Lecturer: Ronitt Rubinfeld Scribe: Noam Touitou, Yaniv Sabo and Aviel Atias

1 Today

Testing triangle freeness in dense graphs.

2 Some definitions

Definition $1 G$ is \triangle-free if $\nexists x, y, z$ such that $A(x, y)=A(x, z)=A(y, z)=1$ where A is the adjacency matrix of G.

Claim 2 (left for homework) If there is a property testing algorithm for \triangle-freeness then there is an algorithm that works as follows:

- pick random x, y, z
- test if $A(x, y)=A(y, z)=A(x, z)=1$

The claim states that using more samples, one can turn a non-adaptive algorithm into adaptive.

Definition 3 In a random graph, for each edge we flip a coin in order to determine if it exists in the graph. We denote the probability of the coin to say "yes" by η and call this value the "graph density"

Definition $4 \triangle_{u v w}= \begin{cases}1 & \text { if } A(u, v)=A(v, w)=A(u, w)=1 \\ 0 & \text { otherwise }\end{cases}$

3 Number of triangles in a dense graph

Detour 5 How many \triangle 's in a random tripartite graph?

$$
\begin{gathered}
\forall u \in A, v \in B, w \in C: \operatorname{Pr}\left[\triangle_{u v w}=1\right]=\eta^{3} \\
\mathrm{E}\left[\triangle_{u v w}\right]=\eta^{3} \\
\mathrm{E}[\# \triangle \mathrm{~s}] \mathrm{s}]=\mathrm{E}\left[\sum_{u \in A, v \in B, w \in C} \triangle_{u v w}\right]=\eta^{3} \cdot|A| \cdot|B| \cdot|C|
\end{gathered}
$$

Definition 6 For $A, B \subseteq V$ such that (1) $A \cap B=\emptyset$ (2) $|A|,|B|>1$ let $e(A, B)=$ number of edges between A, B.

$$
\text { density: } d(A, B)=\frac{e(A, B)}{|A||B|}
$$

Say (A, B) is γ-regular if:

$$
\forall A^{\prime} \subseteq A, B^{\prime} \subseteq B \text { such that }\left|A^{\prime}\right| \geq \gamma|A| \text { and }\left|B^{\prime}\right| \geq \gamma|B|
$$

we have: $\left|d\left(A^{\prime}, B^{\prime}\right)-d(A, B)\right|<\gamma$
Lemma 7 (Triangle Counting) Komlos Simonovitz
$\forall \eta>0$,
$\exists \gamma, \delta$ such that if A, B, C disjoint subsets of V,
and each pair is γ-regular with respect to density η
$\quad \gamma($ depends on $\eta)=1 / 2 \eta=\gamma^{\triangle}(\eta)$
$\delta($ depends on $\eta)=(1-\eta) \cdot \frac{\eta^{3}}{8} \geq \frac{\eta^{3}}{16}=\delta^{\triangle}(\eta)$
(the last inequailty holds whenever $\eta<1 / 2)$
then G contains $\geq \delta \cdot|A\|B\| C|$ distinct \triangle 's
with nodes from each A, B, C.

Proof (simplification of [Alon Fischer Krivelevich Szegedy])
$A^{*} \leftarrow$ nodes in A with $\geq(\eta-\gamma)|B|$ neighbors from B and with $\geq(\eta-\gamma)|C|$ neighbors from C.

Claim $8\left|A^{*}\right| \geq(1-2 \gamma)|A|$

Proof

$A^{\prime} \leftarrow$ nodes in A that have $<(\eta-\gamma)|B|$ nodes in B
$A^{\prime \prime} \leftarrow$ nodes in A that have $<(\eta-\gamma)|C|$ nodes in C
$\left|A^{\prime}\right| \leq \gamma|A|,\left|A^{\prime \prime}\right| \leq \gamma|A|$
why? if not, assume $\left|A^{\prime}\right|>\gamma|A|$. Consider pair $\left(A^{\prime}, B\right) .\left|A^{\prime}\right| \geq \gamma|A|$, and since $\gamma \leq 1$ then $|B| \geq \gamma|B|$. So:

$$
d\left(A^{\prime}, B\right)<\frac{(\eta-\gamma)|B|\left|A^{\prime}\right|}{\left|A^{\prime}\right||B|}=\eta-\gamma
$$

since γ-regularity, $\left|d\left(A^{\prime}, B\right)-d(A, B)\right|<\gamma$, but $d(A, B)>\eta$ so $\left|d\left(A^{\prime}, B\right)-d(A, B)\right|>$ $\eta-(\eta-\gamma)=\gamma$ which contradicts γ-regularity.
The proof for A^{\prime} is similar.

So:

$$
\begin{gathered}
A^{*} \equiv A \backslash\left(A^{\prime} \cup A^{\prime \prime}\right) \\
\left|A^{*}\right| \geq|A|-2 \gamma|A| \\
\quad=(1-2 \gamma)|A|
\end{gathered}
$$

For each $u \in A^{*}$, define:
$B_{u}=$ neighbors of u in B
$C_{u}=$ neighbors of u in C
Then:

$$
\begin{aligned}
& \left|B_{u}\right| \geq(\eta-\gamma)|B| \\
& \left|C_{u}\right| \geq(\eta-\gamma)|C|
\end{aligned}
$$

If we make assumption on γ choice $\left(\gamma<\frac{\eta}{2}\right)$, we have $\eta-\gamma \geq \gamma$ so:

$$
\begin{aligned}
\left|B_{u}\right| & \geq \gamma|B| \\
\left|C_{u}\right| & \geq \gamma|C|
\end{aligned}
$$

Number of edges between B_{u} and $C_{u} \Rightarrow$ lower bound on number of distinct \triangle 's with u as a vertex.

$$
\begin{gathered}
d(B, C) \geq \eta \\
\Rightarrow d\left(B_{u}, C_{u}\right) \geq \eta-\gamma\left(\text { Since }\left|B_{u}\right|,\left|C_{u}\right| \text { big enough, and } B, C \text { are } \gamma\right. \text {-regular.) } \\
\Rightarrow e\left(B_{u}, C_{u}\right) \geq(\eta-\gamma)\left|B_{u}\right|\left|C_{u}\right| \\
\geq(\eta-\gamma)^{3}|B||C| \\
\Rightarrow \text { total number of } \triangle^{\prime} \mathrm{s} \geq(1-2 \gamma) \cdot|A| \cdot(\eta-\gamma)^{3} \cdot|B \| C| \\
\left.=(1-\eta) \cdot \frac{\eta^{3}}{8} \cdot|A||B||C| \text { (choosing } \gamma=\eta / 2\right)
\end{gathered}
$$

4 Szemerédi Regularity Lemma (SRL)

Lemma 9 Useful version of the lemma
$\forall m, \epsilon>0 \exists T=T(m, \epsilon)$ s.t given $G=(V, E)$ with $|V|>T$ and A an equipartition of V into m sets then there is some equipartition B of V into k sets which refine A s.t $m \leq k \leq T$ and at most $\epsilon\binom{k}{2}$ set pairs are not ϵ-regular.

4.1 Notes

- Using the regularity lemma, we can partition any graph into a "constant" number of parts, i.e it only depends on ϵ. Each pair behaves like a random bipartite graph.
- SRL was studied to prove a conjecture by Erdős and Turán: sequence of integers must always contain long arithmetic progressions.

4.2 An application of the SRL

Given a graph G in adjacency matrix format we would like an algorithm which has this behavior:

- If G is \triangle-free output pass.
- If G is ϵ-far from \triangle-free (i.e, we need to delete at least ϵn^{2} edges to make it \triangle-free) then output fail with probability $3 / 4$.

Definition 10 Our algorithm
Do $O(1 / \delta)$ times: pick random v_{1}, v_{2}, v_{3} in V. If it is a triangle reject and halt. If no such triangle was found, accept.

Theorem $11 \forall \epsilon>0, \exists \delta$ s.t $\forall G$ with $|V|=n$ and G is ϵ-far from \triangle-free then G has at least $\delta\binom{n}{3}$ distinct triangles.

Corollary 12 Algorithm has desired behavior
Proof If G is triangle free, the algorithm accepts with probability 1. If G is ϵ-far, then there are at least $\delta\binom{n}{3}$ triangles and so the probability we won't sample a triangle in c / δ loops is at most $(1-\delta)^{c / \delta} \leq e^{-c}<1 / 4$ for a large enough c.

Proof (of theorem)
Use regularity to get an equipartition $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ s.t $\frac{5}{\epsilon} \leq k \leq T\left(\frac{5}{\epsilon}, \epsilon^{\prime}\right)$ (use A, an arbitrary equipartition into $5 / \epsilon$ sets).
The number of nodes in each part is n / k and so $\frac{n}{T\left(\frac{n}{\epsilon}, \epsilon^{\prime}\right)} \leq \frac{n}{k} \leq \frac{\epsilon n}{5}$
We will choose $\epsilon^{\prime}=\min \left[\frac{\epsilon}{5}, \gamma^{\triangle}\left(\frac{\epsilon}{5}\right)\right]$ s.t at most $\epsilon^{\prime}\binom{k}{2}$ set pairs are not ϵ^{\prime}-regular.
We need the number of parts to be large enough s.t the number of edges inside each part isn't too big.
Assume n / k is an integer. We'll define a new graph G^{\prime} as follows:
Take G and:

1. Delete edges of G internal to any element V_{i} of the partition. The number of edges we have deleted is

$$
\leq \sum_{i=1}^{k} \sum_{v \in V_{i}}\left|V_{i}\right| \leq \sum_{i=1}^{k} \sum_{v \in V_{i}} \frac{n}{k} \leq n * \frac{\epsilon n}{5}=\frac{\epsilon n^{2}}{5}
$$

2. Delete edges between ϵ^{\prime}-nonregular pairs(note that $\epsilon^{\prime} \leq \frac{\epsilon}{5}$). The number of edges deleted is

$$
\leq \epsilon^{\prime}\binom{k}{2}\left(\frac{n}{k}\right)^{2} \leq \frac{\epsilon}{5} \cdot \frac{k^{2}}{2} \cdot \frac{n^{2}}{k^{2}}=\frac{\epsilon n^{2}}{10}
$$

3. Delete edges between low density pairs (pairs of density $\leq \frac{\epsilon}{5}$). The number of edges deleted is

$$
\leq \sum_{\text {low density pairs }} \frac{\epsilon}{5} \cdot\left(\frac{n}{k}\right)^{2} \leq \frac{\epsilon}{5} \cdot\binom{n}{2} \approx \frac{\epsilon n^{2}}{10}
$$

 $\left.\binom{n}{2}\right]$

The total number of edges deleted from G is $<\epsilon n^{2}$. G was ϵ-far from triangle-free, and thus G^{\prime} still has a triangle.

Let a, b, c be the nodes of the triangle. Due to the aforementioned edge removal, $\exists i, j, k$ that are distinct s.t. $a \in V_{i}, b \in V_{j}, c \in V_{k}$ and each pair from $\left\{V_{i}, V_{j}, V_{k}\right\}$ is both a high density pair(i.e., has density $\geq \frac{\epsilon}{5}$) and $\gamma^{\Delta}\left(\frac{\epsilon}{5}\right)$-regular.

Due to the triangle-counting lemma, we have that the number of triangles in G^{\prime} is

$$
\geq \delta^{\triangle}\left(\frac{\epsilon}{5}\right)\left|V_{i}\right|\left|V_{j}\right|\left|V_{k}\right| \geq \delta^{\triangle}\left(\frac{\epsilon}{5}\right) \cdot \frac{n^{3}}{T\left(\frac{5}{\epsilon}, \epsilon^{\prime}\right)} \geq \delta^{\prime} \cdot\binom{n}{3}
$$

for $\delta^{\prime}=6 \delta^{\triangle}\left(\frac{\epsilon}{5}\right)\left(T\left(\frac{5}{\epsilon}, \epsilon^{\prime}\right)\right)^{-3}$ [Notice that $\left.\delta^{\triangle}\left(\frac{\epsilon}{5}\right)=\left(1-\frac{\epsilon}{5}\right) \frac{\left(\frac{\epsilon}{5}\right)^{3}}{8} \geq \frac{1}{2} \cdot \frac{\epsilon^{3}}{1000}=\frac{\epsilon^{3}}{2000}\right]$.

