0368.416701 Sublinear Time Algorithms. Fall 2015 9.11.15

Lecture 4
Instructor: Ronitt Rubinfeld Esty Kelman, Gal Hyams, Uri Meir, Tom Jurgenson

Plan for today
1. More on probability testing.

2. Estimate the number of connected components in a graph.

1 Testing for monotonicity of a distribution

Def: distribution p over domain [n] is “monotone decreasing” if

Vien—1]:p)>p(i+1)

Goal: design an algorithm such that:
1. if p is monotone decreasing output PASS (with probability > 2)

2. if p is e-far from monotone decreasing output FAIL (with probability > %)

A useful tool - Birge Decomposition: Given any monotone decreasing distribution ¢ and e, we

decompose the domain [n] into [ = @(log%) ~ @(l(’%) intervals If, I5, ...I{ such that:

(ea| = [(1+€/2) - [ L]

Note: for notation purposes, we disregard € and simply denote I.
Define g, - “the flattened distribution”: g. "flattens” each part ¢(I;) of the partition, by distributing

uniformly on it’s values. Namely:

Vi€ [l,Viel;:qi)= a(Z;)

Making the original distribution into a ”staircase” distribution, where each part of the partition is one

stair, and each part keeps it’s weight as the original weight it had in gq.

Important Theorem:
1. If distribution ¢ is monotone decreasing then ||¢e — ¢|l1 < €.

2. If distribution ¢ is e-close to any monotone decreasing (with respect to 1 distance) then

G — ally < O(e).



Algorithm 1 Testing decreasing monotonicity

1: For each part [; in the partition: test whether g7, is close to uniform. If not, output FAIL
2: w; < estimate weights of each partition I;.

3: Use LP to verify that that w is close to monotone

3. If distribution g is monotone decreasing then for each part [; in the partition, we have :g|;;is close to
uniform.

Sample analysis: The number of samples required for the above algorithm is

=Y o(un) — (L)

The first term is for testing uniformity in each interval, and the second term is the number of parts in
our partition.

Notes:

1. If at any interval the number of samples is too small approximate by 0.

2. Normally, step 2 is hard, but under the notion that the number of partitions is ©(*%6™), the LP is

€

easily solvable.

3. The correctness of this algorithm is also derived from the following observation:

For 2 probability distribution p, g over the same partitions If, I5, ...I}, if the conditional distributions
hold: VI; : |lpj1; — qir;|l1 < ¢, then we get: VI; : [|p — g1 <.

4. The first step of Algorithm 1 is checking closeness of each part g7, to a uniform distribution. The
algorithm for that was shown in the previous lecture, and generally, it is not ’tolerant’. Meaning, it
might output FAIL for distributions that are e-close to uniform.

Luckily, for our possible inputs of g|z,, it can be made tolerant enough to keep the correctness of

Algorithm 1.

And now for something completely different.

2 Estimate the number of connected components in a graph

Given an undirected graph G(V,E), represented as an adjacency-list, and a (relatively small) number d
let us define: n :=|V|, m := |E|. we only consider sparse graphs, where d is significantly smaller than
n, and maz,cydegree(v) < d.

Generally, sub-linear algorithms over graphs are considered sub-linear time in m, but since it is
possible that m=0... particularly in this problem, we will consider the sample complexity to be
sub-linear in (m + n).

In this algorithm, we will see that the sample complexity will depend on d, and not on n or m.

Definition 2.1 A connected component of an undirected graph is a sub-graph in which any two

vertices are connected to each other by a path.



We will see an algorithm for estimating the number of connected components in an undirected graph G.

our algorithm will return a value y s.t.
C—en<y<C+Hen

where C' =# connected components. i.e. we get a bound on the distance: |y — C| < en

Notes:

1. There is a lower bound on the sample complexity for this algorithm in terms of ¢ and d.

2.en might be very big as to C. Meaning if G is a very big graph (big n), that has little connected
components (small C'), we might get a big error, related to C.

We note that this does not concern us, since we are interested in the cases where C is big. Namely, we

have many connected components in the graph.
We begin with some definitions and observations in order to see how we build such algorithm:

Definition 2.2 Let v be a vertex in V. We define n, as the number of vertices in the connected

component to which v belongs. Namely: Yv € V, let n, := #{u € V/Ipath between u and v}

Observation 1: V connected component A C V:

1 1|4 1
E’U _ = E’U —_— — = ]_ — E’U _— = C
A, T A T 4] “n,

(where the rightmost equation comes from the fact that we get 1 over the summation on each and
every connoected componentA.)

Allegedly: We need n2d steps to precisely calculate C. We will now show an approximation that runs in
sub-linear time. first, we approximate n, and then we approximate the summation itself. We will show
that we can estimate Euevn% with a small amount of samples, using the standard Chernoff bound.
Recall that d is greater than the maximum degree in G. Let us consider d as a constant in the input,
d<<n.

since the graph is represented as an adjacency list, iterating over all neighbours of a given vertex takes
at most d steps. We will estimate EUGV% in two steps:

1) estimating ni

2) estimating the sum of our values using Chernoff bound.

Step 1: Estimating .-

Definition 2.3 we define: i, := min{n,, %}

We notice that it means: -1 = max{

Uz

1 e
Ny ? 2

we can assume € to be a significantly small number. Namely: € << 1, Hence, % >> 1.
This way, every vertex that belongs to a small connected component, will satisfy: 7, = n,.
The vertices that belong to large connected component, we can "round down”, since the fraction 7%

will have a small affect on our summation.



Definition 2.4 Let us define C as follows: C' = Zuev(%)

Lemma 1:
1 1 €
Y| ——-—[<3
Ny Ny 2
Proof: There are 2 possible cases:
. . 1 1
1) if nyc2, then iy =ny = [7- — 7-[ =0
2) else: we have n, > §.
. A __ 2 1 __ € 1 € 1 1] |e€ 1 €
Therefore: and then n, = 2 = 7- =5, - <5=|; - =5 - <5

The last inequality stands because - is a positive number.

Ny

Now we will show that: |é -C| < |Evev(,~%> - Evev(%ﬂ < Spev]

A alsns =g
where the second inequality comes from pairwise triangle inequality, and the third is true because
V| =n.

And now we have the next consequence:

Corollary 1:
~ €n
C-C|<—
c-cl=2

Note that we have constructed the estimation of 7, s.t the estimate of |C' — C| can only have half of
the error range we had. This gives us room for some additive error in step 2 as well.

(Good question: given i, how can we choose random neighbours? can we check if j is neighbour?
Answer: neighbour: running on i’s adjacency list O(d) for a neighbour (where d is the bound on the
degree in G). check if j is a neighbour: again, running on the list. also O(d))

Now we would like to calculate 7,,. How will we do this, and how long will it take?

Algorithm 2 calculating 7,

2

1: We run a BF'S until visiting whole connected component of v or until we see £ new nodes.

2: we output the number of nodes we visited during that process.

we note that the nmber of visited nodes is = (min{n,, 2}).

Complexity: This is bounded by %2, so it’s O(2), since every step of the BFS has time complexity of

€ €
at most d, and there are at most % steps of BFS.

1

So, We can calculate

in O(%) time for any vertex v.

Step 2: Estimating C.
We start off by describing the algorithm for that calculation

where the choosing of r = E%, depends on b, which is a constant that we will choose later on, using
Chernoff bound. We will also see (at the proof of Theorem 1), that with high enough probability - that
number of samples will suffice.

We notice that the estimation of C' is adding us another place for error, since we only estimate it by

taking an average over r samples and multiplying it by n.



Algorithm 3 estimating C

1: We set r := E%

2: We take r samples of 7,.
3: choose U = {uy, ...., u, } random nodes, uniformly.
4: VYu; € U compute n,,,, using Algorithm 2.

1).

5: Sum and output: C=n- %(EUiGUﬁ -

we will prove later on that most of the times, that estimation is good enough.

A possible problem: summing via the averages could create very rough estimation when dealing
with samples that have big variance. for example:

Using that method for (1,2,2,3,4,4,3,2,1,4) will give us a good estimation.

But using that method for (0,0,0,0,2190%9,0.0,0,0) will work very badly.

1 e
Ny’ 274"

But, since n—lu = mam{n—lu, 5}, we get that Vu € Un% e

Since 7, > 1 (it is the number of nodes we visit at algorithm 2 - starting at one), we know that

ﬁi < 1, and also by definition 7n,, < %, and therefore ni > 5
We finally get that: § < ﬁl <1

Theorem 1:

Pr|C-Cl<=-C)>

| ™
B~ oo

Proof: We will use the Chernoff bound:

a little reminder: in general, for 21, ..., z, iid 2; € [0,1] (actually we will even have: z; € [§,1])

if we consider S = Xa;, p = Elx;] = @ , when using Chernoff multiplicative bound, we get:

2, 2., 2.,
Pri|S —p| > op] < Pr[8 > (148)-p|+ PriS <(1-0) p] <e 5" e 77" <207 5"
Where the first inequality comes from union bound. The second from the two multiplicative Chernoff

bounds, assuming 0 < § < 1, and the third from adding them, taking into account that

52 52

%S%éeégeééeféze %je*TﬂZe p)
(An important remark: as long as each sample is chosen uniformly over n nodes, it’s 0.k if our values
(that depend on r) does not seem independent (might as well we have a graph made of cliques of the
same size, and all n,, are equivalent!) - In our case: as long as each U; is chosen uniformly and all
{Uiti<i<r are iid.)

e

So, when using this bound in our case we have: p = E,cp[-], S=%I_;(-1-) , 0 =%

We also notice that: F,cp {7%} = Fuecv {%}7 since all v’s in U are chosen uniformly and

independently.
So, we finally get:




We now want to find such r, so that the above probability would be bounded by i. So we follow this

inequality for 7:

N———

= 7(5)2. <r ' iuev LH < —log(8)

| e (r ?ev ) > log(8)

L2 <T-Euev UD >3- log(8)

<
4 u

r2 12'gg(8)'E[1}]

Now, we notice that F {ﬁl } > 5, and therefore 11 ] < %

wy

So it’s enough that we take r s.t:

> 12 1(;g(8) 2 > 12 - 1(;g(8) 1
€ € € E [%]
Therefore we get it’s enough to take:
24 -1og(8)
Ty ‘= 3
€
We also know that %Egzl (nl) e ,and Eycy {ni} =1.5 1 = g
So, finally, taking such ry as we defined, we get:
~ ) o ; (9% (ro-Buev 72 1
pr[‘C,C|ZE.C’} — Pr |€,E‘Zf.f <90 ( SEV[ ) <=
2 n o n 2 n 4
Meaning, we have that:
~ A € - 3
P [ _0l< <. } > 2
r||C—C| < 5 c| > 1

And thus, we proved Theorem 1!
So, with probability > % we also have this inequality holding:

‘é—é(gg-ég%
~lc-cl<|c-cl+lc-c|<L 1+ L <
C-cl<|e-Cl+]e-c|<F+35

when the second inequality in the first row comes from the fact that C < n, and the second row’s first

inequality comes from the triangle inequality.



