Lecture 12

Lecturer: Ronitt Rubinfeld

1 Estimating the Sum of Powers of Degree One Fourier Coefficients

1.1 Reminders

On the previous lecture, we have showed the following properties for Boolean functions $f:\{ \pm 1\}^{n} \rightarrow$ $\{ \pm 1\}$

Definition $1 \chi_{s}(x)=\Pi_{i \in S} x_{i}$
Definition $2 \hat{f}(s)=\left\langle f, \chi_{s}\right\rangle=\frac{1}{2^{n}} \sum_{x} f(x) \chi_{s}(x)$
Theorem $3 f(x)=\sum_{s} \hat{f}(s) \chi_{s}(x)$
Theorem 4 Parseval / Plancherel:
$\langle f, g\rangle=\sum_{S, T} \hat{f}(S) \hat{g}(T)\langle\chi(S), \chi(T)\rangle$
$\langle f, f\rangle=\sum \hat{f}(S)^{2}=1$, if f is Boolean (since $\left\langle\chi_{S}, \chi_{S}\right\rangle=1$)

1.2 Estimating the Sum of Powers of Degree One Fourier Coefficients

In this section we are interested in estimating the sum of powers of degree one Fourier coefficients. An example for a use of this sum is testing if a function is a dictator function. For such a test, this sum can indicate if a function is determined by a single bit. Furthermore, the approach we present here for estimating the sum of degree one powers, can be used to iterative estimate sums of any degree.

Let us denote by $f(i), \hat{f}(s)$ for $|S|=1$; We would like to estimate: $\sum_{i=1}^{n} \hat{f}(i)^{P \in \mathbb{N}}$
Let us propose the following algorithm, given a parameter $\eta \in\{0,1\}$:

1. pick $X^{(1)}, X^{(2)}, \ldots, X^{(P-1)}$, randomly (uniformly) from $\{ \pm 1\}^{n}$
2. pick noise vector μ^{n} s.t., each entry:

$$
\begin{aligned}
& +1, \text { w.p. } \frac{1}{2}+\frac{\eta}{2} \\
& -1, \text { w.p. } \frac{1}{2}-\frac{\eta}{2}
\end{aligned}
$$

3. $y \leftarrow f\left(X^{(1)}\right) f\left(X^{(2)}\right) \ldots f\left(X^{(P-1)}\right) f\left(X^{(1)} \odot X^{(2)} \ldots \odot X^{(P-1)} \odot \mu\right)$
$* \odot$ is coordinate-wise multiplication
4. output y

Claim $5 \mathbb{E}[y]=\sum_{S \subseteq[n]} \eta^{|S|} \hat{f}(s)^{P}$
Proof

$$
\begin{aligned}
& \mathbb{E}[y]=\mathbb{E}\left[f\left(X^{(1)}\right) f\left(X^{(2)}\right) \ldots f\left(X^{(P-1)}\right) f\left(X^{(1)} \odot X^{(2)} \ldots \odot X^{(P-1)} \odot \mu\right)\right]=\text { using Thm. } 3 \\
& \mathbb{E}\left[\left(\sum_{S_{1}} \hat{f}\left(S_{1}\right) \chi_{S_{1}}\left(X^{(1)}\right)\right) \ldots\left(\sum_{S_{P-1}} \hat{f}\left(S_{P-1}\right) \chi_{S_{P-1}}\left(X^{(P-1)}\right)\right)\left(\sum_{S_{P}} \hat{f}\left(S_{P}\right) \chi_{S_{P}}\left(X^{(1)} \odot X^{(2)} \ldots \odot X^{(P-1)} \odot \mu\right)\right)\right] \\
& =\sum_{s_{1}, S_{2}, \ldots, S_{P}} \hat{f}\left(S_{1}\right) \hat{f}\left(S_{2}\right) \ldots \hat{f}\left(S_{P}\right) \mathbb{E}\left[\chi_{S_{1} \Delta S_{P}}\left(X^{(1)}\right) \chi_{S_{2} \Delta S_{P}}\left(X^{(2)}\right) \ldots \chi_{S_{P-1} \Delta S_{P}}\left(X^{(P-1)}\right) \chi_{S_{P}}(\mu)\right] \\
& ={ }_{*} \sum_{S_{1}, S_{2}, \ldots, S_{P}} \hat{f}\left(S_{1}\right) \hat{f}\left(S_{2}\right) \ldots \hat{f}\left(S_{P}\right) \mathbb{E}\left[\chi_{S_{1} \Delta S_{P}}\left(X^{(1)}\right)\right] \mathbb{E}\left[\chi_{S_{2} \Delta S_{P}}\left(X^{(2)}\right)\right] \ldots \mathbb{E}\left[\chi_{S_{P-1} \Delta S_{P}}\left(X^{(P-1)}\right)\right] \mathbb{E}\left[\chi_{S_{P}}(\mu)\right] \\
& \rightarrow{ }_{* *} \mathbb{E}[y]=\sum_{S} \hat{f}(S)^{P} \mathbb{E}\left[\chi_{S_{P}}(\mu)\right]
\end{aligned}
$$

* using the independence between the different vectors
${ }^{* *}$ if $S_{1}=S_{2}=\ldots=S_{P} \rightarrow S_{i} \Delta S_{P}=\varnothing \rightarrow \mathbb{E}[\chi \varnothing]=1$, else some $S_{i} \neq S_{P} \rightarrow \mathbb{E}\left[S_{i} \Delta S_{P}\right]=0$
Therefore, we ar left to compute $\mathbb{E}\left[\chi_{S_{P}}(\mu)\right]$:
$\mathbb{E}\left[\chi_{S_{P}}(\mu)\right]=\Pi_{i \in S_{P}} \mathbb{E}\left[\mu_{i}\right]={ }_{* * *} \eta^{\left|S_{P}\right|}$
${ }^{* * *} \mathbb{E}\left[\mu_{i}\right]=1\left(\frac{1}{2}+\frac{\eta}{2}\right)-1\left(\frac{1}{2}-\frac{\eta}{2}\right)=\eta$
$\Rightarrow \mathbb{E}[y]=\sum_{S \subseteq[n]} \eta^{|S|} \hat{f}(s)^{P}$

Let us note that the noise factor allows us to eliminate high-order Fourier coefficients as $\eta^{|S|}$ decays as $|S|$ increases.

1.3 Plan for estimating $\sum_{i} \hat{f}(i)^{P}$

Let us show how we can use our estimate of y to estimate $\sum_{i} \hat{f}(i)^{P}$; Based on our last observation it is clear that the sum of powers is effected the most by $0 / 1$ degree Fourier coefficients. Therefore, we will try to approximate these terms and show that we can neglect high order terms. Let us consider the following algorithm:

1. Estimate $\mathbb{E}\left[f\left(X^{(1)}\right) f\left(X^{(2)}\right) \ldots f\left(X^{(P)}\right)\right]=\sum_{|S|=0} \eta^{0} \hat{f}(S)^{P}=\hat{f}(\varnothing)^{P}$ to additive $\pm \frac{\eta^{2}}{2}$
(by randomly sampling vectors from $\{ \pm 1\}^{n}$, computing their $f()$ values and calculating the avg.)
2. Estimate $\mathbb{E}\left[f\left(X^{(1)}\right) f\left(X^{(2)}\right) \ldots f\left(X^{(P-1)}\right) f\left(X^{(1)} \odot X^{(2)} \ldots \odot X^{(P-1)} \odot \mu\right)\right]=$ $={ }_{(=\mathbb{E}[y])} \sum_{S \subseteq[n]} \eta^{|S|} \hat{f}(s)^{P}$ to additive $\pm \frac{\eta^{2}}{2}$
(using the algorithm we have seen earlier)
Let us denote by $\gamma=\sum_{|S|>0} \eta^{|S|} \hat{f}(S)^{P}$, then we can obtain an additive $\pm \eta^{2}$ approximation of it by subtracting (2)-(1)

Claim $6 \frac{\gamma}{\eta}$ is a "good" estimate of $\sum_{|S|=1} \hat{f}(S)^{P}$
Proof
$\sum_{|S|=1} \hat{f}(S)^{P}=\frac{\sum_{|S|=1} \eta \hat{f}(S)^{P}}{\eta}=\frac{\sum_{|S|>0} \eta^{|S|} \hat{f}(S)^{P}}{\eta} * \frac{\sum_{|S|>1} \eta^{|S|} \hat{f}(S)^{P}}{\eta} * *$

* $=\frac{\gamma}{\eta}$
** will need to show that this argument is small and can be ignored
$\sum_{|S|>1} \eta \hat{f}(S)^{P} \leq \eta^{2} \sum_{|S| \geq 2}\left|\hat{f}(S)^{P}\right| \leq_{* * *} \eta^{2} \sqrt{\sum_{|S| \geq 2} \hat{f}(S)^{2}}{ }_{* * * *} \sqrt{\sum_{|S| \geq 2}\left(\hat{f}(S)^{P-1}\right)^{2}}{ }_{* * * *} \leq \eta^{2}$
*** cauchy-swartz inequality
${ }^{* * * *} \leq 1$, based on the Theorem for Boolean Parseval (see reminder)
Hence we get that:
$\sum_{|S|=1} \hat{f}(S)^{P}=\frac{\sum_{|S|>0} \eta^{|S|} \hat{f}(S)^{P}}{\eta}-\frac{\sum_{|S|>1} \eta^{|S|} \hat{f}(S)^{P}}{\eta} \leq \frac{\gamma}{\eta}-\frac{\eta^{2}}{\eta}=\frac{\gamma}{\eta}-\eta$
This concludes the proof.

To sum up, we showed that the algorithm provides an additive estimate of $\pm \eta$ to the sum of powers of degree one Fourier coefficients using $\frac{p}{\eta}$ queries.

2 Interactive Proofs

Assume we have some user U who wants to compute a function f on an input x. Furthermore assume the user is computationally bounded and cannot compute $f(x)$ on his own, but can outsource the computation to an "untrusted computation expert". The "expert" will return $f(x)$ and a "proof" that $f(x)$ is "good".

2.1 Website Hits

U owns a website, and a company C claims that at least k clicks were made through their website to enter U's website.

Goal: If the number of valid clicks is greater than k return "PASS" with high probability, and if the number of valid clicks is less than $(1-\epsilon) k$ return "FAIL" with high probability.

* Assume we have a way of verifying that a click is legal.

Protocol:

1. Check that there are at most $k \epsilon / 2$ fake entries. $(O(1 / \epsilon))$.
2. Check that there are at most $k \epsilon / 2$ duplicates.

Consider the following proof: C will build a table T with all possible clicks description, $t_{1}, t_{2}, \ldots, t_{n}$ and send both tables T and X, where X is the array $x_{1}, \ldots x_{k}$. C will also send forward and back pointers both from T to X and from X to T in the following way:

1. For each cell $t_{i} \in T, t_{i}$ is some click's possible description. If we have such a click in table X, then t_{i} will hold a pointer to that cell in X. Thus, we have a pointer from t_{i} to x_{j} if x_{j} 's click description is exactly t_{i}. If we don't have a click in X with t_{i} 's description, then t_{i} will hold a NULL pointer.
2. For each cell in $x_{j} \in X$, we will hold a back-pointer to the appropriate cell t_{i} such that t_{i} is the description of click x_{j}.

Now U will verify the proof with the following procedure:

1. Repeat $O(1 / \epsilon)$ times:
(a) pick $j \in[k]$ at random
(b) $l \leftarrow X[j]$
(c) if $T(l)=x_{j}$ continue, otherwise return FAIL
2. Return PASS

Behavior: If there are any duplicates in X, then T won't "know" on which x_{i} to point. Thus, we can easily see that if there are $\geq k \epsilon / 2$ duplicates in X, then in each round we fail with probability $\geq \epsilon / 2$, so in $O(1 / \epsilon)$ rounds, we will catch a false proof with constant probability.

2.2 Bin-Packing problem

Input:

1. A positive integer B
2. A set of n positive elements $x_{1}, x_{2}, \ldots, x_{n}$ where each $x_{i} \in[B]$
3. k bins of size B

Prover: We want to know whether we can fit all these elements into the k bins, i.e, each element is insetrted into some bin and the total size of the elements in each bin is less than B.

* This is also a well-known NP-complete problem.

Goal: If all the elements fit we want that the algorithm will returns "PASS" with probability 1, and if at most $(1-\epsilon) n$ of the elements fit, returns "FAIL" with high probability.

Consider the following proof: We will have k arrays (one for each bin) A_{1}, \ldots, A_{k} and each array will be of size B. If x_{i} is of weight w and appears in bin A_{j}, then A_{j} will contain w consecutive instances of x_{i}. In addition, we will have an extra array X of size n such that $X[j]$ indicates the number of bins i in which x_{j} is packed and the offset m in A_{i} at which x_{j} starts to appear w consecutive times.

To verify this proof, the verifier will use the following procedure:

1. Repeat $O(1 / \epsilon)$ times:
(a) pick an element x_{i} of size $w, i \in n$ at random.
(b) query $X[i]$ to get the number of $\operatorname{bin} j$, and the offset m, for x_{i}.
(c) verify that x_{i} appears w consecutive times in A_{j} starting at index m, if it is not - return FAIL, else-continue.
2. Return PASS
