Seminar on Sublinear Time Algorithms

FAST-MATCH: FAST AFFINE TEMPLATE MATCHING

KORMAN, S., REICHMAN, D., TSUR, G., & AVIDAN, S., 2013

Given by: Shira Faigenbaum-Golovin Tel-Aviv University 27.12.2015

OUTLINE

- Problem Definition
- Image processing in a nutshell
- Prior Art of image alignment
- Suggested algorithm

PROBLEM DEFINITION

Image matching:

Given two grayscale images, I_1 and I_2 Find affine transformation T that maps pixels from I_1 to pixels to I_2 .

So that the difference over pixels p between $I_1(T(p))$ and $I_2(p)$ is minimized

GENERALIZED TEMPLATE MATCHING

• Find the best transformation between two given images:

Some results I

Some results II

Some results III

MOTIVATION

- Align two images before comparison
- Align for image enhancement
- Panoramic mosaics.
- Match images in a video sequence

IMAGE PROCESSING IN A NUTSHELL

Gray scale image *I* is an *nxm* matrix with values between [0,1].

where 0 is black, and 1 is white.

The intermediate values are the gray levels

IMAGE PROCESSING IN A NUTSHELL

- A pixel p in an $n \ge n$ image I is a pair (x,y) in $\{1,...,n\}^2$.
- A value of a pixel p=(x,y) in an image I is I(x,y).
- Two different pixels *p* =(*x*,*y*) and *q* =(*x*',*y*') are adjacent if |*x*-*x*'|≤1 and |*y*-*y*'|≤1.
- A pixel *p* is boundary in an image *I* if there is an adjacent pixel *q* s.t $I(p) \neq I(q)$.

₽ i.1, j.1	Pi 1, j	P i−1, j+1
Pi, j-1	Pij	Рі, j+1
P i+1, j−1	P i+1, j	P i+1, j−1

IMAGE TRANSFORMATIONS IN 2D

• An affine transformation matrix T can be decomposed into $T(I_1) = Tr \cdot R_2 \cdot S \cdot R_1 \cdot I_1$

where *Tr*, *R*, *S* are translation, rotation and non-uniform scaling matrices.

$$\boldsymbol{R} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

• There exist 6 degrees of freedom:

• a rotation angle, x and y scales, another rotation angle and x and y translations.

DISTANCE BETWEEN IMAGES

Given two grayscale images, I_1 and I_2 and affine transformation $T:I_1 \rightarrow I_2$. We define a sum of absolute differences (SAD)

$$d_T(I_1, I_2) = \frac{1}{n^2} \left[\sum_{p \in I_1 | T(p) \in I_2} \left| I_1(T(p)) - I_2(p) \right| \right]$$

and

The optimal transformation satisfies:

$$d(I_1, I_2) = \min_T d_T(I_1, I_2)$$

GENERALIZED TEMPLATE MATCHING

The algorithm:

- 1. Take a sample of the Affine transformations
- 2. Evaluate the SAD for each transformation in the sample
- 3. Return the best

Questions:

- Which transformations to use?
- How does is guarantee a bound?

Direct methods – parametric OF
Indirect methods (feature based)

DIRECT METHODS – PARAMETRIC OF

Lucas, Kanade "An iterative image registration technique with an application to stereo vision" [ICAI 1981] Baker, Matthews "Lucas-Kanade 20 years on: A unifying framework" [IJCV 04]

DIRECT METHODS – PARAMETRIC OF

- o ∞ transformations need to discretize
- "Combinatorial bounds and algorithmic aspects of image matching under projective transformations" [Hundt & Liskiewicz MFCS, 2008]

Enumerate ~ n^{18} affine transformation (for *nxn* images)

INDIRECT METHODS (FEATURE BASED)

e.g. SIFT

Computational complexity

- Select (at random) a subset of k pairs
- Compute a motion estimate T
- By using least squares, to minimize the sum of squared residuals.
- Counts the number of inliers that are within ε of their predicted location
- The random selection process is repeated m times,
- The sample set with largest number of inliers is kept as the final solution

Computational complexity

$$\Theta(k(t+mN))$$

k=#samples N=#data points t= time of single model m=avg # of models per sample

Target

Template

INDIRECT METHODS (FEATURE BASED)

INDIRECT METHODS (FEATURE BASED)

Lowe "Distinctive image features from scale-invariant key-points" [IJCV 04] Morel, Yu "Asift: A new framework for fully affine invariant image comparison" [SIAM 09] M.A. Fichler, R.C. Bolles "Random sample consensus" [Comm. of ACM 81]

THE MAIN IDEA

template

image

Observation:

Due to <u>image smoothness assumption</u>, the SAD measure will not change significantly, when small variations in the parameters of the transformation

FORMAL PROBLEM STATEMENT

• Input: Grayscale image (template) $I_1(n_1 \times n_1)$ and image I_2

 I_2

- **o Distance** with respect to a <u>specific</u> transformation *T*: $\Delta_T(I_1, I_2) = \frac{1}{n_1^2} \sum_{p \in I_1} |I_1(T(p)) - I_2(p)|$
- Distance with respect to <u>any</u> transformation in a family Ψ (affinities): $\Delta(I_1, I_2) = \min_{T \in \Psi} \Delta_T(I_1, I_2)$
- Goal: Given $\delta > 0$, find a transformation T * in Ψ for which: $|\Delta(I_1, I_2) - \Delta_{T^*}(I_1, I_2)| < \delta$

NET OF AFFINE TRANSFORMATIONS

Given two transformations T and T', we define $l_{\infty}(T,T')$ as:

$$l_{\infty}(T,T') = \max_{p \in I_1} \|T(p) - T'(p)\|_2$$

For a positive α , <u>a net of (affine) transformations</u> $\tau = \{T_i\}$ is an α -cover if $\forall T \notin \tau$

 I_2

 I_1

V I Ç U

 $\exists T_i \in \tau \quad l_{\infty}(T,T_i) = O(\alpha)$

- Create a net $\mathcal{N}_{\delta/2}$ that is a $(\delta n_1)/2$ -cover of the set of affine transformations
- For each $T \in \mathcal{N}_{\delta/2}$ approximate $\Delta_T(I_1, I_2)$ to within precision of $\delta/2$. Denote the resulting value d_T
- Return the transformation T with the minimal value d_T

CREATE A NET

- An affine transformation matrix T can be decomposed into $T(I_1) = Tr \cdot R_2 \cdot S \cdot R_1 \cdot I_1$
- There exist 6 degrees of freedom: a rotation angle, x and y scales, another rotation angle and x and y translations.

The basic idea is to discretize the space of Affine transformations, by dividin each of the dimensions into $\Theta(\delta)$ equal segments, such that for any two consecutive transformations T and T' on any of the dimensions it will hold that

 $l_{\infty}(T,T') < \Theta(\delta n_1)$

CREATE A NET

transformation	step size	range	num. steps
x translation	$\Theta(\delta n_1)$ pixels	$\left[-n_2,n_2 ight]$	$\Theta(\frac{n_2}{n_1}/\delta)$
y translation	$\Theta(\delta n_1)$ pixels	$\left[-n_2,n_2 ight]$	$\Theta(\frac{n_2}{n_1}/\delta)$
1st rotation	$\Theta(\delta)$ radians	$[0, 2\pi]$	$\Theta(1/\delta)$
2nd rotation	$\Theta(\delta)$ radians	$[0, 2\pi]$	$\Theta(1/\delta)$
x scale	$\Theta(\delta)$ pixels	[1/c, c]	$\Theta(1/\delta)$
y scale	$\Theta(\delta)$ pixels	[1/c, c]	$\Theta(1/\delta)$

 $\Theta(\tfrac{1}{\delta^6} \cdot (\tfrac{n_2}{n_1})^2)$

Input: Grayscale images I_1 and I_2 , a precision parameter δ and a transformation TOutput: An estimate of the distance $\Delta_T(I_1, I_2)$

- Sample $m = \Theta(1/\delta^2)$ values of pixels $p_1 \dots p_m$ in I_1
- Return $d_T = \sum_{i=1}^m |I_1(p_i) I_2(T(p_i))|/m.$

Claim: Given images I_1 and I_2 and an affine transformation T, the algorithm returns a value dT such that $|dT - \Delta_T(I_1, I_2)| < \delta$ with probability 2/3. It performs $(1/\delta^2)$ samples.

Estimate the SAD to within $O(1/\delta^2)$

- Create a net $\mathcal{N}_{\delta/2}$ that is a $(\delta n_1)/2$ -cover of the set of affine transformations
- For each $T \in \mathcal{N}_{\delta/2}$ approximate $\Delta_T(I_1, I_2)$ to within precision of $\delta/2$. Denote the resulting value d_T
- Return the transformation T with the minimal value d_T

Total runtime is:
$$|A_{\delta}| \cdot \Theta(1/\delta^2) = \Theta(\frac{1}{\delta^8} \cdot (\frac{n_2}{n_1})^2)$$

$$\Theta(\frac{1}{\delta^6} \cdot (\frac{n_2}{n_1})^2)$$

Achieving a satisfactory error rate would require using a net N $_\delta$ where δ is small. Thus causing the execution time to grow.

Therefore <u>branch-and-bound</u> scheme is used, by running the algorithm on subset of the net N_{δ}. and refining the δ parameter.

BRANCH-AND-BOUND

Input: Grayscale images I_1 , I_2 , a precision parameter δ^* **Output:** A transformation T.

- 1. Let S^0 be the complete set of transformations in the net \mathcal{N}_{δ_0} (for initial precision δ_0)
- 2. Let i = 0 and repeat while $\delta_i > \delta^*$
 - (a) Run algorithm 1 with precision δ_i , but considering only the subset S^i of \mathcal{N}_{δ_i}
 - (b) Let T_i^{Best} be the best transformation found in S^i
 - (c) Let $Q^i = \{q \in S^i : \Delta_q(I_1, I_2) \Delta_{T_i^{Best}}(I_1, I_2) < L(\delta_i)\}$
 - (d) Improve precision: $\delta_{i+1} = fact \cdot \delta_i$ (by some constant factor 0 < fact < 1)

(e) Let
$$S^{i+1} = \{T \in Net_{\delta_{i+1}} : \exists q \in Q_i \text{ s.t. } \ell_{\infty}(T,q) < \delta_{i+1} \cdot n_1 \}$$

3. Return the transformation T_i^{Best}

RESULTS

• Pascal VOC 2010 data-set

- 200 random image/templates
- Template dimensions of 10%, 30%, 50%, 70%, 90%
- 'Comparison' to a feature-based method ASIFT
- Image degradations (template left in-tact):
 Gaussian Blur with STD of {0,1,2,4,7,11} pixels
 Gaussian Noise with STD of {0,5,10,18,28,41}
 JPEG compression of quality {75,40,20,10,5,2}

IMAGE DEGRADATIONS

Example of Lossy Compression

Original Lena Image (12KB size)

Lena Image, Compressed (85% less information, 1.8KB)

Lena Image, Highly Compressed (96% less information, 0.56KB)

• Pascal VOC 2010 data-set

- 200 random image/templates
- Template dimensions of 10%, 30%, 50%, 70%, 90%
- 'Comparison' to a feature-based method ASIFT
- Image degradations (template left in-tact):
 Gaussian Blur with STD of {0,1,2,4,7,11} pixels
 - Gaussian Noise with STD of {0,5,10,18,28,41}

• **JPEG compression** of quality $\{75, 40, 20, 10, 5, 2\}$

Template Dimension	90%	70%	50%	30%	10%
avg. Fast-Match SAD err.	5.5	4.8	4.4	4.3	4.8
avg. ground truth SAD err.	4.1	4.1	4.0	4.4	6.1
avg. Fast-Match overlap err.	3.2%	3.3%	4.2%	5.3%	13.8%

• Fast-Match vs. ASIFT – template dimension 50%

• Fast-Match vs. ASIFT – template dimension 20%

• Runtimes

Template Dimension	90%	70%	50%	30%	10%
ASIFT	12.2 s.	9.9 s.	8.1 s.	7.1 s.	NA
Fast-Match	2.5 s.	2.4 s.	2.8 s.	6.4 s.	25.2 s.

Template Dim: 45%

template size: 45%

image: 375×499

Overlap Err. 0.015

template size: 45%

image: 375×499

template TV: 0.146

SAD Err. 0.095

Overlap Err. 0.114

template size: 35%

image: 375×499

SAD Err. 0.020

Overlap Err. 0.017

template TV: 0.045

SAD Err. 0.013

Template Dim: 35%

template size: 35%

image: 333×499

template size: 35%

image: 373×499

template TV: 0.056

Overlap Err. 0.046

template size: 35%

image: 385×499

template TV: 0.162

SAD Err. 0.028

Overlap Err. 0.009

template TV: 0.104

SAD Err. 0.032

Overlap Err. 0.000

Template Dim: 25%

template size: 25%

image: 375×499

template TV: 0.113

SAD Err. 0.030 Overlap Err. 0.000

template size: 25%

image: 323×499

Overlap Err. 0.067

template size: 25%

image: 375×499

template TV: 0.066

SAD Err. 0.037

Overlap Err. 0.030

template TV: 0.132

SAD Err. 0.043

Template Dim: 15%

template size: 15%

image: 375×499

template size: 15%

image: 375×499

template TV: 0.118

SAD Err. 0.022

Overlap Err. 0.039

template size: 15%

image: 375×499

template TV: 0.084

SAD Err. 0.011

Overlap Err. 0.020

template TV: 0.033

SAD Err. 0.008

Template Dim: 10%

template size: 10%

image: 373×499

template TV: 0.153

SAD Err. 0.044

template size: 10%

image: 375×499

template TV: 0.129

SAD Err. 0.024

Overlap Err. 0.000

template size: 10%

image: 375×499

template TV: 0.112 SAD Err. 0.019

Overlap Err. 0.093

BAD OVERLAP DUE TO AMBIGUITY

template size: 10%

image: 367 × 499

Overlap Err. 1.000

template size: 10%

image: 375×499

Overlap Err. 0.560

Overlap Err. 0.362

template size: 10%

image: 375×499

HIGH SAD DUE TO HIGH TV AND AMBIGUITY

Experiment 2: Varying conditions

- Mikolajczyk data-set (for features and descriptors)
- 8 sequences of 6 images, with increasingly harsh conditions
- Including:
 - Zoom+Rotation (bark)
 - Blur (bikes)
 - Zoom+rotation (boat)
 - Viewpoint change (graffiti)
 - Brightness change (light)
 - Blur (trees)
 - Jpeg compression (UBC)
 - Viewpoint change (wall)

MIKOLAJCZYK– GRAFFITI (VIEWPOINT)

MIKOLAJCZYK- 'WALL' (VIEWPOINT)

MIKOLAJCZYK- 'TREES' (BLUR)

MIKOLAJCZYK – 'BARK' (ZOOM+ROT)

MIKOLAJCZYK – 'UBC' (JPEG)

Experiment 3: Matching in real-world scenes

• The Zurich Building Data-set

- 200 buildings, 5 different views each
- 200 random instances

Random choice of building, 2 views, template in one view
We seek the best possible affine transformation
In most cases <u>homography or non-rigid</u> is needed

• Results:

- 129 cases 'good' matches
- 40 cases template doesn't appear in second image
- 12 cases bad occlusion of template in second image
- 19 cases 'failure' (none of the above)

Experiment 3: Good cases

Experiment 3: Good cases

Experiment 3: failures, occlusions, out of img.

FAST-MATCH: SUMMARY

• Handles template matching under arbitrary **Affine** (6 dof) transformations with

- Guaranteed error bounds
- Fast execution

• Main ingredients

- Sampling of transformation space (based on variation)
- Quick transformation evaluation ('property testing')
- Branch-and-Bound scheme

FAST-MATCH: SUMMARY

• Limitations

- Smoothness assumption
- Global transformation
- Partial matching

• Extensions

- Higher dimensions Matching 3D shapes
- Other registration problems
- Symmetry detection

HTTP://WWW.ENG.TAU.AC.IL/~ORON/

Thank you for your attention