted once.

3. light-light : both u,v in light bucket. those edges are never counted.

Note we should count every edge twice in order to get the total degree

How many light-light edges do we have?

With high probability, ∀ light i, |Bi| <
√

ε
n

2n
c·t

This is true since E[Si] = |S| |Bi|
n , so if |Bi| >

√
ε
n

2n
c·t then E[Si] >

√
ε
n

2|S|
c·t , which means that with

high probability i is heavy.
As a result, even if all the light nodes were connected in one clique, the total number of edges is still

bounded by:

# light-light edges ≤ ( 2
√
εn

c·t · t)
2 = O(εn) since we have t buckets.

So ignoring light-light edges affects our approximation of d̄ by an additive error of εn at most

Remark We assumed G is not super-sparse, and thus an additive error of ε will become a multiplicative
error of 1 + ε, so in total we have a multiplicative error of 2 + ε ! (since the heavy-light edges are
underestimated by at most factor 1

2 )

1.3 Third (and final) Idea

We’ll fix our estimation by considering the light-heavy edges.

1. Take sample S, |S| = Θ(
√
n · polylog(n)poly( 1

ε ))

2. ∀i, Si ← S ∩Bi

3. Estimate |Bi|
n :

(a) if |Si| ≥
√

ε
n
|S|
c·t , use ρi = |Si|

|S| . also - set αi ← Fix(Si)
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(b) else, ρi ← 0

4. Output
∑
heavy ρi(1 + β)i−1(1 + αi)

the 1 + αi factor will function as the light-heavy correction

What’s ”Fix”?

We still need to show how Fix works. First, we explain how to choose a random neighbour of a given
vertex.

random neighbour query(v):

• find d(v) using a degree query on v

• pick i← random(1, ...d(v))

• return v’s ith neighbour (using a neighbour query)

Now we can define Fix(Si):

• ∀u ∈ Si:

– v ← random neighbour of u

– set au as the indicator of whether (u, v) is a heavy-light edge

• Output ← αi =
∑
au
|Si|

Analysis

Let HLi be the number of heavy-light edges in Bi. Consider Si as a set of nodes in Bi chosen uniformly
at random.

Observation E[au] = Pr(au = 1) is the probability that an edge originating in u is heavy-light. Thus,

E[αi] =
∑
u∈Si

Pr(au=1)
|Si| is the probability of choosing a heavy-light edge (first, choose a vertex u ∈ Bi

at random then choose a neighbour at random).

Proof The philosophy behind this proof is that since the nodes are all in the same bucket, their degrees
are pretty close.

The easy case All nodes have the same degree d.

Denote by p the probability that a specific heavy-light edge is chosen. In this case: p = 1
d|Bi|

As a result, E[αi] = Pr(any heavy-light edge is chosen) = HLi

d|Bi|
The general case All nodes are in the same bucket, so all the degrees are in ((1 + β)i−1, (1 + β)i]. In

this case the probability of choosing a specific heavy-light edge is:

1

|Bi|(1 + β)i
≤ p ≤ 1

|Bi|(1 + β)i−1
(3)

therefore

HLi
|Bi|(1 + β)i

≤ E[αi] ≤
HLi

|Bi|(1 + β)i−1
(4)

which means

E[αi]|Bi|(1 + β)i−1 ≤ HLi ≤ E[αi]|Bi|(1 + β)i (5)
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Using Chernoff we’ll have a (1+ ε)-approximation of E[αi] by αi , so in total we have a (1+ ε)(1+β)-
approximation of HLi, using αi|Bi|(1 + β)i−1.

All in all, αiρi(1 + β)i−1 is a (1 + ε)(1 + β)-approximation of HLi

n .

Result Our final approximation of
∑
heavy ρi(1 + β)i−1(1 + αi) counts the heavy-heavy edges twice

and the heavy-light edges once, then adds a correction by counting the heavy-light edges once more.

Back to the Example

Applying the final algorithm to our previous example, we have ρf = ρh = 0 and ρg = 1 - since all
our samples (with high probability) end up in bucket g.

As a result, our previous approximation was 5. However, this time we compute αg ≈ 3
5 (since 3 out

of 5 neighbours of g are heavy-light) and multiply by the correction factor. The answer: 5(1 + 3
5 ) = 8.
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