
0368.416701 Sublinear Time Algorithms. Fall 2015 9.11.15

Lecture 4
Instructor: Ronitt Rubinfeld Esty Kelman, Gal Hyams, Uri Meir, Tom Jurgenson

Plan for today
1. More on probability testing.

2. Estimate the number of connected components in a graph.

1 Testing for monotonicity of a distribution

Def: distribution p over domain [n] is “monotone decreasing” if

∀i ∈ [n− 1] : p(i) ≥ p(i+ 1)

Goal: design an algorithm such that:

1. if p is monotone decreasing output PASS (with probability ≥ 3
4 )

2. if p is ε-far from monotone decreasing output FAIL (with probability ≥ 3
4 )

A useful tool - Birge Decomposition: Given any monotone decreasing distribution q and ε, we

decompose the domain [n] into l = Θ( log εn
ε ) ≈ Θ( logn

ε ) intervals Iε1, I
ε
2, ...I

ε
l such that:

|Iεk+1| = d(1 + ε/2) · |Iεk|e

Note: for notation purposes, we disregard ε and simply denote Ik.

Define q̃ε - “the flattened distribution”: q̃ε ”flattens” each part q(Ij) of the partition, by distributing

uniformly on it’s values. Namely:

∀j ∈ [l],∀i ∈ Ij : q̃ε(i) =
q(Ij)

|Ij |

Making the original distribution into a ”staircase” distribution, where each part of the partition is one

stair, and each part keeps it’s weight as the original weight it had in q.

Important Theorem:

1. If distribution q is monotone decreasing then ‖q̃ε − q‖1 < ε.

2. If distribution q is ε-close to any monotone decreasing (with respect to l1 distance) then

‖q̃ε − q‖1 < O(ε).
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Algorithm 1 Testing decreasing monotonicity

1: For each part Ij in the partition: test whether q|Ij is close to uniform. If not, output FAIL

2: wj ← estimate weights of each partition Ij .

3: Use LP to verify that that w is close to monotone

3. If distribution q is monotone decreasing then for each part Ij in the partition, we have :q|Ij is close to

uniform.

Sample analysis: The number of samples required for the above algorithm is

Ω(
∑√

Ij
ε2 ) ·Θ( logn

ε ) = Ω(
√
n·logn
ε3 ) .

The first term is for testing uniformity in each interval, and the second term is the number of parts in

our partition.

Notes:

1. If at any interval the number of samples is too small approximate by 0.

2. Normally, step 2 is hard, but under the notion that the number of partitions is Θ( logn
ε ), the LP is

easily solvable.

3. The correctness of this algorithm is also derived from the following observation:

For 2 probability distribution p, q over the same partitions Iε1, I
ε
2, ...I

ε
l , if the conditional distributions

hold: ∀Ij : ‖p|Ij − q|Ij‖1 < ε, then we get: ∀Ij : ‖p− q‖1 < ε.

4. The first step of Algorithm 1 is checking closeness of each part q|Ij to a uniform distribution. The

algorithm for that was shown in the previous lecture, and generally, it is not ’tolerant’. Meaning, it

might output FAIL for distributions that are ε-close to uniform.

Luckily, for our possible inputs of q|Ij , it can be made tolerant enough to keep the correctness of

Algorithm 1.

And now for something completely different.

2 Estimate the number of connected components in a graph

Given an undirected graph G(V,E), represented as an adjacency-list, and a (relatively small) number d

let us define: n := |V |, m := |E|. we only consider sparse graphs, where d is significantly smaller than

n, and maxv∈V degree(v) ≤ d.

Generally, sub-linear algorithms over graphs are considered sub-linear time in m, but since it is

possible that m=0... particularly in this problem, we will consider the sample complexity to be

sub-linear in (m+ n).

In this algorithm, we will see that the sample complexity will depend on d, and not on n or m.

Definition 2.1 A connected component of an undirected graph is a sub-graph in which any two

vertices are connected to each other by a path.
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We will see an algorithm for estimating the number of connected components in an undirected graph G.

our algorithm will return a value y s.t.

C − εn ≤ y ≤ C + εn

where C =# connected components. i.e. we get a bound on the distance: |y − C| ≤ εn

Notes:

1. There is a lower bound on the sample complexity for this algorithm in terms of ε and d.

2.εn might be very big as to C. Meaning if G is a very big graph (big n), that has little connected

components (small C), we might get a big error, related to C.

We note that this does not concern us, since we are interested in the cases where C is big. Namely, we

have many connected components in the graph.

We begin with some definitions and observations in order to see how we build such algorithm:

Definition 2.2 Let v be a vertex in V. We define nv as the number of vertices in the connected

component to which v belongs. Namely: ∀v ∈ V, let nv := #{u ∈ V/∃path between u and v}

Observation 1: ∀ connected component A ⊆ V :

Σv∈A
1

nv
= Σv∈A

1

|A|
=
|A|
|A|

= 1⇒ Σv∈V
1

nv
= C

(where the rightmost equation comes from the fact that we get 1 over the summation on each and

every connoected componentA.)

Allegedly: We need n2d steps to precisely calculate C. We will now show an approximation that runs in

sub-linear time. first, we approximate nv and then we approximate the summation itself. We will show

that we can estimate Σv∈V
1
nv

with a small amount of samples, using the standard Chernoff bound.

Recall that d is greater than the maximum degree in G. Let us consider d as a constant in the input,

d << n.

since the graph is represented as an adjacency list, iterating over all neighbours of a given vertex takes

at most d steps. We will estimate Σv∈V
1
nv

in two steps:

1) estimating 1
nv

2) estimating the sum of our values using Chernoff bound.

Step 1: Estimating 1
nv

Definition 2.3 we define: n̂v := min{nv, 2ε }

We notice that it means: 1
n̂v

= max{ 1
nv
, ε2}

we can assume ε to be a significantly small number. Namely: ε << 1, Hence, 2
ε >> 1.

This way, every vertex that belongs to a small connected component, will satisfy: n̂v = nv.

The vertices that belong to large connected component, we can ”round down”, since the fraction 1
nv

will have a small affect on our summation.
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Definition 2.4 Let us define Ĉ as follows: Ĉ = Σv∈V ( 1
n̂v

)

Lemma 1:

∀v | 1

n̂v
− 1

nv
| ≤ ε

2

Proof: There are 2 possible cases:

1) if nv≤ 2
ε
, then n̂v = nv ⇒ | 1n̂v −

1
nv
| = 0

2) else: we have nv >
ε
2 .

Therefore: and then n̂v = 2
ε ⇒

1
n̂v

= ε
2 , 1

nv
< ε

2 ⇒ |
1
n̂v
− 1

nv
| = | ε2 −

1
nv
| ≤ ε

2

The last inequality stands because 1
nv

is a positive number.

Now we will show that: |Ĉ − C| ≤ |Σv∈V ( 1
n̂v

)− Σv∈V ( 1
nv

)| ≤ Σv∈V | 1n̂v −
1
nv
| ≤ n · ε2 = εn

2

where the second inequality comes from pairwise triangle inequality, and the third is true because

|V | = n.

And now we have the next consequence:

Corollary 1:

|Ĉ − C| ≤ εn

2

Note that we have constructed the estimation of n̂v s.t the estimate of |Ĉ − C| can only have half of

the error range we had. This gives us room for some additive error in step 2 as well.

(Good question: given i , how can we choose random neighbours? can we check if j is neighbour?

Answer: neighbour: running on i’s adjacency list O(d) for a neighbour (where d is the bound on the

degree in G). check if j is a neighbour: again, running on the list. also O(d))

Now we would like to calculate n̂v. How will we do this, and how long will it take?

Algorithm 2 calculating n̂v

1: We run a BFS until visiting whole connected component of v or until we see 2
ε new nodes.

2: we output the number of nodes we visited during that process.

we note that the nmber of visited nodes is = (min{nv, 2ε }).

Complexity: This is bounded by d∗2
ε . so it’s O(dε ), since every step of the BFS has time complexity of

at most d, and there are at most 2
ε steps of BFS.

So, We can calculate 1
n̂v

in O(dε ) time for any vertex v.

Step 2: Estimating Ĉ.

We start off by describing the algorithm for that calculation

where the choosing of r = b
ε3 , depends on b, which is a constant that we will choose later on, using

Chernoff bound. We will also see (at the proof of Theorem 1), that with high enough probability - that

number of samples will suffice.

We notice that the estimation of Ĉ is adding us another place for error, since we only estimate it by

taking an average over r samples and multiplying it by n.
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Algorithm 3 estimating Ĉ

1: We set r := b
ε3

2: We take r samples of n̂v.

3: choose U = {u1, ...., ur} random nodes, uniformly.

4: ∀ui ∈ U compute n̂ui , using Algorithm 2.

5: Sum and output: C̃ = n · 1r (Σui∈U
1
n̂ui

).

we will prove later on that most of the times, that estimation is good enough.

A possible problem: summing via the averages could create very rough estimation when dealing

with samples that have big variance. for example:

Using that method for (1,2,2,3,4,4,3,2,1,4) will give us a good estimation.

But using that method for (0,0,0,0,210000,0,0,0,0) will work very badly.

But, since 1
n̂u

= max{ 1
nu
, ε2}, we get that ∀u ∈ U. 1

n̂u
∈ { 1

nu
, ε2}.

Since n̂u ≥ 1 (it is the number of nodes we visit at algorithm 2 - starting at one), we know that

1
n̂u
≤ 1, and also by definition n̂u ≤ 2

ε , and therefore 1
n̂u
≥ ε

2

We finally get that: ε
2 ≤

1
n̂u
≤ 1

Theorem 1:

Pr[|C̃ − Ĉ| ≤ ε

2
· Ĉ] ≥ 3

4

Proof: We will use the Chernoff bound:

a little reminder: in general, for x1, ..., xr iid xi ∈ [0, 1] (actually we will even have: xi ∈ [ ε2 , 1])

if we consider S = Σxi, p = E[xi] = E[S]
r , when using Chernoff multiplicative bound, we get:

Pr[|Sr − p| ≥ δp] ≤ Pr[
S
r ≥ (1 + δ) · p] + Pr[Sr ≤ (1− δ) · p] ≤ e−

δ2·µ
3 + e−

δ2·µ
2 ≤ 2 · e−

δ2·µ
3

Where the first inequality comes from union bound. The second from the two multiplicative Chernoff

bounds, assuming 0 < δ < 1, and the third from adding them, taking into account that

1
3 ≤

1
2 ⇒ e

1
3 ≤ e 1

2 ⇒ e−
1
3 ≥ e− 1

2 ⇒ e−
δ2·µ

3 ≥ e−
δ2·µ

2

(An important remark: as long as each sample is chosen uniformly over n nodes, it’s o.k if our values

(that depend on r) does not seem independent (might as well we have a graph made of cliques of the

same size, and all nu are equivalent!) - In our case: as long as each Ui is chosen uniformly and all

{Ui}1≤i≤r are iid.)

So, when using this bound in our case we have: p = Eu∈U [ 1
n̂u

], S = Σri=1( 1
n̂ui

) , δ = ε
2

We also notice that: Eu∈U

[
1
n̂u

]
= Eu∈V

[
1
n̂u

]
, since all v’s in U are chosen uniformly and

independently.

So, we finally get:

Pr

[∣∣∣∣1rΣri=1

(
1

n̂ui

)
− Eu∈V

[
1

n̂u

]∣∣∣∣ ≥ ε

2
· Eu∈V

[
1

n̂u

]]
≤ 2 · e−

( ε
2
)2·(r·Eu∈V [ 1

n̂u ])
3
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We now want to find such r, so that the above probability would be bounded by 1
4 . So we follow this

inequality for r:

2 · e−
( ε
2
)2·(r·Eu∈V [ 1

n̂u ])
3 ≤ 1

4

⇒ e−
( ε
2
)2·(r·Eu∈V [ 1

n̂u ])
3 ≤ 1

8

⇒ log(e−
( ε
2
)2·(r·Eu∈V [ 1

n̂u ])
3 ) ≤ log(

1

8
)

⇒ −
( ε2 )2 ·

(
r · Eu∈V

[
1
n̂u

])
3

≤ − log(8)

⇒
( ε2 )2 ·

(
r · Eu∈V

[
1
n̂u

])
3

≥ log(8)

⇒ ε2

4
·
(
r · Eu∈V

[
1

n̂u

])
≥ 3 · log(8)

⇒ r ≥ 12 · log(8)

ε2
· 1

E
[

1
n̂ui

]
Now, we notice that E

[
1
n̂ui

]
≥ ε

2 , and therefore 1

E
[

1
n̂ui

] ≤ 2
ε

So it’s enough that we take r s.t:

r ≥ 12 · log(8)

ε2
· 2

ε
≥ 12 · log(8)

ε2
· 1

E
[

1
n̂ui

]
Therefore we get it’s enough to take:

r0 :=
24 · log(8)

ε3

We also know that 1
rΣri=1

(
1
n̂ui

)
= C̃

n , and Eu∈V

[
1
n̂u

]
= 1

n · Σ
1
n̂u

= Ĉ
n

So, finally, taking such r0 as we defined, we get:

Pr
[
|C̃ − Ĉ| ≥ ε

2
· Ĉ
]

= Pr

[
| C̃
n
− ĉ

n
| ≥ ε

2
· ĉ
n

]
≤ 2 · e−

( ε
2
)2·(r0·Eu∈V [ 1

n̂u ])
3 ≤ 1

4

Meaning, we have that:

Pr
[
|C̃ − Ĉ| ≤ ε

2
· Ĉ
]
≥ 3

4

And thus, we proved Theorem 1!

So, with probability ≥ 3
4 we also have this inequality holding:∣∣∣C̃ − Ĉ∣∣∣ ≤ ε

2
· Ĉ ≤ εn

2

⇒
∣∣∣C̃ − C∣∣∣ ≤ ∣∣∣C̃ − Ĉ∣∣∣+

∣∣∣Ĉ − C∣∣∣ ≤ εn

2
+
εn

2
≤ εn

when the second inequality in the first row comes from the fact that Ĉ ≤ n, and the second row’s first

inequality comes from the triangle inequality.
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