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1 Introduction

1.1 Norms

In the previous lesson we saw two norms that are commonly used to measure distance between distri-
butions:

• `1: ‖p− q‖1 :=
∑
|pi − qi|

• `2: ‖p− q‖2 :=
√∑

(pi − qi)2

It is known that
‖p− q‖2 ≤ ‖p− q‖1 ≤

√
n‖p− q‖2

Today we will prove a result with the `2-norm. We have seen that `2 might be a problematic distance
measure in some cases, but it does have its uses (in the area of databases, for examples), and moreover
results with `2 sometimes imply results in `1, using the above relation.

1.2 Background for testing uniformity

Our problem for today is that of testing uniformity. The setting of the problem is the following:

• There is a ”black box”, called p, that generates independent identically distributed samples.

• The domain D of p is of size n, which is known. For simplicity assume that D = [n] = {1, . . . , n}.

• The probabilities pi = Pr(p outputs i) are unknown.

The domain can be very large, so we might only want to learn some properties of the distribution p
without knowing the values of the pi.

In the previous lesson we saw a naive algorithm to find the values of the pi by taking a sample
and estimating that pi is the fraction of appearences of i in the sample. This method gives a good
approximation, but requires a large sample: to see all possible elements, we will definitely need a sample
of size Ω(n). In fact, to get an estimate (q1, . . . , qn) of the probabilities, which is of distance less than ε
from (p1, . . . , pn) in the `1-norm, the sample size should be Ω(n/ε2).

We will see that testing uniformity (that is, testing whether the distribution p is uniform) requires a
sample of constant size when working with `2-norm. With `1-norm, the required sample size is Ω(

√
n),

but we will use our proof for `2 to prove for `1 as well.
Note: since we will only deal with `2-norm in this lecture, we won’t distinguish between || · || and || · ||2.

2 The test

Our goal is to find a test whose behavior is as follows:

• If p = U[n] output PASS with probability at least 3/4.

• If ‖p− U[n]‖22 ≥ ε2 output FAIL with probability at least 3/4.
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Where U[n] is the uniform distribution on [n]. Observe that

‖p− U[n]‖22 =

n∑
i=1

(pi − 1/n)2 =
∑
i

p2i −
∑
i

2

n
pi +

∑
i

1

n2
=
∑
i

p2i −
1

n
= ‖p‖22 −

1

n

Note that the collision probability of p, that is, the probability that two values sampled from p are equal,
is also equal to ‖p‖22. In other words, for any distribution p, the squared `2-distance between p and
the uniform distribution is equal, up to an additive term of 1/n, to the collision probability of p. In
particular, the collision probability of U[n] is 1/n.

Now we describe an algorithm for testing uniformity. Some of the details will only be filled later.

Algorithm 1 Testing Uniformity

1: x1 . . . , xs ← s samples from P
2: ĉ← estimate of ‖p‖22 from x1 . . . , xs
3: if ĉ < 1

n + δ then return PASS
4: else return FAIL

There are some gaps that need to be filled:

1. What is the number of samples s?

2. How to estimate?

3. What δ to take?

We will answers those questions in a reverse order.

Finding δ

Assume that after step 2 of the algorithm,
∣∣ĉ− ‖p‖22∣∣ < ∆. Under this assumption:

• If p is the uniform distribution, then ĉ < 1
n + ∆.

• If p is ε-far from uniform (i.e. if ‖p−U[n]‖2 ≥ ε), then ĉ > ‖p‖22−∆ = ‖p−U[n]‖22+ 1
n−∆ ≥ ε2+ 1

n−∆.

We want the algorithm to work correctly when the above assumption holds. This means that we need
to have 1

n + ∆ ≤ 1
n + δ (to handle the case of PASS) and 1

n + δ ≤ ε2 + 1
n − ∆ (to handle the case of

a FAIL). These two inequalities are true if and only if ∆ ≤ δ ≤ ε2/2. Moreover, we certainly want to
have ∆ as large as possible, since ∆ is essentially the “margin of error” that we allow in step 2 of the
algorithm. Thus, we take ∆ = δ = ε2/2, which settles the third question.

Finding the number of samples

We estimate the collision probability by choosing ĉ to be the number of collisions in x1, . . . , xs. Now, we
would like to express ĉ as a sum of indicators. For that we will make a few definitions: Let σi,j denote
the indicator for the event xi = xj . That is, we had a collision in places i, j. Let Sk denote the set of all
subsets of {1, · · · , s} of size k. Now,

ĉ =
1(
s
2

) ∑
{i,j}∈S2

σi,j

It follows that
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E[ĉ] = E

 1(
s
2

) ∑
{i,j}∈S2

σi,j


=

1(
s
2

) ∑
{i,j}∈S2

E [σi,j ]

We know that E (σi,j) = ‖p‖2, the collision probability. So, we get

E[ĉ] =
1(
s
2

) ∑
{i,j}∈S2

‖p‖2

=

(
s
2

)(
s
2

)‖p‖2 = ‖p‖2

The expected value of our estimate, is indeed ‖p‖2, what we wanted to estimate!
We would like to give an upper bound on ĉ. Since {σi,j} are not independent (for example, if σ1,10 = 1

and σ10,11 = 1, then we get that σ1,11 = 1), then we cannot use Chernoff bound. The Markov bound
isn’t tight enough for our need, so we use Chebyshev bound.

In order to use it, we need to analyze the variance. Recall some known probabilistic quantities:

Definition 2.1 The variance, V ar(X) is defined as E [X − E[X]]
2

= E[X2]− (E[X])
2

Definition 2.2 The covariance, Cov(X,Y ) is defined as E [X − E[X]] (Y − E[Y ]) =
E[XY ]− (E[X]) (E[Y ])

Corollary 2.3 V ar(X) and Cov(X,Y ) have the following properties:

• V ar(λX) = λ2V ar(X)

• Cov(X,X) = V ar(x)

• Cov(X,λY + Z) = λCov(X,Y ) + Cov(X,Z)

• If X,Y are independent then Cov(X,Y ) = 0.

Now, we can go on and calculate the variance of ĉ:

V ar(ĉ) = V ar

 1(
s
2

) ∑
{i,j}∈S2

σi,j


=

1(
s
2

)2V ar
 ∑
{i,j}∈S2

σi,j


=

1(
s
2

)2Cov
 ∑
{i,j}∈S2

σi,j ,
∑

{k,l}∈S2

σk,l


=

1(
s
2

)2 ∑
{i,j}∈S2,{k,l}∈S2

Cov (σi,j , σk,l)

Now look at {i, j}, {k, l}. We identify 3 cases:
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1. |{i, j, k, l}| = 4. Which means {i, j}, {k, l} are distinct.

2. |{i, j, k, l}| = 3. Which means {i, j}, {k, l} have one common items.

3. |{i, j, k, l}| = 2. Which means {i, j} = {i, j}.
We will split the sum above into these 3 cases.

Case 1

1(
s
2

)2 ∑
{i,j,k,l}∈S4

Cov (σi,j , σk,l) = 0

This equality comes from the fact that σi,j , σk,l are independent random variables, because the samples
are independent.

Case 2

How many times does σi,jσj,k appear with {i, j, k} distinct? Basic combinatorics: s possibilities to
choose the repeated index j, and then (s− 1)(s− 2) to choose i, k (order is important). So terms of this
case appear s(s− 1)(s− 2) times overall. We would like to calculate the covariance Cov(σi,j , σj,k).

Cov(σi,j , σj,k) = E[σi,jσj,k]− (E[σi,j ]) (E[σj,k])

Notice that σi,jσj,k is just the indicator for the event xi = xj = xk, which happens with probability∑
α p

3
α, which we will denote simply as d. E[σi,j ] = ||p||2, as we’ve seen before. Putting all together, the

contribution of this case is:

1(
s
2

)2 s(s− 1)(s− 2)
(
d− ‖p‖4

)
Case 3

The contribution in this case is:

1(
s
2

)2 ∑
{i,j}∈S2

Cov (σi,j , σi,j)

=
1(
s
2

)2 ∑
{i,j}∈S2

V ar (σi,j)

=
1(
s
2

)2(s2
)
‖p‖2(1− ‖p‖2)

The last equality holds since the variance of an indicator with probability q is just q(1 − q). In our
case, the probability is ‖p‖2 and so the variance is ‖p‖2(1− ‖p‖2).

Total variance

The calculated variance from all the cases is:

V ar(ĉ) =
1(
s
2

)2(s2
)
‖p‖2(1− ‖p‖2) +

1(
s
2

)2 s(s− 1)(s− 2)
(
d− ‖p‖4

)
We bound this from above for s > 1:

V ar(ĉ) ≤ cs−1

where c is a constant (not dependent on p).
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Chebyshev and choosing s

Chebyshev’s inequality gives:

Pr

[∣∣∣∣ĉ− 1

n

∣∣∣∣ ≥ k√V ar(ĉ)] < 1

k2

We would like to get a probability bound of say 1
4 , so we will take k = 2. If we choose s such that

k
√
V ar(ĉ) < ε2

2 , we will get that with probability at least 3/4 we have
∣∣ĉ− 1

n

∣∣ < k
√
V ar(ĉ) < ε2

2 which
is exactly what we wanted!

So, the requirement is 2
√
V ar(ĉ) < ε2

2 , or V ar(ĉ) < ε4

16 . Since we know V ar(ĉ) ≤ cs−1 if we take
s = 16c

ε4 , we get a tester with the specified requirements, using O( 1
ε4 ) samples.

In recent results, the upper bound was reduced to O( 1
ε2 ), using a more careful analysis.
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