Seminar on Sublinear Time Algorithms

FAsT-Match: Fast Affine Template Matching

Korman, S., Reichman, D., Tsur, G., \& Avidan, S., 2013

Given by: Shira Faigenbaum-Golovin
Tel-Aviv University
27.12.2015

OUTLINE

- Problem Definition
- Image processing in a nutshell
- Prior Art of image alignment
- Suggested algorithm

Problem Definition

Image matching:

Given two grayscale images, I_{1} and I_{2}
Find affine transformation T that maps pixels from I_{1} to pixels to I_{2}.

So that the difference over pixels p between $I_{1}(T(p))$ and $I_{2}(p)$ is minimized

Generalized Template Matching

- Find the best transformation between two given images:

Some results I

SOME RESULTS II

Some results III

Motivation

- Align two images before comparison
- Align for image enhancement
- Panoramic mosaics.
- Match images in a video sequence

Image Processing in a Nutshell

Gray scale image I is an $n x m$ matrix with values between [0,1].

where 0 is black, and 1 is white.

The intermediate values are the gray levels

Image Processing in a Nutshell

- A pixel p in an $n \mathrm{x} n$ image I is a pair (x, y) in $\{1, \ldots, n\}^{2}$.
- A value of a pixel $p=(x, y)$ in an image I is $I(x, y)$.
- Two different pixels $p=(x, y)$ and $q=\left(x^{\prime}, y^{\prime}\right)$ are adjacent if $\left|x-x^{\prime}\right| \leq 1$ and $\left|y-y^{\prime}\right| \leq 1$.
- A pixel p is boundary in an image I if there is an adjacent pixel q s.t $I(p) \neq I(q)$.

$\mathrm{P}_{\text {1, } \mathbf{j} \text {-1 }}$	$\mathbf{P i l i , j}$	$\mathbf{P i}_{\text {i, }{ }_{\text {j }} \text { +1 }}$
$\mathbf{P}_{\mathrm{ij} \text {-1 }}$	$\mathbf{P}_{\text {ij }}$	$\mathbf{P}_{\mathbf{i} \mathbf{j + 1}}$
$\mathbf{P}_{\text {i+1, j-1 }}$	$\mathbf{P}_{\mathbf{i + 1}, \mathrm{j}}$	$\mathbf{P}_{\mathbf{i}+1, \mathrm{j}-1}$

Image Transformations in 2D

- An affine transformation matrix T can be decomposed into

$$
T\left(I_{1}\right)=T r \cdot R_{2} \cdot S \cdot R_{1} \cdot I_{1}
$$

where Tr, R, S are translation, rotation and non-uniform scaling matrices.

$$
\boldsymbol{R}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

- There exist 6 degrees of freedom:
- a rotation angle, x and y scales, another rotation angle and x and y translations.

DISTANCE BETWEEN IMAGES

Given two grayscale images, I_{1} and I_{2}
and affine transformation $T: I_{1} \rightarrow I_{2}$.
We define a sum of absolute differences (SAD)
and

$$
d_{T}\left(I_{1}, I_{2}\right)=\frac{1}{n^{2}}\left[\sum_{p I_{1} \mid T(p) \in I_{2}}\left|I_{1}(T(p))-I_{2}(p)\right|\right]
$$

The optimal transformation satisfies:

$$
d\left(I_{1}, I_{2}\right)=\min _{T} d_{T}\left(I_{1}, I_{2}\right)
$$

Generalized Template Matching

The algorithm:

1. Take a sample of the Affine transformations
2. Evaluate the SAD for each transformation in the sample
3. Return the best

Questions:

- Which transformations to use?
- How does is guarantee a bound?

Prior art

- Direct methods - parametric OF
- Indirect methods (feature based)

DIRECT METHODS - PARAMETRIC OF

Lucas, Kanade "An iterative image registration technique with an application to stereo vision" [ICAI 1981]
Baker, Matthews "Lucas-Kanade 20 years on: A unifying framework" [IJCV 04]

DIRECT METHODS - PARAMETRIC OF

- ∞ transformations - need to discretize
- "Combinatorial bounds and algorithmic aspects of image matching under projective transformations" [Hundt \& Liskiewicz MFCS, 2008]

Enumerate $\sim \mathrm{n}^{18}$ affine transformation (for $n x n$ images)

Indirect methods (Feature based)

e.g. SIFT

Computational complexity
$\Theta\left(n^{2}\right)$

RANSAC

- Select (at random) a subset of k pairs
- Compute a motion estimate T
- By using least squares, to minimize the sum of squared residuals.
- Counts the number of inliers that are within ε of their predicted location
- The random selection process is repeated m times,
- The sample set with largest number of inliers is kept as the final solution

Computational complexity
$\Theta(k(t+m N))$
k=\#samples
$\mathrm{N}=\#$ data points
$\mathrm{t}=$ time of single model
$\mathrm{m}=\mathrm{avg}$ \# of models per sample

INDIRECT METHODS (FEATURE BASED)

Indirect methods (FEATURE BASED)

Lowe "Distinctive image features from scale-invariant key-points" [IJCV 04] Morel, Yu "Asift: A new framework for fully affine invariant image comparison" [SIAM 09]
M.A. Fichler, R.C. Bolles "Random sample consensus" [Comm. of ACM 81]

The Main Idea

template

Transformation space (e.g. affine)

image

Observation:

Due to image smoothness assumption, the SAD
measure will not change significantly, when small
variations in the parameters of the transformation

Formal Problem Statement

- Input: Grayscale image (template) $I_{1}\left(n_{1} \times n_{1}\right)$ and image I_{2}

- Distance with respect to a specific transformation T :

$$
\Delta_{T}\left(I_{1}, I_{2}\right)=\frac{1}{n_{1}^{2}} \sum_{p \in I_{1}}\left|I_{1}(T(p))-I_{2}(p)\right|
$$

- Distance with respect to any transformation in a family Ψ (affinities):

$$
\Delta\left(I_{1}, I_{2}\right)=\min _{T \in \Psi} \Delta_{T}\left(I_{1}, I_{2}\right)
$$

- Goal: Given $\delta>0$, find a transformation T^{*} in Ψ for which:

$$
\left|\Delta\left(I_{1}, I_{2}\right)-\Delta_{T^{*}}\left(I_{1}, I_{2}\right)\right|<\delta
$$

NET OF AFFINE TRANSFORMATIONS

Given two transformations T and T^{\prime}, we define $l_{\infty}\left(T, T^{\prime}\right)$ as:

$$
l_{\infty}\left(T, T^{\prime}\right)=\max _{p \in I_{1}}\left\|T(p)-T^{\prime}(p)\right\|_{2}
$$

$$
\forall \quad T \notin \tau
$$

$$
\exists T_{i} \in \tau \quad l_{\infty}\left(T, T_{i}\right)=O(\alpha)
$$

THE ALGORITHM - TAKE 2

- Create a net $\mathcal{N}_{\delta / 2}$ that is a $\left(\delta n_{1}\right) / 2$-cover of the set of affine transformations
- For each $T \in \mathcal{N}_{\delta / 2}$ approximate $\Delta_{T}\left(I_{1}, I_{2}\right)$ to within precision of $\delta / 2$. Denote the resulting value d_{T}
- Return the transformation T with the minimal value d_{T}

Create a Net

- An affine transformation matrix T can be decomposed into

$$
T\left(I_{1}\right)=T r \cdot R_{2} \cdot S \cdot R_{1} \bullet I_{1}
$$

- There exist 6 degrees of freedom: a rotation angle, x and y scales, another rotation angle and x and y translations.

The basic idea is to discretize the space of Affine transformations, by dividin each of the dimensions into $\Theta(\delta)$ equal segments, such that for any two consecutive transformations T and T" on any of the dimensions it will hold that

$$
l_{\infty}\left(T, T^{\prime}\right)<\Theta\left(\delta n_{1}\right)
$$

Create a Net

transformation	step size	range	num. steps
x translation	$\Theta\left(\delta n_{1}\right)$ pixels	$\left[-n_{2}, n_{2}\right]$	$\Theta\left(\frac{n_{2}}{n_{1}} / \delta\right)$
y translation	$\Theta\left(\delta n_{1}\right)$ pixels	$\left[-n_{2}, n_{2}\right]$	$\Theta\left(\frac{n_{2}}{n_{1}} / \delta\right)$
1st rotation	$\Theta(\delta)$ radians	$[0,2 \pi]$	$\Theta(1 / \delta)$
2nd rotation	$\Theta(\delta)$ radians	$[0,2 \pi]$	$\Theta(1 / \delta)$
x scale	$\Theta(\delta)$ pixels	$[1 / c, c]$	$\Theta(1 / \delta)$
y scale	$\Theta(\delta)$ pixels	$[1 / c, c]$	$\Theta(1 / \delta)$

$$
\Theta\left(\frac{1}{\delta^{6}} \cdot\left(\frac{n_{2}}{n_{1}}\right)^{2}\right)
$$

APPROXIMATE $\quad \Delta_{T}\left(I_{1}, I_{2}\right)$

Input: Grayscale images I_{1} and I_{2}, a precision parameter δ and a transformation T
Output: An estimate of the distance $\Delta_{T}\left(I_{1}, I_{2}\right)$

- Sample $\mathrm{m}=\Theta\left(1 / \delta^{2}\right)$ values of pixels $p_{1} \ldots p_{m}$ in I_{1}
- Return $d_{T}=\sum_{i=1}^{m}\left|I_{1}\left(p_{i}\right)-I_{2}\left(T\left(p_{i}\right)\right)\right| / m$.

Claim: Given images I_{1} and I_{2} and an affine transformation T, the algorithm returns a value dT such that $\left|\mathrm{dr}-\Delta_{T}\left(I_{1}, I_{2}\right)\right|<\delta$ with probability $2 / 3$. It performs ($1 / \delta^{2}$) samples.

The Algorithm

- Create a net $\mathcal{N}_{\delta / 2}$ that is a $\left(\delta n_{1}\right) / 2$-cover of the set of $\Theta\left(\frac{1}{\delta^{6}} \cdot\left(\frac{n_{2}}{n_{1}}\right)^{2}\right)$ affine transformations
- For each $T \in \mathcal{N}_{\delta / 2}$ approximate $\Delta_{T}\left(I_{1}, I_{2}\right)$ to within
$\mathrm{O}\left(1 / \delta^{2}\right)$ precision of $\delta / 2$. Denote the resulting value d_{T}
- Return the transformation T with the minimal value d_{T}

Total runtime is: $\quad\left|A_{\delta}\right| \cdot \Theta\left(1 / \delta^{2}\right)=\Theta\left(\frac{1}{\delta^{8}} \cdot\left(\frac{n_{2}}{n_{1}}\right)^{2}\right)$

PROBLEM

Achieving a satisfactory error rate would require using a net $\mathrm{N} \delta$ where δ is small. Thus causing the execution time to grow.

Therefore branch-and-bound scheme is used, by running the algorithm on subset of the net Ns. and refining the δ parameter.

BRANCH-AND-Bound

Input: Grayscale images I_{1}, I_{2}, a precision parameter δ^{*} Output: A transformation T.

1. Let S^{0} be the complete set of transformations in the net $\mathcal{N}_{\delta_{0}}$ (for initial precision δ_{0})
2. Let $i=0$ and repeat while $\delta_{i}>\delta^{*}$
(a) Run algorithm 1 with precision δ_{i}, but considering only the subset S^{i} of $\mathcal{N}_{\delta_{i}}$
(b) Let $T_{i}^{\text {Best }}$ be the best transformation found in S^{i}
(c) Let $Q^{i}=\left\{q \in S^{i}: \Delta_{q}\left(I_{1}, I_{2}\right)-\right.$ $\left.\Delta_{T_{i}^{\text {Best }}}\left(I_{1}, I_{2}\right)<L\left(\delta_{i}\right)\right\}$
(d) Improve precision: $\delta_{i+1}=$ fact $\cdot \delta_{i}$ (by some constant factor $0<$ fact <1)
(e) Let $S^{i+1}=\left\{T \in \operatorname{Net}_{\delta_{i+1}}: \exists q \in\right.$ Q_{i} s.t. $\left.\ell_{\infty}(T, q)<\delta_{i+1} \cdot n_{1}\right\}$
3. Return the transformation $T_{i}^{\text {Best }}$

RESULTS

Experiment 1: Affine Template Matching

- Pascal VOC 2010 data-set
- 200 random image/templates
- Template dimensions of $10 \%, 30 \%, 50 \%, 70 \%, 90 \%$
- 'Comparison' to a feature-based method - ASIFT
- Image degradations (template left in-tact):
- Gaussian Blur with STD of $\{0,1,2,4,7,11\}$ pixels
- Gaussian Noise with STD of $\{0,5,10,18,28,41\}$
- JPEG compression of quality $\{75,40,20,10,5,2\}$

Image degradations

Example of Lossy Compression

Original Lena Image (12KB size)

Lena Image, Compressed 85% less information. 1.8 KB

Lena Image, Highly Compressed 96% less information, $0.56 \mathrm{~KB})$

Experiment 1: Affine Template Matching

- Pascal VOC 2010 data-set
- 200 random image/templates
- Template dimensions of $10 \%, 30 \%, 50 \%, 70 \%, 90 \%$
- 'Comparison' to a feature-based method - ASIFT
- Image degradations (template left in-tact):
- Gaussian Blur with STD of $\{0,1,2,4,7,11\}$ pixels
- Gaussian Noise with STD of $\{0,5,10,18,28,41\}$
-JPEG compression of quality $\{75,40,20,10,5,2\}$

Template Dimension	90%	70%	50%	30%	10%
avg. Fast-Match SAD err.	5.5	4.8	4.4	4.3	4.8
avg. ground truth SAD err.	4.1	4.1	4.0	4.4	6.1
avg. Fast-Match overlap err.	3.2%	3.3%	4.2%	5.3%	13.8%

Experiment 1: Affine Template Matching

o Fast-Match vs. ASIFT - template dimension 50\%

Experiment 1: Affine Template Matching

o Fast-Match vs. ASIFT - template dimension 20\%

Experiment 1: Affine Template Matching

- Runtimes

Template Dimension	90%	70%	50%	30%	10%
ASIFT	12.2 s.	9.9 s.	8.1 s.	7.1 s.	NA
Fast-Match	2.5 s.	2.4 s.	2.8 s.	6.4 s.	25.2 s.

Template Dim: 45\%

template size: 45%

image: 375×499

image: 375×499

template TV: 0.045

SAD Err. 0.013
Overlap Err. 0.015

template TV: 0.146

SAD Err. 0.095

Overlap Err. 0.114

image: 375×499

template TV: 0.071

SAD Err. 0.020

Overlap Err. 0.017

Template Dim: 35\%

template size: 35%

template size: 35%

template size: 35%

image: 333×499

image: 373×499

image: 385×499

template TV: 0.104

SAD Err. 0.032
Overlap Err. 0.000

template TV: 0.056
SAD Err. 0.019
Overlap Err. 0.046

template TV: 0.162

SAD Err. 0.028

Overlap Err. 0.009

Template Dim: 25\%

template size: 25%

template size: 25%

template size: 25%

image: 375×499

image: 323×499

image: 375×499

template TV: 0.132

SAD Err. 0.043

Overlap Err. 0.067

SAD Err. 0.037

Overlap Err. 0.030

Template Dim: 15\%

template size: 15%

image: 375×499

image: 375×499

image: 375×499

template TV: 0.118

template TV: 0.084

SAD Err. 0.022

Overlap Err. 0.039

SAD Err. 0.011 Overlap Err. 0.020

Template Dim: 10\%

template size: 10%

template size: 10%

template size: 10%

image: 373×499

image: 375×499

image: 375×499

template TV: 0.153

template TV: 0.129

template TV: 0.112

SAD Err. 0.044
Overlap Err. 0.045

SAD Err. 0.024
Overlap Err. 0.000

Overlap Err. 0.093

BAD OVERLAP DUE TO AMBIGUITY

template size: 10%

template size: 10%

template size: 10%

image: 367×499

image: 375×499

image: 375×499

template TV: 0.249

template TV: 0.190

template TV: 0.080

SAD Err. 0.021

Overlap Err. 1.000

SAD Err. 0.068
Overlap Err. 0.560

Overlap Err. 0.362

High SAD due TO HIGH TV AND AMBIGUITY

template size: 10%

template size: 35%

image: 333×499

image: 375×499

template TV: 0.226

SAD Err. 0.115
Overlap Err. 1.000

template TV: 0.213

SAD Err. 0.157 Overlap Err. 1.000

Experiment 2: Varying conditions

- Mikolajczyk data-set (for features and descriptors)
- 8 sequences of 6 images, with increasingly harsh conditions
- Including:
- Zoom+Rotation (bark)
- Blur (bikes)
- Zoom+rotation (boat)
- Viewpoint change (graffiti)
- Brightness change (light)
- Blur (trees)
- Jpeg compression (UBC)
- Viewpoint change (wall)

MIKOLAJCZYK- GRAFFITI (VIEWPOINT)

MikOLAJCZYK- 'wall' (VIEwPoint)

MIKOLAJCZYK-‘TREEs’ (BLUR)

MIKOLAJCZYK - 'BARK' (ZOOM+ROT)

MIKOLAJCZYK - ‘UBC’ (JPEG)

Experiment 3: Matching in real-world scenes

- The Zurich Building Data-set
- 200 buildings, 5 different views each
- 200 random instances
- Random choice of building, 2 views, template in one view
- We seek the best possible affine transformation
- In most cases homography or non-rigid is needed
- Results:
- 129 cases - ‘good’ matches
- 40 cases - template doesn't appear in second image
- 12 cases - bad occlusion of template in second image
- 19 cases - 'failure’ (none of the above)

Experiment 3: Good cases

Experiment 3: Good cases

Experiment 3: failures, occlusions, out of img.

FAST-MATCH: SUMMARY

- Handles template matching under arbitrary Affine (6 dof) transformations with
- Guaranteed error bounds
- Fast execution
- Main ingredients
- Sampling of transformation space (based on variation)
- Quick transformation evaluation ('property testing')
- Branch-and-Bound scheme

FAST-MATCH: SUMMARY

- Limitations
- Smoothness assumption
- Global transformation
- Partial matching
- Extensions
- Higher dimensions - Matching 3D shapes
- Other registration problems
- Symmetry detection

HTTP://WWW.ENG.TAU.AC.IL/~ORON/

Thank you for your attention

