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Last Week

We saw that certain properties of dense graphs can be tested in time independent of the size of the
adjacency matrix (or the graph). We presented a property tester for 4-freeness whose running time
dependence on 1

ε is terrible - a tower of two’s of size 1
ε .

Today

We will see a lower bound for ∆-free testing in the dense graph model. The bound has a super-polynomial
dependence on 1

ε .

1 Main Theorem

1.1 Testing H-freeness

For any constant size graph H, for example a 6 × 6 complete bipartite graph, when we are testing G
for H-freeness, that is we want to check whether G contains H as a subgraph, there is a powerful result
that explicitly distinguishes the cases where the complexity is poly(1/ε).

Theorem 1 If H is bipartite then there exists a 1-sided tester that performs poly( 1
ε ) queries, whereas

if H is not bipartite then no poly( 1
ε ) number of queries suffices.

This is a concise and surprising method of characterizing bipartiteness.
We will only prove the case where H = 4. Our tester will operate in the following manner:

• If G is 4-free output PASS.

• If G is ε-far from 4-free output FAIL with probability ≥ 3
4 .

Theorem 2 Given graph G in adjacency matrix representation, there exists a constant c, such that any
1-sided error tester for whether G is 4-free needs to perform at least ( cε )

c log( cε ) queries.

Notice that since the algorithm has 1-sided error, it must find a triangle in order to assert that the
graph is not 4-free.

1.2 Tools

Before proving the theorem we will present several useful results.

1.2.1 Goldreich-Trevisan Theorem

Given an adjacency matrix with a tester T for property P , which performs q(n, ε) queries. There exists
a “natural tester” T ′ that uses O

(
q2 (n, ε)

)
queries:

• pick q(n, ε) nodes uniformly randomly

• query only the sub-matrix induced by these nodes

• decide according to acquired information

1



Note that the reduction preserves 1-sidedness, meaning that if T has a 1-sided error then T ′ also has
a 1-sided error and vice versa.

Corollary: Lower bound of Ω(q′) queries for natural tester gives a lower bound of Ω(
√
q′) for any

tester.

1.2.2 Additive Number Theory Lemma

Theorem 3 ∀m,∃X ⊆M = {1, ..,m} of size at least m
e10
√

logm with no nontrivial1 solution to x1 +x2 =
2x3 where x1, x2, x3 ∈ X (denoted as the ”sum-free” property of X).

Note that it is not trivial to construct such an X, since it must be both sum-free and large enough.

• Bad examples of X (X is not sum-free): {1, 2, 3}, {5, 9, 13}

• Bad example of X (X is not big enough): {1, 2, 4, 8, 16, ...}

• Good example of X: {1, 2, 4, 5, 10, ...}

Proof Let d be integer (equal to e10
√
logm), and k =

⌊
logm
log d

⌋
− 1,

(
k ≈ logm

10
√
logm

≈ logm
10

)
.

Define XB =
{∑k

i=0 xid
i|xi < d

2 for 0 ≤ i ≤ k,
∑k
i=0 x

2
i = B

}
. View x ∈ M as represented in base

d, X = (x0, ..., xk), xi < d.
Note: xi is small, therefore summing pairs of elements in XB does not generate a carry.
Bound on largest number in any XB :

<

(
d

2

)
dk +

(
d

2

)
dk−1 + ... < dk+1 < d

logm
log d = m⇒ XB ⊆M

Claim 4 XB has the “sum-free” property, i.e., ∀x, y, z ∈ XB such that x + y = 2z it must be that
x = y = z.

Proof of claim: For ∀x, y, z ∈ XB :

x+ y = 2z ⇔
k∑
i=0

xid
i +

k∑
i=0

yid
i = 2

k∑
i=0

zid
i

⇔ x0 + y0 = 2z0

x1 + y1 = 2z1

...

xk + yk = 2zk

Subclaim If it holds that ∀i, xi + yi = 2zi then ∀i, x2i + y2i ≥ 2z2i with equality only if xi = yi = zi.
Proof of Subclaim: f(a) = a2 is strictly convex. Using Jensen’s inequality:∑n

i=1 f(ai)

n
≥ f

(∑
ai
n

)
, with equality only if a1 = a2 = ... = an

⇒ x2i + y2i
2

≥
(
xi + yi

2

)2

= z2i ⇒ x2i + y2i ≥ 2z2i , with equality only if xi = yi = zi

(subclaim)
Assume that (x = y = z) does not hold, i.e. ∃i such that not (xi = yi = zi). From the subclaim we

get that:

1A trivial solution is defined as x1 = x2 = x3
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• For this i, x2i + y2i > 2z2i

• For all other i’s, x2i + y2i ≥ 2z2i

∴
∑k
i=0 xi +

∑k
i=0 yi > 2

∑k
i=0 zi

Recall from the definition of XB that B =
∑k
i=0 xi =

∑k
i=0 yi =

∑k
i=0 zi, hence we get that B+B >

2B which is a contradiction! (claim 4)

Claim 5 XB can be selected such that |XB | ≥ m
e10
√

logm

Proof of claim: Pick B to maximize |XB |. How big is XB?

B ≤ (k + 1)

(
d

2

)2

< k · d2

∑
|XB | =

∣∣∣⋃XB

∣∣∣ =

(
d

2

)k+1

>

(
d

2

)k
⇒ ∃B, such that |XB | ≥

(
d
2

)k
k · d2

≥ m

e10
√
logm

(by choice of d, k)

(claim 5)

The number theory theorem immediately follows from Claims 4 and 5

1.3 Proof of Main Theorem

1.3.1 Proof Outline

We will present a graph, whose construction is based on the theorem we have just proved, for which any

canonical 4-free tester must use q >
(
c∗

ε

)c∗ log c∗ε
queries. From the Goldreich-Trevisan theorem follows

a lower bound of ( cε )
c log( cε ) queries for any triangle-free tester. There are three constants - represented

by c which is taken as the maximum of all three.

1.3.2 Initial Graph

Given a sum-free X ⊆ {1..m} of size ≥ m
e10
√

logm , we create a tri-partite graph G:

• The nodes of the graph are divided into 3 sets - V1 = {1..m}, V2 = {1..2m}, V3 = {1..3m}

• Nodes from V1 are connected to nodes from V2 using edges (x, x+ `), ∀x ∈ {1..m}, ` ∈ X

• Nodes from V1 are connected to nodes from V3 using edges (x, x+ 2`), ∀x ∈ {1..m}, ` ∈ X

• Nodes from V2 are connected to nodes from V3 using edges (x+ `, x+ 2`), ∀x ∈ {1..m}, ` ∈ X

• There are no edges between two nodes of the same set

Definition 1 Intended Triangle: Triangles created by x, x + l, x + 2l (l ∈ X) are defined as ”intended
triangles”.

Claim 6 The total number of triangles in G is equal to m|X|, moreover all triangles in G are ”intended
triangles”.
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Figure 1: Graph G built using Theorem 3. Each node in the set V1 is connected to |X| nodes in
V2 and |X| nodes in V3. Each node in the set V2 is also connected to additional |X| nodes in V3

Figure 2: Example of an intended triangle.

Proof of claim: Let 4(u, v, w) be a triangle in G, connected by the edges l1, l2, l3. There are no
internal edges ⇒ without loss of generality. u ∈ V1, v ∈ V2, w ∈ V3
By definition of G: u+ l1 = v, v+ l2 = w, u+2l3 = w = v+ l2 = u+ l1 + l2 ⇒2l3 = l1 + l2 ⇒ l1 = l2 = l3
and we get that 4(u, v, w) is an intended triangle.

• The total number of nodes in G = 6m

• The total number number of edges in G =Θ(m|x|) = Θ
(

n2

e10
√

1 logn

)
So m|X| such intended triangles exist. (claim 6)

Claim 7 Intended triangles are edge disjoint (i.e. there are no two intended triangles with the same
edge)

Proof Idea Assume u, v ∈ V1 are on both nodes in an intended triangle with a shared edge `, as in
figure 1.3.2. The triangle share two nodes so we get that u + ` = v + ` and u + 2` = v + 2` therefore
u = v. Similarly we can show that any other edge in the triangle can’t be shared
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Figure 3: Intended triangles disjoint proof.

Corollary 8 Since triangles are edge disjoint and must remove ≥ 1 edges from each triangle to make
graph G 4-free, then the absolute distance to 4-free is m|X|(= ε · n2). In other words, the distance to

4-free = m|X|
(6m)2 = Θ

(
|X|
m

)
= Θ

(
1

e10
√

logm

)
.

Figure 4: Graph Blow Up G(s).

1.3.3 Graph Blow Up

We now show a graph that is ε− far from being 4-free, yet any canonical triangle-free tester must use

q >
(
c∗

ε

)c∗ log c∗ε
queries in order to find a triangle with high probability for some chosen ε.

Let G(s) be a blown up version of the initial graph G shown above:

• Each vertex in G is blown up to be an independent set of size s in G(s).

• Each edge in G is a complete bipartite graph in G(s).

• We get that for any triangle in G we get s3 triangles in G(s), and there are no new 4’s in G(s).

The parameters of G(s):

• number of nodes: m · s

• number of edges: m|x| · s2
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• number of 4: m|x| · s3

Claim 9 The number of edges that need to be removed from G(s) to make it 4-free is at least the number
of edge-disjoint 4’s ≥ m|x| · s2.

Proof By removing a single edge from each 4 we can remove s overlapping 4’s. The number of 4’s
is m|x|s3, so we are left with m|x|s2 non-overlapping 4’s.

Claim 10 Given ε, there exists a graph G(s) such that for any canonical tester T, Pr[T sees any triangle]

� 1 unless the # of queries in T >
(
c∗

ε

)c∗ log c∗ε
for some constant c∗.

Proof Given ε, pick m to be the largest integer satisfying ε ≤ 1
e10
√

logm . This m satisfies m ≥
(
c
ε

)c log cε
for some c. Pick s = n

6m ≈ n ·
(
ε
c′

)c log c′ε , so

#edges ≈ distance(absolute) ≈ m|X| · s2 ≈ m ·m
e10
√
logm

· n2

(6m)2
= εn2

#triangles ≈
( ε
c′′

)c′′ log c′′ε
Finally, if we take a sample of size q:

E [Number of 4 ’s in sample ] <

(
q
3

) (
ε
c′′

)c′′ log c′′ε · n3(
n
3

) � 1

unless q >
(
c∗

ε

)c∗ log c∗ε
. By Markov’s inequality, Pr[see any triangle] � 1.

A 1-sided error sampling algorithm must see a triangle to fail, and by the last claim and the Goldreich-
Trevisan theorem we get that any tester must use at least ( cε )

c log(c/ε) queries to see a triangle in G(s)

with high probability.
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