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1 Property Testing for the Element Distinctness Problem

We discuss the Element Distinctness Problem: Given a set of elements X = {x1, . . . , xn}, determine if
the elements are distinct. I.e. does xi 6= xj hold for every i 6= j. Clearly, to answer this problem exactly
we need at least linear time as we need to look at every input.

Instead of answering the above problem, we will solve the following property test :

• If all elements of X are distinct, output PASS.

• If all more than εn duplicates occur, output FAIL with probability larger than 3
4 .

• Otherwise, any answer is acceptable.

1.1 Sub-linear time algorithm

To solve the property testing problem, we run the following algorithm,

Algorithm 1 Property Testing for Element Distinctness Problem

1: Sample c
√
n
ε independent samples from X

2: Test for duplicates among the sampled elements
3: if Found duplicate then
4: return FALSE
5: else
6: return TRUE

Before starting the analysis of Alg. 3, we note the following:
Remark Testing for duplicates can be done in time linear in the amount of samples using hashing.

Thus, the total time-complexity of the algorithm is c
√
n
ε .

Remark The above property (and the algorithm) does not depend on the order of the elements. This
is called a symmetric property. Testing if a list of elements is sorted (see Lecture 1) is an example of
a property that is not symmetric. Usually, when dealing with symmetric problems, we can not do any
better than random sampling of the input.

Remark Clearly, if the set of elements X are distinct, Alg. 3 will output TRUE. Thus, it can only
fail to report a correct answer if the elements are not distinct (i.e. there are duplicates) and it returns
TRUE. This is an example of a one-sided error.

1.2 Analysis of Alg. 3

As mentioned, if the set of elements X are distinct, the algorithms output is indeed correct. Thus,
we wish to show that if there are more than εn elements, the algorithm will output FAIL with high
probability (w.h.p). To do so, our analysis will:

1. Pair off duplicate elements of X.

2. Argue that as we sample c
√
n
ε elements, we are likely to hit both members of a certain pair.
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1.2.1 Pair off duplicate elements of X

We divide the list into ordered pairs of duplicate elements and let P denote the set of ordered pairs. Note
that (i) elements without duplicates do not get paired and (ii) if there is an odd number of duplicates,
the last one does not get paired.

For example, let X = 1, 1, 1, 2, 3, 4, 4, 5, 5, 5, 5, 5. The pairs are: (1, 2), (6, 7), (8, 9), (10, 11). Why?
There are three elements whose value equals to one: x1, x2 and x3. We pair the first and the second
(denoted by the pair (1, 2) due to their indices) while the third is not paired. Elements x4, x5 are distinct
and thus they are not paired. There are two elements whose value equals to four: x6, x7. They are paired
(denoted by the pair (6, 7) due to their indices). Finally, there are five elements whose value equals to
five: x8, x9, x10, x11 and x12. We pair the first four elements (denoted by the pairs (8, 9) and (10, 11))
while the fifth is not paired.

Claim 1 If the number of distinct elements is less than (1− ε)n, then |P | ≥ εn
3 .

I.e. if there are many duplicates (and hence the algorithm should output false), the number of ordered
pairs of duplicates is large (more than εn

3 )
The intuition behind the claim is as follows: if there were only an even number of duplicates, all of

them would be paired and then |P | = εn
2 . Now, the fact that we do not pair all of the elements means

that |P | is smaller. What the claim says is that it is not much smaller.
Formally, we say that a value c is duplicated if there exists at least two indices i 6= j such that the

elements xi, xj equal c (xi = xj = c). We denote by Ic be the set of indices i such that xi = c. Clearly,
if |Ic| > 1 (i.e. the value c is duplicated), the number of indices in Ic that are not paired is zero if |Ic| is
even and one if |Ic| is odd.

Thus, the number of elements who’s value is duplicated that are not paired is equal to the number
of elements c such that (i) |Ic| > 1 and (ii) |Ic| is odd. This means that for all the above values, |Ic| ≥ 3.
From this, one can deduce that at least 2

3 of the above values are paired. Recall that P counts the
number of pairs (and not elements - each pair contains two elements) and that there are εn duplicate
elements, thus |P | = εn

3 .

1.2.2 Both Members of a Pair are Hit w.h.p

To argue that as we sample c
√
n
ε elements, we are likely to hit both members of a certain pair, we will

reformulate Alg. 3 (which allows for an easier analysis).

Algorithm 2 Property Testing for Element Distinctness Problem (reformulation)

1: Sample S1 =
√
n independent samples from X

2: Test for duplicates among S1

3: if Found duplicate then
4: return FALSE
5: Sample S2 = c

√
n
ε independent samples from X

6: Test for duplicates among S1 ∪ S2

7: if Found duplicate then
8: return FALSE
9: else

10: return TRUE

Remark If we prove that Alg. 2 solves the property testing problem then Alg. 3 solves it as well.

Our analysis of Alg. 2 will look at each phase independently. We will argue that the samples in S1

(line 1) include many elements xi such that i is in the first part of an ordered pair (we say that these
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pairs were hit). Then, we will claim that the samples in S2 (line 5) include with high probability an
element xj such that j is in the second part of an ordered pair among the ones that were hit.

Formally, let F = {i | i is the 1st number of an ordered pair and i is hit by S1}. The following
Lemma shows that F will be large enough with high probability.

Lemma 2 |F | ≥ ε
√
n

12 with probability greater than 5
6 .

Proof
We begin with an attempt at a proof, which we will later refine in order to get a correct proof.

Observe that by Claim 1, we get that

Pr[Some sample in S1 hits a first element of a pair in P ] ≥ |P |
n
≥ ε

3
.

We define an indicator variable yk,

yk =

{
1, sample k hits a first element of a pair in P

0, otherwise

We get that the expected value of yk is

E[yk] = Pr[yk = 1] ≥ ε

3
.

Define Y ≡
∑
k∈S1

yk, then the expected value of Y is

E[Y ] =
∑

E[yk] ≥ |S1|
ε

3
=
ε
√
n

3
,

where the first equality follows by linearity of expectation.
Note that Y describes the total number of times that a first element of a pair in P was hit by a

sample in S1. The problem with that is that it includes repetitions, that is, if the same pair was hit
several times, it would be counted several times in Y . Instead, we would like to observe the total number
of pairs whose first element was hit by a sample in S1. In addition, so far we have only shown that
the expected value of Y is large, while in fact, we would like to show that Y is large enough with high
probability.

Therefore, in order to complete the proof we will show that: (i) Y is large enough with high
probability; (ii) |F | ≥ Y − 6 with high probability.

We begin with showing (i). Notice that y1, . . . , yk are independent random variables, and we can
therefore use the Chernoff bound, getting

Pr[Y <
E[Y ]

2
] < e−

1
4 ·E[Y ]· 12 = e−

1
4 ·

ε
√

n
3 ·

1
2 = e−

1
8 ·

ε
√

n
3 � 1

12
.

We conclude that

Pr[Y ≥ ε
√
n

6
] ≥ 11

12
,

thus proving (i).
For proving (ii), let (k, l)-sample collision indicate whether samples k and l hit the same element of

the input, and define the indicator variable

Zkl =

{
1, there is a (k, l)-sample collision

0, otherwise
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It is easy to see that Z =
∑
k<l Zkl is an upper bound on the total number of repetitions in Y , that is,

the number of times where a pair was hit twice or more. In fact, this upper bound is very crude – if a pair
was hit m times, it will be counted

(
m
2

)
times. Therefore, |F | ≥ Y −Z. In addition, E[Zkl] = Pr[Zkl] = 1

n ,

and by linearity of expectation we get that E[Z] =
(√

n
2

)
· 1
n =

√
n(
√
n−1)
2 · 1

n = 1
2 −

1
2
√
n
< 1

2 . Using

Markov’s inequality, we get that Pr[Z ≥ 6] ≤ E[Z]
6 < 1

12 , thus showing that |F | ≥ Y − 6 with probability
at least 11

12 .

From (i), we get that Pr[Y < ε
√
n

6 ] < 1
12 , and from (ii) we get that Pr[Z ≥ 6] < 1

12 . Using union
bound, the probability of something bad happening, that is, either Y is too small, or Z is too large, is at

most 1
6 . Therefore, we get that |F | ≥ Y − 6 ≥ ε

√
n

6 − 6 ≥ ε
√
n

12 with probability at least 5
6 , thus proving

the lemma.

We will now show that if F is large enough, then the second sampling step is likely to hit the second
element of an element in F .

Lemma 3 If |F | ≥ ε
√
n

12 then S2 samples an element which is associated with the second part of an
ordered pair among the ones that were hit with probability greater than 11

12 .

Proof We observe some sample xj ∈ S2. Then since |F | ≥ ε
√
n

12 we get that

Pr[xj is paired with some element in F ] ≥
ε
√
n

12

n
=

ε

12
√
n
.

Therefore, the probability that there is some sample in S2 that is paired with an element in F is

Pr[some sample in S2 is paired with some element in F ] ≥

1− (1− ε

12
√
n

)
c
√

n
ε = 1− (1− ε

12
√
n

)
12

√
n

ε
c
12 ≥ 1− e−

c
12 ≥ 11

12
,

where the last inequality follows by picking c such that e−
c
12 < 1

12 .

From the previous lemmas, the following theorem easily follows.

Theorem 4 Alg. 2 is a property tester with sample complexity of O(
√
n
ε ).

Proof It suffices to show that if there are at least εn duplicates in the input, then the property tester
will output the correct result with probability at least 3

4 . From Lemma 2, the property tester will fail
at hitting enough pairs in the first sampling step with probability at most 1

12 . From Lemma 3, and
assuming that the first sampling step hits enough pairs, the second sampling step will fail at finding a
duplicate with probability at most 1

6 . Therefore, using union bound, the probability of failure is at most
1
6 + 1

12 = 3
12 , and the probability of success is at least 3

4 , as required.

2 Turning to A New Model

Let D = {1, 2, ..., n} = [n] be a domain, |D| = n.
Denote by P be a distribution and Pi = Pr[P outputs i]← unknown.
P outputs iid samples (this is all we can learn from).
Examples: Lottery data, shopping choices, experimental outcomes, etc.

What do we want to know?

1. Is it uniform?
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2. Is it high enthropy?

3. Is p monotone increasing, k-model, monotone hazard rate...?

How can we do it?

1. χ2 test.

2. Plug in estimate.

3. Learn distribution, maximum likelihood estimates.

Goal: Sample complexity SUBLINEAR in n,

2.1 Testing uniformly

Let U be a uniform distribution on the domain D and let P be a given distribution. Let dist(P,U) be
a distance measure between U and P (we will see two possible definitions for the distance later).

The goal is to output the following with probability ≥ 3
4 :

1. If P =U[n] (P distributed uniformly), then tester outputs PASS.

2. If dist(P,U[n]) > ∆, then tester outputs FAIL.

Denote by l the distance between two elements in D.
For distributions p and q over domain D we define the distances l1 and l2 between p and q. Both l1

and l2 keep the symmetry property and the triangle inequality (other known distances: KL-divergence,
Earthmover, Jensen-Shammon).

Definition 5 Let l1 ≡ ||p− q||1 = Σi∈D|pi − qi|.

Definition 6 Let l2 ≡ ||p− q||2 =
√

Σi∈D(pi − qi)2.

Property of l1 and l2:

||p− q||2 ≤ ||p− q||1 ≤
√
n||p− q||2 .

Example 1 Let p = (1, 0, ..., 0), q = ( 1
n , ...,

1
n ).

Then,

l1 =
n− 1

n
+ (n− 1)

1

n
≈ 2,

and

(l2)2 = (1− 1

n
)2 + (n− 1)(

1

n
)2 ≈ 1.
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Example 2 Let p = ( 2
n , ...,

2
n , 0, ..., 0), q = (0, ..., 0, 2

n , ...,
2
n ).

Then,

l1 = n
2

n
= 2,

and

(l2)2 = n(
2

n
)2 =

4

n
⇒ l2 =

2√
n
.

Algorithm 3 ”Plug-in” Estimate Algorithm

1: Take m samples from p
2: Estimate p(i) for each i ∈ [n]: p̂(i) = ] of times i occurs in sample/m
3: if

∑
i |p̂(i)−

1
n | > ∆ then

4: return FALSE
5: else
6: return TRUE

Analysis (better analysis exist):
Pick m s.t. with high probability
Foreach i,

|p̂− p(i)| < ∆

n

by

∆ 6= ||p− u||1 ≤ ||p̂− u||1 + ∆

.
Q: How many samples should we take?
A: Ω(nε ), maybe even worse. For getting a good approximation by chernoff bound, a linear number

of samples in needed to estimate P .
Q: Can we do better?
A: Yes. Instead of trying to estimate p(i) for each i in the domain, try to estimate the total probability

of collision of P .
We will use the l2-distance:
The collision probability of distribution P is:

Prs,t∈P [s = t] =
∑
i

p2i = (||P ||2)2

.

(||P−U ||2)2 =
∑
i∈[n]

(pi−
1

n
)2 =

∑
i

p2i−2
∑

pi
1

n
+
∑
i

(
1

n
)2 =

∑
i

p2i−
2

n
+

1

n
=
∑
i

p2i−
1

n
= (||P ||2)2− 1

n
.

Observe that for a uniform distribution U ,

(||U ||2)2 =
∑ 1

n2
=

1

n
,

and for any other distribution P ,

(||P ||2)2 >
1

n
.
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Corollary 7 We can find the distance between P and U using the known fact that (||U ||2)2 = 1
n , and

the collision probability of P , known as (||P ||2)2 > 1
n , that we can estimate.
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