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Lecture 6
Lecturer: Ronitt Rubinfeld Scribe: Noam Touitou, Yaniv Sabo and Aviel Atias

1 Today

Testing triangle freeness in dense graphs.

2 Some definitions

Definition 1 G is A-free if fx,y, z such that A(x,y) = A(z, 2) = A(y,z) = 1 where A
is the adjacency matriz of G.

Claim 2 (left for homework) If there is a property testing algorithm for /\-freeness then
there is an algorithm that works as follows:

e pick random x,y, z

o test if A(x,y) = Ay, z) = Az, 2) =1

The claim states that using more samples, one can turn a non-adaptive algorithm into
adaptive.

Definition 3 In a random graph, for each edge we flip a coin in order to determine if it
exists in the graph. We denote the probability of the coin to say "yes” by n and call this
value the ”graph density”

1 if A(u,v) = A(v,w) = A(u,w) =1

Definition 4 A, = _
0 otherwise

3 Number of triangles in a dense graph
Detour 5 How many A’s in a random tripartite graph?
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Definition 6 For A,B C V such that (1) ANB =0 (2) |A|,|B| > 1 let e(A,B) =
number of edges between A, B.

e(A, B)

Say (A, B) is vy-reqular if:
VA" C A, B' C B such that |A'| > ~|A| and |B'| > ~|B|
we have: |d(A',B") —d(A,B)| <~

Lemma 7 (Triangle Counting) Komlos Simonovitz
Vn > 0,

37,90 such that if A, B,C disjoint subsets of V,

and each pair is y-reqular with respect to density n

7 (depends on n) =1/2n = 7" (n)
o
d(depends onn) = (1—n) - 5 > 16 = 5%(n)
(the last inequailty holds whenever n < 1/2)
then G contains > 0 - |A||B||C| distinct A’s

with nodes from each A, B,C.

Proof (simplification of [Alon Fischer Krivelevich Szegedy])
A* < nodes in A with > (n — ~)|B| neighbors from B and with > (n — 7)|C| neighbors
from C.

Claim 8 |A*| > (1 —2v)|A|
Proof
A" < nodes in A that have < (n — v)|B| nodes in B
A" < nodes in A that have < (n —~)|C| nodes in C
[ ATl < A]A], [A"] <74
why? if not, assume |A’'| > y|A|. Consider pair (A, B). |A'| > ~|A|, and since v < 1
then |B| > ~|B|. So:

: (n —)B[|4'|

d(A', B) < a1

since y-reqularity, |d(A’', B) — d(A, B)| < =, but d(A,B) > n so |d(A",B) — d(A, B)| >
n— (n—7) =~ which contradicts y-reqularity.
The proof for A’ is similar.



So:
A=A\ (Aud’

A% = [A] = 29]4]
= (1-2y)|4]
]

For each u € A*, define:
B, = neighbors of v in B
C, = neighbors of v in C
Then:

[Bu| = (n—7)|B|
|Cul = (1 —7)IC]
If we make assumption on v choice (v < 4), we have n — v > v so:
|Bu| > 7B
|Cul = ~[C]

Number of edges between B, and (), = lower bound on number of distinct A’s with «
as a vertex.

d(B,C) >n
= d(By, Cy) > n —~ (Since |B,l,|C.| big enough, and B, C' are v-regular.)
= e(By, Cu) = (11— 7)[Bu]|C4]
> (n—7)°|BJIC]
= total number of A’s > (1 —27)-|A|- (n—~)*-|B||C|

3

= (1=n)- % - [AIIBIIC] (choosing 7 = n/2)

4 Szemerédi Regularity Lemma (SRL)

Lemma 9 Useful version of the lemma
Vm,e > 0 3T = T(m,€) s.t given G = (V, E) with |V| > T and A an equipartition of
V' into m sets then there is some equipartition B of V into k sets which refine A s.t

m <k <T and at most e(g) set pairs are not e-reqular.



4.1 Notes

e Using the regularity lemma, we can partition any graph into a ”constant” number
of parts, i.e it only depends on €. Each pair behaves like a random bipartite graph.

e SRL was studied to prove a conjecture by Erdos and Turdn: sequence of integers
must always contain long arithmetic progressions.

4.2 An application of the SRL

Given a graph G in adjacency matrix format we would like an algorithm which has this
behavior:

e If (G is A-free output pass.

o If G is e-far from A-free (i.e, we need to delete at least en? edges to make it /A\-free)
then output fail with probability 3/4.

Definition 10 Our algorithm
Do O(1/6) times: pick random vy,va,v3 in V. If it is a triangle reject and halt. If no
such triangle was found, accept.

Theorem 11 Ve > 0, 39 s.t VG with |V| =n and G is e-far from /A-free then G has at
least 5(?) distinct triangles.

Corollary 12 Algorithm has desired behavior

Proof If GG is triangle free, the algorithm accepts with probability 1. If G is e-far, then
there are at least o (g) triangles and so the probability we won’t sample a triangle in ¢/d
loops is at most (1 — §)/? < e=¢ < 1/4 for a large enough c. W

Proof (of theorem)

Use regularity to get an equipartition {Vi, Vs, ..., Vi} s.t % <k< T(%,e’) (use A, an
arbitrary equipartition into 5/€ sets).

The number of nodes in each part is n/k and so

We will choose € = min [£,72(£)] s.t at most € (g) set pairs are not €-regular.

We need the number of parts to be large enough s.t the number of edges inside each part
isn’t too big.

Assume n/k is an integer. We'll define a new graph G’ as follows:

Take G and:

1. Delete edges of G internal to any element V; of the partition. The number of edges
we have deleted is

k k
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2. Delete edges between €-nonregular pairs(note that ¢ < £). The number of edges
deleted is
R\ n, e k2 n?  en?
<e (- <= — —=—
2)k 5 2 k2 10
3. Delete edges between low density pairs (pairs of density < £). The number of edges

deleted is )
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[Note that 32y, density pairs<%>2 < (2)(
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The total number of edges deleted from G is < en?. G was e-far from triangle-free,
and thus G’ still has a triangle.

Let a,b,c be the nodes of the triangle. Due to the aforementioned edge removal,
3, j, k that are distinct s.t. a € V;,b € V}, ¢ € V}, and each pair from {V;,V}, Vi } is both
a high density pair(i.e., has density > £) and 7> (£)-regular.

Due to the triangle-counting lemma, we have that the number of triangles in G’ is

=3

3
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for &' = 66°(£)(T(2,¢))~* [Notice that 62(£) = (1 — §) &0 > 1. &0 = o




