Lecture 4

Instructor: Ronitt Rubinfeld
Esty Kelman, Gal Hyams, Uri Meir, Tom Jurgenson

Plan for today

1. More on probability testing.
2. Estimate the number of connected components in a graph.

1 Testing for monotonicity of a distribution

Def: distribution p over domain $[n]$ is "monotone decreasing" if

$$
\forall i \in[n-1]: p(i) \geq p(i+1)
$$

Goal: design an algorithm such that:

1. if p is monotone decreasing output PASS (with probability $\geq \frac{3}{4}$)
2. if p is ϵ-far from monotone decreasing output FAIL (with probability $\geq \frac{3}{4}$)

A useful tool - Birge Decomposition: Given any monotone decreasing distribution q and ϵ, we decompose the domain $[n]$ into $l=\Theta\left(\frac{\log \epsilon n}{\epsilon}\right) \approx \Theta\left(\frac{\log n}{\epsilon}\right)$ intervals $I_{1}^{\epsilon}, I_{2}^{\epsilon}, \ldots I_{l}^{\epsilon}$ such that:

$$
\left|I_{k+1}^{\epsilon}\right|=\left\lceil(1+\epsilon / 2) \cdot\left|I_{k}^{\epsilon}\right|\right\rceil
$$

Note: for notation purposes, we disregard ϵ and simply denote I_{k}.
Define \tilde{q}_{ϵ} - "the flattened distribution": \tilde{q}_{ϵ} "flattens" each part $q\left(I_{j}\right)$ of the partition, by distributing uniformly on it's values. Namely:

$$
\forall j \in[l], \forall i \in I_{j}: \tilde{q}_{\epsilon}(i)=\frac{q\left(I_{j}\right)}{\left|I_{j}\right|}
$$

Making the original distribution into a "staircase" distribution, where each part of the partition is one stair, and each part keeps it's weight as the original weight it had in q.

Important Theorem:

1. If distribution q is monotone decreasing then $\left\|\tilde{q}_{\epsilon}-q\right\|_{1}<\epsilon$.
2. If distribution q is ϵ-close to any monotone decreasing (with respect to l_{1} distance) then $\left\|\tilde{q}_{\epsilon}-q\right\|_{1}<O(\epsilon)$.
```
Algorithm 1 Testing decreasing monotonicity
    1: For each part \(I_{j}\) in the partition: test whether \(q_{\mid I_{j}}\) is close to uniform. If not, output FAIL
    2: \(w_{j} \leftarrow\) estimate weights of each partition \(I_{j}\).
    3: Use LP to verify that that \(w\) is close to monotone
```

3. If distribution q is monotone decreasing then for each part I_{j} in the partition, we have $: q_{\mid I_{j}}$ is close to uniform.

Sample analysis: The number of samples required for the above algorithm is
$\Omega\left(\frac{\sum \sqrt{I_{j}}}{\epsilon^{2}}\right) \cdot \Theta\left(\frac{\log n}{\epsilon}\right)=\Omega\left(\frac{\sqrt{n} \cdot \log n}{\epsilon^{3}}\right)$.
The first term is for testing uniformity in each interval, and the second term is the number of parts in our partition.

Notes:

1. If at any interval the number of samples is too small approximate by 0 .
2. Normally, step 2 is hard, but under the notion that the number of partitions is $\Theta\left(\frac{\log n}{\epsilon}\right)$, the LP is easily solvable.
3. The correctness of this algorithm is also derived from the following observation:

For 2 probability distribution p, q over the same partitions $I_{1}^{\epsilon}, I_{2}^{\epsilon}, \ldots I_{l}^{\epsilon}$, if the conditional distributions hold: $\forall I_{j}:\left\|p_{\mid I_{j}}-q_{\mid I_{j}}\right\|_{1}<\epsilon$, then we get: $\forall I_{j}:\|p-q\|_{1}<\epsilon$.
4. The first step of Algorithm 1 is checking closeness of each part $q_{\mid I_{j}}$ to a uniform distribution. The algorithm for that was shown in the previous lecture, and generally, it is not 'tolerant'. Meaning, it might output FAIL for distributions that are ϵ-close to uniform.

Luckily, for our possible inputs of $q_{\mid I_{j}}$, it can be made tolerant enough to keep the correctness of Algorithm 1.

And now for something completely different.

2 Estimate the number of connected components in a graph

Given an undirected graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$, represented as an adjacency-list, and a (relatively small) number d let us define: $n:=|V|, m:=|E|$. we only consider sparse graphs, where d is significantly smaller than n, and $\max _{v \in V} \operatorname{degree}(v) \leq d$.

Generally, sub-linear algorithms over graphs are considered sub-linear time in m, but since it is possible that $m=0 \ldots$ particularly in this problem, we will consider the sample complexity to be sub-linear in $(m+n)$.

In this algorithm, we will see that the sample complexity will depend on d, and not on n or m.

Definition 2.1 A connected component of an undirected graph is a sub-graph in which any two vertices are connected to each other by a path.

We will see an algorithm for estimating the number of connected components in an undirected graph G. our algorithm will return a value y s.t.

$$
C-\epsilon n \leq y \leq C+\epsilon n
$$

where $C=\#$ connected components. i.e. we get a bound on the distance: $|y-C| \leq \epsilon n$ Notes:

1. There is a lower bound on the sample complexity for this algorithm in terms of ϵ and d.
2. ϵn might be very big as to C. Meaning if G is a very big graph (big n), that has little connected components (small C), we might get a big error, related to C.
We note that this does not concern us, since we are interested in the cases where C is big. Namely, we have many connected components in the graph.

We begin with some definitions and observations in order to see how we build such algorithm:
Definition 2.2 Let v be a vertex in V. We define n_{v} as the number of vertices in the connected component to which v belongs. Namely: $\forall v \in V$, let $n_{v}:=\#\{u \in V / \exists$ path between u and $v\}$

Observation 1: \forall connected component $A \subseteq V$:

$$
\Sigma_{v \in A} \frac{1}{n_{v}}=\Sigma_{v \in A} \frac{1}{|A|}=\frac{|A|}{|A|}=1 \Rightarrow \Sigma_{v \in V} \frac{1}{n_{v}}=C
$$

(where the rightmost equation comes from the fact that we get 1 over the summation on each and every connoected component A.)

Allegedly: We need $n^{2} d$ steps to precisely calculate C. We will now show an approximation that runs in sub-linear time. first, we approximate n_{v} and then we approximate the summation itself. We will show that we can estimate $\Sigma_{v \in V} \frac{1}{n_{v}}$ with a small amount of samples, using the standard Chernoff bound. Recall that d is greater than the maximum degree in G. Let us consider d as a constant in the input, $d \ll n$.
since the graph is represented as an adjacency list, iterating over all neighbours of a given vertex takes at most d steps. We will estimate $\Sigma_{v \in V} \frac{1}{n_{v}}$ in two steps:

1) estimating $\frac{1}{n_{v}}$
2) estimating the sum of our values using Chernoff bound.

Step 1: Estimating $\frac{1}{n_{v}}$

Definition 2.3 we define: $\hat{n}_{v}:=\min \left\{n_{v}, \frac{2}{\epsilon}\right\}$
We notice that it means: $\frac{1}{\hat{n}_{v}}=\max \left\{\frac{1}{n_{v}}, \frac{\epsilon}{2}\right\}$
we can assume ϵ to be a significantly small number. Namely: $\epsilon \ll 1$, Hence, $\frac{2}{\epsilon} \gg 1$.
This way, every vertex that belongs to a small connected component, will satisfy: $\hat{n}_{v}=n_{v}$.
The vertices that belong to large connected component, we can "round down", since the fraction $\frac{1}{n_{v}}$ will have a small affect on our summation.

Definition 2.4 Let us define \hat{C} as follows: $\hat{C}=\Sigma_{v \in V}\left(\frac{1}{\hat{n}_{v}}\right)$

Lemma 1:

$$
\forall v\left|\frac{1}{\hat{n}_{v}}-\frac{1}{n_{v}}\right| \leq \frac{\epsilon}{2}
$$

Proof: There are 2 possible cases:

1) if $n_{v \leq \frac{2}{\epsilon}}$, then $\hat{n}_{v}=n_{v} \Rightarrow\left|\frac{1}{\hat{n}_{v}}-\frac{1}{n_{v}}\right|=0$
2) else: we have $n_{v}>\frac{\epsilon}{2}$.

Therefore: and then $\hat{n}_{v}=\frac{2}{\epsilon} \Rightarrow \frac{1}{\hat{n}_{v}}=\frac{\epsilon}{2}, \frac{1}{n_{v}}<\frac{\epsilon}{2} \Rightarrow\left|\frac{1}{\hat{n}_{v}}-\frac{1}{n_{v}}\right|=\left|\frac{\epsilon}{2}-\frac{1}{n_{v}}\right| \leq \frac{\epsilon}{2}$
The last inequality stands because $\frac{1}{n_{v}}$ is a positive number.
Now we will show that: $|\hat{C}-C| \leq\left|\Sigma_{v \in V}\left(\frac{1}{\hat{n}_{v}}\right)-\Sigma_{v \in V}\left(\frac{1}{n_{v}}\right)\right| \leq \Sigma_{v \in V}\left|\frac{1}{\hat{n}_{v}}-\frac{1}{n_{v}}\right| \leq n \cdot \frac{\epsilon}{2}=\frac{\epsilon n}{2}$
where the second inequality comes from pairwise triangle inequality, and the third is true because $|V|=n$.
And now we have the next consequence:

Corollary 1:

$$
|\hat{C}-C| \leq \frac{\epsilon n}{2}
$$

Note that we have constructed the estimation of \hat{n}_{v} s.t the estimate of $|\hat{C}-C|$ can only have half of the error range we had. This gives us room for some additive error in step 2 as well.
(Good question: given i , how can we choose random neighbours? can we check if j is neighbour?
Answer: neighbour: running on i's adjacency list $O(d)$ for a neighbour (where d is the bound on the degree in G). check if j is a neighbour: again, running on the list. also $O(d)$)
Now we would like to calculate \hat{n}_{v}. How will we do this, and how long will it take?

```
Algorithm 2 calculating \(\hat{n}_{v}\)
1: We run a \(B F S\) until visiting whole connected component of \(v\) or until we see \(\frac{2}{\epsilon}\) new nodes.
    2: we output the number of nodes we visited during that process.
```

we note that the nmber of visited nodes is $=\left(\min \left\{n_{v}, \frac{2}{\epsilon}\right\}\right)$.
Complexity: This is bounded by $\frac{d * 2}{\epsilon}$. so it's $O\left(\frac{d}{\epsilon}\right)$, since every step of the BFS has time complexity of at most d, and there are at most $\frac{2}{\epsilon}$ steps of BFS.
So, We can calculate $\frac{1}{\hat{n_{v}}}$ in $O\left(\frac{d}{\epsilon}\right)$ time for any vertex v .

Step 2: Estimating \hat{C}.

We start off by describing the algorithm for that calculation
where the choosing of $r=\frac{b}{\epsilon^{3}}$, depends on b, which is a constant that we will choose later on, using Chernoff bound. We will also see (at the proof of Theorem 1), that with high enough probability - that number of samples will suffice.
We notice that the estimation of \hat{C} is adding us another place for error, since we only estimate it by taking an average over r samples and multiplying it by n.

```
Algorithm 3 estimating \(\hat{C}\)
    1: We set \(r:=\frac{b}{\epsilon^{3}}\)
    2: We take r samples of \(\hat{n}_{v}\).
    3: choose \(U=\left\{u_{1}, \ldots ., u_{r}\right\}\) random nodes, uniformly.
    4: \(\forall u_{i} \in U\) compute \(\hat{n}_{u_{i}}\), using Algorithm 2.
    5: Sum and output: \(\widetilde{C}=n \cdot \frac{1}{r}\left(\sum_{u_{i} \in U} \frac{1}{\hat{n}_{u_{i}}}\right)\).
```

we will prove later on that most of the times, that estimation is good enough.
A possible problem: summing via the averages could create very rough estimation when dealing with samples that have big variance. for example:
Using that method for ($1,2,2,3,4,4,3,2,1,4$) will give us a good estimation.
But using that method for $\left(0,0,0,0,2^{10000}, 0,0,0,0\right)$ will work very badly.
But, since $\frac{1}{\hat{n}_{u}}=\max \left\{\frac{1}{n_{u}}, \frac{\epsilon}{2}\right\}$, we get that $\forall u \in U \cdot \frac{1}{\hat{n}_{u}} \in\left\{\frac{1}{n_{u}}, \frac{\epsilon}{2}\right\}$.
Since $\hat{n}_{u} \geq 1$ (it is the number of nodes we visit at algorithm 2 - starting at one), we know that
$\frac{1}{\hat{n}_{u}} \leq 1$, and also by definition $\hat{n}_{u} \leq \frac{2}{\epsilon}$, and therefore $\frac{1}{\hat{n}_{u}} \geq \frac{\epsilon}{2}$
We finally get that: $\frac{\epsilon}{2} \leq \frac{1}{\hat{n}_{u}} \leq 1$

Theorem 1:

$$
\operatorname{Pr}\left[|\widetilde{C}-\widehat{C}| \leq \frac{\epsilon}{2} \cdot \widehat{C}\right] \geq \frac{3}{4}
$$

Proof: We will use the Chernoff bound:
a little reminder: in general, for x_{1}, \ldots, x_{r} iid $x_{i} \in[0,1]$ (actually we will even have: $x_{i} \in\left[\frac{\epsilon}{2}, 1\right]$)
if we consider $S=\Sigma x_{i}, p=E\left[x_{i}\right]=\frac{E[S]}{r}$, when using Chernoff multiplicative bound, we get:
$\operatorname{Pr}\left[\left|\frac{S}{r}-p\right| \geq \delta p\right] \leq \operatorname{Pr}\left[\frac{S}{r} \geq(1+\delta) \cdot p\right]+\operatorname{Pr}\left[\frac{S}{r} \leq(1-\delta) \cdot p\right] \leq e^{-\frac{\delta^{2} \cdot \mu}{3}}+e^{-\frac{\delta^{2} \cdot \mu}{2}} \leq 2 \cdot e^{-\frac{\delta^{2} \cdot \mu}{3}}$
Where the first inequality comes from union bound. The second from the two multiplicative Chernoff bounds, assuming $0<\delta<1$, and the third from adding them, taking into account that $\frac{1}{3} \leq \frac{1}{2} \Rightarrow e^{\frac{1}{3}} \leq e^{\frac{1}{2}} \Rightarrow e^{-\frac{1}{3}} \geq e^{-\frac{1}{2}} \Rightarrow e^{-\frac{\delta^{2} \cdot \mu}{3}} \geq e^{-\frac{\delta^{2} \cdot \mu}{2}}$
(An important remark: as long as each sample is chosen uniformly over n nodes, it's o.k if our values (that depend on r) does not seem independent (might as well we have a graph made of cliques of the same size, and all n_{u} are equivalent!) - In our case: as long as each U_{i} is chosen uniformly and all $\left\{U_{i}\right\}_{1 \leq i \leq r}$ are iid.)
So, when using this bound in our case we have: $p=E_{u \in U}\left[\frac{1}{\hat{n}_{u}}\right], S=\sum_{i=1}^{r}\left(\frac{1}{\hat{n}_{u_{i}}}\right), \delta=\frac{\epsilon}{2}$
We also notice that: $E_{u \in U}\left[\frac{1}{\hat{n}_{u}}\right]=E_{u \in V}\left[\frac{1}{\hat{n}_{u}}\right]$, since all v's in U are chosen uniformly and independently.

So, we finally get:

$$
\operatorname{Pr}\left[\left|\frac{1}{r} \sum_{i=1}^{r}\left(\frac{1}{\hat{n}_{u_{i}}}\right)-E_{u \in V}\left[\frac{1}{\hat{n}_{u}}\right]\right| \geq \frac{\epsilon}{2} \cdot E_{u \in V}\left[\frac{1}{\hat{n}_{u}}\right]\right] \leq 2 \cdot e^{-\frac{\left(\frac{\epsilon}{2}\right)^{2} \cdot\left(r \cdot E_{u \in V}\left[\frac{1}{\hat{n}_{u}}\right]\right)}{3}}
$$

We now want to find such r, so that the above probability would be bounded by $\frac{1}{4}$. So we follow this inequality for r :

$$
\begin{gathered}
2 \cdot e^{-\frac{\left(\frac{\epsilon}{2}\right)^{2} \cdot\left(r \cdot E_{u \in V}\left[\frac{1}{\hat{n}_{u}}\right]\right)}{3}} \leq \frac{1}{4} \\
\Rightarrow e^{-\frac{\left(\frac{\epsilon}{2}\right)^{2} \cdot\left(r \cdot E_{u \in V}\left[\frac{1}{\hat{n}_{u}}\right]\right)}{3}} \leq \frac{1}{8} \\
\Rightarrow \log \left(e^{\left.-\frac{\left(\frac{\epsilon}{2}\right)^{2} \cdot\left(r \cdot E_{u \in V}\left[\frac{1}{\hat{n}_{u}}\right]\right)}{3}\right)} \leq \log \left(\frac{1}{8}\right)\right. \\
\Rightarrow-\frac{\left(\frac{\epsilon}{2}\right)^{2} \cdot\left(r \cdot E_{u \in V}\left[\frac{1}{\hat{n}_{u}}\right]\right)}{3} \leq-\log (8) \\
\Rightarrow \\
\Rightarrow \frac{\left(\frac{\epsilon}{2}\right)^{2} \cdot\left(r \cdot E_{u \in V}\left[\frac{1}{\hat{n}_{u}}\right]\right)}{3} \geq \log (8) \\
\\
\Rightarrow \\
\Rightarrow r \geq \frac{\epsilon^{2}}{4} \cdot\left(r \cdot E_{u \in V}\left[\frac{1}{\hat{n}_{u}}\right]\right) \geq 3 \cdot \log (8) \\
\epsilon^{2} \\
\end{gathered}
$$

Now, we notice that $E\left[\frac{1}{\hat{n}_{u_{i}}}\right] \geq \frac{\epsilon}{2}$, and therefore $\frac{1}{E\left[\frac{1}{\hat{n}_{u_{i}}}\right]} \leq \frac{2}{\epsilon}$
So it's enough that we take r s.t:

$$
r \geq \frac{12 \cdot \log (8)}{\epsilon^{2}} \cdot \frac{2}{\epsilon} \geq \frac{12 \cdot \log (8)}{\epsilon^{2}} \cdot \frac{1}{E\left[\frac{1}{\hat{n}_{u_{i}}}\right]}
$$

Therefore we get it's enough to take:

$$
r_{0}:=\frac{24 \cdot \log (8)}{\epsilon^{3}}
$$

We also know that $\frac{1}{r} \sum_{i=1}^{r}\left(\frac{1}{\hat{n}_{u_{i}}}\right)=\frac{\widetilde{C}}{n}$, and $E_{u \in V}\left[\frac{1}{\hat{n}_{u}}\right]=\frac{1}{n} \cdot \Sigma \frac{1}{\hat{n_{u}}}=\frac{\widehat{C}}{n}$
So, finally, taking such r_{0} as we defined, we get:

$$
\operatorname{Pr}\left[|\widetilde{C}-\hat{C}| \geq \frac{\epsilon}{2} \cdot \hat{C}\right]=\operatorname{Pr}\left[\left|\frac{\widetilde{C}}{n}-\frac{\hat{c}}{n}\right| \geq \frac{\epsilon}{2} \cdot \frac{\hat{c}}{n}\right] \leq 2 \cdot e^{-\frac{\left(\frac{\epsilon}{2}\right)^{2} \cdot\left(r_{0} \cdot E_{u \in V}\left[\frac{1}{n_{u}}\right]\right)}{3}} \leq \frac{1}{4}
$$

Meaning, we have that:

$$
\operatorname{Pr}\left[|\widetilde{C}-\hat{C}| \leq \frac{\epsilon}{2} \cdot \hat{C}\right] \geq \frac{3}{4}
$$

And thus, we proved Theorem 1!
So, with probability $\geq \frac{3}{4}$ we also have this inequality holding:

$$
\begin{gathered}
|\widetilde{C}-\widehat{C}| \leq \frac{\epsilon}{2} \cdot \widehat{C} \leq \frac{\epsilon n}{2} \\
\Rightarrow|\widetilde{C}-C| \leq|\widetilde{C}-\widehat{C}|+|\widehat{C}-C| \leq \frac{\epsilon n}{2}+\frac{\epsilon n}{2} \leq \epsilon n
\end{gathered}
$$

when the second inequality in the first row comes from the fact that $\hat{C} \leq n$, and the second row's first inequality comes from the triangle inequality.

