Probabilistic Data Structures

Amit Kol

Membership testing

Hash table

An array of m elements and a hash function h

- How do we keep track of collisions?
- How expensive is it?
- What if we don't keep track?

Bloom filter

Use k hash functions $h_{1}, h_{2}, \ldots, h_{k}$ on a bit array

- No false negatives
- Saves space
- Constant time to add an element

Bloom filter - false positives

After n insertions,

$$
\operatorname{Pr}(b i t=0)=\left(1-\frac{1}{m}\right)^{k n}
$$

Probability of false positive:

$$
\left(1-\left(1-\frac{1}{m}\right)^{k n}\right)^{k} \approx\left(1-e^{-\frac{k n}{m}}\right)^{k}
$$

Use in streaming scenarios

Scalable Bloom filter

- Add an arbitrary number of elements
- Constant bound on false positives
- Becomes expensive in terms of space

Stable Bloom filter

Goals:

- Use constant memory
- Evict stale data

Stable Bloom filter

Goals:

- Use constant memory
- Evict stale data

Results:

- The number of 0 s in the array converges
- We can use this to limit false positives
- False negatives are introduced

How can we save more information?

Multisets - stream summary

We'd like to get a histogram of the elements in the stream

- Point queries

Multisets - stream summary

We'd like to get a histogram of the elements in the stream

- Point queries
- Range queries

Multisets - stream summary

We'd like to get a histogram of the elements in the stream

- Point queries
- Range queries
- "Heavy hitters"

Multisets - stream summary

We'd like to get a histogram of the elements in the stream

- Point queries
- Range queries
- "Heavy hitters"
- Quantile queries

Count-min sketch

- Split each of k hash functions of bloom filter into separate array of size m
- Use counters
- We gain the ability to delete

Questions?

