Lecture 11

Lecturer: Ronitt Rubinfeld Scribes: Regev Schweiger, Shahar Davidson, Shahaf Gonen, Roy Sheffer

1 Lesson Overview

- 1. Linearity (homomorphism) testing of functions over a finite group.
- 2. Linearity tester correctness proof using tools from Fourier Analysis over the boolean cube.

2 Linearity Testing

Definition 1 (Linearity) Let (G, +) be a finite group. A function $f : G \to G$ is said to be linear if $\forall x, y \in G$ the following condition is satisfied: f(x) + f(y) = f(x + y).

Testing for linearity is useful in the case of program verification (for example, checking that a matrix multiplication algorithm is correct).

Examples of linear functions:

- 1. f(x) = x
- 2. $f(x) = ax \mod p$ for $G = \mathbb{Z}_p$ and $a \in G$
- 3. $f(\bar{x}) = \sum_{i \in [n]} a_i x_i \mod 2$ where $\bar{a}, \bar{x} \in \{0, 1\}^n$

Definition 2 *F* is ϵ -close to linear, or " ϵ -linear", if there exists a linear function *g* so that either of the following equivalent definitions hold:

- 1. f and g agree on at least $(1 \epsilon)|G|$ input values;
- 2. $\Pr_{\substack{x \in G \\ G:}} [f(x) = g(x)] \ge 1 \epsilon$, where the elements $x \in G$ are drawn with a uniform distribution over G:
- 3. $\frac{|\{x \in G \mid f(x) = g(x)\}|}{|G|} \ge 1 \epsilon.$

A trivial way of checking if f is linear (or ϵ -close to linear) is by learning all the values of f. This can be very time consuming, leading us to search for a method that uses a sublinear amount of queries.

Observation 3 $\forall a, y \in G$

$$\Pr_{x \in G} \left[y = a + x \right] = \frac{1}{|G|}$$

This derives from the fact that G is a finite group and therefore the only $x \in G$ that satisfies the equality is x = y - a, while a + x is distributed uniformly in G (we will denote this as $a + x \in_R G$). This observation is also correct in the case of $G = \mathbb{Z}_2^n$ and coordinate-wise addition.

2.1 Self correcting (random self-reducibility)

Given a function f which is 1/8-linear (namely, a linear g exists so that $\Pr_{x \in G} [f(x) = g(x)] \ge 7/8$) and any $x \in G$, we wish to compute g(x) using query access to f. In order to successfully compute g(x) with high probability (β) , we shall use the following algorithm:

Algorithm 1

1: for $i = 1, ..., C \cdot \log(\frac{1}{\beta})$ do 2: Pick $y \in_R G$ 3: Answer_i $\leftarrow f(y) + f(x - y)$ 4: end for 5: return the most common value for Answer_i

Claim 4 $\Pr[output = g(x)] \ge 1 - \beta$

Proof f is 1/8-linear and both $y \in_R G$ and $x - y \in_R G$. Therefore a linear g exists so that the following applies:

$$\Pr_{y \in G} \left[f(y) \neq g(y) \right] \le \frac{1}{8}$$
$$\Pr_{y \in G} \left[f(x-y) \neq g(x-y) \right] \le \frac{1}{8}$$

Then,

$$\begin{split} &\Pr_{y \in G} \left[f(y) + f(x - y) \neq g(x) \right] \\ &= \Pr_{y \in G} \left[f(y) + f(x - y) \neq g(y) + g(x - y) \right] \\ &\leq \Pr_{y \in G} \left[f(y) \neq g(y) \right] + \Pr_{y \in G} \left[f(x - y) \neq g(x - y) \right] \\ &= \frac{1}{8} + \frac{1}{8} = \frac{1}{4} \end{split}$$

where the inequality was obtained from the union bound. We can then use the Chernoff inequality to bound the probability of returning an incorrect value. \blacksquare

2.2 Linearity tester

We propose the following natural algorithm for testing linearing

Algorithm 2 Linearity tester	
1: for $i = 1, \dots, O(?)$ do	
2: Pick $x, y \in_R G$	
3: if $f(x) + f(y) \neq f(x+y)$ then	
4: return FAIL	
5: end if	
6: end for	
7: return PASS	

We need to determine the number of examined pairs, and prove that it is indeed a tester with the correct rejection probability.

Definition 5 (Rejection probability of f)

$$\delta_f \equiv \Pr_{x,y \in G} \left[f(x) + f(y) \neq f(x+y) \right]$$

The above algorithm does not work in all cases. Consider the following function $f : \mathbb{Z}_p \to \mathbb{Z}_p$, when p > 3.

$$\forall x \in \mathbb{Z}_p \qquad f(x) = \left\{ \begin{array}{ll} 1 & x = 1 \bmod 3\\ 0 & x = 0 \bmod 3\\ -1 & x = 2 \bmod 3 \end{array} \right.$$

The above function linear in all cases but the following two:

- 1. if $x \equiv y \equiv 1 \mod 3$ then
 - f(x) + f(y) = 1 + 1 = 2
 - $f(x+y) = f(2 \mod 3) = -1$

2. if $x \equiv y \equiv 2 \mod 3$ then

- f(x) + f(y) = -1 + -1 = -2
- $f(x+y) = f(1 \mod 3) = 1$

Therefore, in this case $\delta_f = 2/9$, meaning that the tester passes 7/9 of the available $x, y \in G$ combinations. On the other hand, it can be shown that the closest linear function to f is g(x) = 0, making f 2/3-far from linear. It turns out that $\delta_f = 2/9$ is a threshold, and that if you know that $\delta_f < 2/9$, the function must be δ_f -close to linear.

We will prove the correctness of the tester for boolean functions, but first we will need some tools from Fourier analysis.

3 Fourier analysis over the boolean cube

Let f be a function $f: \{0,1\}^n \to \{0,1\}$, with the inner product: $x \cdot y \equiv x \oplus y = \sum_{i=1}^n x_i y_i \mod 2$. There are 2^n unique linear functions on $\{0,1\}^n$ that can be defined in one of the following equivalent ways:

- 1. $L_a(x) = a \cdot x$ for fixed $a \in \{0, 1\}^n$
- 2. $L_A(x) = \sum_{i \in A} x_i \mod 2$ where $A \subseteq \{1 \cdots n\}$ (set notation)

3.1 Notation change

For the rest of the lecture, we will work with a less natural, but easier to work with boolean set, $\{\pm 1\}^n$ and functions $f : \{\pm 1\}^n \to \{\pm 1\}$. The following proofs are correct with respect to the original boolean notation as well.

In this notation, $0 \to +1$ and $1 \to -1$, or generally: $a \to (-1)^a$. Consequently, after changing notation addition becomes multiplication: $(a + b) \to (-1)^{a+b} = (-1)^a \cdot (-1)^b$. Therefore, linearity can now be defined for a function if $\forall x, y \in \{\pm 1\}^n$ the following condition is satisfied:

$$f(x) \cdot f(y) = f(x \odot y)$$

where $\odot \equiv$ coordinate-wise multiplication. Similarly, linear functions will be of the form:

$$\chi_s(x) = \prod_{i \in s} x_i$$

where $S \subseteq \{1 \cdots n\}$. In light of the notation change, the linear tester described previously is changed so that it halts when it encounters $x, y \in \{\pm 1\}^n$ where $f(x) \cdot f(y) \neq f(x \odot y)$.

Claim 6
$$\delta_f = E\left[\frac{1-f(x)f(y)f(x \odot y)}{2}\right]$$

Proof

$$f(x \odot y) = f(x) \cdot f(y)$$

$$\begin{array}{c} \updownarrow \\ f(x) \cdot f(y) \cdot f(x \odot y) = \begin{cases} 1 & \text{if test accepts x,y} \\ -1 & \text{if test rejects x,y} \end{cases}$$

$$\begin{array}{c} \updownarrow \\ \end{array}$$

$$I = \frac{1 - f(x)f(y)f(x \odot y)}{2} = \begin{cases} 0 & \text{if accepts} \\ 1 & \text{if rejects} \end{cases}$$

I is an indicator variable for values $x, y \in \{\pm 1\}^n$ such that $f(x \odot y) \neq f(x) \cdot f(y)$, therefore:

e /

-)

$$\delta_f \equiv \Pr_{x,y \in \{\pm 1\}^n} \left[f(x) \cdot f(y) \neq f(x \odot y) \right] = \mathcal{E}_{x,y} \left[f(x) \cdot f(y) \neq f(x \odot y) \right]$$

3.2Choosing a Fourier basis

Let G be defined as all the n-bit functions mapping to the real vector space:

$$G = \{g|g: \{\pm 1\}^n \to \mathbb{R}\}$$

The dimension of G is 2^n , i.e. all functions in G can be written as a linear combination of 2^n basis functions. We will attempt to find a convenient basis.

3.2.1 First attempt - The basis of indicator functions

$$e_a = \begin{cases} 1 & \text{if } x = a \\ 0 & \text{otherwise} \end{cases}$$

This is equivalent to viewing $g \in G$ as 2^n vector coordinates g(a) for all $a \in \{\pm 1\}^n$. This basis yields the following representation of g:

$$g(x) = \sum_{a \in G} g(a)e_a(x)$$

3.2.2 Second attempt - basis of parity functions

We will use the following basis functions:

$$\chi_s(x) = \prod_{i \in s} x_i$$

and the inner product:

$$\langle f,g\rangle = \frac{1}{2^n} \sum_{x \in \{\pm 1\}^n} f(x)g(x)$$

Lemma 7 The functions $\{\chi_s(x)\}$ are orthonormal with respect to the inner product $\langle \cdot, \cdot \rangle$.

Proof

1.
$$\langle \chi_s, \chi_s \rangle = \frac{1}{2^n} \sum_{x \in G} \chi_s(x) \cdot \chi_s(x) = \frac{2^n}{2^n} = 1$$

2. When $s \neq t$,

$$\langle \chi_s, \chi_t \rangle = \frac{1}{2^n} \sum_{x \in G} \chi_s(x) \cdot \chi_t(x) = \frac{1}{2^n} \sum_{x \in G} \prod_{i \in s} x_i \prod_{i \in t} x_i = \frac{1}{2^n} \sum_{x \in G} \prod_{i \in s \Delta t} x_i$$

where the last equality stems from the fact that if $i \in s \cap t$ than $x_i^2 = 1$. Let $i \in s\Delta t$ (since $s \neq t$ we know that one exists) and define $x^{\bigoplus j}$ to be x with the j bit flipped. Then, instead of summing over all elements of G separately, we can enumerate over pairs of elements which differ in the j-th coordinate. Then, the above equals

$$= \frac{1}{2^n} \sum_{x, x^{\bigoplus j} \in G} \left(\prod_{i \in s \Delta t} x_i + \prod_{i \in s \Delta t} x_i^{\bigoplus j} \right) = \frac{1}{2^n} \sum_{x, x^{\bigoplus j} \in G} \left(x_j + x_j^{\bigoplus j} \right) \prod_{i \in s \Delta t, i \neq j} (x_i) = 0.$$

Observation 8 The functions $\{\chi_s(x)\}$ form an orthonormal basis as there are 2^n unique orthonormal vectors χ_s .

This concludes the proof that f can be uniquely expressed as a linear combination of χ_s .

Definition 9 The Fourier coefficients of f are defined as

$$\hat{f}(s) \equiv \langle f, \chi_s \rangle = \frac{1}{2^n} \sum_{x \in \{\pm 1\}^n} f(x) \chi_s(x)$$

for all $s \in G$.

Lemma 10 $\forall f \in G = \{g | g : \{\pm 1\}^n \to \mathbb{R}\}$, the unique representation of f as a linear combination of the parity function basis is as follows:

$$f(x) = \sum_{s} \hat{f}(s)\chi_s(x)$$

This follows from the fact that the functions $\{\chi_s(x)\}$ form an orthonormal basis.

Fact 11 f is linear $\Leftrightarrow \exists s \subseteq [n]$ so that $\hat{f}(s) = \langle f, \chi_s \rangle = \frac{1}{2^n} \sum 1 = 1$ and $\forall t \neq s$, $\hat{f}(s) = \langle f, \chi_t \rangle = \langle \chi_s, \chi_t \rangle = 0$

Lemma 12 The Fourier coefficients of a function characterize the distance of the function from linearity. Namely, it can be shown that $\forall s \subseteq [n]$,

$$\hat{f}(s) = 1 - 2 \cdot dist(f, \chi_s) = 1 - 2 \cdot \Pr_{x \in \{\pm 1\}^n} [f(x) \neq \chi_s(x)].$$

Proof

$$2^{n} \cdot \hat{f}(s) = \sum_{x \in G} f(x)\chi_{s}(x)$$

= $\sum_{\{x \mid f(x) = \chi_{s}(x)\}} f(x)\chi_{s}(x) + \sum_{\{x \mid f(x) \neq \chi_{s}(x)\}} f(x)\chi_{s}(x)$
= $\sum_{\{x \mid f(x) = \chi_{s}(x)\}} 1 + \sum_{\{x \mid f(x) \neq \chi_{s}(x)\}} (-1)$
= $2^{n} \cdot \Pr_{x \in G} [f(x) = \chi_{s}(x)] - 2^{n} \cdot \Pr_{x \in G} [f(x) \neq \chi_{s}(x)]$
= $2^{n} \cdot \left(1 - 2 \cdot \Pr_{x \in G} [f(x) \neq \chi_{s}(x)]\right)$

The lemma immediately follows. \blacksquare

Observation 13 Given any χ_s, χ_t such that $s \neq t$, $dist(\chi_s, \chi_t) = \frac{1}{2}$. **Proof** Consider $f = \chi_s$.

$$\hat{f}(t) = \langle \chi_s, \chi_t \rangle = 0$$

and according to the previous lemma

$$\hat{f}(t) = 1 - 2 \cdot \operatorname{dist}(f, \chi_t)$$

which concludes the proof. \blacksquare

3.3 Useful tools

Theorem 14 (Plancherel's Theorem)

$$\langle f,g\rangle = \sum_{s\subseteq n} \hat{f}(s)\hat{g}(t)$$

Proof

$$\begin{split} \langle f,g \rangle &= \left\langle \sum_{s} \hat{f}(s) \chi_{s}, \sum_{t} \hat{g}(t) \chi_{t} \right\rangle = \sum_{s,t} \hat{f}(s) \hat{g}(t) \left\langle \chi_{s}, \chi_{t} \right\rangle = \\ \text{since } \left\langle \chi_{s}, \chi_{t} \right\rangle &= \left\{ \begin{array}{cc} 0 & \text{if } s \neq t \\ 1 & \text{if } s = t \end{array} \right. \\ &= \sum_{s \subseteq [n]} \hat{f}(s) \hat{g}(t) \end{split}$$

Theorem 15 (Parseval's Theorem)

$$\langle f,f\rangle = \sum_s \hat{f}^2(s)$$

Boolean Parseval:

$$f:\left\{\pm 1\right\}^n\to\left\{\pm 1\right\}$$

$$\sum_{s} \hat{f}^{2}(s) = \langle f, f \rangle = \frac{1}{2^{n}} \sum_{x} f(x) f(x) = 1$$

4 Proof of linearity tester

Previously, we have shown that:

$$\delta_f \equiv \Pr_{x,y \in \{\pm 1\}^n} \left[f(x) \cdot f(y) \neq f(x \odot y) \right] = \frac{1 - E\left[f(x)f(y)f(x \odot y) \right]}{2}$$

Theorem 16 If δ_f is the rejection probability of the linearity tester above, f is δ_f -close to some linear function.

Proof

$$\begin{split} & \mathbb{E}_{x,y} \left[f(x)f(y)f(x \odot y) \right] \\ = & \mathbb{E}_{x,y} \left[\sum_{s} \hat{f}(s)\chi_{s}(x) \cdot \sum_{t} \hat{f}(t)\chi_{t}(y) \cdot \sum_{u} \hat{f}(u)\chi_{u}(x \odot y) \right] \\ = & \mathbb{E}_{x,y} \left[\sum_{s,t,u} \hat{f}(s)\hat{f}(t)\hat{f}(u)\chi_{s}(x)\chi_{t}(y)\chi_{u}(x \odot y) \right] \\ = & \sum_{s,t,u} \hat{f}(s)\hat{f}(t)\hat{f}(u) \mathbb{E}_{x,y} \left[\chi_{s}(x)\chi_{t}(y)\chi_{u}(x \odot y) \right] = (\star) \end{split}$$

If s = t = u:

$$\chi_s(x)\chi_t(y)\chi_u(x\odot y) = \prod_{i\in s} x_i \cdot y_i \cdot (x_i \cdot y_i) = 1$$

If $\neg(s = t = u)$ then:

$$\mathbb{E}_{x,y} \left[\chi_s(x) \chi_t(y) \chi_u(x \odot y) \right]$$
$$= \mathbb{E}_{x,y} \left[\prod_{i \in s} x_i \prod_{j \in t} y_j \prod_{k \in u} (x_k \cdot y_k) \right]$$
$$= \mathbb{E}_{x,y} \left[\prod_{i \in s \Delta u} x_i \prod_{j \in t \Delta u} y_j \right]$$

Since x, y are independent,

$$= \mathbb{E}_x \left[\prod_{i \in s \Delta u} x_i \right] \cdot \mathbb{E}_y \left[\prod_{j \in t \Delta u} y_j \right] = 0.$$

The last equality follows from the fact that either $s \neq u$:

$$\mathbb{E}_x \left[\prod_{i \in s\Delta u} x_i \right] = 0$$

or $t \neq u$:

$$\mathbb{E}_y\left[\prod_{j\in t\Delta u} y_i\right] = 0$$

Therefore,

$$(\star) = \sum_{s} \left[\hat{f}(s) \right]^{3} \le \max_{s}(\hat{f}(s)) \cdot \sum_{s} (\hat{f}(s))^{2} = \max_{s}(\hat{f}(s)) = 1 - 2 \cdot \min_{s}(\operatorname{dist}(f, \chi_{s}))$$

where the last two equalities come from Parseval's theorem and the previous lemma, respectively.

By plugging our result into the definition of δ_f , we arrive at the following conclusion:

$$\delta_f \ge \frac{1}{2} - \frac{1}{2} \left[1 - 2 \cdot \min_s(\operatorname{dist}(f, \chi_s)) \right] = \min_s(\operatorname{dist}(f, \chi_s))$$