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 Problem Definition 

 Image processing in a nutshell 

 Prior Art of image alignment  

 Suggested algorithm  

 



Image matching: 

Given two grayscale images, I1 and I2 

Find affine transformation T that maps pixels 

from I1 to pixels to I2. 

 

 

 

 

 

So that the difference over pixels p between 

I1(T(p)) and I2(p) is minimized 



 Find the best transformation between two given 

images: 



Some results I 





Some results III 



 Align two images before comparison 

 Align for image enhancement  

 Panoramic mosaics. 

 Match images in a video sequence 

 



Gray scale image I is an nxm matrix with values 

between [0,1]. 

 

 

 

 

where 0 is black, and  1 is white. 

 

 

The intermediate values are the gray levels 

 



 A pixel p in an nxn image I is a pair (x,y)in {1,…,n}². 

 A value of a pixel p=(x,y) in an image I is I(x,y). 

 Two different pixels p =(x,y) and q =(x’,y’) are adjacent 

if |x-x’|≤1 and |y-y’|≤1. 

 A pixel p is boundary in an image I if there is an 

adjacent pixel q s.t I(p)≠I(q). 

 

 

 

 

 



 An affine transformation matrix T can be decomposed 

into  

where Tr, R, S are translation, rotation and non-uniform 

scaling matrices. 

 

 

 There exist 6 degrees of freedom: 

 a rotation angle, x and y scales, another rotation angle 

and x and y translations. 

 

1 2 1 1( )T I Tr R S R I



Given two grayscale images, I1 and I2 

and affine transformation T :I1 I2. 

We define a sum of absolute differences (SAD) 

 

 

and 

 

The optimal transformation satisfies: 
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The algorithm: 

1.  Take a sample of the Affine transformations 

2.  Evaluate the SAD for each transformation in the 

sample 

3.  Return the best 

Questions: 

 Which transformations to use? 

 How does is guarantee a bound? 



 Direct methods – parametric OF 

 Indirect methods (feature based) 

 

 



Lucas, Kanade “An iterative image registration technique with an application to 

stereo vision” [ICAI 1981] 

Baker, Matthews “Lucas-Kanade 20 years on: A unifying  framework” [IJCV 04] 



Enumerate ~ n¹⁸ affine transformation (for nxn images) 



 

2( )nComputational complexity 

e.g. SIFT 



 

 Select (at random) a subset of k pairs 

 Compute a motion estimate T 

 By using least squares, to minimize the sum of 

squared residuals. 

 Counts the number of inliers that are within ε of 

their predicted location 

 The random selection process is repeated m times,  

 The sample set with largest number of inliers is kept 

as the final solution 

Computational complexity ( ( ))k t mN 

k=#samples 

N=#data points 

t= time of single model 

m=avg # of models per sample 



 



Lowe “Distinctive image features  from scale-invariant key-points” [IJCV 04] 

Morel, Yu “Asift: A new framework for fully affine invariant image comparison” 

[SIAM 09] 

M.A. Fichler, R.C. Bolles  “Random sample consensus” [Comm. of ACM 81] 



template image 

Transformation 

space  (e.g. affine) 

Observation: 

Due to image smoothness assumption, the SAD 

measure will not change significantly, when small 

variations in the parameters of the transformation 
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Given two transformations T and T’ , we define                 as: 

 

 

 

 

 

 

For a positive α, a net of (affine) transformations τ={Ti} is an α-cover if 

 

 

 

 

In our case α=δn1. 

 

Claim: We can construct a net of transformation Aδ 

And prove that it is δn1-cover 

T 

Ti 





 

The basic idea is to discretize the space of Affine transformations, by dividing 

each of the dimensions into Θ(δ) equal segments, such that for any two 

consecutive transformations T and T’ on any of the dimensions it will hold 

that 
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 An affine transformation matrix T can be decomposed into  

 

 There exist 6 degrees of freedom: a rotation angle, x and y scales, 

another rotation angle and x and y translations. 
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Estimate the SAD to within O(1/ δ²)  

Input: Grayscale images I1 and I2, a precision parameter δ   

and a transformation T 

Output: An estimate of the distance 

•   Sample m = Θ(1/ δ²) values of pixels p1 … pm in I1 

•   Return  

 

 

Claim: Given images I1 and I2 and an affine transformation 

T,  the algorithm returns a value dT such that |dT -                |< δ 

with probability 2/3. It performs (1/ δ²) samples. 
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Total runtime is: 

O(1/ δ²)  



Achieving a satisfactory error rate would require using a net Nδ where δ 

is small. Thus causing the execution time to grow. 

 

Therefore branch-and-bound scheme is used, by running the algorithm 

on subset of the net Nδ. and refining the δ parameter. 







 Pascal VOC 2010 data-set 

 200 random image/templates 

 Template dimensions of 10%, 30%, 50%, 70%, 90% 

 ‘Comparison’ to a feature-based method - ASIFT 

 Image degradations (template left in-tact): 

 Gaussian Blur with STD of {0,1,2,4,7,11} pixels 

 Gaussian Noise with STD of {0,5,10,18,28,41} 

 JPEG compression of quality {75,40,20,10,5,2} 

 





 Pascal VOC 2010 data-set 

 200 random image/templates 

 Template dimensions of 10%, 30%, 50%, 70%, 90% 

 ‘Comparison’ to a feature-based method - ASIFT 

 Image degradations (template left in-tact): 

 Gaussian Blur with STD of {0,1,2,4,7,11} pixels 

 Gaussian Noise with STD of {0,5,10,18,28,41} 

 JPEG compression of quality {75,40,20,10,5,2} 

 



 Fast-Match vs. ASIFT – template dimension 50% 



 Fast-Match vs. ASIFT – template dimension 20% 



Runtimes 



Template Dim: 45% 



Template Dim: 35% 



Template Dim: 25% 



Template Dim: 15% 



Template Dim: 10% 







Mikolajczyk data-set (for features and descriptors) 

 8 sequences of 6 images, with increasingly harsh 

conditions 

 Including: 

 Zoom+Rotation (bark) 

 Blur (bikes) 

 Zoom+rotation (boat) 

 Viewpoint change (graffiti) 

 Brightness change (light) 

 Blur (trees) 

 Jpeg compression (UBC) 

 Viewpoint change (wall) 

 

Experiment 2: Varying conditions 













The Zurich Building Data-set 

 200 buildings, 5 different views each 

 200 random instances 

 Random choice of building, 2 views, template in one view 

 We seek the best possible affine transformation 

 In most cases homography or non-rigid is needed 
 

 Results: 

 129 cases - ‘good’ matches 

 40 cases – template doesn’t appear in second image 

 12 cases – bad occlusion of template in second image 

 19 cases – ‘failure’ (none of the above) 
 

Experiment 3: Matching in real-world 

scenes 



Experiment 3: Good cases 



Experiment 3: Good cases 



Experiment 3: failures, occlusions, out of img. 



Handles template matching under 
arbitrary Affine (6 dof) transformations 
with 
 Guaranteed error bounds 

 Fast execution 

 

Main ingredients 
 Sampling of transformation space (based on 

variation) 

 Quick transformation evaluation (‘property 
testing’) 

 Branch-and-Bound scheme 

 



Limitations 

 Smoothness assumption 

 Global transformation 

 Partial matching 

 

Extensions 

 Higher dimensions - Matching 3D shapes 

 Other registration problems 

 Symmetry detection 





 

Thank you for your attention 
 


