
0368.416701 Sublinear Time Algorithms 04 Jan, 2016

Lecture 12
Lecturer: Ronitt Rubinfeld Scribe: Maor Rahamim, Nimrod Busany, Chen Liderman

1 Estimating the Sum of Powers of Degree One Fourier Coefficients

1.1 Reminders

On the previous lecture, we have showed the following properties for Boolean functions f : {±1}n →
{±1}

Definition 1 χs(x) = Πi∈Sxi

Definition 2 f̂ (s) = 〈 f , χs〉 = 1
2n ∑x f (x)χs(x)

Theorem 3 f (x) = ∑s f̂ (s)χs(x)

Theorem 4 Parseval / Plancherel:
〈 f , g〉 = ∑S,T f̂ (S)ĝ(T)〈χ(S), χ(T)〉
〈 f , f 〉 = ∑ f̂ (S)2 = 1, if f is Boolean (since 〈χS, χS〉 = 1)

1.2 Estimating the Sum of Powers of Degree One Fourier Coefficients

In this section we are interested in estimating the sum of powers of degree one Fourier coefficients. An
example for a use of this sum is testing if a function is a dictator function. For such a test, this sum
can indicate if a function is determined by a single bit. Furthermore, the approach we present here for
estimating the sum of degree one powers, can be used to iterative estimate sums of any degree.

Let us denote by f (i), f̂ (s) for |S| = 1; We would like to estimate: ∑n
i=1 f̂ (i)P∈N

Let us propose the following algorithm, given a parameter η ∈ {0, 1}:

1. pick X(1), X(2), ..., X(P−1), randomly (uniformly) from {±1}n

2. pick noise vector µn s.t., each entry:
+1, w.p. 1

2 + η
2

−1, w.p. 1
2 −

η
2

3. y← f (X(1)) f (X(2))... f (X(P−1)) f (X(1) � X(2)...� X(P−1) � µ)
∗� is coordinate-wise multiplication

4. output y

Claim 5 E
[
y
]
= ∑S⊆

[
n
] η|S| f̂ (s)P

Proof
E
[
y
]
= E

[
f (X(1)) f (X(2))... f (X(P−1)) f (X(1) � X(2)...� X(P−1) � µ)

]
=using Thm. 3

E
[
(∑S1

f̂ (S1)χS1(X(1)))...(∑SP−1
f̂ (SP−1)χSP−1(X(P−1)))(∑SP

f̂ (SP)χSP(X(1)�X(2)...�X(P−1)�µ))
]

= ∑S1,S2,...,SP
f̂ (S1) f̂ (S2)... f̂ (SP)E

[
χS1∆SP(X(1))χS2∆SP(X(2))...χSP−1∆SP(X(P−1))χSP(µ)

]
=∗ ∑S1,S2,...,SP

f̂ (S1) f̂ (S2)... f̂ (SP)E
[
χS1∆SP(X(1))

]
E
[
χS2∆SP(X(2))

]
...E
[
χSP−1∆SP(X(P−1))

]
E
[
χSP(µ)

]
→∗∗ E

[
y
]
= ∑S f̂ (S)PE

[
χSP(µ)

]
1

* using the independence between the different vectors
** if S1 = S2 = ... = SP → Si∆SP = ∅→ E

[
χ∅
]
= 1, else some Si 6= SP → E

[
Si∆SP

]
= 0

Therefore, we ar left to compute E
[
χSP(µ)

]
:

E
[
χSP(µ)

]
= Πi∈SP E

[
µi
]
=∗∗∗ η|SP |

*** E
[
µi
]
= 1(1

2 + η
2)− 1(1

2 −
η
2) = η

⇒ E
[
y
]
= ∑S⊆

[
n
] η|S| f̂ (s)P

Let us note that the noise factor allows us to eliminate high-order Fourier coefficients as η|S| decays
as |S| increases.

1.3 Plan for estimating ∑i f̂ (i)P

Let us show how we can use our estimate of y to estimate ∑i f̂ (i)P; Based on our last observation it
is clear that the sum of powers is effected the most by 0/1 degree Fourier coefficients. Therefore, we
will try to approximate these terms and show that we can neglect high order terms. Let us consider the
following algorithm:

1. Estimate E
[

f (X(1)) f (X(2))... f (X(P))
]
= ∑|S|=0 η0 f̂ (S)P = f̂ (∅)P to additive ± η2

2

(by randomly sampling vectors from {±1}n, computing their f() values and calculating the avg.)

2. Estimate E
[

f (X(1)) f (X(2))... f (X(P−1)) f (X(1) � X(2)...� X(P−1) � µ)
]
=

=
(=E
[

y
]
)

∑S⊆
[

n
] η|S| f̂ (s)P to additive ± η2

2

(using the algorithm we have seen earlier)

Let us denote by γ = ∑|S|>0 η|S| f̂ (S)P, then we can obtain an additive ±η2 approximation of it by
subtracting (2)-(1)

Claim 6 γ
η is a ”good” estimate of ∑|S|=1 f̂ (S)P

Proof

∑|S|=1 f̂ (S)P =
∑|S|=1 η f̂ (S)P

η =
∑|S|>0 η|S| f̂ (S)P

η ∗
− ∑|S|>1 η|S| f̂ (S)P

η ∗∗
* = γ

η

** will need to show that this argument is small and can be ignored

∑|S|>1 η f̂ (S)P ≤ η2 ∑|S|≥2 | f̂ (S)P| ≤∗∗∗ η2
√

∑|S|≥2 f̂ (S)2
∗∗∗∗

√
∑|S|≥2(f̂ (S)P−1)2

∗∗∗∗
≤ η2

*** cauchy-swartz inequality
**** ≤ 1, based on the Theorem for Boolean Parseval (see reminder)

Hence we get that:

∑|S|=1 f̂ (S)P =
∑|S|>0 η|S| f̂ (S)P

η − ∑|S|>1 η|S| f̂ (S)P

η ≤ γ
η −

η2

η = γ
η − η

This concludes the proof.

To sum up, we showed that the algorithm provides an additive estimate of±η to the sum of powers
of degree one Fourier coefficients using p

η queries.

2

2 Interactive Proofs

Assume we have some user U who wants to compute a function f on an input x. Furthermore assume
the user is computationally bounded and cannot compute f (x) on his own, but can outsource the
computation to an “untrusted computation expert”. The “expert” will return f (x) and a “proof” that
f (x) is “good”.

2.1 Website Hits

U owns a website, and a company C claims that at least k clicks were made through their website to
enter U’s website.

Goal: If the number of valid clicks is greater than k return “PASS” with high probability, and if the
number of valid clicks is less than (1− ε)k return “FAIL” with high probability.

* Assume we have a way of verifying that a click is legal.

Protocol:

1. Check that there are at most kε/2 fake entries. (O(1/ε)).

2. Check that there are at most kε/2 duplicates.

Consider the following proof: C will build a table T with all possible clicks description, t1, t2, ..., tn
and send both tables T and X, where X is the array x1, ...xk. C will also send forward and back pointers
both from T to X and from X to T in the following way:

1. For each cell ti ∈ T , ti is some click’s possible description. If we have such a click in table X, then
ti will hold a pointer to that cell in X. Thus, we have a pointer from ti to xj if xj’s click description
is exactly ti . If we don’t have a click in X with ti’s description, then ti will hold a NULL pointer.

2. For each cell in xj ∈ X, we will hold a back-pointer to the appropriate cell ti such that ti is the
description of click xj.

Now U will verify the proof with the following procedure:

1. Repeat O(1/ε) times:

(a) pick j ∈ [k] at random

(b) l ← X[j]

(c) if T(l) = xj continue, otherwise return FAIL

2. Return PASS

Behavior: If there are any duplicates in X, then T won’t “know” on which xi to point. Thus, we can
easily see that if there are ≥ kε/2 duplicates in X, then in each round we fail with probability ≥ ε/2, so
in O(1/ε) rounds, we will catch a false proof with constant probability.

3

2.2 Bin-Packing problem

Input:

1. A positive integer B

2. A set of n positive elements x1, x2, ..., xn where each xi ∈ [B]

3. k bins of size B

Prover: We want to know whether we can fit all these elements into the k bins, i.e, each element is
insetrted into some bin and the total size of the elements in each bin is less than B.

* This is also a well-known NP-complete problem.

Goal: If all the elements fit we want that the algorithm will returns “PASS” with probability 1, and if
at most (1− ε)n of the elements fit, returns “FAIL” with high probability.

Consider the following proof: We will have k arrays (one for each bin) A1, ..., Ak and each array will
be of size B. If xi is of weight w and appears in bin Aj , then Aj will contain w consecutive instances of
xi. In addition, we will have an extra array X of size n such that X[j] indicates the number of bins i in
which xj is packed and the offset m in Ai at which xj starts to appear w consecutive times.

To verify this proof, the verifier will use the following procedure:

1. Repeat O(1/ε) times:

(a) pick an element xi of size w , i ∈ n at random.

(b) query X[i] to get the number of bin j, and the offset m, for xi.

(c) verify that xi appears w consecutive times in Aj starting at index m, if it is not - return FAIL,
else-continue.

2. Return PASS

4

