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1 Lesson Overview

1. Linearity (homomorphism) testing of functions over a finite group.

2. Linearity tester correctness proof using tools from Fourier Analysis over the boolean cube.

2 Linearity Testing

Definition 1 (Linearity) Let (G,+) be a finite group. A function f : G → G is said to be linear if
∀x, y ∈ G the following condition is satisfied: f(x) + f(y) = f(x+ y).

Testing for linearity is useful in the case of program verification (for example, checking that a matrix
multiplication algorithm is correct).

Examples of linear functions:

1. f(x) = x

2. f(x) = ax mod p for G = Zp and a ∈ G

3. f(x̄) =
∑
i∈[n]

aixi mod 2 where ā, x̄ ∈ {0, 1}n

Definition 2 F is ε-close to linear, or ”ε-linear”, if there exists a linear function g so that either of the
following equivalent definitions hold:

1. f and g agree on at least (1− ε)|G| input values;

2. Pr
x∈G

[f(x) = g(x)] ≥ 1 − ε, where the elements x ∈ G are drawn with a uniform distribution over

G;

3. |{x∈G| f(x)=g(x)}|
|G| ≥ 1− ε.

A trivial way of checking if f is linear (or ε-close to linear) is by learning all the values of f . This can
be very time consuming, leading us to search for a method that uses a sublinear amount of queries.

Observation 3 ∀a, y ∈ G
Pr
x∈G

[y = a+ x] =
1

|G|

This derives from the fact that G is a finite group and therefore the only x ∈ G that satisfies the equality
is x = y − a, while a + x is distributed uniformly in G (we will denote this as a + x ∈R G). This
observation is also correct in the case of G = Zn2 and coordinate-wise addition.
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2.1 Self correcting (random self-reducibility)

Given a function f which is 1/8-linear (namely, a linear g exists so that Prx∈G [f(x) = g(x)] ≥ 7/8) and
any x ∈ G, we wish to compute g(x) using query access to f . In order to successfully compute g(x) with
high probability (β), we shall use the following algorithm:

Algorithm 1

1: for i = 1, . . . , C · log( 1
β ) do

2: Pick y ∈R G
3: Answeri ← f(y) + f(x− y)
4: end for
5: return the most common value for Answeri

Claim 4 Pr [output = g(x)] ≥ 1− β

Proof f is 1/8-linear and both y ∈R G and x − y ∈R G. Therefore a linear g exists so that the
following applies:

Pr
y∈G

[f(y) 6= g(y)] ≤ 1

8

Pr
y∈G

[f(x− y) 6= g(x− y)] ≤ 1

8

Then,

Pr
y∈G

[f(y) + f(x− y) 6= g(x)]

= Pr
y∈G

[f(y) + f(x− y) 6= g(y) + g(x− y)]

≤ Pr
y∈G

[f(y) 6= g(y)] + Pr
y∈G

[f(x− y) 6= g(x− y)]

=
1

8
+

1

8
=

1

4

where the inequality was obtained from the union bound. We can then use the Chernoff inequality to
bound the probability of returning an incorrect value.

2.2 Linearity tester

We propose the following natural algorithm for testing linearing

Algorithm 2 Linearity tester

1: for i = 1, . . . , O(?) do
2: Pick x, y ∈R G
3: if f(x) + f(y) 6= f(x+ y) then
4: return FAIL
5: end if
6: end for
7: return PASS

We need to determine the number of examined pairs, and prove that it is indeed a tester with the correct
rejection probability.
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Definition 5 (Rejection probability of f)

δf ≡ Pr
x,y∈G

[f(x) + f(y) 6= f(x+ y)]

The above algorithm does not work in all cases. Consider the following function f : Zp → Zp, when
p > 3.

∀x ∈ Zp f(x) =

 1 x = 1 mod 3
0 x = 0 mod 3
−1 x = 2 mod 3

The above function linear in all cases but the following two:

1. if x ≡ y ≡ 1 mod 3 then

• f(x) + f(y) = 1 + 1 = 2

• f(x+ y) = f(2 mod 3) = −1

2. if x ≡ y ≡ 2 mod 3 then

• f(x) + f(y) = −1 +−1 = −2

• f(x+ y) = f(1 mod 3) = 1

Therefore, in this case δf = 2/9, meaning that the tester passes 7/9 of the availiable x, y ∈ G combina-
tions. On the other hand, it can be shown that the closest linear function to f is g(x) = 0, making f
2/3-far from linear. It turns out that δf = 2/9 is a threshold, and that if you know that δf < 2/9, the
function must be δf -close to linear.

We will prove the correctness of the tester for boolean functions, but first we will need some tools from
Fourier analysis.

3 Fourier analysis over the boolean cube

Let f be a function f : {0, 1}n → {0, 1}, with the inner product: x ·y ≡ x⊕y =
∑n
i=1 xiyi mod 2. There

are 2n unique linear functions on {0, 1}n that can be defined in one of the following equivalent ways:

1. La(x) = a · x for fixed a ∈ {0, 1}n

2. LA(x) =
∑
i∈A xi mod 2 where A ⊆ {1 · · ·n} (set notation)

3.1 Notation change

For the rest of the lecture, we will work with a less natural, but easier to work with boolean set, {±1}n
and functions f : {±1}n → {±1}. The following proofs are correct with respect to the original boolean
notation as well.

In this notation, 0→ +1 and 1→ −1, or generally: a→ (−1)a. Consequently, after changing notation
addition becomes multiplication: (a + b) → (−1)a+b = (−1)a · (−1)b. Therefore, linearity can now be
defined for a function if ∀x, y ∈ {±1}n the following condition is satisfied:

f(x) · f(y) = f(x� y)

where � ≡ coordinate-wise multiplication. Similarly, linear functions will be of the form:

χs(x) =
∏
i∈s

xi
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where S ⊆ {1 · · ·n}. In light of the notation change, the linear tester described previously is changed so
that it halts when it encounters x, y ∈ {±1}n where f(x) · f(y) 6= f(x� y).

Claim 6 δf = E
[

1−f(x)f(y)f(x�y)
2

]
Proof

f(x� y) = f(x) · f(y)

m

f(x) · f(y) · f(x� y) =

{
1 if test accepts x,y
−1 if test rejects x,y

m

I =
1− f(x)f(y)f(x� y)

2
=

{
0 if accepts
1 if rejects

I is an indicator variable for values x, y ∈ {±1}n such that f(x� y) 6= f(x) · f(y), therefore:

δf ≡ Pr
x,y∈{±1}n

[f(x) · f(y) 6= f(x� y)] = Ex,y[I]

3.2 Choosing a Fourier basis

Let G be defined as all the n-bit functions mapping to the real vector space:

G = {g|g : {±1}n → R}

The dimension of G is 2n, i.e. all functions in G can be written as a linear combination of 2n basis
functions. We will attempt to find a convenient basis.

3.2.1 First attempt - The basis of indicator functions

ea =

{
1 if x = a
0 otherwise

This is equivalent to viewing g ∈ G as 2n vector coordinates g(a) for all a ∈ {±1}n. This basis yields
the following representation of g:

g(x) =
∑
a∈G

g(a)ea(x)

3.2.2 Second attempt - basis of parity functions

We will use the following basis functions:

χs(x) =
∏
i∈s

xi

and the inner product:

〈f, g〉 =
1

2n

∑
x∈{±1}n

f(x)g(x)
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Lemma 7 The functions {χs(x)} are orthonormal with respect to the inner product 〈·, ·〉.

Proof

1. 〈χs, χs〉 = 1
2n

∑
x∈G

χs(x) · χs(x) = 2n

2n = 1

2. When s 6= t,

〈χs, χt〉 =
1

2n

∑
x∈G

χs(x) · χt(x) =
1

2n

∑
x∈G

∏
i∈s

xi
∏
i∈t

xi =
1

2n

∑
x∈G

∏
i∈s∆t

xi

where the last equality stems from the fact that if i ∈ s ∩ t than x2
i = 1. Let i ∈ s∆t (since s 6= t

we know that one exists) and define x
⊕
j to be x with the j bit flipped. Then, instead of summing

over all elements of G separately, we can enumerate over pairs of elements which differ in the j-th
coordinate. Then, the above equals

=
1

2n

∑
x,x

⊕
j∈G

( ∏
i∈s∆t

xi +
∏
i∈s∆t

x
⊕
j

i

)
=

1

2n

∑
x,x

⊕
j∈G

(
xj + x

⊕
j

j

) ∏
i∈s∆t,i 6=j

(xi) = 0.

Observation 8 The functions {χs(x)} form an orthonormal basis as there are 2n unique orthonormal
vectors χs.

This concludes the proof that f can be uniquely expressed as a linear combination of χs.

Definition 9 The Fourier coefficients of f are defined as

f̂(s) ≡ 〈f, χs〉 =
1

2n

∑
x∈{±1}n

f(x)χs(x)

for all s ∈ G.

Lemma 10 ∀f ∈ G = {g|g : {±1}n → R} , the unique representation of f as a linear combination of the
parity function basis is as follows:

f(x) =
∑
s

f̂(s)χs(x)

This follows from the fact that the functions {χs(x)} form an orthonormal basis.

Fact 11 f is linear ⇔ ∃s ⊆ [n] so that f̂(s) = 〈f, χs〉 = 1
2n

∑
1 = 1 and ∀t 6= s, f̂(s) = 〈f, χt〉 =

〈χs, χt〉 = 0

Lemma 12 The Fourier coefficients of a function characterize the distance of the function from linear-
ity. Namely, it can be shown that ∀s ⊆ [n],

f̂(s) = 1− 2 · dist(f, χs) = 1− 2 · Pr
x∈{±1}n

[f(x) 6= χs(x)].
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Proof

2n · f̂(s) =
∑
x∈G

f(x)χs(x)

=
∑

{x|f(x)=χs(x)}

f(x)χs(x) +
∑

{x|f(x)6=χs(x)}

f(x)χs(x)

=
∑

{x|f(x)=χs(x)}

1 +
∑

{x|f(x)6=χs(x)}

(−1)

= 2n · Pr
x∈G

[f(x) = χs(x)]− 2n · Pr
x∈G

[f(x) 6= χs(x)]

= 2n ·
(

1− 2 · Pr
x∈G

[f(x) 6= χs(x)]

)
The lemma immediately follows.

Observation 13 Given any χs, χt such that s 6= t, dist(χs, χt) = 1
2 .

Proof Consider f = χs.
f̂(t) = 〈χs, χt〉 = 0

and according to the previous lemma

f̂(t) = 1− 2 · dist(f, χt)

which concludes the proof.

3.3 Useful tools

Theorem 14 (Plancherel’s Theorem)

〈f, g〉 =
∑
s⊆n

f̂(s)ĝ(t)

Proof

〈f, g〉 =

〈∑
s

f̂(s)χs,
∑
t

ĝ(t)χt

〉
=
∑
s,t

f̂(s)ĝ(t) 〈χs, χt〉 =

since 〈χs, χt〉 =

{
0 if s 6= t
1 if s = t

=
∑
s⊆[n]

f̂(s)ĝ(t)

Theorem 15 (Parseval’s Theorem)

〈f, f〉 =
∑
s

f̂2(s)

Boolean Parseval:
f : {±1}n → {±1}

∑
s

f̂2(s) = 〈f, f〉 =
1

2n

∑
x

f(x)f(x) = 1

6



4 Proof of linearity tester

Previously, we have shown that:

δf ≡ Pr
x,y∈{±1}n

[f(x) · f(y) 6= f(x� y)] =
1− E [f(x)f(y)f(x� y)]

2

Theorem 16 If δf is the rejection probability of the linearity tester above, f is δf -close to some linear
function.

Proof

Ex,y [f(x)f(y)f(x� y)]

=Ex,y

[∑
s

f̂(s)χs(x) ·
∑
t

f̂(t)χt(y) ·
∑
u

f̂(u)χu(x� y)

]

=Ex,y

[∑
s,t,u

f̂(s)f̂(t)f̂(u)χs(x)χt(y)χu(x� y)

]
=
∑
s,t,u

f̂(s)f̂(t)f̂(u) Ex,y [χs(x)χt(y)χu(x� y)] = (?)

If s = t = u:
χs(x)χt(y)χu(x� y) =

∏
i∈s

xi · yi · (xi · yi) = 1

If ¬(s = t = u) then:

Ex,y [χs(x)χt(y)χu(x� y)]

=Ex,y

∏
i∈s

xi
∏
j∈t

yj
∏
k∈u

(xk · yk)


=Ex,y

 ∏
i∈s∆u

xi
∏

j∈t∆u
yj


Since x, y are independent,

= Ex

[ ∏
i∈s∆u

xi

]
· Ey

 ∏
j∈t∆u

yj

 = 0.

The last equality follows from the fact that either s 6= u:

Ex

[ ∏
i∈s∆u

xi

]
= 0

or t 6= u:

Ey

 ∏
j∈t∆u

yi

 = 0

Therefore,

(?) =
∑
s

[
f̂(s)

]3
≤ maxs(f̂(s)) ·

∑
s

(f̂(s))2) = maxs(f̂(s)) = 1− 2 ·mins(dist(f, χs))
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where the last two equalities come from Parseval’s theorem and the previous lemma, respectively.

By plugging our result into the definition of δf , we arrive at the following conclusion:

δf ≥
1

2
− 1

2
[1− 2 ·mins(dist(f, χs))] = mins(dist(f, χs))
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