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Lecture 6
Lecturer: Ronitt Rubinfeld Scribe: Noam Touitou, Yaniv Sabo and Aviel Atias

1 Today

Testing triangle freeness in dense graphs.

2 Some definitions

Definition 1 G is 4-free if @x, y, z such that A(x, y) = A(x, z) = A(y, z) = 1 where A
is the adjacency matrix of G.

Claim 2 (left for homework) If there is a property testing algorithm for 4-freeness then
there is an algorithm that works as follows:

• pick random x, y, z

• test if A(x, y) = A(y, z) = A(x, z) = 1

The claim states that using more samples, one can turn a non-adaptive algorithm into
adaptive.

Definition 3 In a random graph, for each edge we flip a coin in order to determine if it
exists in the graph. We denote the probability of the coin to say ”yes” by η and call this
value the ”graph density”

Definition 4 4uvw =

{
1 if A(u, v) = A(v, w) = A(u,w) = 1

0 otherwise

3 Number of triangles in a dense graph

Detour 5 How many 4’s in a random tripartite graph?

∀u ∈ A, v ∈ B,w ∈ C : Pr[4uvw = 1] = η3

E[4uvw] = η3

E[#4’s] = E[
∑

u∈A,v∈B,w∈C

4uvw] = η3 · |A| · |B| · |C|
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Definition 6 For A,B ⊆ V such that (1) A ∩ B = ∅ (2) |A|, |B| > 1 let e(A,B) =
number of edges between A,B.

density: d(A,B) =
e(A,B)

|A||B|

Say (A,B) is γ-regular if:

∀A′ ⊆ A,B′ ⊆ B such that |A′| ≥ γ|A| and |B′| ≥ γ|B|

we have: |d(A′, B′)− d(A,B)| < γ

Lemma 7 (Triangle Counting) Komlos Simonovitz
∀η > 0,

∃γ, δ such that if A,B,C disjoint subsets of V ,

and each pair is γ-regular with respect to density η

γ(depends on η) = 1/2η = γ4(η)

δ(depends on η) = (1− η) · η
3

8
≥ η3

16
= δ4(η)

(the last inequailty holds whenever η < 1/2)

then G contains ≥ δ · |A||B||C| distinct 4’s

with nodes from each A,B,C.

Proof (simplification of [Alon Fischer Krivelevich Szegedy])
A∗ ← nodes in A with ≥ (η − γ)|B| neighbors from B and with ≥ (η − γ)|C| neighbors
from C.

Claim 8 |A∗| ≥ (1− 2γ)|A|
Proof
A′ ← nodes in A that have < (η − γ)|B| nodes in B
A′′ ← nodes in A that have < (η − γ)|C| nodes in C
|A′| ≤ γ|A|, |A′′| ≤ γ|A|
why? if not, assume |A′| > γ|A|. Consider pair (A′, B). |A′| ≥ γ|A|, and since γ ≤ 1
then |B| ≥ γ|B|. So:

d(A′, B) <
(η − γ)|B||A′|
|A′||B|

= η − γ

since γ-regularity, |d(A′, B) − d(A,B)| < γ, but d(A,B) > η so |d(A′, B) − d(A,B)| >
η − (η − γ) = γ which contradicts γ-regularity.
The proof for A′ is similar.
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So:
A∗ ≡ A \ (A′ ∪ A′′)

|A∗| ≥ |A| − 2γ|A|
= (1− 2γ)|A|

For each u ∈ A∗, define:
Bu = neighbors of u in B
Cu = neighbors of u in C
Then:

|Bu| ≥ (η − γ)|B|
|Cu| ≥ (η − γ)|C|

If we make assumption on γ choice (γ < η
2
), we have η − γ ≥ γ so:

|Bu| ≥ γ|B|

|Cu| ≥ γ|C|
Number of edges between Bu and Cu ⇒ lower bound on number of distinct 4’s with u
as a vertex.

d(B,C) ≥ η

⇒ d(Bu, Cu) ≥ η − γ (Since |Bu|, |Cu| big enough, and B,C are γ-regular.)

⇒ e(Bu, Cu) ≥ (η − γ)|Bu||Cu|
≥ (η − γ)3|B||C|

⇒ total number of 4’s ≥ (1− 2γ) · |A| · (η − γ)3 · |B||C|

= (1− η) · η
3

8
· |A||B||C| (choosing γ = η/2)

4 Szemerédi Regularity Lemma (SRL)

Lemma 9 Useful version of the lemma
∀m, ε > 0 ∃T = T (m, ε) s.t given G = (V,E) with |V | > T and A an equipartition of
V into m sets then there is some equipartition B of V into k sets which refine A s.t
m ≤ k ≤ T and at most ε

(
k
2

)
set pairs are not ε-regular.
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4.1 Notes

• Using the regularity lemma, we can partition any graph into a ”constant” number
of parts, i.e it only depends on ε. Each pair behaves like a random bipartite graph.

• SRL was studied to prove a conjecture by Erdős and Turán: sequence of integers
must always contain long arithmetic progressions.

4.2 An application of the SRL

Given a graph G in adjacency matrix format we would like an algorithm which has this
behavior:

• If G is 4-free output pass.

• If G is ε-far from 4-free (i.e, we need to delete at least εn2 edges to make it 4-free)
then output fail with probability 3/4.

Definition 10 Our algorithm
Do O(1/δ) times: pick random v1,v2,v3 in V . If it is a triangle reject and halt. If no
such triangle was found, accept.

Theorem 11 ∀ε > 0, ∃δ s.t ∀G with |V | = n and G is ε-far from 4-free then G has at
least δ

(
n
3

)
distinct triangles.

Corollary 12 Algorithm has desired behavior

Proof If G is triangle free, the algorithm accepts with probability 1. If G is ε-far, then
there are at least δ

(
n
3

)
triangles and so the probability we won’t sample a triangle in c/δ

loops is at most (1− δ)c/δ ≤ e−c < 1/4 for a large enough c.

Proof (of theorem)
Use regularity to get an equipartition {V1, V2, ..., Vk} s.t 5

ε
≤ k ≤ T (5

ε
, ε′) (use A, an

arbitrary equipartition into 5/ε sets).
The number of nodes in each part is n/k and so n

T ( 5
ε
,ε′)
≤ n

k
≤ εn

5

We will choose ε′ = min
[
ε
5
, γ4( ε

5
)
]
s.t at most ε′

(
k
2

)
set pairs are not ε′-regular.

We need the number of parts to be large enough s.t the number of edges inside each part
isn’t too big.
Assume n/k is an integer. We’ll define a new graph G′ as follows:

Take G and:

1. Delete edges of G internal to any element Vi of the partition. The number of edges
we have deleted is

≤
k∑

i=1

∑
v∈Vi

|Vi| ≤
k∑

i=1

∑
v∈Vi

n

k
≤ n ∗ εn

5
=

εn2

5
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2. Delete edges between ε′-nonregular pairs(note that ε′ ≤ ε
5
). The number of edges

deleted is

≤ ε′
(
k

2

)
(
n

k
)2 ≤ ε

5
· k

2

2
· n

2

k2
=

εn2
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3. Delete edges between low density pairs (pairs of density ≤ ε
5
). The number of edges

deleted is

≤
∑

low density pairs

ε

5
· (n

k
)2 ≤ ε

5
·
(
n

2

)
≈ εn2
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[Note that
∑

low density pairs(
n
k
)2 ≤

(
k
2

)
(n
k
)2 = k(k−1)

2
(n
k
)2 = k−1

k
· n2

2
≤ n−1

n
· n2

2
=(

n
2

)
]

The total number of edges deleted from G is < εn2. G was ε-far from triangle-free,
and thus G′ still has a triangle.

Let a, b, c be the nodes of the triangle. Due to the aforementioned edge removal,
∃i, j, k that are distinct s.t. a ∈ Vi, b ∈ Vj, c ∈ Vk and each pair from {Vi, Vj, Vk} is both
a high density pair(i.e., has density ≥ ε

5
) and γ4( ε

5
)-regular.

Due to the triangle-counting lemma, we have that the number of triangles in G′ is

≥ δ4(
ε

5
)|Vi||Vj||Vk| ≥ δ4(

ε

5
) · n3

T (5
ε
, ε′)
≥ δ′ ·

(
n

3

)

for δ′ = 6δ4( ε
5
)(T (5

ε
, ε′))−3 [Notice that δ4( ε

5
) = (1− ε

5
)
( ε
5
)3

8
≥ 1

2
· ε3

1000
= ε3

2000
].
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