0368.416701 Sublinear Time Algorithms 04 Jan, 2016

Lecture 12
Lecturer: Ronitt Rubinfeld Scribe: Maor Rahamim, Nimrod Busany, Chen Liderman

1 Estimating the Sum of Powers of Degree One Fourier Coefficients

1.1 Reminders
On the previous lecture, we have showed the following properties for Boolean functions f : {£1}" —

{£1}

Definition 1 x;(x) = ITjcsx;
Definition 2 f(s) = (f, xs) = %fo(X)xs(X)
Theorem 3 f(x) = Y f(s)xs(x)

Theorem 4 Parseval / Plancherel:
(f,8) = Ls,r f(5)$(T)(x(5), x(T))
(f, f) =Y f(S)? =1, if f is Boolean (since (xs, xs) = 1)

1.2 Estimating the Sum of Powers of Degree One Fourier Coefficients

In this section we are interested in estimating the sum of powers of degree one Fourier coefficients. An
example for a use of this sum is testing if a function is a dictator function. For such a test, this sum
can indicate if a function is determined by a single bit. Furthermore, the approach we present here for
estimating the sum of degree one powers, can be used to iterative estimate sums of any degree.

Let us denote by f(i), f(s) for |S| = 1; We would like to estimate: Y1, f(i)PN

Let us propose the following algorithm, given a parameter # € {0,1}:

1. pick xM x@ xF-1) randomly (uniformly) from {£1}"

2. pick noise vector " s.t., each entry:
+1, w.p. % + %

1_ 7
-1L,wp. ;-5

3.y FIXDYF(X@)F(XP-D) (XD o X@ .o XP-D o pu)

*© is coordinate-wise multiplication

4. outputy
Claim5 E[y| = ng[n] ISl f(s)P

Proof
E[y] = IE[f(X(l))f(X(z))-~-f(X(P71))f(X(1) © X@ ..o XPV ©)] =ing Thm. 3
E[(Ls, £(S1)xs, (XM)).(Es,, F(Sp-1)xsp o (XP)) (s, F(Sp)xs, XV 0 XA o XxP-Dou))]
= Y5, 5050 f (S1)F(S2)--F(SPYE [x5,880 (XM xs,88p (XP)).xsp a8, (XP)xs, ()]
=+ X5,.50,.5p L (51)f(S2)--f (SP)E [x5,85 (XU E [xsy88, (XP)] . E[x5p yas, (XP"N]E[xs, (1)]
= Ely] = L5 F(S)PE [xs, (1)]

* using the independence between the different vectors
*if S =Sy =..=5p = SiASp =D — E[xp]| =1, else some S; # Sp — E[S;ASp] =0

Therefore, we ar left to compute E[xs, ()]
E[xs,(#)] = Tics, E[pi] =us 77!
Bl =10 +4) -1 - §) =

= E[y] = Esc[4] 71l f(s)"

|

Let us note that the noise factor allows us to eliminate high-order Fourier coefficients as 151 decays
as | S| increases.

1.3 Plan for estimating Y_; f(i)"

Let us show how we can use our estimate of y to estimate Y; f(i)”; Based on our last observation it
is clear that the sum of powers is effected the most by 0/1 degree Fourier coefficients. Therefore, we
will try to approximate these terms and show that we can neglect high order terms. Let us consider the
following algorithm:

1. Estimate E[f(XW) f(X®))...f(X(P))] = ¥5101°£(S)” = f(@)P to additive i”zi
(by randomly sampling vectors from {£1}", computing their f() values and calculating the avg.)
2. Estimate E[f(X(M) f(X@)..f(XP-D) (XD 0 X?..0 XP-D o pu)] =
N . 2
=(E[]) ZSQM 1181 £(s)P to additive +1

(using the algorithm we have seen earlier)

Let us denote by v = YJ5/-0 1131 f(S)P, then we can obtain an additive +42 approximation of it by
subtracting (2)-(1)

Claim 6 % is a "good” estimate of g1 f(s)P

Proof A A A
Yisimr £(5)P = Z! 1fS)" _ B9 Eygpan®lis)°

- : i
=1

* 7 *ok

n
** will need to show that this argument is small and can be ignored

Yisi=11f(S)F < L2 If(S)F] S ’72\/2\5|22f(5)2**** \/2‘5‘220:(5)1971)2**** <
*** cauchy-swartz inequality
**** < 1, based on the Theorem for Boolean Parseval (see reminder)

Hence we get that:

Y51 f($)P = SEEVAICI R (O U Ul
y I 1 =0T Ty
This concludes the proof.

[|

To sum up, we showed that the algorithm provides an additive estimate of +# to the sum of powers
of degree one Fourier coefficients using % queries.

2 Interactive Proofs

Assume we have some user U who wants to compute a function f on an input x. Furthermore assume
the user is computationally bounded and cannot compute f(x) on his own, but can outsource the
computation to an “untrusted computation expert”. The “expert” will return f(x) and a “proof” that
f(x)is “good”.

2.1 Website Hits
U owns a website, and a company C claims that at least k clicks were made through their website to

enter U’s website.

Goal: If the number of valid clicks is greater than k return “PASS” with high probability, and if the
number of valid clicks is less than (1 — €)k return “FAIL” with high probability.
* Assume we have a way of verifying that a click is legal.

Protocol:
1. Check that there are at most ke /2 fake entries. (O(1/€)).
2. Check that there are at most ke /2 duplicates.
Consider the following proof: C will build a table T with all possible clicks description, ¢4, ty, ..., t4

and send both tables T and X, where X is the array x, ...x;. C will also send forward and back pointers
both from T to X and from X to T in the following way:

1. For eachcellt; € T, t; is some click’s possible description. If we have such a click in table X, then
t; will hold a pointer to that cell in X. Thus, we have a pointer from #; to x; if x;’s click description
is exactly ¢; . If we don’t have a click in X with #;’s description, then t; will hold a NULL pointer.

2. For each cell in x; € X, we will hold a back-pointer to the appropriate cell ¢; such that ¢; is the
description of click x;.
Now U will verify the proof with the following procedure:
1. Repeat O(1/¢) times:
(a) pickj € [k] at random
(b) I+ X[j]

(c) if T(I) = xj continue, otherwise return FAIL

2. Return PASS

Behavior: If there are any duplicates in X, then T won’t “know” on which x; to point. Thus, we can
easily see that if there are > ke /2 duplicates in X, then in each round we fail with probability > €/2, so
in O(1/e€) rounds, we will catch a false proof with constant probability.

2.2 Bin-Packing problem
Input:
1. A positive integer B
2. A set of n positive elements x1, X2, ..., X, where each x; € [B]
3. k bins of size B
Prover: We want to know whether we can fit all these elements into the k bins, i.e, each element is

insetrted into some bin and the total size of the elements in each bin is less than B.
* This is also a well-known NP-complete problem.

Goal: If all the elements fit we want that the algorithm will returns “PASS” with probability 1, and if
at most (1 — €)n of the elements fit, returns “FAIL” with high probability.

Consider the following proof: We will have k arrays (one for each bin) Ay, ..., Ay and each array will
be of size B. If x; is of weight w and appears in bin A; , then A; will contain w consecutive instances of
x;. In addition, we will have an extra array X of size n such that X[j] indicates the number of bins i in
which x; is packed and the offset m in A; at which x; starts to appear w consecutive times.

To verify this proof, the verifier will use the following procedure:
1. Repeat O(1/¢€) times:

(a) pick an element x; of size w , i € n at random.

(b) query X[i] to get the number of bin j, and the offset m, for x;.

(c) verify that x; appears w consecutive times in A; starting at index m, if it is not - return FAIL,
else-continue.

2. Return PASS

