```
0368.416701 Sublinear Time Algorithms
December 21, 2015
Lecture 10
Lecturer: Ronitt Rubinfeld Scribe: S. Gershtein, A. Frumkin, M. Shagam, M. Sulamy
```


Last Week

We saw that certain properties of dense graphs can be tested in time independent of the size of the adjacency matrix (or the graph). We presented a property tester for \triangle-freeness whose running time dependence on $\frac{1}{\epsilon}$ is terrible - a tower of two's of size $\frac{1}{\epsilon}$.

Today

We will see a lower bound for Δ-free testing in the dense graph model. The bound has a super-polynomial dependence on $\frac{1}{\epsilon}$.

1 Main Theorem

1.1 Testing H-freeness

For any constant size graph H, for example a 6×6 complete bipartite graph, when we are testing G for H-freeness, that is we want to check whether G contains H as a subgraph, there is a powerful result that explicitly distinguishes the cases where the complexity is $\operatorname{poly}(1 / \epsilon)$.

Theorem 1 If H is bipartite then there exists a 1-sided tester that performs poly $\left(\frac{1}{\epsilon}\right)$ queries, whereas if H is not bipartite then no poly $\left(\frac{1}{\epsilon}\right)$ number of queries suffices.

This is a concise and surprising method of characterizing bipartiteness.
We will only prove the case where $H=\triangle$. Our tester will operate in the following manner:

- If G is \triangle-free output PASS.
- If G is ϵ-far from \triangle-free output FAIL with probability $\geq \frac{3}{4}$.

Theorem 2 Given graph G in adjacency matrix representation, there exists a constant c, such that any 1 -sided error tester for whether G is \triangle-free needs to perform at least $\left(\frac{c}{\epsilon}\right)^{c \log \left(\frac{c}{\epsilon}\right)}$ queries.

Notice that since the algorithm has 1-sided error, it must find a triangle in order to assert that the graph is not \triangle-free.

1.2 Tools

Before proving the theorem we will present several useful results.

1.2.1 Goldreich-Trevisan Theorem

Given an adjacency matrix with a tester T for property P, which performs $q(n, \epsilon)$ queries. There exists a "natural tester" T^{\prime} that uses $O\left(q^{2}(n, \epsilon)\right)$ queries:

- pick $q(n, \epsilon)$ nodes uniformly randomly
- query only the sub-matrix induced by these nodes
- decide according to acquired information

Note that the reduction preserves 1-sidedness, meaning that if T has a 1-sided error then T^{\prime} also has a 1 -sided error and vice versa.

Corollary: Lower bound of $\Omega\left(q^{\prime}\right)$ queries for natural tester gives a lower bound of $\Omega\left(\sqrt{q^{\prime}}\right)$ for any tester.

1.2.2 Additive Number Theory Lemma

Theorem $3 \forall m, \exists X \subseteq M=\{1, . ., m\}$ of size at least $\frac{m}{e^{10 \sqrt{\log m}}}$ with no nontrivial ${ }^{1}$ solution to $x_{1}+x_{2}=$ $2 x_{3}$ where $x_{1}, x_{2}, x_{3} \in X$ (denoted as the "sum-free" property of X).

Note that it is not trivial to construct such an X, since it must be both sum-free and large enough.

- Bad examples of X (X is not sum-free): $\{1,2,3\},\{5,9,13\}$
- Bad example of X (X is not big enough): $\{1,2,4,8,16, \ldots\}$
- Good example of X: $\{1,2,4,5,10, \ldots\}$

Proof Let d be integer (equal to $e^{10 \sqrt{\log m}}$), and $k=\left\lfloor\frac{\log m}{\log d}\right\rfloor-1,\left(k \approx \frac{\log m}{10 \sqrt{\log m}} \approx \frac{\log m}{10}\right)$.
Define $X_{B}=\left\{\sum_{i=0}^{k} x_{i} d^{i} \left\lvert\, x_{i}<\frac{d}{2}\right.\right.$ for $\left.0 \leq i \leq k, \sum_{i=0}^{k} x_{i}^{2}=B\right\}$. View $x \in M$ as represented in base $d, X=\left(x_{0}, \ldots, x_{k}\right), x_{i}<d$.

Note: x_{i} is small, therefore summing pairs of elements in X_{B} does not generate a carry.
Bound on largest number in any X_{B} :

$$
<\left(\frac{d}{2}\right) d^{k}+\left(\frac{d}{2}\right) d^{k-1}+\ldots<d^{k+1}<d^{\frac{\log m}{\log d}}=m \Rightarrow X_{B} \subseteq M
$$

Claim $4 X_{B}$ has the "sum-free" property, i.e., $\forall x, y, z \in X_{B}$ such that $x+y=2 z$ it must be that $x=y=z$.

Proof of claim: For $\forall x, y, z \in X_{B}$:

$$
\begin{gathered}
x+y=2 z \Leftrightarrow \sum_{i=0}^{k} x_{i} d^{i}+\sum_{i=0}^{k} y_{i} d^{i}=2 \sum_{i=0}^{k} z_{i} d^{i} \\
\Leftrightarrow x_{0}+y_{0}=2 z_{0} \\
x_{1}+y_{1}=2 z_{1} \\
\cdots \\
x_{k}+y_{k}=2 z_{k}
\end{gathered}
$$

Subclaim If it holds that $\forall i, x_{i}+y_{i}=2 z_{i}$ then $\forall i, x_{i}^{2}+y_{i}^{2} \geq 2 z_{i}^{2}$ with equality only if $x_{i}=y_{i}=z_{i}$. Proof of Subclaim: $f(a)=a^{2}$ is strictly convex. Using Jensen's inequality:

$$
\begin{gathered}
\frac{\sum_{i=1}^{n} f\left(a_{i}\right)}{n} \geq f\left(\frac{\sum a_{i}}{n}\right), \text { with equality only if } a_{1}=a_{2}=\ldots=a_{n} \\
\Rightarrow \frac{x_{i}^{2}+y_{i}^{2}}{2} \geq\left(\frac{x_{i}+y_{i}}{2}\right)^{2}=z_{i}^{2} \Rightarrow x_{i}^{2}+y_{i}^{2} \geq 2 z_{i}^{2} \text {, with equality only if } x_{i}=y_{i}=z_{i}
\end{gathered}
$$

(subclaim)
Assume that $(x=y=z)$ does not hold, i.e. $\exists i$ such that not $\left(x_{i}=y_{i}=z_{i}\right)$. From the subclaim we get that:

[^0]- For this $i, x_{i}^{2}+y_{i}^{2}>2 z_{i}^{2}$
- For all other i 's, $x_{i}^{2}+y_{i}^{2} \geq 2 z_{i}^{2}$
$\therefore \sum_{i=0}^{k} x_{i}+\sum_{i=0}^{k} y_{i}>2 \sum_{i=0}^{k} z_{i}$
Recall from the definition of X_{B} that $B=\sum_{i=0}^{k} x_{i}=\sum_{i=0}^{k} y_{i}=\sum_{i=0}^{k} z_{i}$, hence we get that $B+B>$ $2 B$ which is a contradiction! (claim 4)

Claim $5 X_{B}$ can be selected such that $\left|X_{B}\right| \geq \frac{m}{e^{10 \sqrt{\log m}}}$
Proof of claim: Pick B to maximize $\left|X_{B}\right|$. How big is X_{B} ?

$$
\begin{gathered}
B \leq(k+1)\left(\frac{d}{2}\right)^{2}<k \cdot d^{2} \\
\sum\left|X_{B}\right|=\left|\bigcup X_{B}\right|=\left(\frac{d}{2}\right)^{k+1}>\left(\frac{d}{2}\right)^{k} \\
\left.\Rightarrow \exists B, \text { such that }\left|X_{B}\right| \geq \frac{\left(\frac{d}{2}\right)^{k}}{k \cdot d^{2}} \geq \frac{m}{e^{10 \sqrt{\log m}}} \text { (by choice of } d, k\right)
\end{gathered}
$$

-(claim 5)

The number theory theorem immediately follows from Claims 4 and 5

1.3 Proof of Main Theorem

1.3.1 Proof Outline

We will present a graph, whose construction is based on the theorem we have just proved, for which any canonical \triangle-free tester must use $q>\left(\frac{c^{*}}{\epsilon}\right)^{c^{*} \log \frac{c^{*}}{\epsilon}}$ queries. From the Goldreich-Trevisan theorem follows a lower bound of $\left(\frac{c}{\epsilon}\right)^{c \log \left(\frac{c}{\epsilon}\right)}$ queries for any triangle-free tester. There are three constants - represented by c which is taken as the maximum of all three.

1.3.2 Initial Graph

Given a sum-free $X \subseteq\{1 . . m\}$ of size $\geq \frac{m}{e^{10 \sqrt{\log m}}}$, we create a tri-partite graph G :

- The nodes of the graph are divided into 3 sets $-V_{1}=\{1 . . m\}, V_{2}=\{1 . .2 m\}, V_{3}=\{1 . .3 m\}$
- Nodes from V_{1} are connected to nodes from V_{2} using edges $(x, x+\ell), \forall x \in\{1 . . m\}, \ell \in X$
- Nodes from V_{1} are connected to nodes from V_{3} using edges $(x, x+2 \ell), \forall x \in\{1 . . m\}, \ell \in X$
- Nodes from V_{2} are connected to nodes from V_{3} using edges $(x+\ell, x+2 \ell), \forall x \in\{1 . . m\}, \ell \in X$
- There are no edges between two nodes of the same set

Definition 1 Intended Triangle: Triangles created by $x, x+l, x+2 l(l \in X)$ are defined as "intended triangles".

Claim 6 The total number of triangles in G is equal to $m|X|$, moreover all triangles in G are "intended triangles".

Figure 1: Graph G built using Theorem 3. Each node in the set V_{1} is connected to $|X|$ nodes in V_{2} and $|X|$ nodes in V_{3}. Each node in the set V_{2} is also connected to additional $|X|$ nodes in V_{3}

Figure 2: Example of an intended triangle.

Proof of claim: Let $\triangle(u, v, w)$ be a triangle in G , connected by the edges l_{1}, l_{2}, l_{3}. There are no internal edges \Rightarrow without loss of generality. $u \in V_{1}, v \in V_{2}, w \in V_{3}$
By definition of $G: u+l_{1}=v, v+l_{2}=w, u+2 l_{3}=w=v+l_{2}=u+l_{1}+l_{2} \Rightarrow 2 l_{3}=l_{1}+l_{2} \Rightarrow l_{1}=l_{2}=l_{3}$ and we get that $\triangle(u, v, w)$ is an intended triangle.

- The total number of nodes in $\mathrm{G}=6 \mathrm{~m}$
- The total number number of edges in $\mathrm{G}=\Theta(m|x|)=\Theta\left(\frac{n^{2}}{e^{10 \sqrt{1 \log n}}}\right)$

So $m|X|$ such intended triangles exist. \square (claim 6)

Claim 7 Intended triangles are edge disjoint (i.e. there are no two intended triangles with the same edge)
Proof Idea Assume $u, v \in V_{1}$ are on both nodes in an intended triangle with a shared edge ℓ, as in figure 1.3.2. The triangle share two nodes so we get that $u+\ell=v+\ell$ and $u+2 \ell=v+2 \ell$ therefore $u=v$. Similarly we can show that any other edge in the triangle can't be shared

Figure 3: Intended triangles disjoint proof.

Corollary 8 Since triangles are edge disjoint and must remove ≥ 1 edges from each triangle to make graph $G \triangle$-free, then the absolute distance to \triangle-free is $m|X|\left(=\epsilon \cdot n^{2}\right)$. In other words, the distance to \triangle-free $=\frac{m|X|}{(6 m)^{2}}=\Theta\left(\frac{|X|}{m}\right)=\Theta\left(\frac{1}{e^{10 \sqrt{\log m}}}\right)$.

Figure 4: Graph Blow Up $G^{(s)}$.

1.3.3 Graph Blow Up

We now show a graph that is $\epsilon-f a r$ from being \triangle-free, yet any canonical triangle-free tester must use $q>\left(\frac{c^{*}}{\epsilon}\right)^{c^{*} \log \frac{c^{*}}{\epsilon}}$ queries in order to find a triangle with high probability for some chosen ϵ.

Let $G^{(s)}$ be a blown up version of the initial graph G shown above:

- Each vertex in G is blown up to be an independent set of size s in $G^{(s)}$.
- Each edge in G is a complete bipartite graph in $G^{(s)}$.
- We get that for any triangle in G we get s^{3} triangles in $G^{(s)}$, and there are no new \triangle^{\prime} 's in $G^{(s)}$. The parameters of $G^{(s)}$:
- number of nodes: $m \cdot s$
- number of edges: $m|x| \cdot s^{2}$
- number of $\triangle: m|x| \cdot s^{3}$

Claim 9 The number of edges that need to be removed from $G^{(s)}$ to make it \triangle-free is at least the number of edge-disjoint $\triangle ' s \geq m|x| \cdot s^{2}$.

Proof By removing a single edge from each \triangle we can remove s overlapping \triangle 's. The number of \triangle 's is $m|x| s^{3}$, so we are left with $m|x| s^{2}$ non-overlapping \triangle 's.

Claim 10 Given ϵ, there exists a graph $G^{(s)}$ such that for any canonical tester T, Pr[T sees any triangle] $\ll 1$ unless the $\#$ of queries in $T>\left(\frac{c^{*}}{\epsilon}\right)^{c^{*} \log \frac{\frac{c}{*}^{\epsilon}}{}}$ for some constant c^{*}.

Proof Given ϵ, pick m to be the largest integer satisfying $\epsilon \leq \frac{1}{e^{10 \sqrt{\log m}}}$. This m satisfies $m \geq\left(\frac{c}{\epsilon}\right)^{c \log \frac{c}{\epsilon}}$ for some c. Pick $s=\frac{n}{6 m} \approx n \cdot\left(\frac{\epsilon}{c^{\prime}}\right)^{c \log \frac{c^{\prime}}{\epsilon}}$, so

$$
\begin{gathered}
\# \text { edges } \approx \text { distance }(\text { absolute }) \approx m|X| \cdot s^{2} \approx \frac{m \cdot m}{e^{10 \sqrt{\log m}}} \cdot \frac{n^{2}}{(6 m)^{2}}=\epsilon n^{2} \\
\# \text { triangles } \approx\left(\frac{\epsilon}{c^{\prime \prime}}\right)^{c^{\prime \prime} \log \frac{c^{\prime \prime}}{\epsilon}}
\end{gathered}
$$

Finally, if we take a sample of size q :

$$
E[\text { Number of } \triangle \text { 's in sample }]<\frac{\binom{q}{3}\left(\frac{\epsilon}{c^{\prime \prime}}\right)^{c^{\prime \prime} \log \frac{c^{\prime \prime}}{\epsilon}} \cdot n^{3}}{\binom{n}{3}} \ll 1
$$

unless $q>\left(\frac{c^{*}}{\epsilon}\right)^{c^{*} \log \frac{c^{*}}{\epsilon}}$. By Markov's inequality, $\operatorname{Pr}[$ see any triangle $] \ll 1$.
A 1-sided error sampling algorithm must see a triangle to fail, and by the last claim and the GoldreichTrevisan theorem we get that any tester must use at least $\left(\frac{c}{\epsilon}\right)^{c \log (c / \epsilon)}$ queries to see a triangle in $G^{(s)}$ with high probability.

[^0]: ${ }^{1} \mathrm{~A}$ trivial solution is defined as $x_{1}=x_{2}=x_{3}$

