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 Problem Definition 

 Image processing in a nutshell 

 Prior Art of image alignment  

 Suggested algorithm  

 



Image matching: 

Given two grayscale images, I1 and I2 

Find affine transformation T that maps pixels 

from I1 to pixels to I2. 

 

 

 

 

 

So that the difference over pixels p between 

I1(T(p)) and I2(p) is minimized 



 Find the best transformation between two given 

images: 



Some results I 





Some results III 



 Align two images before comparison 

 Align for image enhancement  

 Panoramic mosaics. 

 Match images in a video sequence 

 



Gray scale image I is an nxm matrix with values 

between [0,1]. 

 

 

 

 

where 0 is black, and  1 is white. 

 

 

The intermediate values are the gray levels 

 



 A pixel p in an nxn image I is a pair (x,y)in {1,…,n}². 

 A value of a pixel p=(x,y) in an image I is I(x,y). 

 Two different pixels p =(x,y) and q =(x’,y’) are adjacent 

if |x-x’|≤1 and |y-y’|≤1. 

 A pixel p is boundary in an image I if there is an 

adjacent pixel q s.t I(p)≠I(q). 

 

 

 

 

 



 An affine transformation matrix T can be decomposed 

into  

where Tr, R, S are translation, rotation and non-uniform 

scaling matrices. 

 

 

 There exist 6 degrees of freedom: 

 a rotation angle, x and y scales, another rotation angle 

and x and y translations. 

 

1 2 1 1( )T I Tr R S R I



Given two grayscale images, I1 and I2 

and affine transformation T :I1 I2. 

We define a sum of absolute differences (SAD) 

 

 

and 

 

The optimal transformation satisfies: 
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The algorithm: 

1.  Take a sample of the Affine transformations 

2.  Evaluate the SAD for each transformation in the 

sample 

3.  Return the best 

Questions: 

 Which transformations to use? 

 How does is guarantee a bound? 



 Direct methods – parametric OF 

 Indirect methods (feature based) 

 

 



Lucas, Kanade “An iterative image registration technique with an application to 

stereo vision” [ICAI 1981] 

Baker, Matthews “Lucas-Kanade 20 years on: A unifying  framework” [IJCV 04] 



Enumerate ~ n¹⁸ affine transformation (for nxn images) 



 

2( )nComputational complexity 

e.g. SIFT 



 

 Select (at random) a subset of k pairs 

 Compute a motion estimate T 

 By using least squares, to minimize the sum of 

squared residuals. 

 Counts the number of inliers that are within ε of 

their predicted location 

 The random selection process is repeated m times,  

 The sample set with largest number of inliers is kept 

as the final solution 

Computational complexity ( ( ))k t mN 

k=#samples 

N=#data points 

t= time of single model 

m=avg # of models per sample 



 



Lowe “Distinctive image features  from scale-invariant key-points” [IJCV 04] 

Morel, Yu “Asift: A new framework for fully affine invariant image comparison” 

[SIAM 09] 

M.A. Fichler, R.C. Bolles  “Random sample consensus” [Comm. of ACM 81] 



template image 

Transformation 

space  (e.g. affine) 

Observation: 

Due to image smoothness assumption, the SAD 

measure will not change significantly, when small 

variations in the parameters of the transformation 
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Given two transformations T and T’ , we define                 as: 

 

 

 

 

 

 

For a positive α, a net of (affine) transformations τ={Ti} is an α-cover if 

 

 

 

 

In our case α=δn1. 

 

Claim: We can construct a net of transformation Aδ 

And prove that it is δn1-cover 

T 

Ti 





 

The basic idea is to discretize the space of Affine transformations, by dividing 

each of the dimensions into Θ(δ) equal segments, such that for any two 

consecutive transformations T and T’ on any of the dimensions it will hold 

that 

 

 

 

 

1') ( )( ,Tl nT  

 An affine transformation matrix T can be decomposed into  

 

 There exist 6 degrees of freedom: a rotation angle, x and y scales, 

another rotation angle and x and y translations. 

 

1 2 1 1( )T I Tr R S R I



2

6
1

21( ( ) )
n

n
 



  

Estimate the SAD to within O(1/ δ²)  

Input: Grayscale images I1 and I2, a precision parameter δ   

and a transformation T 

Output: An estimate of the distance 

•   Sample m = Θ(1/ δ²) values of pixels p1 … pm in I1 

•   Return  

 

 

Claim: Given images I1 and I2 and an affine transformation 

T,  the algorithm returns a value dT such that |dT -                |< δ 

with probability 2/3. It performs (1/ δ²) samples. 
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Total runtime is: 

O(1/ δ²)  



Achieving a satisfactory error rate would require using a net Nδ where δ 

is small. Thus causing the execution time to grow. 

 

Therefore branch-and-bound scheme is used, by running the algorithm 

on subset of the net Nδ. and refining the δ parameter. 







 Pascal VOC 2010 data-set 

 200 random image/templates 

 Template dimensions of 10%, 30%, 50%, 70%, 90% 

 ‘Comparison’ to a feature-based method - ASIFT 

 Image degradations (template left in-tact): 

 Gaussian Blur with STD of {0,1,2,4,7,11} pixels 

 Gaussian Noise with STD of {0,5,10,18,28,41} 

 JPEG compression of quality {75,40,20,10,5,2} 

 





 Pascal VOC 2010 data-set 

 200 random image/templates 

 Template dimensions of 10%, 30%, 50%, 70%, 90% 

 ‘Comparison’ to a feature-based method - ASIFT 

 Image degradations (template left in-tact): 

 Gaussian Blur with STD of {0,1,2,4,7,11} pixels 

 Gaussian Noise with STD of {0,5,10,18,28,41} 

 JPEG compression of quality {75,40,20,10,5,2} 

 



 Fast-Match vs. ASIFT – template dimension 50% 



 Fast-Match vs. ASIFT – template dimension 20% 



Runtimes 



Template Dim: 45% 



Template Dim: 35% 



Template Dim: 25% 



Template Dim: 15% 



Template Dim: 10% 







Mikolajczyk data-set (for features and descriptors) 

 8 sequences of 6 images, with increasingly harsh 

conditions 

 Including: 

 Zoom+Rotation (bark) 

 Blur (bikes) 

 Zoom+rotation (boat) 

 Viewpoint change (graffiti) 

 Brightness change (light) 

 Blur (trees) 

 Jpeg compression (UBC) 

 Viewpoint change (wall) 

 

Experiment 2: Varying conditions 













The Zurich Building Data-set 

 200 buildings, 5 different views each 

 200 random instances 

 Random choice of building, 2 views, template in one view 

 We seek the best possible affine transformation 

 In most cases homography or non-rigid is needed 
 

 Results: 

 129 cases - ‘good’ matches 

 40 cases – template doesn’t appear in second image 

 12 cases – bad occlusion of template in second image 

 19 cases – ‘failure’ (none of the above) 
 

Experiment 3: Matching in real-world 

scenes 



Experiment 3: Good cases 



Experiment 3: Good cases 



Experiment 3: failures, occlusions, out of img. 



Handles template matching under 
arbitrary Affine (6 dof) transformations 
with 
 Guaranteed error bounds 

 Fast execution 

 

Main ingredients 
 Sampling of transformation space (based on 

variation) 

 Quick transformation evaluation (‘property 
testing’) 

 Branch-and-Bound scheme 

 



Limitations 

 Smoothness assumption 

 Global transformation 

 Partial matching 

 

Extensions 

 Higher dimensions - Matching 3D shapes 

 Other registration problems 

 Symmetry detection 





 

Thank you for your attention 
 


